Analysis Prelim—January 22, 2021
 Solutions

Section 1

1. For two subsets A and B of metric space X consider set S of all points $x \in X$ such that x is a limit point for both sets A and B and not an interior point for either A or B. Prove that S is closed. You can use well known theorems in your proof if you carefully state them.

Solution: From the hint, we expect you to know (and use the fact) that the set of limit points of a set is closed (e.g., Rudin, exercise 2.6) and that the interior of a set is open (e.g., Rudin. exercise 2.9). We also assume you know that if O is open and C is closed, then $C-O$ is closed.

Let A^{\prime} and B^{\prime} be the limit points of A and B. Then each is closed, so $A^{\prime} \cap B^{\prime}$ is closed. Likewise, $A^{o} \cup B^{o}$ is open. Thus, the set in question, $S=\left(A^{\prime} \cap B^{\prime}\right)-\left(A^{o} \cup B^{o}\right)$, is closed.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous, and let $c_{n} \searrow 0$. Define $f_{n}(x)=f\left(x+c_{n}\right), x \in \mathbb{R}$.
(a) (15 points) Prove that $f_{n} \rightarrow f$ uniformly.
(b) (5 points) If f is continuous (but not uniformly continuous) is the result still true? Prove or find a counterexample.

Solution: (a) Choose $\epsilon>0$ and then $\delta>0$ so that $|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$. Choose N so that $n>N \Rightarrow\left|c_{n}\right|<\delta$. Then for $n>N$ and $x \in \Re$,

$$
\left|f_{n}(x)-f(x)\right|=\left|f\left(x+c_{n}\right)-f(x)\right|<\epsilon
$$

so $f_{n} \rightarrow f$ uniformly.
(b) Let $f(x)=e^{x}$ and suppose that every $c_{n}>0$. Then $\forall n, \exists x_{n} \in \Re$ such that

$$
\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=e^{x_{n}}\left|e^{c_{n}}-1\right|>1
$$

so the convergence is not uniform.
3. Prove that $\sum_{k=1}^{\infty} \frac{1}{k} \cos \left(\frac{2 \pi}{3} k\right)$ converges.

Solution. The cosine terms in the sum form a repeating pattern, $\left\{-\frac{1}{2},-\frac{1}{2}, 1, \ldots\right\}$, so the sum is

$$
-\left[\frac{1}{2}\left(1+\frac{1}{2}\right)\right]+\frac{1}{3}-\left[\frac{1}{2}\left(\frac{1}{4}+\frac{1}{5}\right)\right]+\frac{1}{6}-\cdots,
$$

which converges by the alternating series test once we note that $\frac{1}{k}>\frac{1}{2}\left(\frac{1}{k+1}+\frac{1}{k+2}\right)>\frac{1}{k+3}$.
4. Let $f_{n}(x)=n x e^{-n x^{2}}, n=1,2, \ldots$.
(a) (5 points) Prove that $f_{n}(x) \rightarrow 0$ pointwise on $[0,1]$.
(b) (5 points) Find $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$. Hint: The answer is not 0 .
(c) (5 points) Use (a) and (b) to prove that the convergence $f_{n}(x) \rightarrow 0$ on $[0,1]$ is not uniform.
(d) (5 points) Prove the convergence $f_{n}(x) \rightarrow 0$ on $[0,1]$ is not uniform directly from the definition of uniform convergence.

Solution: (a) For every $n, f_{n}(0)=0$. For $x \in(0,1]$, note that

$$
e^{n x^{2}}=\sum_{i=0}^{\infty} \frac{\left(n x^{2}\right)^{i}}{i!}>\frac{n^{2} x^{4}}{2}
$$

so for every $x \in(0,1]$

$$
f_{n}(x)=\frac{n x}{e^{n x^{2}}}<\frac{2}{n x^{3}} \rightarrow 0
$$

(b) $\int_{0}^{1} f_{n}(x) d x=\left(1-e^{-n}\right) / 2 \rightarrow 1 / 2$.
(c) By Rudin, Theorem 7.16, if $f_{n}(x) \rightarrow 0$ uniformly then

$$
1 / 2=\lim \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} \lim f_{n}(x) d x=0
$$

which is a contradiction, so the convergence cannot be uniform.
(d) Let $x_{n}=1 / \sqrt{n}$. Then $f_{n}\left(x_{n}\right)=\sqrt{n} e^{-1} \nrightarrow 0$, so the convergence is not uniform.

