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– Your solutions need to be in a single .pdf file with the pages in the correct
order. The .pdf file needs to be of good enough quality for easy grading.

– If you cannot create a good quality .pdf file quickly, you may instead submit
an imperfect scan, or even pictures of your exam, and then take more time to
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• Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. Fn and Fn,n are the vector spaces
of n-tuples and n × n matrices, respectively, over the field F. L(V ) denotes the
set of linear operators on the vector space V . T ∗ is the adjoint of the operator T
and λ∗ is the complex conjugate of the scalar λ. In an inner product space V , U⊥

denotes the orthogonal complement of the subspace U .

• If you are confused or stuck on a problem, either ask a question or move on to
another problem.
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Before starting the exam, please sign and date the following honor statement.

Honor statement: I attest that I will not cheat and will not attempt to cheat. I attest
that I will not communicate with anyone while taking the exam, I will not look at notes,
textbooks, previous solutions of exams, cheat sheets, etc. I attest that I will not go on
the web to find solutions. If I in some way receive information during the exam that
might help with the exam, I will let the proctor know.



Part I. Work all of problems 1 through 4.

Problem 1. Suppose v1, . . . , vm is linearly independent in V , w ∈ V , and v1 +
w, . . . , vm + w is linearly dependent. Prove that w ∈ span {v1, . . . , vm}.

Solution: Since v1 +w, . . . , vm+w is linearly dependent, there exist scalars a1, . . . , am
not all zero such that

a1 (v1 + w) + · · ·+ am (vm + w) = 0.

It follows that
a1v1 + · · ·+ amvm = − (a1 + · · ·+ am)w. (1)

If a1 + · · ·+ am = 0, then

a1v1 + · · ·+ amvm = 0w = 0

which contradicts the independence of v1, . . . , vm. Thus a1 + · · · + am 6= 0 and we can
divide (1) by it, giving

w =
a1v1 + · · ·+ amvm
− (a1 + · · ·+ am)

=
−a1

a1 + · · ·+ am
v1 + · · ·+ −am

a1 + · · ·+ am
vm,

which shows that w ∈ span {v1, . . . , vm}.

Problem 2. Suppose that V is inner product space, real or complex.

1. (10 points) Prove that if u, v, w ∈ V , then∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2 =
‖w − u‖2 + ‖w − v‖2

2
− ‖u− v‖

2

4
.

2. (10 points) Suppose that S is a subset of V such that if u, v ∈ S then 1
2 (u+ v) ∈ S,

and w ∈ V . Show that there is at most one point u in S that is closest to w, that
is, such that

‖w − u‖ ≤ ‖w − y‖ for all y ∈ S.



Solution:

1. Identify common terms first:∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2 =

∥∥∥∥1

2
((w − u) + (w − v))

∥∥∥∥2
=

1

4
〈(w − u) + (w − v) , (w − u) + (w − v)〉

=
1

4

(
‖w − u‖2 + ‖w − v‖2 + 2 Re 〈w − u,w − v〉

)

‖w − u‖2 + ‖w − v‖2

2
− ‖u− v‖

2

4
=

1

4

(
‖w − u‖2 + ‖w − v‖2

)
+

1

4

(
‖w − u‖2 + ‖w − v‖2 − ‖u− v‖2

)
.

It remains to show that ‖w − u‖2 + ‖w − v‖2 − ‖u− v‖2 = 2 Re 〈w − u,w − v〉.
Expanding the inner products, we have

‖w − u‖2 + ‖w − v‖2 − ‖u− v‖2 =
(
‖w‖2 + ‖u‖2 − 2 Re 〈w, u〉

)
+
(
‖w‖2 + ‖v‖2 − 2 Re 〈w, v〉

)
−
(
‖u‖2 + ‖v‖2 − 2 Re 〈u, v〉

)
= 2 ‖w‖2 + 2 Re (−〈w, u〉 − 〈w, v〉+ 〈u, v〉)

2 Re 〈w − u,w − v〉 = 2 Re (〈w,w〉 − 〈u,w〉 − 〈w, v〉+ 〈u, v〉)
= 2 ‖w‖2 + 2 Re (−〈u,w〉 − 〈w, v〉+ 〈u, v〉)

2. Suppose that u, v ∈ S are both closest to w:

∀y ∈ S : ‖w − u‖ ≤ ‖w − y‖
∀y ∈ S : ‖w − v‖ ≤ ‖w − y‖

Take

y =
u+ v

2
.

