
August 2020 Analysis Prelim Solutions

September 9, 2020

Section 1: do all four problems

1. (20 points) Let B be a set in a metric space (X, d). Let B′ be the set of all limit points
of B. State the definition of a limit point and prove that B′ is closed.

Solution. This is a standard result. The precise wording of the proof depends on the
definition you use for limit point. Here we will use Rudin’s definition, which is

x ∈ B′ if ∀ε > 0 : Nε(x) ∩B − {x} 6= ∅.

Suppose B′ is not closed. Then there is a sequence (xn) ⊂ B′ with xn → x 6∈ B′. Since
x 6∈ B′, there exists ε > 0 such that

Nε(x) ∩B − {x} = ∅.

Since xn → x, there exists xk such that d(xk, x) < ε/2. Let ε′ = d(xk, x), so x 6∈ Nε′(xk).
From the triangle inequality, if z ∈ Nε′(xk), then

d (z, x) ≤ d (z, xk) + d (xk, x) < ε′ + ε/2 < ε/2 + ε/2 = ε

thus Nε′(xk) ⊂ Nε(x), so
Nε′(xk) ∩B − {xk} = ∅,

which contradicts the assumption that xk ∈ B′.

2. (20 points) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be uniformly
continuous. Let (xn) be a Cauchy sequence in X. Prove that (f(xn)) is a Cauchy
sequence in Y .

Solution. This is also a standard result. Let ε > 0. Since f : X → Y is uniformly
continuous, there is a δ > 0 such that if dX(a, b) < δ then dY (f(a), f(b)) < ε. Since
(xn) is a Cauchy sequence in (X, dX), we can choose N such that

n,m ≥ N ⇒ dX(xn, xm) < δ.

So if n,m ≥ N , then dY (f(xn), f(xm)) < ε. Since ε was arbitrary, (f(xn)) is Cauchy
in (Y, dY ).

3. (20 points) Find an example of a function f : R→ R that is differentiable at x = 0 and
discontinuous at every other x ∈ R. Prove that your example works.
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Solution. A simple example is

f(x) =

{
x2 x ∈ Q
0 x 6∈ Q

where Q is the set of rational numbers. Since |f(x)| ≤ x2,

lim
x→0

∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ ≤ lim
x→0

∣∣∣∣x2x
∣∣∣∣ = 0,

f is differentiable at 0 with f ′(0) = 0. Suppose x 6= 0 and x ∈ Q. Then there is a
sequence of irrational numbers zn → x. But f(zn) = 0, so f(zn) 6→ f(x) = x2 6= 0.
So f is not continuous at x. Likewise, if x is irrational then there is a sequence of
rational numbers (yn) that converges to x. But f(yn) = y2n → x2 6= 0 = f(x) so f is
not continuous at x. Since every nonzero real number is either rational or irrational, f
is discontinuous at every x 6= 0.

4. (20 points) For all n ∈ N, let fn : R→ R be a function with at most one discontinuity.
Further assume that fn → f uniformly for some function f : R→ R. Prove that f has
at most one discontinuity.

Solution. Suppose f is discontinuous at x1 and x2. Then there exists δ > 0 such that

∀ε > 0∃y1, y2 ∈ R : |xi − yi| < ε, |f(xi)− f(yi)| > δ, i = 1, 2.

Since fn → f uniformly, we can choose N so that if n ≥ N , then for all x, |fn(x) −
f(x)| < δ/3. Let n ≥ N . Let ε > 0, and choose y1 and y2 from above. Then for i = 1, 2,

|f(xi)− f(yi)|︸ ︷︷ ︸
>δ

≤ |f(xi)− fn(xi)|︸ ︷︷ ︸
<δ/3

+|fn(xi)− fn(yi)|+ |fn(yi)− f(yi)|︸ ︷︷ ︸
<δ/3

thus
|fn(xi)− fn(yi)| > δ − δ/3− δ/3 = δ/3.

We have proved that for every ε > 0, there exist y1 and y2 so that |xi − y1| < ε and
|fn(xi)− fn(yi)| > δ/3, i = 1, 2. But then fn is discontinuous at x1 and x2, which
contradicts the assumption that it has at most one discontinuity.

