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email a copy of your solutions to the exam proctor. Do not leave until the proctor
acknowledges that your solutions have been successfully received.
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denotes the orthogonal complement of the subspace U .
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Before starting the exam, please sign and date the following honor statement.

Honor statement: I attest that I will not cheat and will not attempt to cheat. I attest
that I will not communicate with anyone while taking the exam, I will not look at notes,
textbooks, previous solutions of exams, cheat sheets, etc. I attest that I will not go on
the web to find solutions. If I in some way receive information during the exam that
might help with the exam, I will let the proctor know.



Part I. Work all of problems 1 through 4.

Problem 1. Let A be an m× n matrix over a field F. Prove the following statements:

(a) nullA = {0} if and only if the columns of A are linearly independent.

(b) If the columns of A are linearly independent, are the rows of A necessarily linearly
independent?

(c) If m < n, then nullA 6= {0}.

(d) If A = BC, where B is m × m and C is m × n, and if B is nonsingular, then
nullA = nullC.

(e) Let A∗ be the conjugate transpose of A. Then null(A∗A) = nullA.

Solution

(a) Let A = [a1,a2, . . . ,an], where ai ∈ Fm is the ith column of A. Then nullA = {0}
if and only if Ax = 0 has the unique solution x = 0, i.e.,

c1a1 + c2a2 + · · ·+ cxan = 0

if and only if c1 = c2 = · · · = cn = 0

(b) If the columns of A are linearly independent, then m ≥ n. If m > n, then the rows
of A are linearly dependent. If m = n, then the rows of A are linearly independent.

If the columns of A are linearly independent, then the rows of A are not necessarily
linearly independent. For example, the matrix(

1
1

)
have linearly dependent rows and linearly independent columns.

(c) If Ax = 0, then rankA ≤ m < n. So by the rank-nullity theorem, we have
dim nullA = n− rankA > 0.

(d) If Ax = 0, then BCx = 0. If B is invertible, then B−1BCx = Cx = 0. So
nullA ⊆ nullC. On the other hand, if Cx = 0, BCx = Ax = 0, so nullC ⊆ nullA.
So nullA = nullC.



(e) If Ax = 0, then A∗Ax = 0. So nullA ⊆ null(A∗A). Since rank(A∗A) = rankA,
we have dim nullA = dim null(A∗A), by the rank-nullity theorem. It follows that
nullA = null(A∗A).

Another solution: Let x ∈ nullA. Then Ax = 0, it follows that A∗Ax = 0,
so x ∈ null(A∗A). Now suppose that x ∈ null(A∗A), thus A∗Ax = 0. Then
0 = x∗A∗Ax = (Ax)∗(Ax) thus Ax = 0. So x ∈ nullA.

Problem 2. Let V,W be finite dimensional real inner product spaces and let T : V →W
be a linear map. Fix w ∈ W . Show that the elements v ∈ V for which the Euclidean
norm ||Tv −w|| is minimal are exactly the solutions to the equation T ∗Tv = T ∗w.

Solution Note that rangeT is a subspace of W . For any w ∈W , let w = w1 +w2 be
the orthogonal project of w onto rangeT , i.e., w1 ∈ rangeT and w2 ∈ (rangeT )⊥. So
the minimizers of ||Tv − w|| are those v ∈ V such that Tv = w1. Now we show that
these satisfy the normal equation.

Suppose v ∈ V is such that Tv = w1. Then w2 = w −w1 = w − Tv is orthogonal to
rangeT . So for all x ∈ V , it follows that

〈Tx, Tv −w〉 = 0⇒ 〈x, T ∗(Tv −w)〉 = 0

So T ∗(Tv −w) is orthogonal to V and thus T ∗(Tv −w) = 0 and so T ∗Tv = T ∗w.