Then,

‖w − u‖2 ≤
∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2
‖w − v‖2 ≤

∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2



thus
‖w − u‖2 + ‖w − v‖2

2
≤
∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2
and using part 1,

‖w − u‖2 + ‖w − v‖2

2
≤
∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2 =
‖w − u‖2 + ‖w − v‖2

2
− ‖u− v‖

2

4

gives
‖u− v‖2

4
≤ 0

thus ‖u− v‖ = 0 and u = v.

Problem 3. Let A be a nonsingular real n × n matrix. Prove that there exists a
unique orthogonal matrix Q and a unique positive definite symmetric matrix B such
that A = QB.

Solution: Since A is nonsingular, ATA is positive definite. Let B =
√
ATA, the unique

positive definite symmetric matrix such that B2 = ATA. Consider P = BA−1, i.e.,
PA = B. It is sufficient to show that P is orthogonal, since in this case, Q = P−1 = P T

will be orthogonal and A = QB. We have

P TP = (BA−1)T (BA−1) = (AT )−1BTBA−1 = (AT )−1B2A−1 = (AT )−1ATAA−1 = I

Now we show uniqueness. Suppose we had a second factorization A = Q1B1. Then

B2 = ATA = BT
1 Q

T
1Q1B1 = BT

1 B1 = B2
1 .

Since a positive definite matrix has a unique positive square root, it implies that B = B1.
On the other hand, since Q1 = AB−11 and Q = AB−1 (B is invertible), Q1 = Q.



Problem 4. We are in 2021, so let A =

(
2 0
2 1

)
. Define

T :M2(R) → M2(R)
B 7→ AB −BA

1. (5 points) Fix an ordered basis B of M2(R) and compute the matrix [T ]B that
represents T with respect to this basis.

2. (5 points) Give the eigenvalues of T .

3. (5 points) Compute a basis for each of the eigenspaces of T .

4. (5 points) Give the minimal and characteristic polynomials of T and the Jordan
form for T . Say whether T is diagonalizable or not.

Solution:

1. We choose the “standard ordered basis”

B = (E11, E12, E21, E22)

where Eij has a one in the (i, j) position and zero elsewhere.

Then routine computations show that

T (E11) = AE11 − E11A =

(
2 0
2 1

)(
1 0
0 0

)
−

(
1 0
0 0

)(
2 0
2 1

)
=

(
0 0
2 0

)
= 0 E11 + 0 E12 + 2 E21 + 0 E22,

T (E12) = AE12 − E12A =

(
2 0
2 1

)(
0 1
0 0

)
−

(
0 1
0 0

)(
2 0
2 1

)
=

(
−2 1
0 2

)
= −2 E11 + 1 E12 + 0 E21 + 2 E22,

T (E21) = AE21 − E21A =

(
2 0
2 1

)(
0 0
1 0

)
−

(
0 0
1 0

)(
2 0
2 1

)
=

(
0 0

−1 0

)
= 0 E11 + 0 E12 − 1 E21 + 0 E22,

T (E22) = AE22 − E22A =

(
2 0
2 1

)(
0 0
0 1

)
−

(
0 0
0 1

)(
2 0
2 1

)
=

(
0 0

−2 0

)
= 0 E11 + 0 E12 − 2 E21 + 0 E22.

The matrix [T ]B that represents T with respect to this basis is

T =


0 −2 0 0
0 1 0 0
2 0 −1 −2
0 2 0 0

 .

2. We quickly note that since T (E21) = −E21, then E21 is eigenvector of eigenvalue
−1. Also looking at matrix T , the four columns are clearly in a space of dimension
2, so the dimension of the nullspace of T is 2, so we will have an eigenspace for the
eigenvalue 0 of dimension 2. And actually, thinking about AB − BA, it is clear



that if B = I, then T (I) = 0, so I is an eigenvector of eigenvalue 0, and it is
also clear that, if B = A, then T (A) = 0, so A is an eigenvector of eigenvalue 0.
Since A and I are linearly independent, we have found a basis for the eigenspace
of eigenvalue 0. We know three eigenvalues out of four. And we also know three
linearly independent eigenvectors. Now since the trace of T is 0 and the trace of
T is the sum of the eigenvalues, we see that the fourth eigenvalue of T is 1. And
so we are done. We found the four eigenvalues of T : 1, 0, 0, and −1.

