
University of Colorado Denver
Department of Mathematical and Statistical Sciences

Applied Analysis Preliminary Exam
July 12, 2021 – Solutions

Problem 1. Let A be a subset of a metric space (M,d) and a a point in M (but not necessarily in A).
Let S be a subset of all points b ∈M such that d(a, b) ≤ d(a, c) for every c ∈ A. Prove that S is closed.
Solution: Let s be a limit point of S and let (sn) ⊂ S be a sequence converging to s. For any c ∈ A and
n ∈ N, we have

d(a, s) ≤ d(a, sn) + d(sn, s) (by the triangle inequality)

≤ d(a, c) + d(sn, s) (since sn ∈ S)

Taking the limit of both sides as n→∞, we get

d(a, s) ≤ d(a, c) + lim
n→∞

d(sn, s) = d(a, c).

This inequality holds for every c ∈ A, so s ∈ S. Thus, every limit point of S is in S, so S is closed.

Problem 2. Let X and Y be subsets of a metric space (M,d), f : X → Y be a function, and (xn) be
a sequence in X. Prove or disprove the following statements:

(a) (7 pts) Let x be a limit point of X. If f is continuous and (xn) converges to x, then the sequence
(f(xn)) is Cauchy.

(b) (7 pts) If f is uniformly continuous and (xn) is Cauchy, then (f(xn)) is Cauchy.

(c) (6 pts) If f is uniformly continuous and (f(xn)) is Cauchy, then (xn) is Cauchy.

Solution:

(a) False. As a counterexample, let X = (0, 1) ⊂ R, Y = R and f : X → Y be defined by f(x) = 1/x.
Let xn = 1/n, n ∈ N. Then xn → 0 as n→∞. However, (f(xn)) = (n), which diverges.

(b) True. Let ε > 0 be arbitrary. Since f is uniformly continuous, there exists δ > 0 such that
d(xn, xm) < δ implies d(f(xn), f(xm)) < ε. Since (xn) is Cauchy, there exists n̄ ∈ N such that

n,m ≥ n̄ =⇒ d(xn, xm) < δ =⇒ d(f(xn), f(xm)) < ε.

Hence, (f(xn)) is Cauchy.

(c) False. As a counterexample, let f : (0,∞)→ (0, 1) be defined by f(x) = e−x and let xn = n, n ∈ N.
Note that f ′(x) = −ex ∈ (0, 1) for x > 0, so f is uniformly continuous on (0,∞). Note also that
f(xn)→ 0 as n→∞, so (f(xn)) is Cauchy; however (xn) = (n) is unbounded, so is not Cauchy.

Problem 3. Suppose g : R → R is differentiable with bounded derivative. Fix ε > 0 and define
f(x) = x+ εg(x). Prove that f is one-to-one if ε is small enough.
Solution: Since g′ is bounded, there exists M such that |g′(x)| ≤ M for all x. Observe that f is
differentiable. Choose ε < 1/M . Then, for all x,

f ′(x) = 1 + εg′(x) ≥ 1− εM > 0.

Suppose f(x) = f(y). Then 0 = f(x) − f(y) = f ′(z)(x − y) for some z ∈ [x, y]. Since f ′(z) > 0, this
implies that x− y = 0, so x = y. Thus, f is one-to-one for ε < 1

M .



Problem 4. Suppose fn : R → R is uniformly continuous for each n ∈ N and fn converges to f
pointwise, where f is continuous. Prove or disprove that f is uniformly continuous.
Solution: f is not uniformly continuous. As a counterexample, define

fn(x) =

{
x2 −n ≤ x ≤ n
n2 otherwise.

Observe that for any x, limn→x fn(x) = x2. Thus, the pointwise limit of f is defined by f(x) = x2, which
is continuous, but not uniformly continuous. To see this, observe that for any δ > 0, we can choose x = 1

δ

and y = x+ δ/2. Then |x− y| = δ/2 < δ, but |fn(x)− fn(y)| = |x2 − y2| = |x+ y||x− y| > 2
δ
δ
2 = 1.

However, fn is uniformly continuous for every n. To see this, observe that fn is continuous, so is
uniformly continuous on any closed interval. In particular, fn is uniformly continuous on [−n− 1, n+ 1].
Thus, for any ε > 0, there exists δ > 0 such that x, y ∈ [−n − 1, n + 1] and |x − y| < δ implies that
|fn(x)−fn(y)| < ε. Without loss of generality, we can choose δ < 1. Then, for any x, y ∈ R, if |x−y| < δ,
then either x, y ∈ [−n− 1, n+ 1], in which case |fn(x)− fn(y)| < ε, or fn(x) = fn(y) = n2, in which case
|fn(x)− fn(y)| = 0. In either case, |x− y| < δ implies |fn(x)− fn(y)| < ε, so fn is uniformly continous.

Problem 5. Prove that every sequence in R has a monotone subsequence.
Solution: Let (xn) be a given sequence and define S := {xn|xn ≥ xk for all k > n.}. If S has infinitely
many points, then the points in S form a monotonically decreasing subsequence.
On the other hand, if S has only finitely many points, there exists n1 ∈ N larger than any index in S.
Since xn1 6∈ S, there exists n2 > n1 such that xn2 > xn1 . Continuing in this manner, for each k = 2, 3, . . .,
since xnk

6∈ S, we can find nk+1 > nk such that xnk+1
> xnk

. By construction, the subsequence (xnk
) is

monotonically increasing.
Alternative Solution: Let (xn) be a given sequence. If (xn) is unbounded from above, then for every
M there exists n such that xn > M . Define n1 = 1 and nk, k > 1 such that xnk

> xnk−1
. Then the

subsequence (xnk
) is monotonically increasing. Similarly, if (xn) is unbounded from below, define n1 = 1

and nk, k > 1 such that xnk
< xnk−1

, k > 1. Then the subsequence (xnk
) is monotonically decreasing.

