
Analysis Prelim—January 22, 2021
Solutions

Section 1

1. For two subsets A and B of metric space X consider set S of all points x ∈ X such that x is a limit
point for both sets A and B and not an interior point for either A or B. Prove that S is closed.
You can use well known theorems in your proof if you carefully state them.

Solution: From the hint, we expect you to know (and use the fact) that the set of limit points of a
set is closed (e.g., Rudin, exercise 2.6) and that the interior of a set is open (e.g., Rudin. exercise
2.9). We also assume you know that if O is open and C is closed, then C −O is closed.

Let A′ and B′ be the limit points of A and B. Then each is closed, so A′ ∩B′ is closed. Likewise,
Ao ∪Bo is open. Thus, the set in question, S = (A′ ∩B′)− (Ao ∪Bo), is closed.

2. Let f : R→ R be uniformly continuous, and let cn ↘ 0. Define fn(x) = f(x+ cn), x ∈ R.

(a) (15 points) Prove that fn → f uniformly.

(b) (5 points) If f is continuous (but not uniformly continuous) is the result still true? Prove or
find a counterexample.

Solution: (a) Choose ε > 0 and then δ > 0 so that |x − y| < δ ⇒ |f(x) − f(y)| < ε. Choose N so
that n > N ⇒ |cn| < δ. Then for n > N and x ∈ <,

|fn(x)− f(x)| = |f(x+ cn)− f(x)| < ε

so fn → f uniformly.

(b) Let f(x) = ex and suppose that every cn > 0. Then ∀n, ∃xn ∈ < such that

|fn(xn)− f(xn)| = exn |ecn − 1| > 1

so the convergence is not uniform.

3. Prove that
∑∞
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converges.

Solution. The cosine terms in the sum form a repeating pattern, {− 1
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which converges by the alternating series test once we note that 1
k >

1
2 ( 1
k+1 + 1

k+2 ) > 1
k+3 .

4. Let fn(x) = nxe−nx
2

, n = 1, 2, . . ..

(a) (5 points) Prove that fn(x)→ 0 pointwise on [0, 1].

(b) (5 points) Find limn→∞
∫ 1

0
fn(x)dx. Hint: The answer is not 0.

(c) (5 points) Use (a) and (b) to prove that the convergence fn(x)→ 0 on [0, 1] is not uniform.

(d) (5 points) Prove the convergence fn(x)→ 0 on [0, 1] is not uniform directly from the definition
of uniform convergence.



Solution: (a) For every n, fn(0) = 0. For x ∈ (0, 1], note that

enx
2

=

∞∑
i=0

(nx2)i

i!
>
n2x4

2
,

so for every x ∈ (0, 1]

fn(x) =
nx

enx2 <
2

nx3
→ 0.

(b)
∫ 1

0
fn(x)dx = (1− e−n)/2→ 1/2.

(c) By Rudin, Theorem 7.16, if fn(x)→ 0 uniformly then

1/2 = lim

∫ 1

0

fn(x)dx =

∫ 1

0

lim fn(x)dx = 0

which is a contradiction, so the convergence cannot be uniform.

(d) Let xn = 1/
√
n. Then fn(xn) =

√
ne−1 6→ 0, so the convergence is not uniform.

Section 2

5. Let (X, d) be a metric space and A ⊂ X be compact and non-empty. Let f : A→ A be a continuous
function such that for all x, y ∈ A, d(f(x), f(y)) ≥ d(x, y) (f is a non-contracting function). Prove
that
(a) (5 points) f is one-to-one
(b) (5 points) f−1 is continuous
(c) (10 points) f(A) = A. Hint: Suppose y0 ∈ A − f(A). Consider the sequence defined by
yn = f(yn−1).

Solution: (a) Suppose f(x) = f(y) for some x 6= y. Then 0 = d(f(x), f(y)) ≥ d(x, y) ≥ 0 which
means d(x, y) = 0, so x = y.

(b) Suppose yn → y in f(A). Then d(yn, y)→ 0. But d(yn, y) ≥ d(f−1(yn), f−1(y)), so d(f−1(yn), f−1(y))→
0, which means f−1(yn) → f−1(y). Since (yn) was an arbitrary convergent sequence, f−1 is con-
tinuous.

(c) Suppose ∃x ∈ A, x /∈ f(A). Since f is continuous and A is compact, f(A) is also compact. So
there is Bε(x) ⊂ Ac. Let y0 = x /∈ f(A), y1 = f(x) ∈ f(A), and for n > 1 define yn = f(yn−1) ∈
f(A). Note that for n > m,

d(yn, ym) = d(f(yn−1), f(ym−1)) ≥ d(yn−1, ym−1) · · · ≥ d(x, yn−m) > ε.

This means the elements of the sequence (yn) are at a distance from each other of at least ε, so (yn)
has no convergent (Cauchy) subsequence. But, since f(A) is compact, this is a contradiction.

6. Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y . Prove that f is uniformly continuous
if and only if ∀(xn), (zn) ⊂ X, dX(xn, zn)→ 0⇒ dY (f(xn), f(zn))→ 0.

Solution: (⇒): f is uniformly continuous. Choose ε > 0. Then ∃δ > 0 such that dX(x, z) < δ ⇒
dY (f(x), f(z)) < ε. Suppose d(xn, zn) → 0. Choose N so that n > N ⇒ dX(xn, zn) < δ. Then
n > N ⇒ dY (f(xn), f(zn)) < ε.

(⇐): If f is not uniformly continuous then for some ε > 0, ∃xn, zn ∈ X such that dX(xn, zn) < 1/n
but dY (f(xn), f(zn)) > ε. Thus, dX(xn, zn)→ 0 but dY (f(xn), f(zn)) 6→ 0.

7. Let f : [a, b]→ R be continuous. Prove these two standard theorems. If you are not sure if you are
allowed to use some other theorem in the proof, ask your friendly proctor.



(a) (10 points) f is Riemann integrable on [a, b].

(b) (10 points) f is bounded on [a, b].

Solution: These are both standard results, e.g., (a) is Rudin, Theorem 6.18, and (b) is Rudin,
Theorem 4.15.

8. Let fn : [0, 1]→ R be a sequence of functions that converges pointwise to f .

(a) (10 points) Prove or find a counterexample. If each fn is continuous then f is integrable.

(b) (10 points) Is fn(x) = x
1
n sin2n+1( 1

x ) a counterexample for (a)? Explain carefully.

Solution: (a) Here’s a counterexample:

fn(x) =
x

x2 + 1
n

→
{

0 if x = 0
1
x if 0 < x ≤ 1

(b) This example is not a counterexample since,

fn(x)→ f(x) =


+1 if x = 1

π
2 +2πk

−1 if x = 1
3π
2 +2πk

0 otherwise

But f is Riemann integrable since it is bounded, and for any ε > 0, f(x) = 0 at all but a finite
number of points outside the interval [0, ε].