With these observations, we also note that T will be diagonalizable since the sum
of the dimensions of the eigenspaces is 4. The minimum polynomial and the char-
acteristic polynomial will be the same and equal to λ2(λ + 1)(λ − 1). And the
Jordan form of T will be a diagonal matrix with 1, 0, 0, and −1 on the diagonal.
This answers part 4.

2. Here is another way to do part 2. To obtain the eigenvalues of T , we compute the
characteristic polynomial

det(T − λI) =

∣∣∣∣∣∣∣∣
−λ −2 0 0

0 1− λ 0 0
2 0 −1− λ −2
0 2 0 −λ

∣∣∣∣∣∣∣∣
expand with respect C3

= (−1− λ)

∣∣∣∣∣∣
−λ −2 0

0 1− λ 0
0 2 −λ

∣∣∣∣∣∣
expand with respect C3

= (−1− λ)(−λ)

∣∣∣∣ −λ −2
0 1− λ

∣∣∣∣
expand with respect C1

= (−1− λ)(−λ)(−λ)(1− λ)

= λ2(λ+ 1)(λ− 1)

We see that
det(T − λI) = λ2(λ+ 1)(λ− 1)

And so we find the eigenvalues of T are 1, 0, 0, and −1.

3. λ1 = 1

We use the row reduction process on T −I to find a basis for the nullspace of T −I,
the eigenspace of T of eigenvalue 1.



T − I =


−1 −2 0 0

0 0 0 0
2 0 −2 −2
0 2 0 −1


L1 ← −L1

remove L2

L3 ← L3/2
 

 1 2 0 0
1 0 −1 −1
0 2 0 −1

 L2 ← L2 − L1

 

 1 2 0 0
0 −2 −1 −1
0 2 0 −1


L3 ← L3 + L2

 

 1 2 0 0
0 −2 −1 −1
0 0 −1 −2

 L3 ← −L3

 

 1 2 0 0
0 −2 −1 −1
0 0 1 2


L2 ← L2 + L3

 

 1 2 0 0
0 −2 0 1
0 0 1 2

 L1 ← L1 + L2

 

 1 0 0 1
0 −2 0 1
0 0 1 2


L2 ← L2/(−2)

 

 1 0 0 1
0 1 0 (−1/2)
0 0 1 2


We have free variable is x4, we set to x4 = t. We solve for x1, x2 and x3 and we
find: 

x1 = −t
x2 = t/2
x3 = −2t
x4 = t

x = t


−1
1/2
−2

1

 v1 =


−2

1
−4

2

 .

An eigenvector for the eigenvalue 1 is, for example,

B1 =

(
−2 1
−4 2

)
.

Indeed

T (B1) = T (

(
−2 1
−4 2

)
) =

(
2 0
2 1

)(
−2 1
−4 2

)
−
(
−2 1
−4 2

)(
2 0
2 1

)
=

(
−2 1
−4 2

)
= B1.

λ2 = −1

We use the row reduction process on T +I to find a basis for the nullspace of T +I,
the eigenspace of T of eigenvalue −1.

T + I =


1 −2 0 0
0 2 0 0
2 0 0 −2
0 2 0 1

 L1 ← L1 + L2

L4 ← L4 − L2

 


1 0 0 0
0 2 0 0
2 0 0 −2
0 0 0 1

 L3 ← L3 + 2L4

 


1 0 0 0
0 2 0 0
2 0 0 0
0 0 0 1


L3 ← L3 − 2L1

 


1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 1

 L2 ← L2/2
remove L3

 

 1 0 0 0
0 1 0 0
0 0 0 1





We have free variable is x3, we set to x3 = t. We solve for x1, x2 and x4 and we
find: 

x1 = 0
x2 = 0
x3 = t
x4 = 0

x = t


0
0
1
0

 v2 =


0
0
1
0

 .

An eigenvector for the eigenvalue −1 is, for example,

B2 =

(
0 0
1 0

)
.

Indeed

T (B2) = T (

(
0 0
1 0

)
) =

(
2 0
2 1

)(
0 0
1 0

)
−
(

0 0
1 0

)(
2 0
2 1

)
=

(
0 0
−1 0

)
= −B2.

