
PHD PRELIMINARY EXAMINATION IN APPLIED ANALYSIS
FEBRUARY 11, 2021

Student ID:

• The examination consists of four parts associated with four skills and content areas
summarized to students via email. We summarize this below.

– Part 1: Skills and Content Area. Produce straightforward proofs based on
general metric space definitions for point-set topology and continuous functions
that may, for establishing certain steps in the proofs, utilize standard results from
either undergraduate or graduate analysis (MATH 4310 or 5070, respectively).
Students solve both problems in this part.

– Part 2: Skills and Content Area. Produce proofs involving commonly stud-
ied sequence/function spaces such as `p (for 1 ≤ p ≤ ∞) or Ck(X, Y ) for some
k ∈ N. Students solve both problems in this part.

– Part 3: Skills and Content Area. Identify the correct theorem to apply
to prove a result by proper verification of the theorem’s hypothesis. The focus
is on major theorems spanning all content including some of the major results
from undergraduate analysis. Such theorems include, but are not limited to, the
intermediate value theorem, the mean value theorem, the Fundamental Theorem
of Calculus, the Arzelà–Ascoli theorem, and the contraction mapping theorem.
Students are to choose to solve only one of two problems in this part.
If students do both problems, then only the first one will be graded.

– Part 4: Skills and Content Area. Prove results requiring definitions and/or
theorems for differentiation/integration. Students are to choose to solve
only one of two problems in this part. If students do both problems,
then only the first one will be graded.

• Make sure to justify your solutions/proofs by citing theorems that you use, provide
counter-examples with explanations, follow proper proof-writing techniques, etc.
• Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.
• Please begin solution to every problem on a new page; write only on one side of

each piece of paper; number all pages throughout; and, just in case, write your
student ID on every page.
• Do not submit scratch paper or multiple alternative solutions. If you do, we will

grade the first solution to its end.
• Ask the proctor if you have any questions.

Examination committee: Troy Butler (chair), Burt Simon, Dmitriy Ostrovskiy
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Part 1
Students should complete both problems.
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(1) Let (X, d) be a metric space. Suppose (xn), (yn) ⊂ X both converge. Use the
definition of a convergent sequence to prove that (d(xn, yn)) ⊂ R also converges.

Note about the proof: We enumerate the steps to the proof and provide footnotes
describing their necessity.

Proof.

[Step 1:] Let xn → x and yn → y. We prove that d(xn, yn)→ d(x, y).1

[Step 2:] Let ε > 0.2

[Step 3:] Since xn → x, there exists N1 such that n ≥ N1 implies d(x, xn) < ε/2.
Since yn → y, there exists N2 such that n ≥ N2 implies d(y, yn) < ε/2. Choose
N = max {N1, N2}.3

[Step 4:] Let n ≥ N .4

[Step 5:] By repeated use of the triangle inequality and the symmetric property of
metrics5,

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) = d(xn, x) + d(x, y) + d(yn, y),

which implies that

d(xn, yn)− d(x, y) ≤ d(xn, x) + d(yn, y).

By reversing the roles of xn and yn with x and y, respectively, the same argument
gives

d(x, y)− d(xn, yn) ≤ d(xn, x) + d(yn, y).

It follows that

|d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y)

< ε.

�

1This step is necessary to establish key notation regarding the limit of the sequence of real numbers
(d(xn, yn)).

2We are asked to prove convergence using the definition of a convergent sequence. It is therefore necessary,
after establishing what the limit of the sequence is in Step 1, to consider an arbitrary ε > 0.

3From the definition of convergence, “for each ε > 0 there must exist an N ...” It is necessary to determine
an N . In this case, we must use the convergence of the two sequences in question to establish how we choose
an N .

4From the definition, it is necessary to now consider an arbitrary n ≥ N .
5We need to justify why we can bound |d(xn, yn)− d(x, y)| above by d(xn, x)+d(yn, y) in order to exploit

our choice of N in Step 3.
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(2) Let (X, dX) and (Y, dY ) be metric spaces. Suppose f : X → Y is continuous and
K ⊂ X is compact. Use either the sequential or covering compactness definitions to
prove the standard result that f(K) ⊂ Y is compact.

