Department of Mathematical and Statistical Sciences
 Applied Analysis Preliminary Exam
 July 12, 2021 - Solutions

Problem 1. Let A be a subset of a metric space (M, d) and a a point in M (but not necessarily in A). Let S be a subset of all points $b \in M$ such that $d(a, b) \leq d(a, c)$ for every $c \in A$. Prove that S is closed. Solution: Let s be a limit point of S and let $\left(s_{n}\right) \subset S$ be a sequence converging to s. For any $c \in A$ and $n \in \mathbb{N}$, we have

$$
\begin{aligned}
d(a, s) & \leq d\left(a, s_{n}\right)+d\left(s_{n}, s\right) \quad(\text { by the triangle inequality }) \\
& \leq d(a, c)+d\left(s_{n}, s\right) \quad\left(\text { since } s_{n} \in S\right)
\end{aligned}
$$

Taking the limit of both sides as $n \rightarrow \infty$, we get

$$
d(a, s) \leq d(a, c)+\lim _{n \rightarrow \infty} d\left(s_{n}, s\right)=d(a, c)
$$

This inequality holds for every $c \in A$, so $s \in S$. Thus, every limit point of S is in S, so S is closed.

Problem 2. Let X and Y be subsets of a metric space $(M, d), f: X \rightarrow Y$ be a function, and $\left(x_{n}\right)$ be a sequence in X. Prove or disprove the following statements:
(a) (7 pts) Let x be a limit point of X. If f is continuous and $\left(x_{n}\right)$ converges to x, then the sequence $\left(f\left(x_{n}\right)\right)$ is Cauchy.
(b) (7 pts) If f is uniformly continuous and $\left(x_{n}\right)$ is Cauchy, then $\left(f\left(x_{n}\right)\right)$ is Cauchy.
(c) (6 pts) If f is uniformly continuous and $\left(f\left(x_{n}\right)\right)$ is Cauchy, then $\left(x_{n}\right)$ is Cauchy.

Solution:

(a) False. As a counterexample, let $X=(0,1) \subset \mathbb{R}, Y=\mathbb{R}$ and $f: X \rightarrow Y$ be defined by $f(x)=1 / x$. Let $x_{n}=1 / n, n \in \mathbb{N}$. Then $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. However, $\left(f\left(x_{n}\right)\right)=(n)$, which diverges.
(b) True. Let $\epsilon>0$ be arbitrary. Since f is uniformly continuous, there exists $\delta>0$ such that $d\left(x_{n}, x_{m}\right)<\delta$ implies $d\left(f\left(x_{n}\right), f\left(x_{m}\right)\right)<\epsilon$. Since $\left(x_{n}\right)$ is Cauchy, there exists $\bar{n} \in \mathbb{N}$ such that

$$
n, m \geq \bar{n} \Longrightarrow d\left(x_{n}, x_{m}\right)<\delta \Longrightarrow d\left(f\left(x_{n}\right), f\left(x_{m}\right)\right)<\epsilon
$$

Hence, $\left(f\left(x_{n}\right)\right)$ is Cauchy.
(c) False. As a counterexample, let $f:(0, \infty) \rightarrow(0,1)$ be defined by $f(x)=e^{-x}$ and let $x_{n}=n, n \in \mathbb{N}$. Note that $f^{\prime}(x)=-e^{x} \in(0,1)$ for $x>0$, so f is uniformly continuous on $(0, \infty)$. Note also that $f\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, so $\left(f\left(x_{n}\right)\right)$ is Cauchy; however $\left(x_{n}\right)=(n)$ is unbounded, so is not Cauchy.

Problem 3. Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with bounded derivative. Fix $\epsilon>0$ and define $f(x)=x+\epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough.
Solution: Since g^{\prime} is bounded, there exists M such that $\left|g^{\prime}(x)\right| \leq M$ for all x. Observe that f is differentiable. Choose $\epsilon<1 / M$. Then, for all x,

$$
f^{\prime}(x)=1+\epsilon g^{\prime}(x) \geq 1-\epsilon M>0
$$

Suppose $f(x)=f(y)$. Then $0=f(x)-f(y)=f^{\prime}(z)(x-y)$ for some $z \in[x, y]$. Since $f^{\prime}(z)>0$, this implies that $x-y=0$, so $x=y$. Thus, f is one-to-one for $\epsilon<\frac{1}{M}$.

