August 2020 Analysis Prelim Solutions

September 9, 2020

Section 1: do all four problems

1. (20 points) Let B be a set in a metric space (X, d). Let B’ be the set of all limit points
of B. State the definition of a limit point and prove that B’ is closed.
Solution. This is a standard result. The precise wording of the proof depends on the

definition you use for limit point. Here we will use Rudin’s definition, which is

€ B ifVe>0: N(x)NB—{x} #0.

Suppose B’ is not closed. Then there is a sequence (x,,) C B’ with z,, = « & B’. Since
x & B', there exists € > 0 such that

N.(z)N B — {z} = 0.

Since x,, — x, there exists xy such that d(zy, z) < €/2. Let € = d(xy, ), so x & N (zk).
From the triangle inequality, if z € Ny (xg), then

d(z,z) <d(z,2) +d(zp,7) <€ +€/2<€/2+€/2=¢
thus Ne (1) C Ne(x), so
Ne(zk) N B — {J}k} =0,
which contradicts the assumption that z; € B'.
2. (20 points) Let (X, dx) and (Y, dy) be metric spaces, and let f: X — Y be uniformly

continuous. Let (x,) be a Cauchy sequence in X. Prove that (f(z,)) is a Cauchy
sequence in Y.

Solution. This is also a standard result. Let ¢ > 0. Since f : X — Y is uniformly
continuous, there is a & > 0 such that if dx(a,b) < ¢ then dy(f(a), f(b)) < €. Since
() is a Cauchy sequence in (X, dx), we can choose N such that

n,m > N = dx(xn, Ty) < 9.

So if n,m > N, then dy (f(zy), f(zm)) < €. Since € was arbitrary, (f(x,)) is Cauchy
in (Y, dy).

3. (20 points) Find an example of a function f : R — R that is differentiable at x = 0 and
discontinuous at every other x € R. Prove that your example works.



Solution. A simple example is

22 ze€Q
where Q is the set of rational numbers. Since |f(x)| < 22,
B 2
lim ‘M’ < lim |—| =0,
z—0 T — z—0| x

f is differentiable at 0 with f/(0) = 0. Suppose  # 0 and = € Q. Then there is a
sequence of irrational numbers z, — z. But f(z,) = 0, so f(z.) 4 f(z) = 2% # 0.
So f is not continuous at x. Likewise, if x is irrational then there is a sequence of
rational numbers (y,,) that converges to z. But f(y,) = y2 — 22 # 0 = f(z) so f is
not continuous at z. Since every nonzero real number is either rational or irrational, f
is discontinuous at every = # 0.

. (20 points) For all n € N, let f,, : R — R be a function with at most one discontinuity.
Further assume that f, — f uniformly for some function f: R — R. Prove that f has
at most one discontinuity.

Solution. Suppose f is discontinuous at z; and x2. Then there exists § > 0 such that
Ve > 03y1,y2 € R: o —wil <e, [f(@i) = f(ya)] >4, i=1,2.

Since f, — f uniformly, we can choose N so that if n > N, then for all z, |f,(z) —
f(z)| < 0/3. Let n > N. Let € > 0, and choose y; and y3 from above. Then for i = 1,2,

(i) = )| < |f(@i) = falai)| +[fn(@i) = Fulyi)l + | fulyi) = f (i)
N————

>0 <6/3 <6/3

thus
|fo(@i) = fa(yi)| >0 —=6/3-6/3=16/3.

We have proved that for every e > 0, there exist y; and y, so that |z; — y1| < € and
|fn(zi) = fu(yi)| > 6/3, i = 1,2. But then f, is discontinuous at z1 and z2, which
contradicts the assumption that it has at most one discontinuity.

Section 2: do two of the following four problems

. Let f :[0,1] — R have the following property: For every z € [0,1] and € > 0, there
exists § > 0, such that for every y € [0,1] with |z — y| < §, we have f(y) < f(z) + €.

(a) (10 points) Prove that f is bounded above, and

(b) (10 points) f attains its maximum (i.e., there exists z € [0, 1] such that f(z) < f(2)
for all z € [0, 1]).

Solution.
(a) Fix e > 0. For every x, choose 6, > 0 such that

|z =yl <z = fy) < f(z) +e



Define O, = (x — 03,2 4+ ). Then {O, : x € [0,1]} is an open cover of [0, 1].
Since [0, 1] is compact, there exist {x1,z2,...,2,} such that

n
[0,1] C . Oy,.
Thus, every = € [0,1] is in at least one of the O, i = 1,...,n, and, consequently,

f(z) <max{f(z1), f(x2),..., f(zn)} + €,

so f is bounded above.

enote y = sup x). From part (a), y < oo and from the properties o

b) Denot ze0,1] f F t d f th ties of
supremum, there exists a sequence (z,) C [0,1] such that f(x,) — y. Since [0, 1]
is compact, there is a subsequence x,, — z for some z € [0, 1]. Suppose f(z) < y.
Then

f(z2) <y—e¢ withe=(y— f(2))/2>0.

From the assumption on f, we can choose § > 0 so that
|t —2|<d=f(z) < f(2)+€/2<y—e+e/2=y—¢€/2.
But f(xn,) — vy, so there is an m such that
i>m= f(zn,) >y —€/2

Since z,, — z, there exists ¢ > m such that |z,, — 2| < . But this implies
f(zpn,) <y —e€/2, which is a contradiction. Thus f(z) > y. But since f(z) <y by
the definition of y, we have f(z) = v.