Note about the proofs: We enumerate the steps to the proof and provide several
footnotes.

Proof. (Using sequential compactness)

[Step 1:] Let (yn) ⊂ f(K).6

[Step 2(a):] For each n ∈ N, since yn ∈ f(K) there exists an x ∈ K such that
f(x) = yn. Choose such an x and denote it as xn. This defines a sequence (xn) ⊂ K.7

[Step 2(b):] Since K is compact, there exists xnk
→ x ∈ K. Choose such a subse-

quence (xnk
) and x ∈ K.

[Step 2(c):] Since f is continuous and x ∈ K, f(xnk
)→ f(x) ∈ f(K).

[Step 2(d):] Since ynk
= f(xnk

), this proves that there exists a subsequence of (yn)
that converges to a point in f(K). �

Proof. (Using covering compactness)

[Step 1:] Let {Gα}α∈A be an open cover of f(K).8

[Step 2(a):] Since f is continuous, f−1(Gα) is open in X for each α ∈ A. Let x ∈ K.
This implies f(x) ∈ f(K) ⊂ ∪α∈AGα, which implies f(x) ∈ Gα for some α ∈ A. Since
f−1 (∪α∈AGα) = ∪α∈Af−1(Gα), this implies that {f−1(Gα)}α∈A is an open cover of
K.9

[Step 2(b):] Since K is compact, there exists a finite subcover that we can choose

and denote by {f−1(Gn)}Nn=1 for some finite N .

[Step 2(c):] Let y ∈ f(K) and choose the x ∈ K such that f(x) = y. Since x ∈
f−1(Gn) for some 1 ≤ n ≤ N , f(x) = y ∈ Gn for the same n. This proves that

{Gn}Nn=1 is a finite subcover for f(K). �

6We must begin by considering an arbitrary sequence in f(K). The next step in the proof is to establish
the existence of a subsequence of this sequence that converges to a point in f(K). We break this next step
up into several sub-parts.

7This establishes a corresponding sequence to (yn) ⊂ f(K) in the compact K, which allows us to exploit
the compactness of K.

8We must begin by considering an arbitrary open cover of f(K). The next step in the proof is to establish
the existence of a finite subcover of f(K). We break this next step into several sub-parts.

9We utilize the continuity of f to establish a link between the open cover of f(K) and the pre-images of
these open sets as an open cover of the compact K.
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Part 2
Students should complete both problems.
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(3) Let C([a, b]) be the space of all continuous functions [a, b] → R equipped with the
sup-norm metric given by

d∞(f, g) := sup
x∈[a,b]

|f(x)− g(x)|, ∀f, g ∈ C([a, b]).

Prove that if (fn) ⊂ C([a, b]) is Cauchy, then the set {fn} is uniformly equicontinuous.

Note about the proof: This proof is based on the standard definition that a family
of functions F ⊂ C([a, b]) is uniformly equicontinuous if for all ε > 0 there exists a
δ > 0 such that for all x, y ∈ [a, b] with |x− y| < δ, |f(x)− f(y)| < ε for all f ∈ F .

Proof.

[Step 1:] Let ε > 0.

[Step 2(a):] Since (fn) is Cauchy, we can choose N such that for all n,m ≥ N ,
d∞(fn, fm) < ε/3.

[Step 2(b):] For each n, fn is continuous on compact [a, b], so fn is uniformly con-
tinuous for each n by a standard result. Thus, for each n, we can choose δn > 0
such that for all x, y ∈ [a, b] with |x− y| < δn, |fn(x)− fn(y)| < ε/3. Choose
δ = min {δ1, δ2, . . . , δN}.

[Step 3:] Let x, y ∈ [a, b] such that |x− y| < δ.

[Step 4(a):] Let f ∈ {fn}. There are two cases: f = fn for some n ≤ N or f = fn
for some n > N .

[Step 4(b)] In the case that n ≤ N , |x− y| < δ ≤ δn so |fn(x)− fn(y)| < ε/3 < ε.