Conversely, let T ∗Tv = T ∗w. It suffices to show Tv = w1. Consider

〈Tv −w1, Tv −w1〉 = 〈Tv −w1, Tv − (w −w2)〉
= 〈Tv −w1, (Tv −w) + w2〉
= 〈Tv, Tv −w〉+ 〈Tv,w2〉 − 〈w1, Tv −w〉 − 〈w1,w2〉
= 〈v, T ∗(Tv −w)〉+ 〈Tv,w2〉 − 〈w1, Tv −w〉 − 〈w1,w2〉
= −〈w1, Tv −w〉

Note that w1 ∈ rangeT , so w1 = Tx for some x ∈ V . So previous equation can be
rewritten as

〈Tv −w1, Tv −w1〉 = −〈Tx, Tv −w〉 = −〈x, T ∗(v −w)〉 = 0

So we have ||Tv −w1|| = 0 and thus Tv = w1. So v is a minimizer of ||Tv −w||.

Another solution For h ∈ V , define

F (h) = ||T (v + h)−w||2 = 〈T (v + h)−w, T (v + h)−w〉.



Then, ||Tv −w|| is minimal if and only if the minimum of F (h) is attained at h = 0.
By collecting the terms with h and using the definition of T ∗,

F (h) =〈Th, Th〉+ 2〈Th, Tv −w〉+ c(v,w)

=〈Th, Th〉+ 2〈h, T ∗Tv − T ∗w〉+ c(v,w),

where c(v,w) does not depend on h.

If T ∗Tv − T ∗w = 0, then F (h) = 〈Th, Th〉 + c(v,w) ≥ c(v,w) = F (0), for any h, so
the minimum of F (h) is attained at h = 0.

If T ∗Tv − T ∗w 6= 0, define ht = th0, h0 = T ∗Tv − T ∗w, t ∈ R, and f(t) = F (th0).
Then, f(t) = t2〈Th0, Th0〉+ 2t〈h0,h0〉+ c(v,w). Then, the derivative

f ′(0) = 2〈T ∗Tv − T ∗w, T ∗Tv − T ∗w〉〉0

so for some t〈0, we have f(t)〈0 and thus F (th0) = f(t)〈0 = F (0), and F (h) does not
have minimum at h = 0.

Problem 3.

For each of the following 4 statements, give either a counterexample or a reason why it
is true.

1. For every real matrix A there is a real matrix B with B−1AB diagonal.

2. For every symmetric real matrix A there is a real matrix B with B−1AB diagonal.

3. For every complex matrix A there is a complex matrix B with B−1AB diagonal.

4. For every symmetric complex matrix A there is a complex matrix B with B−1AB
diagonal.

Solution

1. False. Not all real matrices are diagonalizable. For example(
0 1
0 0

)
is not diagonalizable (in real arithmetic).

2. True. Per real spectral theorem, a symmetric real matrix is diagonalizable with
real eigenvalues and real eigenvectors.



3. False. Not all complex matrices are diagonalizable. For example(
0 1
0 0

)
is not diagonalizable (in complex arithmetic).

4. False. Not all symmetric complex matrices are diagonalizable. For example

A =

(
1 i
i −1

)
is symmetric and is not diagonalizable (in complex arithmetic). Why is A not
diagonalizable? Its trace is zero, and its determinant is zero. So the characteristic
polynomial is λ2. So 0 is the only eigenvalue of A. The only 2x2 diagonalizable
matrix that has zero as its only eigenvalue is the 2x2 zero matrix. Clearly A is not
the zero matrix, so A is not diagonalizable.

Note: Complex selfadjoint matrices are diagonalizable. But for a complex matrix,
being selfadjoint and symmetric are not the same.

Problem 4. Suppose T ∈ L(V ) and (T − 2I)(T − 3I)(T − 4I) = 0. Suppose λ is an
eigenvalue of T . Prove that λ = 2 or λ = 3 or λ = 4.

Solution Since (T − 2I)(T − 3I)(T − 4I) = 0, the operator (T − 2I)(T − 3I)(T − 4I)
is not injective. Since the composition of injective maps is injective, at least one of the
operators T − 2I, T − 3I, T − 4I is not injective, thus λ = 2 or λ = 3 or λ = 4 is
eigenvalue of T .

Another solution. Denote p (z) = (z − 2) (z − 3) (z − 4). Since p (T ) = 0, the minimal
polynomial q of T divides p. Since eigenvalues of T are zeros of the minimal polynomial,
the monomial z − λ divides the minimal polynomial q, which divides the polynomial p,
thus z − λ divides p (z), so z − λ is one of the factors z − 2, z − 3, or z − 4.