If (xn) is bounded there exists a subsequence (yn) ⊆ (xn) such that yn → a when n→∞ for some finite
a. At least one of the three sets S+ = {yn|yn > a}, S− = {yn|yn < a} or S0 = {yn|yn = a} is infinite.
If S0 is infinite then the subsequence (yn) ∩ S0 is constant (and therefore monotonic). If S+ is infinite,
define (zn) = (yn) ∩ S+. Take n1 = 1 and define nk such that znk

< znk−1
, for k > 1. Such nk always

exists because zn → a implies that for any ε there is N such that 0 < zn − a < ε for all n ≥ N and one
can define ε = znk−1

− a. Then the subsequence (znk
) is monotonically decreasing.

Similarly, if S− is infinite, define (zn) = (yn)∩ S−. Take n1 = 1 and define nk such that znk
> znk−1

, for
k > 1. Such nk always exists because zn → a implies that for any ε there is N such that 0 < a− zn < ε
for all n ≥ N and one can define ε = a− znk−1

. Then the subsequence (znk
) is monotonically increasing.

Problem 6. Let f(x), x ≥ 0 be nonnegative and differentiable, with |f ′(x)| bounded and
∫∞
0
f(x)dx <

∞.

(a) (13 pts) Prove that limx→∞ f(x) = 0.

(b) (7 pts) If the condition |f ′(x)| bounded is removed, is the result in (a) still true?

Solution:

(a) Suppose f(x) 6→ 0. Then ∃ε > 0 such that ∀x ∃t > x such that f(t) > ε. Let t1 > 1 satisfy f(t1) > ε,
and for n > 1 choose tn > tn−1 + 1 with f(tn) > ε. Let δ < min(1, ε/γ) where γ is a bound on
|f ′|. By the MVT, if x ∈ (tn − δ/2, tn + δ/2), then for some z, f(x) = f(tn) + f ′(z)(x − tn) ≥
f(tn)− |f ′(z)||x− tn| ≥ ε− γδ/2 = ε/2. Thus,∫ ∞

0

f(x)dx ≥
∞∑
n=1

∫ tn+δ/2

tn−δ/2
f(x)dx ≥

∞∑
n=1

ε/2 =∞



which is a contradiction.

(b) If |f ′(x)| is not bounded, then we cannot prove limx→∞ f(x) = 0. As a counterexample, let
f : (0,∞)→ [0,∞) be defined by

f(x) =

{
1 + cos(2nπ(x− n)) if x ∈ (n− 2−n, n+ 2−n), n ∈ N
0 otherwise.

Then ∫ ∞
0

f(x)dx =

∞∑
n=1

∫ n+2−n

n−2−n

cos(2nπ(x− n))dx ≤
∞∑
n=1

2−n+1 = 2.

Problem 7. Let g : R → R be a differentiable function satisfying |g′(x)| ≤ M for all x ∈ R, for some

positive number M . Prove there exists exactly one x ∈ [0,+∞) such that x = 1 + cos g(x)2M .

Solution: Let f : R → R be defined by f(x) = 1 + cos g(x)2M . Observe that |f ′(x)| =
∣∣∣ g′(x)2M sin g(x)

2M

∣∣∣ ≤
M
2M = 1/2 (since |g′(x)| ≤ M and | sin z| ≤ 1 for any z ∈ R). Thus, f ′ is a contraction on R. Since
R is complete, by the Banach contraction principle, f has a unique fixed point x∗ ∈ R (i.e., such that
x∗ = f(x∗)). Finally, note that f(z) ≥ 0 for all z ∈ R. In particular, for z = x∗, we have x∗ = f(x∗) ≥ 0,
so x∗ ∈ [0,+∞).

Problem 8. Let (fn) be a sequence of differentiable functions on [0, 1], and assume that for all n,
fn(0) = f ′n(0). Suppose that for all n ∈ N and all x ∈ [0, 1], |f ′n(x)| ≤ 1. Prove that there is a
subsequence of (fn) converging uniformly on [0, 1].

Solution: Observe that for x ∈ [0, 1], |fn(x)| = |fn(0)+
∫ x
0
f ′(x)dx| ≤ |f ′(0)|+

∫ x
0
|f ′(x)|dx ≤ 1+x ≤ 2.

Thus, (fn) is a bounded sequence of functions.
Observe also that by the mean-value theorem, for any x, y ∈ [0, 1], x < y, there is some z ∈ (x, y) such
that

|fn(y)− fn(x)| = |f ′n(z)(y − x)| ≤ |f ′n(z)||y − x| ≤ |y − x|.

Thus, given any ε > 0, by choosing δ = ε we have that for all n ∈ N and x, y ∈ [0, 1], |x− y| < δ implies
|fn(x) − fn(y)| < ε. Thus, (fn) is equicontinuous on [0, 1]. By the Arzelá-Ascoli Theorem, (fn) has a
uniformly convergent subsequence.