[Step 4(c)] In the case that n > N , by repeated use of the triangle inequality we have

|fn(x)− fn(y)| = |fn(x)− fN(x) + fN(x)− fN(y) + fN(y)− fn(y)|

≤ |fn(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− fn(y)|

and |fn(x)− fN(x)| < ε/3 and |fN(y)− fn(y)| < ε/3 by the choice of N whereas
|fN(x)− fN(y)| < ε/3 because |x− y| < δ ≤ δN .

Thus, in either case, |fn(x)− fn(y)| < ε. �

6



Applied Analysis Preliminary Exam Student ID:

(4) Let (`2, d) denote usual metric space defined by the set of square-summable real-
valued sequences, i.e.,

`2 := {(ξi) ⊂ R :
∞∑
i=1

ξ2i <∞},

and for each x = (ξi), y = (ηi) ∈ `2,

d(x, y) :=

(
∞∑
i=1

|ξi − ηi|2
)1/2

.

Let G denote the set of all real-valued sequences with a finite number of non-zero
terms, i.e.,

G := {(ξi) ⊂ R : ∃n ∈ N, ξi = 0, i ≥ n}.

Prove that G is dense in `2.

Note about the proof: This proof is based on the sequential characterization of a
set being dense in a metric space where in this case it means that G ⊂ `2 is dense if
for all x = (ξi) ∈ `2 there exists (xn) = ((ξi,n)) ⊂ G such that xn → x.

Proof.

[Step 1:] Let x = (ξi) ∈ `2.

[Step 2:] For each n ∈ N, choose xn = (ξi,n) ∈ G such that

ξi,n =

{
ξi, i ≤ n,

0, i > n.

[Step 3:] We now prove that xn → x by showing that d(x, xn) → 0. First, observe
that

d(x, xn) =

(
∞∑
i=1

|ξi − ξi,n|2
)1/2

=

(
∞∑

i=n+1

|ξi|2
)1/2

By a standard result from elementary analysis,
∑∞

i=1 ξ
2
i <∞ implies that limn→∞

∑∞
i=n+1 ξ

2
i →

0, which finishes the proof. �
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Part 3
Students should choose one of the following

two problems to complete.
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(5) If f : [0, 1]→ [0, 1] is continuous, then there exists xc ∈ [0, 1] such that f(xc) = 1−xc.

Note about the proof: The intermediate value theorem is the critical result to
apply here. The proof is primarily concerned with verifying the hypothesis of this
theorem, which is that the function defined by g(x) := f(x) − (1 − x) is continuous
and that g(0) and g(1) are of different signs. Of course, if f(0) = 1 or f(1) = 0, there
is essentially nothing to show, so this case is also considered.

Proof. If f(0) = 1, then xc = 0. If f(1) = 0, then xc = 1. Otherwise, f(0) < 1 and
f(1) > 0. In this case, since f is continuous, by elementary analysis results, g(x) :=
f(x)− (1−x) defines a continuous function on [0, 1] that also has the properties that
g(0) = f(0) − 1 < 0 and g(1) = f(1) > 0. The intermediate value theorem then
implies that there exists xc ∈ [0, 1] such that g(xc) = 0, i.e., f(xc) − (1 − xc) = 0
which is equivalent to f(xc) = 1− xc. �
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(6) Let (fn) be a sequence of Riemann integrable functions on [0, 1] and (Fn) a sequence
of corresponding area functions

Fn(x) =

∫ x

0

fn(y)dy,

and assume that for all n, |fn+1(x)| ≤ |fn(x)|. Prove that there is a subsequence of
(Fn) converging uniformly on [0, 1].

Note about the proof: The Arzelà-Ascoli theorem is the critical result to apply
here. The proof is primarily concerned with verifying the hypothesis of this theorem,
which is that the sequence of functions (Fn) are uniformly bounded and uniformly
equicontinuous.

Proof.
[Step 1: Uniform boundedness] Observe that by standard properties of the integral
operator that for each n ∈ N,

|Fn(x)| ≤
∫ 1

0

|fn(y)| dy.