Quoting and applying the spectral mapping theorem is also acceptable.



Part II. Work two of problems 5 through 8.

Problem 5. Consider vectors in Cn as columns, i.e. matrices of size n by 1. Then for
two vectors u,v, the product uv∗ is an n by n matrix. It is called a “rank-one matrix”
when u and v are both nonzero.

(a) Suppose that A = A∗ ∈ Cn,n. Show that A is a linear combination of rank-one
matrices uku

∗
k, k = 1, . . . , n, where u1, . . . ,un is an orthonormal basis of Cn.

(b) Suppose that A ∈ Cn,n. Show that A is a linear combination of rank-one matrices
of the form fke

∗
k, k = 1, . . . , n, where e1, . . . , en and f1, . . . ,fn are orthonormal bases.

Solution (a) Since A = A∗, Cn has a basis consisting of orthonormal eigenvectors
u1, . . . ,un of A,

Aui = λiui

Let v ∈ Cn. Then v has the expansion

v =
n∑

i=1

〈v,ui〉ui,

and

Av =
n∑

i=1

〈v,ui〉λui =
n∑

i=1

λui 〈v,ui〉 =
n∑

i=1

λuiu
∗
iv =

(
n∑

i=1

λuiu
∗
i

)
v.

Since v ∈ Cn was arbirtrary,

A =

n∑
i=1

λiuiu
∗
i .

(b) The SVD of the linear operator T (x) = Ax is (Axler theorem 7.51)

T (v) = s1 〈v, e1〉f1 + · · ·+ sn 〈v, en〉fn

where sk ≥ 0, and e1, . . . , en and f1, , . . .fn are orthonormal bases. Let v ∈ Cn. Writing
the inner product in Cn as 〈v,u〉 = u∗v, we have for each k = 1, . . . , n,

sk 〈v, ek〉fk = sk (e∗kv)fk = skfke
∗
kv

thus

Av =
n∑

k=1

skfke
∗
kv =

(
n∑

k=1

skfke
∗
k

)
v,



and since v was arbitrary,

A =
n∑

k=1

skfke
∗
k.

Problem 6. Let A be a real 3× 3 symmetric matrix, whose eigenvalues are λ1, λ2 and
λ3. Prove the following:

(a) If the trace of A, trA, is not an eigenvalue of A, then (λ1+λ2)(λ2+λ3)(λ1+λ3) 6= 0

(b) If (λ1 + λ2)(λ2 + λ3)(λ1 + λ3) 6= 0, then the map T : S → S is an isomorphism,
where S is the space of 3× 3 real skew-symmetric matrices (if W T = −W , then W
is called skew-symmetric) and T (W ) = AW +WA.

Solution

(a) Since A is symmetric, A must be similar to a diagonal matrix diag(λ1, λ2, λ3).
We also have trA = λ1 + λ2 + λ3. The characteristic polynomial of A is p(λ) =
(λ − λ1)(λ − λ2)(λ − λ3). If tr(A) is not an eigenvalue of A, p(trA) 6= 0, which
means (λ1 + λ2)(λ2 + λ3)(λ1 + λ3) 6= 0.

(b) Since T is an operator on S, it suffices to show that T is injective. Let T (W ) = 0
where W T = −W . Then AW = −WA. So now we want to show W = 0.

Let {a1,a2,a3} be the ordered basis of R3 with respect to which the representation
of A is diag(λ1, λ2, λ3). We will now show Wai = 0, for i = 1, 2, 3, and hence
W = 0.

Using the standard inner product in R3, we obtain, for i = 1, 2, 3,

〈Wai,ai〉 = 〈ai,W
Tai〉 = −〈ai,Wai〉 = −〈Wai,ai〉

So Wai ⊥ ai.

For i 6= j,

〈AWai,aj〉 = −〈WAai,aj〉 = 〈Aai,Waj〉 = λi〈ai,Waj〉

and

〈AWai,aj〉 = 〈Wai, Aaj〉
= 〈Wai, λjaj〉 = λj〈Wai,aj〉 = −λj〈ai,Waj〉

So we have λi〈ai,Waj〉 = −λj〈ai,Waj〉, i.e. (λi + λj)〈ai,Waj〉 = 0. From (b)
we know λi + λj 6= 0, so we conclude Wai ⊥ aj , for i 6= j. So W = 0.