Section 2: do two of the following four problems

5. Let f : [0, 1] → R have the following property: For every x ∈ [0, 1] and ε > 0, there
exists δ > 0, such that for every y ∈ [0, 1] with |x− y| < δ, we have f(y) < f(x) + ε.

(a) (10 points) Prove that f is bounded above, and

(b) (10 points) f attains its maximum (i.e., there exists z ∈ [0, 1] such that f(x) ≤ f(z)
for all x ∈ [0, 1]).

Solution.

(a) Fix ε > 0. For every x, choose δx > 0 such that

|x− y| < δx ⇒ f(y) < f(x) + ε.
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Define Ox = (x − δx, x + δx). Then {Ox : x ∈ [0, 1]} is an open cover of [0, 1].
Since [0, 1] is compact, there exist {x1, x2, . . . , xn} such that

[0, 1] ⊂
⋃n

i=1
Oxi .

Thus, every x ∈ [0, 1] is in at least one of the Oxi , i = 1, . . . , n, and, consequently,

f(x) < max{f(x1), f(x2), . . . , f(xn)}+ ε,

so f is bounded above.

(b) Denote y = supx∈[0,1] f(x). From part (a), y < ∞ and from the properties of
supremum, there exists a sequence (xn) ⊂ [0, 1] such that f(xn) → y. Since [0, 1]
is compact, there is a subsequence xni → z for some z ∈ [0, 1]. Suppose f(z) < y.
Then

f(z) < y − ε, with ε = (y − f (z)) /2 > 0.

From the assumption on f , we can choose δ > 0 so that

|x− z| < δ ⇒ f(x) < f(z) + ε/2 < y − ε+ ε/2 = y − ε/2.

But f(xni)→ y, so there is an m such that

i > m⇒ f(xni) > y − ε/2.

Since xni → z, there exists i > m such that |xni − z| < δ. But this implies
f(xni) < y − ε/2, which is a contradiction. Thus f(z) ≥ y. But since f(z) ≤ y by
the definition of y, we have f(z) = y.

6. Let f : R→ R be a continuous function with

lim
x→∞

(
f(x) +

∫ x

0
f(t) dt

)
= 0.

(a) (5 points) Suppose f(x) 6→ 0. Prove that there exists ε > 0 such that for any
K > 0, there exist x > K and y > x such that |f(x)| < ε/2 and |f(y)| > ε.

(b) (15 points) Use (a) to prove that limx→∞ f(x) = 0.

Solution.

(a) We are given that

g(x) ≡ f(x) +

∫ x

0
f(t)dt→ 0 as x→∞. (1)

Suppose that f(x) 6→ 0 as x→∞, which is the same as

∃ε > 0∀K > 0 ∃z > K : |f(z)| > ε. (2)

Fix ε satisfying (2). Let K > 0. Take z > K so that f(z) > ε. (The argument
is identical if f(z) < −ε.) Suppose that f(x) ≥ ε/2 for all x > z. Then, for any
x > z,

g(x) = f(x) +

∫ x

0
f(t)dt ≥ ε/2 +

∫ z

0
f(t)dt+ (x− z)ε/2,

and since
∫ z
0 f(t)dt ∈ R, it follows that g(x) → ∞, which contradicts (1). Thus,

there exists x > K such that |f(x)| < ε/2. Using (2) with x in place of K, we get
that there exists y > x such that |f(y)| > ε.
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(b) Suppose f(x) 6→ 0. Take ε > 0 as in part (a). Since g(x) → 0 as x → ∞, there
exists K > 0 such that

x > K ⇒ |g(x)| < ε/4 (3)

From part (a), there exist x, y such that

x > K, y > x, |f(x)| < ε/2, |f(y)| > ε.

Assume that f(y) > ε since the argument is identical if f(y) < −ε. Define

u = sup{v ∈ (x, y) : f(v) < ε/2}.

Since f is continuous, f(u) = ε/2. By the construction of u, for all t ∈ (u, y), f(t) ≥
ε/2. Thus, using (3)

ε/4 > g(y) = f(y) +

∫ y

0
f(t)dt

= f(u) + (f(y)− f(u)) +

∫ u

0
f(t)dt+

∫ y

u
f(t)dt

= g(u)︸︷︷︸
>−ε/4

+(f(y)︸︷︷︸
>ε

− f(u)︸︷︷︸
=ε/2

) +

∫ y

u
f(t)︸︷︷︸
≥ε/2

dt

> −ε/4 + ε− ε/2 + (y − u)ε/2 ≥ ε/4

which is a contradiction.