Problem 4. Suppose $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous for each $n \in \mathbb{N}$ and f_{n} converges to f pointwise, where f is continuous. Prove or disprove that f is uniformly continuous.
Solution: f is not uniformly continuous. As a counterexample, define

$$
f_{n}(x)= \begin{cases}x^{2} & -n \leq x \leq n \\ n^{2} & \text { otherwise }\end{cases}
$$

Observe that for any $x, \lim _{n \rightarrow x} f_{n}(x)=x^{2}$. Thus, the pointwise limit of f is defined by $f(x)=x^{2}$, which is continuous, but not uniformly continuous. To see this, observe that for any $\delta>0$, we can choose $x=\frac{1}{\delta}$ and $y=x+\delta / 2$. Then $|x-y|=\delta / 2<\delta$, but $\left|f_{n}(x)-f_{n}(y)\right|=\left|x^{2}-y^{2}\right|=|x+y||x-y|>\frac{2}{\delta} \frac{\delta}{2}=1$.
However, f_{n} is uniformly continuous for every n. To see this, observe that f_{n} is continuous, so is uniformly continuous on any closed interval. In particular, f_{n} is uniformly continuous on $[-n-1, n+1]$. Thus, for any $\epsilon>0$, there exists $\delta>0$ such that $x, y \in[-n-1, n+1]$ and $|x-y|<\delta$ implies that $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$. Without loss of generality, we can choose $\delta<1$. Then, for any $x, y \in \mathbb{R}$, if $|x-y|<\delta$, then either $x, y \in[-n-1, n+1]$, in which case $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$, or $f_{n}(x)=f_{n}(y)=n^{2}$, in which case $\left|f_{n}(x)-f_{n}(y)\right|=0$. In either case, $|x-y|<\delta$ implies $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$, so f_{n} is uniformly continous.

Problem 5. Prove that every sequence in \mathbb{R} has a monotone subsequence.
Solution: Let $\left(x_{n}\right)$ be a given sequence and define $S:=\left\{x_{n} \mid x_{n} \geq x_{k}\right.$ for all $k>n$. $\}$. If S has infinitely many points, then the points in S form a monotonically decreasing subsequence.
On the other hand, if S has only finitely many points, there exists $n_{1} \in \mathbb{N}$ larger than any index in S. Since $x_{n_{1}} \notin S$, there exists $n_{2}>n_{1}$ such that $x_{n_{2}}>x_{n_{1}}$. Continuing in this manner, for each $k=2,3, \ldots$, since $x_{n_{k}} \notin S$, we can find $n_{k+1}>n_{k}$ such that $x_{n_{k+1}}>x_{n_{k}}$. By construction, the subsequence $\left(x_{n_{k}}\right)$ is monotonically increasing.
Alternative Solution: Let $\left(x_{n}\right)$ be a given sequence. If $\left(x_{n}\right)$ is unbounded from above, then for every M there exists n such that $x_{n}>M$. Define $n_{1}=1$ and $n_{k}, k>1$ such that $x_{n_{k}}>x_{n_{k-1}}$. Then the subsequence $\left(x_{n_{k}}\right)$ is monotonically increasing. Similarly, if $\left(x_{n}\right)$ is unbounded from below, define $n_{1}=1$ and $n_{k}, k>1$ such that $x_{n_{k}}<x_{n_{k-1}}, k>1$. Then the subsequence $\left(x_{n_{k}}\right)$ is monotonically decreasing. If $\left(x_{n}\right)$ is bounded there exists a subsequence $\left(y_{n}\right) \subseteq\left(x_{n}\right)$ such that $y_{n} \rightarrow a$ when $n \rightarrow \infty$ for some finite a. At least one of the three sets $S_{+}=\left\{y_{n} \mid y_{n}>a\right\}, S_{-}=\left\{y_{n} \mid y_{n}<a\right\}$ or $S_{0}=\left\{y_{n} \mid y_{n}=a\right\}$ is infinite. If S_{0} is infinite then the subsequence $\left(y_{n}\right) \cap S_{0}$ is constant (and therefore monotonic). If S_{+}is infinite, define $\left(z_{n}\right)=\left(y_{n}\right) \cap S_{+}$. Take $n_{1}=1$ and define n_{k} such that $z_{n_{k}}<z_{n_{k-1}}$, for $k>1$. Such n_{k} always exists because $z_{n} \rightarrow a$ implies that for any ϵ there is N such that $0<z_{n}-a<\epsilon$ for all $n \geq N$ and one can define $\epsilon=z_{n_{k-1}}-a$. Then the subsequence $\left(z_{n_{k}}\right)$ is monotonically decreasing.
Similarly, if S_{-}is infinite, define $\left(z_{n}\right)=\left(y_{n}\right) \cap S_{-}$. Take $n_{1}=1$ and define n_{k} such that $z_{n_{k}}>z_{n_{k-1}}$, for $k>1$. Such n_{k} always exists because $z_{n} \rightarrow a$ implies that for any ϵ there is N such that $0<a-z_{n}<\epsilon$ for all $n \geq N$ and one can define $\epsilon=a-z_{n_{k-1}}$. Then the subsequence $\left(z_{n_{k}}\right)$ is monotonically increasing.

Problem 6. Let $f(x), x \geq 0$ be nonnegative and differentiable, with $\left|f^{\prime}(x)\right|$ bounded and $\int_{0}^{\infty} f(x) d x<$ ∞.
(a) (13 pts) Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
(b) (7 pts) If the condition $\left|f^{\prime}(x)\right|$ bounded is removed, is the result in (a) still true?