6. Let f: R — R be a continuous function with

lim (f(x)+/0zf(t) dt> —0.

(a) (5 points) Suppose f(z) # 0. Prove that there exists € > 0 such that for any
K >0, there exist x > K and y > x such that |f(z)| < €/2 and |f(y)| > €.

(b) (15 points) Use (a) to prove that lim,_, f(z) = 0.
Solution.

(a) We are given that

g(z) = f(x) +/ f(t)dt — 0 as x — oc. (1)
0
Suppose that f(z) 4 0 as £ — oo, which is the same as

Je>0VK >03z> K :|f(2)| > e (2)

Fix e satisfying (2). Let K > 0. Take z > K so that f(z) > e. (The argument
is identical if f(z) < —e.) Suppose that f(x) > €/2 for all x > z. Then, for any
x>z,

o) = F(x) + /0 )t ej2+ /0 T Ft)dt + (- 2)e/2,

and since [ f(t)dt € R, it follows that g(2) — oo, which contradicts (1). Thus,
there exists © > K such that |f(z)| < ¢/2. Using (2) with z in place of K, we get
that there exists y > x such that |f(y)| > e.



(b) Suppose f(z) # 0. Take e > 0 as in part (a). Since g(x) — 0 as © — oo, there
exists K > 0 such that
x> K =|g(x)] <e/4 (3)

From part (a), there exist z,y such that
e>K, y>z, [f@)]<e/2, [fly)l>e

Assume that f(y) > € since the argument is identical if f(y) < —e. Define

u=supfv € (z,y) : f(v) <e/2}.

Since f is continuous, f(u) = €/2. By the construction of u, for all t € (u,y), f(t) >
€/2. Thus, using (3)

e/4>g(y /f

— gl +({w) - fw) + / yf
~ =~ v
>—e/4 >e 5/2

>e/2
> —¢/d+e—€/2+ (y—u)e/2>¢€/4
which is a contradiction.

7. (20 points) Let M be a metric space. Prove that if every nested decreasing sequence
(X,) of closed nonempty subsets M O X; O Xo D ... has (X, # 0, then M is
compact. Hint: You can use without proof that sequentially compact space is compact.

Solution. Suppose that M is not compact, then M is not sequentially compact, i.e.,
there exists a sequence (x,) C M which has no convergent subsequence. Denote
Xn ={%n,Tnst1,...}. Then X; has no limit points, so every subset of X is closed, in
particular every X, is closed. Since X, # 0, X, is closed, and (X,,) is a decreasing
sequence of sets, by assumption N>, X,, # 0. But if x € N2, X, then x equals to
inifinitely many x,,; otherwise, the set {i : z; = x} is finite,

€T ¢ m1rnax{i:mi:x})(n C mzolena

a contradiction with z € N7, X,,. But (x,,) is a constant sequence and thus a conver-
gent subsequence of (x,), which contradicts the assumption that (z,) has no convergent
subsequence. .

8. Let M be a compact metric space, let f,, : M — R be a sequence of continuous functions,
such that for all z € M, (f,(x)) is monotonically decreasing with limit 0. Prove that
fn converges uniformly to the zero function. Here is one path to a proof, but you can
try another, e.g., using the converse of the statement of problem 7.

(a) (5 points) Argue that each f, attains its maximum at some z,, € M.
(b) (5 points) Prove that (f,(zy)) is @ monotonically decreasing sequence.

(¢) (10 points) Argue from (a) and (b) that f,, — 0 uniformly.



Solution.

We will give two proofs. The first uses parts (a),(b),(c) suggested on the exam, and (d)
is an alternate proof.

(a)
(b)

Continuous function on a compact metric space attains its maximum (e.g., Rudin
Theorem 4.16), thus there exists x,, € M such that f,(z,) = max,cp fn(z).

We have
frr1(@ny1) < fu(@nr1) < falzn).

The first inequality follows since for each z, (f,(z)) is a decreasing sequence. The
second inequality follows since z,, is where f,, is maximized.

Since fy,(x,) is decreasing and nonnegative, it converges to some limit, L > 0.
Since M is compact, there is a subsequence (z,,) that converges to some = €
M. If n > N then fy(zp,) > fn,(xn,) since since the sequence (fy, (zp,)) is
monotonically decreasing by assumption, thus for any NV,

since ny > N for k large enough. Similarly, since for a fixed n, f,(zn,) > fo, (zn,)
for large enough ny > N, we have

0= lim fu(z) = lim lim fy(zs,) 2> lim lim fp, (25,) = lim L= L.
Thus, L = 0, and limy,_,cc frn(2,) = 0. To show this implies uniform convergence,

let € > 0. Since lim, o0 frn(z,) = 0, there exists N such that f,(x,) < € when
n > N. Then for any n > N and z € M, f,(x) < fo(zn) <e.

As an alternate proof, fix € > 0 and define
Xp={xeM : fo(r) >¢€}.

Since f), is continuous, X, is closed, thus compact. Furthermore, X,, is a decreasing
sequence of sets since fy,(z) is decreasing for every z. It is known that if each X,
is nonempty then NS, X, # () (the Cantor intersection theorem, Rudin 2.36).
But, if z € N2, X,, then f,,(z) > € for all n, which implies that f,(x) 4 0 which
is a contradiction. Thus there is N such that Xy = 0, hence for all n > N,
X, C Xy = 0, that is, f,(z) < € by the definition of X,,. Since ¢ was arbitrary,
fn — 0 uniformly.