Problem 7. Note: A similar problem was given in the UC Berkeley prelim,
Spring 2021 as Problem 6A.

1. Let A be an n-by-n real matrix such that all entries not on the diagonal are positive,
and the sum of the entries in each row is negative.

Calling Cj the j-th column of A, we perform the sequence of column operations:

C2 ← C2 −
a12
a11

C1

C3 ← C3 −
a13
a11

C1

...
...

Cn ← Cn −
a1n
a11

C1.

So starting from A, we compute A′ with this sequence of operation.

Note that a11 6= 0, so dividing by a11 makes sense. Also note that this sequence of
column operations introduces 0 in the first row of A for all non diagonal elements.
So we have

A′ =


a11 0 0 . . . 0

a21 a
(1)
22 a

(1)
23 . . . a

(1)
2n

a31 a
(1)
32 a

(1)
33 . . . a

(1)
3n

...
...

...
...

an1 a
(1)
n2 a

(1)
n3 . . . a

(1)
nn





Where

second column

a
(1)
22 = a22 −

a12
a11

a21

a
(1)
32 = a32 −

a12
a11

a31

. . .

a
(1)
n2 = an2 −

a12
a11

an1

third column

a
(1)
23 = a23 −

a13
a11

a21

a
(1)
33 = a33 −

a13
a11

a31

. . .

a
(1)
n3 = an3 −

a13
a11

an1

and so on

In short for 2 ≤ i ≤ n and 2 ≤ j ≤ n, we have

a
(1)
ij = aij −

a1j
a11

ai1.

Let us call A(1) the (n− 1)-by-(n− 1) matrix

A(1) =


a
(1)
22 a

(1)
23 . . . a

(1)
2n

a
(1)
32 a

(1)
33 . . . a

(1)
3n

...
...

...

a
(1)
n2 a

(1)
n3 . . . a

(1)
nn


Prove that A(1) is an (n− 1)-by-(n− 1) real matrix such that all entries not on the
diagonal are positive, and the sum of the entries in each row is negative.

2. Let A be an n-by-n real matrix such that all entries not on the diagonal are positive,
and the sum of the entries in each row is negative. Show that the determinant of
A is nonzero.

(Note: you can prove the second by assuming the first.)

Solution We will do a proof by induction with induction hypothesis

induction hypothesis All n-by-n matrix A with the property “all entries not on the
diagonal are positive, and the sum of the entries in each row is negative,” have a
nonzero determinant.



For n = 1, the induction hypothesis is true since if A = (a11) and “the sum of the entries
in each row is negative”, then a11 < 0, and so det(A) = a11 < 0 and det(A) is nonzero.

Now let us assume the induction hypothesis true at step n− 1, and prove that it is true
at step n.

Let A be an n-by-n real matrix such that all entries not on the diagonal are positive, and
the sum of the entries in each row is negative. We want to prove that the determinant
of A is nonzero.

Our induction hypothesis is that we will assume that the statement “for all (n− 1)-by-
(n− 1) real matrix B such that all entries not on the diagonal are positive, and the sum
of the entries in each row is negative, then the determinant of B is nonzero” is true.

Let’s use the following notations

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

...
an1 an2 an3 . . . ann


Since “all entries not on the diagonal are positive, and the sum of the entries in each
row is negative”, we have a11 < 0 and

−a11 > a12 + a13 + . . .+ +a1n.

In particular a11 is nonzero.

Calling Cj the j-th column of A. We perform the sequence of column operations:

C2 ← C2 −
a12
a11

C1

C3 ← C3 −
a13
a11

C1

...
...

Cn ← Cn −
a1n
a11

C1.

So starting from A, we compute A′ with this sequence of operation.

Note that a11 6= 0, so dividing by a11 makes sense. Also note that all these operations
conserve the determinant. So det(A) = det(A′). Also note that this sequence of column



operations introduces 0 in the first row of A for all non diagonal elements. So we have

A′ =


a11 0 0 . . . 0

a21 a
(1)
22 a

(1)
23 . . . a

(1)
2n

a31 a
(1)
32 a

(1)
33 . . . a

(1)
3n

...
...