λ3 = 0

We use the row reduction process on T to find a basis for the nullspace of T , the
eigenspace of T of eigenvalue 0.

T =


0 −2 0 0
0 1 0 0
2 0 −1 −2
0 2 0 0

 L1 ← L1 + 2L2

L4 ← L4 − 2L2

 


0 0 0 0
0 1 0 0
2 0 −1 −2
0 0 0 0

 remove L1

remove L4

 

(
0 1 0 0
2 0 −1 −2

)

We have free variable is x3 and x4, we set to x3 = s and x4 = t. We solve for x1
and x2 and we find:

x1 = s/2 + t
x2 = 0
x3 = s
x4 = t

x = s


1/2

0
1
0

+t


1
0
0
1

 v3 =


1
0
2
0

 and v4 =


1
0
0
1

 .

A basis eigenvectors for the eigenspace associated with the eigenvalue 0 is, for
example,

B3 =

(
1 0
2 0

)
and B4 =

(
1 0
0 1

)
.

Indeed

T (B3) = T (

(
0 0
1 0

)
) =

(
2 0
2 1

)(
1 0
2 0

)
−
(

1 0
2 0

)(
2 0
2 1

)
=

(
0 0
0 0

)
= 0.



T (B4) = T (

(
0 0
1 0

)
) =

(
2 0
2 1

)(
1 0
0 1

)
−
(

1 0
0 1

)(
2 0
2 1

)
=

(
0 0
0 0

)
= 0.

Note that we already had identified another basis for the eigenspace of eigenvalue
0. We observed that, if B = I, then T (I) = AI − IA = 0, so I is an eigenvector of
eigenvalue 0. And we observed that, if B = A, then T (A) = AA − AA = 0, so A
is an eigenvector of eigenvalue 0. Since A and I are linearly independent, another
basis for the eigenspace of eigenvalue 0 is (I, A).

4. T is diagonalizable since the sum of the dimensions of the eigenspaces is 4. The
characteristic polynomial is equal to λ2(λ+ 1)(λ−1). Because T is diagonalizable,
the minimum polynomial is equal to λ(λ + 1)(λ − 1). The Jordan form of T will
be a diagonal matrix with 1, 0, 0, and −1 on the diagonal.



Part II. Work two of problems 5 through 8.

Problem 5. Define Rn×n to be the space of all real n-by-n matrices, suppose S ∈ Rn×n,
and define the linear mapping

T : Rn×n → Rn×n, T : P 7→ PS + SP

1. (10 points) Prove that if λ is eigenvalue of S, u is the corresponding eigenvector,
and u ∈ null (T P ), then Pu is also an eigenvector of S, with eigenvalue −λ.

2. (10 points) Prove that if S is symmetric positive definite, then the mapping T is
injective.

Solution:

1. Suppose u ∈ null (T P ) and Su = λu. Then,

0 = (PS + SP )u = P (Su) + S(Pu) = P (λu) + S(Pu) = λPu+ S(Pu),

thus
S(Pu) = −λPu.

2. A linear mapping is injective if and only if its kernel is {0}. Therefore, we need to
show that the only solution S ∈ Rn×n of

PS + SP = 0 (2)

is P = 0. Since S is symmetric, there exists basis u1, . . . , un of Rn consisting of
eigenvectors of S,

Suk = λkuk,

and since S is positive definite, all eigenvalues λk > 0. Then, for each k, if Puk 6= 0,
then Puk is eigenvector of S with eigenvalue −λk < 0 from the first part of the
problem, which is a contradiction with S being positive definite. Thus, Puk = 0.
Since the linear operator u 7→ Pu is zero on all vectors of a basis, it is zero operator,
and P = 0.

Problem 6.

Let V be a vector space of dimension n over a field F . For any nilpotent operator T on
V , define the smallest integer p such that T p = 0 as the index of nilpotency of T .



1. (6 points) Suppose that N is nilpotent of index p. If v ∈ V is such that Np−1(v) 6=
0, prove that

{v, N(v), . . . , Np−1(v)}

is linearly independent.

2. (7 points) Show that N is nilpotent of index n if and only if there is an ordered
basis v1,v2, . . . ,vn of V such that the matrix of N with respect to the basis is of
the form 

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0


3. (7 points) Show that an n×n matrix M over F is such that Mn = 0 and Mn−1 6= 0

if and only if M is similar to a matrix of the above form.

