Department of Mathematical and Statistical Sciences

Applied Analysis Preliminary Exam
July 12, 2021 — Solutions

Problem 1. Let A be a subset of a metric space (M, d) and a a point in M (but not necessarily in A).
Let S be a subset of all points b € M such that d(a,b) < d(a,c) for every ¢ € A. Prove that S is closed.
Solution: Let s be a limit point of S and let (s,,) C S be a sequence converging to s. For any ¢ € A and
n € N, we have

d(a,s) < d(a,sn)+ d(sn,s) (by the triangle inequality)
d

<
<d(a,c)+d(sn,s) (since s, €595)

Taking the limit of both sides as n — oo, we get
d(a,s) < d(a,c) + lim d(s,,s)=d(a,c).
n—oo

This inequality holds for every ¢ € A, so s € S. Thus, every limit point of S is in S, so S is closed.

Problem 2. Let X and Y be subsets of a metric space (M,d), f: X — Y be a function, and (z,) be
a sequence in X. Prove or disprove the following statements:

(a)

7 pts) Let « be a limit point of X. If f is continuous and (z,,) converges to x, then the sequence
f(zy)) is Cauchy.
7

(b)
(c)

Solution:

(
(f (zn)
(7 pts) If f is uniformly continuous and (z,) is Cauchy, then (f(x,)) is Cauchy.
(6 pts)

6 pts) If f is uniformly continuous and (f(x,)) is Cauchy, then (z,) is Cauchy.

(a) False. As a counterexample, let X = (0,1) CR, Y =R and f: X — Y be defined by f(z) =1/x.
Let , = 1/n,n € N. Then z,, — 0 as n — oo. However, (f(z,)) = (n), which diverges.

(b) True. Let € > 0 be arbitrary. Since f is uniformly continuous, there exists 6 > 0 such that
d(xp, ) < 0 implies d(f(zy), f(xm)) < €. Since (z,,) is Cauchy, there exists 7 € N such that

n,m>n = d(@n,Tm) <0 = d(f(zn), f(zm)) <e.
Hence, (f(xy,)) is Cauchy.

(c) False. As a counterexample, let f : (0,00) — (0, 1) be defined by f(z) = e~ and let 2,, = n,n € N.
Note that f/(x) = —e® € (0,1) for z > 0, so f is uniformly continuous on (0,00). Note also that
f(x,) = 0as n — oo, so (f(x,)) is Cauchy; however (z,) = (n) is unbounded, so is not Cauchy.

Problem 3. Suppose g : R — R is differentiable with bounded derivative. Fix ¢ > 0 and define
f(z) = x 4 eg(z). Prove that f is one-to-one if € is small enough.

Solution: Since ¢’ is bounded, there exists M such that |¢'(z)] < M for all z. Observe that [ is
differentiable. Choose € < 1/M. Then, for all z,

(@) =1+¢€g'(z) >1—eM > 0.

Suppose f(z) = f(y). Then 0 = f(z) — f(y) = f'(2)(x — y) for some z € [z,y]. Since f/'(z) > 0, this
implies that z —y = 0, so x = y. Thus, f is one-to-one for € < ﬁ




Problem 4. Suppose f, : R — R is uniformly continuous for each n € N and f, converges to f
pointwise, where f is continuous. Prove or disprove that f is uniformly continuous.
Solution: f is not uniformly continuous. As a counterexample, define

f(x)— 22 —n<z<n
" n? otherwise.

Observe that for any z, lim,, ., f,(x) = 22. Thus, the pointwise limit of f is defined by f(x) = 22, which

is continuous, but not uniformly continuous. To see this, observe that for any § > 0, we can choose x = %

and y =z + §/2. Then |z —y| = §/2 < §, but |f,(z) — fuly)| = |22 —y*| = |z +yllz —y| > 2§ = 1.

However, f, is uniformly continuous for every m. To see this, observe that f, is continuous, so is
uniformly continuous on any closed interval. In particular, f,, is uniformly continuous on [-n —1,n+1].
Thus, for any € > 0, there exists § > 0 such that z,y € [-n — 1,n + 1] and |z — y| < § implies that
|fn(z) — fr(y)| < €. Without loss of generality, we can choose 6 < 1. Then, for any z,y € R, if |z —y| < 4,
then either z,y € [-n —1,n + 1], in which case |f.(z) — fn(y)| <€, or fu(z) = fn(y) = n?, in which case
|frn(z) = fr(y)| = 0. In either case, |z — y| < 0 implies |f,(z) — fn(y)| <€, so f, is uniformly continous.

Problem 5. Prove that every sequence in R has a monotone subsequence.

Solution: Let (x,) be a given sequence and define S := {x, |z, > z) for all k > n.}. If S has infinitely
many points, then the points in S form a monotonically decreasing subsequence.