Solution:

(a) Suppose $f(x) \nrightarrow 0$. Then $\exists \epsilon>0$ such that $\forall x \exists t>x$ such that $f(t)>\epsilon$. Let $t_{1}>1$ satisfy $f\left(t_{1}\right)>\epsilon$, and for $n>1$ choose $t_{n}>t_{n-1}+1$ with $f\left(t_{n}\right)>\epsilon$. Let $\delta<\min (1, \epsilon / \gamma)$ where γ is a bound on $\left|f^{\prime}\right|$. By the MVT, if $x \in\left(t_{n}-\delta / 2, t_{n}+\delta / 2\right)$, then for some $z, f(x)=f\left(t_{n}\right)+f^{\prime}(z)\left(x-t_{n}\right) \geq$ $f\left(t_{n}\right)-\left|f^{\prime}(z)\right|\left|x-t_{n}\right| \geq \epsilon-\gamma \delta / 2=\epsilon / 2$. Thus,

$$
\int_{0}^{\infty} f(x) d x \geq \sum_{n=1}^{\infty} \int_{t_{n}-\delta / 2}^{t_{n}+\delta / 2} f(x) d x \geq \sum_{n=1}^{\infty} \epsilon / 2=\infty
$$

which is a contradiction.
(b) If $\left|f^{\prime}(x)\right|$ is not bounded, then we cannot prove $\lim _{x \rightarrow \infty} f(x)=0$. As a counterexample, let $f:(0, \infty) \rightarrow[0, \infty)$ be defined by

$$
f(x)= \begin{cases}1+\cos \left(2^{n} \pi(x-n)\right) & \text { if } x \in\left(n-2^{-n}, n+2^{-n}\right), n \in N \\ 0 & \text { otherwise. }\end{cases}
$$

Then

$$
\int_{0}^{\infty} f(x) d x=\sum_{n=1}^{\infty} \int_{n-2^{-n}}^{n+2^{-n}} \cos \left(2^{n} \pi(x-n)\right) d x \leq \sum_{n=1}^{\infty} 2^{-n+1}=2
$$

Problem 7. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function satisfying $\left|g^{\prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$, for some positive number M. Prove there exists exactly one $x \in[0,+\infty)$ such that $x=1+\cos \frac{g(x)}{2 M}$.

Solution: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=1+\cos \frac{g(x)}{2 M}$. Observe that $\left|f^{\prime}(x)\right|=\left|\frac{g^{\prime}(x)}{2 M} \sin \frac{g(x)}{2 M}\right| \leq$ $\frac{M}{2 M}=1 / 2$ (since $\left|g^{\prime}(x)\right| \leq M$ and $|\sin z| \leq 1$ for any $z \in \mathbb{R}$). Thus, f^{\prime} is a contraction on \mathbb{R}. Since \mathbb{R} is complete, by the Banach contraction principle, f has a unique fixed point $x^{*} \in \mathbb{R}$ (i.e., such that $x^{*}=f\left(x^{*}\right)$). Finally, note that $f(z) \geq 0$ for all $z \in \mathbb{R}$. In particular, for $z=x^{*}$, we have $x^{*}=f\left(x^{*}\right) \geq 0$, so $x^{*} \in[0,+\infty)$.

Problem 8. Let $\left(f_{n}\right)$ be a sequence of differentiable functions on $[0,1]$, and assume that for all n, $f_{n}(0)=f_{n}^{\prime}(0)$. Suppose that for all $n \in \mathbb{N}$ and all $x \in[0,1],\left|f_{n}^{\prime}(x)\right| \leq 1$. Prove that there is a subsequence of $\left(f_{n}\right)$ converging uniformly on $[0,1]$.

Solution: Observe that for $x \in[0,1],\left|f_{n}(x)\right|=\left|f_{n}(0)+\int_{0}^{x} f^{\prime}(x) d x\right| \leq\left|f^{\prime}(0)\right|+\int_{0}^{x}\left|f^{\prime}(x)\right| d x \leq 1+x \leq 2$. Thus, $\left(f_{n}\right)$ is a bounded sequence of functions.
Observe also that by the mean-value theorem, for any $x, y \in[0,1], x<y$, there is some $z \in(x, y)$ such that

$$
\left|f_{n}(y)-f_{n}(x)\right|=\left|f_{n}^{\prime}(z)(y-x)\right| \leq\left|f_{n}^{\prime}(z)\right||y-x| \leq|y-x|
$$

Thus, given any $\epsilon>0$, by choosing $\delta=\epsilon$ we have that for all $n \in \mathbb{N}$ and $x, y \in[0,1],|x-y|<\delta$ implies $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$. Thus, $\left(f_{n}\right)$ is equicontinuous on $[0,1]$. By the Arzelá-Ascoli Theorem, $\left(f_{n}\right)$ has a uniformly convergent subsequence.