Solution:

1. If v 6= 0 is such that Np−1(v) 6= 0, then v, N(v), . . . , Np−1(v) are all non-zero.
Suppose that

a0v + a1N(v) + · · ·+ ap−1N
p−1(v) = 0

Applying Np−1 to both sides, we obtain a0N
p−1v = 0, which implies a0 = 0. Thus

we have
a1N(v) + · · ·+ ap−1N

p−1(v) = 0

Applying Np−2 to both sides, similarly we can obtain a1 = 0. Following the
pattern, we can show all the coefficients aj , j = 1, . . . , p − 1 are 0. So the set is
linearly independent.

2. Clearly v, N(v), . . . , Np−1(v) is a basis of V . From the following equations:

N(v) = 0v + 1N(v) + 0N2(v) + · · ·+ 0Nn−1(v)

N2(v) = 0v + 0N(v) + 1N2(v) + · · ·+ 0Nn−1(v)

...

Np−1(v) = 0v + 0N(v) + 0N2(v) + · · ·+ 1Nn−1(v)

Nn(v) = 0v + 0N(v) + 0N2(v) + · · ·+ 0Nn−1(v)



we obtain the matrix of N relative to the above ordered basis is:

A =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0


Conversely, suppose that there is an ordered basis with respect to which the matrix
A of N is of the above form. It is easy to check that An = 0 and An−1 6= 0.
Consequently N is nilpotent of index n.

3. If M is similar to a matrix of the above form, denoted by A, then M = P−1AP ,
where P is invertible. Then

Mn−1 = P−1An−1P 6= 0, and Mn = P−1AnP = P−10P = 0

Conversely, if M is an n×n matrix over F such that Mn = 0 and Mn−1 6= 0, then
M is an nilpotent matrix of index n. Let N be the nilpotent operator of index n
whose matrix is M with respect to a certain basis, then based on the second part,
A matrix of N has the form of A under (potentially) another basis. So M and A
must be similar.



Problem 7. Let S, T be two normal operators in the complex finite dimensional inner
product space V such that ST = TS. Prove that there is a basis for V consisting of
vectors that are eigenvectors of both S and T .

Solution: Let n = dimV , and λ1, . . . , λk be the distinct eigenvalues of S. Then by
the spectral theorem, there exist eigenvectors of S that form an orthonormal basis of V ,
which means:

Eλ1 ⊕ · · · ⊕ Eλk = V.

For any i ∈ {1, 2, . . . , k} and v ∈ Eλi , we have Sv = λiv. Then

TSv = T (λiv)⇒ STv = λiTv ⇒ S(Tv) = λi(Tv).

So Tv ∈ Eλi , and hence Eλi is T -invariant. Then T |Eλi is a normal operator on Eλi . By

the Spectral Theorem, there exists an orthonormal basis ui1, . . . ,u
i
ni for Eλi consisting

of eigenvectors of T . Then
k⋃
i=1

ni⋃
j=1

{
uij
}

is a basis of V consisting of eigenvectors of both S and T .

Problem 8. Let M2(C) be the set of 2-by-2 matrices with coefficients in C, and
A ∈M2(C). Define

S =

{
N ∈M2(C)|B =

(
A N
0 A

)
is diagonalizable

}
.

1. (10 points) Suppose that

A =

(
λ1 0
0 λ2

)
, λ1 6= λ2,

and prove that S is a 2-dimensional subspace of M2(C). Hint: First consider
B ∈ S and find the conditions which N must satisfy for the eigenspaces of B to
have the required dimensions such that B is diagonalizable.

2. (10 points) Prove that for any A ∈ M2(C) with two distinct eigenvalues λ1 and
λ2, S is a 2-dimensional subspace ofM2(C). Hint: Transform this to the previous
case.



Solution:

1. The case where A is a diagonal matrix with two distinct diagonal entries λ1 and λ2

Now let us consider

N =

(
a b
c d

)
such that

B =

(
A N
0 A

)
is diagonalizable. We have that

B =


λ1 0 a b
0 λ2 c d
0 0 λ1 0
0 0 0 λ2

 .