...
...

an1 a
(1)
n2 a

(1)
n3 . . . a

(1)
nn


where

second column

a
(1)
22 = a22 −

a12
a11

a21

a
(1)
32 = a32 −

a12
a11

a31

. . .

a
(1)
n2 = an2 −

a12
a11

an1

third column

a
(1)
23 = a23 −

a13
a11

a21

a
(1)
33 = a33 −

a13
a11

a31

. . .

a
(1)
n3 = an3 −

a13
a11

an1

and so on

In short for 2 ≤ i ≤ n and 2 ≤ j ≤ n, we have

a
(1)
ij = aij −

a1j
a11

ai1.

Let us call A(1) the (n− 1)-by-(n− 1) matrix

A(1) =


a
(1)
22 a

(1)
23 . . . a

(1)
2n

a
(1)
32 a

(1)
33 . . . a

(1)
3n

...
...

...

a
(1)
n2 a

(1)
n3 . . . a

(1)
nn


We will prove below that A(1) has the property “all entries not on the diagonal are
positive, and the sum of the entries in each row is negative.”

Let us assume for now that A(1) has the property “all entries not on the diagonal are
positive, and the sum of the entries in each row is negative.” Since A(1) is (n − 1)-by-
(n − 1) matrix with the property “all entries not on the diagonal are positive, and the



sum of the entries in each row is negative.” By induction we know that the determinant
of A(1) is nonzero.

Now we understand that (by expanding the determinant with the first row of A′, and
since det(A) = det(A′))

det(A) = a11 × det(A(1)).

Since a11 and det(A(1)) are nonzero, we conclude that

the determinant of A is nonzero.

And that concludes our proof.

Now it remains to prove that A(1) has the property “all entries not on the diagonal are
positive, and the sum of the entries in each row is negative.”

Firstly, let us prove that

all off-diagonal elements of A(1) are positive.

Indeed let i be such that 2 ≤ i ≤ n and j such that 2 ≤ j ≤ n, with i 6= j. Then

1. ai1 is not a diagonal element of A, (since i 6= 1,) so ai1 > 0;

2. a1j is not a diagonal element of A, (since j 6= 1,) so a1j > 0;

3. a11 is a diagonal element of A, so a11 < 0;

so that
−a1j
a11

ai1 > 0

so that
a
(1)
ij = aij −

a1j
a11

ai1 > aij .

Now, aij is not a diagonal element of A, (since i 6= j,) so aij > 0. Since aij > 0, and

a
(1)
ij > aij , we have

a
(1)
ij > 0.

Secondly, let us prove that

the sum of the entries in each row of A(1) is negative.



Indeed let i be such that 2 ≤ i ≤ n. Then since the sum of the entries in each row of A
is negative, for the first row we get

a11 + a12 + a13 + . . .+ a1n < 0

Multiplying by − ai1
a11

, (which is a positive number,) we get

− ai1
a11

a11 −
ai1
a11

a12 −
ai1
a11

a13 + . . .− ai1
a11

a1n < 0

Since the sum of the entries in each row of A is negative, for the i-th row we get

ai1 + ai2 + ai3 + . . .+ ain < 0

Adding the two last equations together gives

(ai1 −
ai1
a11

a11) + (ai2 −
ai1
a11

a12) + (ai3 −
ai1
a11

a13) + . . .+ (ain −
ai1
a11

a1n) < 0

which gives

a
(1)
i2 + a

(1)
i3 + . . .+ a

(1)
in < 0

We see that the sum of the entries in row i− 1 of A(1) is negative. Since i was arbritrary
between 2 and n, this proves the result.

Comment:

1. It is clear that we can prove that the sign of the determinant alternate. If n is
odd, A is negative. If n is even, A is positive. The question only asked to prove
nonzero, so we just proved nonzero.

2. The proof is somewhat related to the fact that LU with partial pivoting does not
pivot for diagonally dominant matrices.

Problem 8.

Note: A similar problem was given in the UC Berkeley prelim, Fall 2020 as
Problem 6B.