7. (20 points) Let M be a metric space. Prove that if every nested decreasing sequence
(Xn) of closed nonempty subsets M ⊇ X1 ⊇ X2 ⊇ . . . has

⋂
Xn 6= ∅, then M is

compact. Hint: You can use without proof that sequentially compact space is compact.

Solution. Suppose that M is not compact, then M is not sequentially compact, i.e.,
there exists a sequence (xn) ⊂ M which has no convergent subsequence. Denote
Xn = {xn, xn+1, . . .}. Then X1 has no limit points, so every subset of X1 is closed, in
particular every Xn is closed. Since Xn 6= ∅, Xn is closed, and (Xn) is a decreasing
sequence of sets, by assumption ∩∞n=1Xn 6= ∅. But if x ∈ ∩∞n=1Xn, then x equals to
inifinitely many xni ; otherwise, the set {i : xi = x} is finite,

x /∈ ∩max{i:xi=x}Xn ⊂ ∩∞n=1Xn,

a contradiction with x ∈ ∩∞n=1Xn. But (xni) is a constant sequence and thus a conver-
gent subsequence of (xn), which contradicts the assumption that (xn) has no convergent
subsequence. .

8. LetM be a compact metric space, let fn : M → R be a sequence of continuous functions,
such that for all x ∈ M , (fn(x)) is monotonically decreasing with limit 0. Prove that
fn converges uniformly to the zero function. Here is one path to a proof, but you can
try another, e.g., using the converse of the statement of problem 7.

(a) (5 points) Argue that each fn attains its maximum at some xn ∈M .

(b) (5 points) Prove that (fn(xn)) is a monotonically decreasing sequence.

(c) (10 points) Argue from (a) and (b) that fn → 0 uniformly.
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Solution.

We will give two proofs. The first uses parts (a),(b),(c) suggested on the exam, and (d)
is an alternate proof.

(a) Continuous function on a compact metric space attains its maximum (e.g., Rudin
Theorem 4.16), thus there exists xn ∈M such that fn(xn) = maxx∈M fn(x).

(b) We have
fn+1(xn+1) ≤ fn(xn+1) ≤ fn(xn).

The first inequality follows since for each x, (fn(x)) is a decreasing sequence. The
second inequality follows since xn is where fn is maximized.

(c) Since fn(xn) is decreasing and nonnegative, it converges to some limit, L ≥ 0.
Since M is compact, there is a subsequence (xni) that converges to some x ∈
M . If nk > N then fN (xnk

) ≥ fnk
(xnk

) since since the sequence (fn (xnk
)) is

monotonically decreasing by assumption, thus for any N ,

fN (x) = lim
k→∞

fN (xnk
) ≥ lim

k→∞
fnk

(xnk
) = L,

since nk > N for k large enough. Similarly, since for a fixed n, fn(xnk
) ≥ fnk

(xnk
)

for large enough nk > N , we have

0 = lim
n→∞

fn(x) = lim
n→∞

lim
k→∞

fn(xnk
) ≥ lim

n→∞
lim
k→∞

fnk
(xnk

) = lim
n→∞

L = L.

Thus, L = 0, and limn→∞ fn(xn) = 0. To show this implies uniform convergence,
let ε > 0. Since limn→∞ fn(xn) = 0, there exists N such that fn(xn) < ε when
n ≥ N . Then for any n ≥ N and x ∈M , fn(x) ≤ fn(xn) < ε.

(d) As an alternate proof, fix ε > 0 and define

Xn = {x ∈M : fn(x) ≥ ε}.

Since fn is continuous, Xn is closed, thus compact. Furthermore, Xn is a decreasing
sequence of sets since fn(x) is decreasing for every x. It is known that if each Xn

is nonempty then ∩∞n=1Xn 6= ∅ (the Cantor intersection theorem, Rudin 2.36).
But, if x ∈ ∩∞n=1Xn then fn(x) ≥ ε for all n, which implies that fn(x) 6→ 0 which
is a contradiction. Thus there is N such that XN = ∅, hence for all n ≥ N ,
Xn ⊂ XN = ∅, that is, fn(x) < ε by the definition of Xn. Since ε was arbitrary,
fn → 0 uniformly.
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