Clearly B has eigenvalues λ1 and λ2, both of algebraic multiplicities 2. Since B is
diagonalizable, the geometric multiplicities of λ1 and λ2 is 2. In other words, since
B is diagonalizable,

dim Null(B − λ1I) = 2 and dim Null(B − λ2I) = 2.

Let us do row reduction on B − λ1I. (Row reduction uses elementary row opera-
tions, which conserve the nullspace.)

B − λ1I =


0 0 a b
0 λ2 − λ1 c d
0 0 0 0
0 0 0 λ2 − λ1

 .

Now we can remove the third row (all zero), and, since λ2 − λ1 is not zero, we
can divide the second and fourth row by λ2 − λ1. If we call c′ = c/(λ2 − λ1) and
d′ = c/(λ2 − λ1), we get

B − λ1I ∼

 0 0 a b
0 1 c′ d′

0 0 0 1

 .

Let us permute row 1 and 2.

B − λ1I ∼

 0 1 c′ d′

0 0 a b
0 0 0 1

 .



Let us introduce a zero in position (4,1) by doing L1 ← L1 − d′L3 and introduce a
zero in position (4,2) by doing L2 ← L2 − bL3. We get

B − λ1I ∼

 0 1 c′ 0
0 0 a 0
0 0 0 1

 .

So now, for sake of contradiction, assume that a is not zero, then we have one free
variable and three leading variables, so the dimension of the nullspace of B−λ1I is
1, and this is a contradiction since, sinceB is diagonalizable, dim Null(B−λ1I) = 2.
This means that the assumption a is not zero is false and so we must have

a = 0.

And we can check that if a is zero, indeed, dim Null(B − λ1I) = 2 and all is well.

Similarly, by doing row reduction on (B−λ2I) and using the fact that dim Null(B−
λ2I) = 2, we see that we must have

d = 0.

This reasoning shows that for B to be diagonalizable, we must have N of the form

N =

(
0 b
c 0

)
.

Reciprocally, if N is of the form

N =

(
0 b
c 0

)
,

then
dim Null(B − λ1I) = 2 and dim Null(B − λ2I) = 2,

and so B is diagonalizable.

Therefore,

S =

{
N ∈M2(C) such that B =

(
A N
0 A

)
is diagonalizable

}
=

{
N =

(
0 b
c 0

)
, for all b and all c

}
In this second form, the subset S is clearly a subspace of M2(C) of dimension 2.

(A basis for this subspace is, for example, (

(
0 1
0 0

)
,

(
0 0
1 0

)
).)



2. The case where A is a general 2-by-2 matrix with two distinct eigenvalues λ1 and λ2

Let v1 be an eigenvector associated with λ1. Let v2 be an eigenvector associated
with λ2. Let V , the 2-by-2 matrix, V = (v1, v2). Then we have

A = V

(
λ1 0
0 λ2

)
V −1.

(Note that the matrix V is invertible because the set (v1, v2) is linearly independent
because these are eigenvectors associated with distinct eigenvalues.)

Now let us define W as

W =

(
V 0
0 V

)
,

let us define a, b, c and d as

V −1NV =

(
a b
c d

)
,

and let us look at W−1BW .

We have

W−1BW =

(
V −1 0

0 V −1

)(
A N
0 A

)(
V 0
0 V

)
=

(
V −1AV V −1NV

0 V −1AV

)

=


λ1 0 a b
0 λ2 c d
0 0 λ1 0
0 0 0 λ2


Which looks exactly like “the case when A is a diagonal matrix with two distinct
diagonal entries λ1 and λ2”.

Now since B is diagonalizable, and W is invertible, we have that W−1BW is
diagonalizable. By the “case 1”, it must therefore be that a = 0 and d = 0.
Therefore we have that

V −1NV =

(
0 b
c 0

)
and so

N = V

(
0 b
c 0

)
V −1.

Reciprocally if N is of the form

N = V

(
0 b
c 0

)
V −1



we see by a similar reasonning, and using case 1, that B is diagonalizable

Therefore,

S =

{
N ∈M2(C) such that B

(
A N
0 A

)
is diagonalizable

}
=

{
N = V

(
0 b
c 0

)
V −1, for all b and all c

}
In this second form, it is easy to prove that the subset S is a subspace ofM2(C) of

dimension 2. A basis for this subspace is, for example, (V

(
0 1
0 0

)
V −1, V

(
0 0
1 0

)
V −1).