Let n be an integer.

We consider the inner product space, Pn, of the polynomials of degree at most n with
the inner product

< P,Q >=

∫ 1

0
P (t)Q(t)dt.



(Where P (t) and Q(t) are two polynomials of degree at most n.)

We consider {P0, P1, P2, . . . , Pn} an orthonormal basis of Pn, (orthonormal with respect
to the aforementioned inner product), and so we note that we have∫ 1

0
Pi(t)Pj(t)dt = δij , 0 ≤ i, j ≤ n.

Let H be the (n+ 1)× (n+ 1) Hilbert matrix. H is defined such that its elements are

hij =

∫ 1

0
titjdt, 0 ≤ i, j ≤ n.

(Note that indexing starts at 0.)

We define the (n + 1) × (n + 1) matrix P made of the coefficients of the orthonormal
basis {P0, P1, P2, . . . , Pn} in the basis {1, t, t2, . . . , tn}. So P is such that pij is the j-th
coefficient of Pi(t) so that

Pi(t) =
n∑

j=0

pijt
j , 0 ≤ i ≤ n.

(Note that, with our notation, P is a matrix, and Pi is a polynomial, and pij is a
coefficient of Pi and of P .)

Show that H−1 = P TP .

Solution Let i be such that 0 ≤ i ≤ n and j such that 0 ≤ j ≤ n; we have

entry (i, j) of I = δi,j

=

∫ 1

0
Pi(t)Pj(t)dt

=

∫ 1

0
(

n∑
k=0

pikt
k)(

n∑
l=0

pjlt
l)dt

=
n∑

k=0

(
pik

(
n∑

l=0

pjl

(∫ 1

0
tktldt

)))

=

n∑
k=0

(
pik

(
n∑

l=0

pjlHkl

))

=

n∑
k=0

(
pik
(
entry (k, j) of HP T

))
= entry (i, j) of PHP T



So that
I = PHP T

Since I is invertible, so are P , H and P T and applying P−1 and (P−1)T = P−T gives

P−1P−T = H.

Inverting both sides gives
H−1 = P TP.

Couple comments:

1. The setting of this problem is with Pn and the inner product the 〈P,Q〉 =
∫ 1
0 P (t)Q(t)dt.

The Hilbert matrix happens to be here because one should note that the Hilbert
matrix is the matrix of the inner products of the (non-orthonormal) basis {1, t, t2, . . . , tn}.
And our problem is set in the (non-orthonormal) basis {1, t, t2, . . . , tn}.
For any polynomials, say P (t) and Q(t), if you write them as vectors, say x and y,
in the basis {1, t, t2, . . . , tn}, and you want to compute the inner product 〈P,Q〉 =∫ 1
0 P (t)Q(t)dt, you can do

〈P,Q〉 = xTH−1y.

So the problem is essentially asking to redemonstrate this property.

2. If one take, for i = 0 to n, Pi(t) to be the Legendre polynomial of degree i. The
Legendre polynomials are defined as follows. We consider the inner product space,
Pn, of the polynomial of degree at most n with the inner product

< P,Q >=

∫ 1

0
P (t)Q(t)dt.

(Where P (t) and Q(t) are two polynomials of degree at most n.) Then we perform
Gram-Schmidt algorithm on the basis {1, x, x2, . . . , xn} to obtain the Legendre
polynomials {P0, P1, P2, . . . , Pn}. The Legendre polynomial form an orthonormal
basis of Pn. But we also have the fact that

Span(1) = Span(P0)

Span(1, x) = Span(P0, P1)

Span(1, x, x2) = Span(P0, P1, P2) (1)

...

If then, we denote pij the j-th coefficient of the Legendre polynomial of degree i
so that

Pi(t) =

i∑
j=0

pijt
j , 0 ≤ i ≤ n.



We note that, thanks to Equation (1), P is upper triangular. (And this is why
the sum in the equation above stops early at i and does not have to go all the
way n.) Therefore, in this problem, proving that H−1 = P TP is proving that “the
Cholesky factor of the inverse of the Hilbert matrix is the matrix with coefficients
same as the coefficients of the Legendre polynomials.”