Section 2

5. Let (X, d) be a metric space and $A \subset X$ be compact and non-empty. Let $f: A \rightarrow A$ be a continuous function such that for all $x, y \in A, d(f(x), f(y)) \geq d(x, y)$ (f is a non-contracting function). Prove that
(a) (5 points) f is one-to-one
(b) (5 points) f^{-1} is continuous
(c) (10 points) $f(A)=A$. Hint: Suppose $y_{0} \in A-f(A)$. Consider the sequence defined by $y_{n}=f\left(y_{n-1}\right)$.

Solution: (a) Suppose $f(x)=f(y)$ for some $x \neq y$. Then $0=d(f(x), f(y)) \geq d(x, y) \geq 0$ which means $d(x, y)=0$, so $x=y$.
(b) Suppose $y_{n} \rightarrow y$ in $f(A)$. Then $d\left(y_{n}, y\right) \rightarrow 0$. But $d\left(y_{n}, y\right) \geq d\left(f^{-1}\left(y_{n}\right), f^{-1}(y)\right)$, so $d\left(f^{-1}\left(y_{n}\right), f^{-1}(y)\right) \rightarrow$ 0 , which means $f^{-1}\left(y_{n}\right) \rightarrow f^{-1}(y)$. Since $\left(y_{n}\right)$ was an arbitrary convergent sequence, f^{-1} is continuous.
(c) Suppose $\exists x \in A, x \notin f(A)$. Since f is continuous and A is compact, $f(A)$ is also compact. So there is $B_{\epsilon}(x) \subset A^{c}$. Let $y_{0}=x \notin f(A), y_{1}=f(x) \in f(A)$, and for $n>1$ define $y_{n}=f\left(y_{n-1}\right) \in$ $f(A)$. Note that for $n>m$,

$$
d\left(y_{n}, y_{m}\right)=d\left(f\left(y_{n-1}\right), f\left(y_{m-1}\right)\right) \geq d\left(y_{n-1}, y_{m-1}\right) \cdots \geq d\left(x, y_{n-m}\right)>\epsilon
$$

This means the elements of the sequence $\left(y_{n}\right)$ are at a distance from each other of at least ϵ, so $\left(y_{n}\right)$ has no convergent (Cauchy) subsequence. But, since $f(A)$ is compact, this is a contradiction.
6. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and let $f: X \rightarrow Y$. Prove that f is uniformly continuous if and only if $\forall\left(x_{n}\right),\left(z_{n}\right) \subset X, d_{X}\left(x_{n}, z_{n}\right) \rightarrow 0 \Rightarrow d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \rightarrow 0$.

Solution: $(\Rightarrow): f$ is uniformly continuous. Choose $\epsilon>0$. Then $\exists \delta>0$ such that $d_{X}(x, z)<\delta \Rightarrow$ $d_{Y}(f(x), f(z))<\epsilon$. Suppose $d\left(x_{n}, z_{n}\right) \rightarrow 0$. Choose N so that $n>N \Rightarrow d_{X}\left(x_{n}, z_{n}\right)<\delta$. Then $n>N \Rightarrow d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right)<\epsilon$.
(\Leftarrow) : If f is not uniformly continuous then for some $\epsilon>0, \exists x_{n}, z_{n} \in X$ such that $d_{X}\left(x_{n}, z_{n}\right)<1 / n$ but $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right)>\epsilon$. Thus, $d_{X}\left(x_{n}, z_{n}\right) \rightarrow 0$ but $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \nrightarrow 0$.
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Prove these two standard theorems. If you are not sure if you are allowed to use some other theorem in the proof, ask your friendly proctor.
(a) (10 points) f is Riemann integrable on $[a, b]$.
(b) (10 points) f is bounded on $[a, b]$.

Solution: These are both standard results, e.g., (a) is Rudin, Theorem 6.18, and (b) is Rudin, Theorem 4.15.
8. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of functions that converges pointwise to f.
(a) (10 points) Prove or find a counterexample. If each f_{n} is continuous then f is integrable.
(b) (10 points) Is $f_{n}(x)=x^{\frac{1}{n}} \sin ^{2 n+1}\left(\frac{1}{x}\right)$ a counterexample for (a)? Explain carefully.

Solution: (a) Here's a counterexample:

$$
f_{n}(x)=\frac{x}{x^{2}+\frac{1}{n}} \rightarrow \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x} & \text { if } 0<x \leq 1\end{cases}
$$

(b) This example is not a counterexample since,

$$
f_{n}(x) \rightarrow f(x)=\left\{\begin{aligned}
+1 & \text { if } x=\frac{1}{\frac{\pi}{2}+2 \pi k} \\
-1 & \text { if } x=\frac{1}{\frac{3 \pi}{2}+2 \pi k} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

But f is Riemann integrable since it is bounded, and for any $\epsilon>0, f(x)=0$ at all but a finite number of points outside the interval $[0, \epsilon]$.