Since fn is Riemann integrable on [0, 1] for each n, a standard result is that for each n
there exists a bound Mn ≥ 0 such that |fn(x)| ≤Mn for all x ∈ [0, 1]. By hypothesis,
|fn+1(x)| ≤ |fn(x)| implies |fn(x)| ≤ |f1(x)| ≤M1. Thus,

|Fn(x)| ≤
∫ 1

0

M1 dy = M1 =⇒ sup
x∈[0,1]

|Fn(x)| ≤M1.

Since this bound holds for all n, we see that (Fn) is uniformly bounded.

[Step 2: Uniform equicontinuity] Observe that for each n ∈ N and x, z ∈ [0, 1] (with
z > x), standard properties of the integral operator give

|Fn(x)− Fn(z)| =
∣∣∣∣∫ z

x

fn(y) dy

∣∣∣∣ ≤ ∫ z

x

|fn(y)| dy ≤M1 |x− z| .

This implies (Fn) is a uniformly Lipschitz continuous sequence of functions from
which uniform equicontinuity follows.

The Arzelà-Ascoli theorem therefore applies. �
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Part 4
Students should choose one of the following

two problems to complete.
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(7) Suppose f : [a, b] → R is differentiable and that there exists a sequence of distinct
points (xn) ⊂ [a, b] (xn 6= xm if n 6= m) such that f(xn) = 0 for all n. Prove that
there exists a point c ∈ [a, b] and a subsequence of (xn) ⊂ [a, b], (xnk

) such that
xnk
→ c and f(c) = f ′(c) = 0.

Note about the proof: This follows from the limit definition of pointwise differ-
entiability. The key in the proof is to use compactness to construct the sequence of
points xn → c and then use the limit definition of pointwise differentiability to finish
the result.

Proof.

[Step 1: The subsequence] By the hypothesis, we can choose (xn) ⊂ [a, b] such that
xn 6= xm and f(xn) = 0 for all n. Since [a, b] is compact, there exists xnk

→ c ∈ [a, b].
Choose such a subsequence and c ∈ [a, b].

[Step 2: f(c) = 0] Since f is differentiable on [a, b] it is continuous on [a, b] by a
standard result. Thus, f(xnk

) → f(c). Since f(xnk
) = 0 for all k, this implies

f(c) = 0.

[Step 3: f ′(c) = 0] By definition,

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

By a standard limit result, this implies that any sequence of points (yk) ⊂ [a, b]
that converges to c has the property that f ′(c) = limk→∞(f(yk) − f(c))/(yk − c). If
c /∈ {xnk

}, then choosing yk = xnk
for each k gives

f ′(c) = lim
k→∞

f(yk)− f(c)

yk − c
= lim

k→∞

0

yk − c
= 0.

If c ∈ {xnk
}, then it can only appear at most once by the assumption of (xn) being

a sequence of unique points, so choosing (yk) as the subsequence of (xnk
) where the

value of c is skipped produces the same result as above. �
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(8) Let f and g be Riemann integrable on [a, b] and∫ b

a

f(x)dx >

∫ b

a

g(x)dx

Prove that there exists c, d ∈ [a, b] with c < d such that f(x) > g(x) on [c, d].

Note about the proof: This is most easily shown following the Darboux charac-
terization of integrability, which is equivalent to the Riemann characterization.

Proof.

[Step 1: A function with a positive integral] Define h(x) := f(x) − g(x) for all
x ∈ [a, b]. Since f and g are Riemann integrable, so is h by a standard result.

Moreover, by the linearity of the integral operator, it follows that
∫ b
a
h(x) dx > 0.

[Step 2: Darboux lower sum] The equivalence of Darboux and Riemann integration

implies that there exists a partition P = {xn}Nn=0 of [a, b], a = x0 < x1 < · · · < xN = b
such that

L(h, P ) :=
N∑
n=1

[inf {h(x) : x ∈ [xn−1, xn]} (xn − xn−1)] >
1

2

∫ b

a

h(x) dx > 0.

[Step 3: The subinterval] L(h, P ) > 0 implies at least one of the terms in the sum is
strictly greater than zero, which implies that inf {h(x) : x ∈ [xn−1, xn]} > 0 for some
n. Choosing c = xn−1 and d = xn for this n gives the result since the infimum of
h(x) = f(x)− g(x) on [c, d] is strictly positive. �
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