On the other hand, if S has only finitely many points, there exists ny; € N larger than any index in S.
Since x,, € S, there exists ng > ny such that x,, > z,,. Continuing in this manner, for each k =2,3,.. .,
since x,, ¢ S, we can find ngi1 > ny such that z,, , > x,,. By construction, the subsequence (zy, ) is
monotonically increasing.

Alternative Solution: Let (z,,) be a given sequence. If (z,) is unbounded from above, then for every
M there exists n such that x,, > M. Define n; = 1 and ng, k > 1 such that z,, > x,, ,. Then the
subsequence (z,, ) is monotonically increasing. Similarly, if (z,,) is unbounded from below, define n; =1
and ng, k > 1 such that z,, < ,,_, , k> 1. Then the subsequence (z,,) is monotonically decreasing.
If (x,,) is bounded there exists a subsequence (y,) C (x,) such that y, — a when n — oo for some finite
a. At least one of the three sets St = {yn|yn > a}, S— = {ynlyn < a} or So = {yn|yn = a} is infinite.
If Sy is infinite then the subsequence (y,) N Sp is constant (and therefore monotonic). If S, is infinite,
define (z,) = (yn) N S4. Take ny = 1 and define ny, such that z,, < z,,_,, for & > 1. Such n; always
exists because z, — a implies that for any e there is N such that 0 < z,, —a < € for all n > N and one
can define € = z,, _, — a. Then the subsequence (z,,) is monotonically decreasing.

Similarly, if S_ is infinite, define (z,,) = (yn) N S—. Take ny = 1 and define ny, such that z,, > z,,_,, for
k > 1. Such ny always exists because z,, — a implies that for any € there is NV such that 0 < a — z,, < €
for all n > N and one can define € = a — z,, _,. Then the subsequence (z,, ) is monotonically increasing.

Problem 6. Let f(z), 2 > 0 be nonnegative and differentiable, with | f’(z)| bounded and [;° f(z)dz <
0.

(a) (13 pts) Prove that lim,_, f(z) = 0.
(b) (7 pts) If the condition |f’(z)| bounded is removed, is the result in (a) still true?
Solution:

(a) Suppose f(x) # 0. Then Je > 0 such that Vo 3t > x such that f(t) > e. Let t; > 1 satisfy f(¢1) > e,
and for n > 1 choose t, > t,—1 + 1 with f(¢,) > e. Let § < min(1,¢/v) where v is a bound on
|f'|- By the MVT, if € (¢, — §/2,t, + 6/2), then for some z, f(z) = f(t,) + f'(z)(x — t,) >
ftn) =1 (D)||x —tn] > € — /2 = €/2. Thus,

oo

sl tn+6/2 0o
/ f(:c)dzZZ/ f(a:)d:czze/zzoo
0 n=1"t n=1

n—8/2



which is a contradiction.

(b) If |f'(z)| is not bounded, then we cannot prove lim, ,o f(z) = 0. As a counterexample, let
f:(0,00) = [0,00) be defined by

Fla) = { 1+cos(2"n(x —n)) ifzxc(n—2""n+2""),neN

0 otherwise.
Then
/ fa

oo nt2=" o
/ cos(2"m(x —n))dz < Z 2 ntl — 9

nl"Qn n=1

Problem 7. Let g : R — R be a differentiable function satisfying |¢’(z)] < M for all z € R, for some

positive number M. Prove there exists exactly one x € [0, +00) such that x = 1 4 cos gz(sz[)

Solution: Let f: R — R be defined by f(z) = 1+ cos 421, Observe that |f'(z)| = |4 sin 42| <

W = 1/2 (since |¢'(z)] < M and |sinz| < 1 for any z € R). Thus, f’ is a contraction on R. Since
R is complete, by the Banach contraction principle, f has a unique fixed point z* € R (i.e., such that
x* = f(«*)). Finally, note that f(z) > 0 for all z € R. In particular, for z = z*, we have z* = f(x*) > 0,
so x* € [0, +00).

Problem 8. Let (f,) be a sequence of differentiable functions on [0, 1], and assume that for all n,
fn(0) = fI(0). Suppose that for all n € N and all z € [0,1], |f/(x)] < 1. Prove that there is a
subsequence of (f,,) converging uniformly on [0, 1].

Solution: Observe that for z € [0,1], | fn(2)| = | fu(0)+ [ f/(@)dz| < |f/(0)|+ [y | f/(@)|de < 14z < 2.
Thus, (f.) is a bounded sequence of functions.
Observe also that by the mean-value theorem, for any z,y € [0,1], < y, there is some z € (z,y) such
that

[fn(y) = fu(@)| = 1fn(2)(y —2)| < [fn(2)lly — 2] < |y — 2.

Thus, given any € > 0, by choosing é = € we have that for all n € N and z,y € [0,1], |x — y| < ¢ implies
|fn(z) — fu(y)| < €. Thus, (f,) is equicontinuous on [0,1]. By the Arzeld-Ascoli Theorem, (f,) has a
uniformly convergent subsequence.




