# August 2020 Analysis Prelim Solutions 

September 9, 2020

## Section 1: do all four problems

1. (20 points) Let $B$ be a set in a metric space $(X, d)$. Let $B^{\prime}$ be the set of all limit points of $B$. State the definition of a limit point and prove that $B^{\prime}$ is closed.
Solution. This is a standard result. The precise wording of the proof depends on the definition you use for limit point. Here we will use Rudin's definition, which is

$$
x \in B^{\prime} \text { if } \forall \epsilon>0: N_{\epsilon}(x) \cap B-\{x\} \neq \emptyset .
$$

Suppose $B^{\prime}$ is not closed. Then there is a sequence $\left(x_{n}\right) \subset B^{\prime}$ with $x_{n} \rightarrow x \notin B^{\prime}$. Since $x \notin B^{\prime}$, there exists $\epsilon>0$ such that

$$
N_{\epsilon}(x) \cap B-\{x\}=\emptyset .
$$

Since $x_{n} \rightarrow x$, there exists $x_{k}$ such that $d\left(x_{k}, x\right)<\epsilon / 2$. Let $\epsilon^{\prime}=d\left(x_{k}, x\right)$, so $x \notin N_{\epsilon^{\prime}}\left(x_{k}\right)$. From the triangle inequality, if $z \in N_{\epsilon^{\prime}}\left(x_{k}\right)$, then

$$
d(z, x) \leq d\left(z, x_{k}\right)+d\left(x_{k}, x\right)<\epsilon^{\prime}+\epsilon / 2<\epsilon / 2+\epsilon / 2=\epsilon
$$

thus $N_{\epsilon^{\prime}}\left(x_{k}\right) \subset N_{\epsilon}(x)$, so

$$
N_{\epsilon^{\prime}}\left(x_{k}\right) \cap B-\left\{x_{k}\right\}=\emptyset,
$$

which contradicts the assumption that $x_{k} \in B^{\prime}$.
2. (20 points) Let $\left(X, d_{X}\right)$ and ( $\left.Y, d_{Y}\right)$ be metric spaces, and let $f: X \rightarrow Y$ be uniformly continuous. Let $\left(x_{n}\right)$ be a Cauchy sequence in $X$. Prove that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in $Y$.
Solution. This is also a standard result. Let $\epsilon>0$. Since $f: X \rightarrow Y$ is uniformly continuous, there is a $\delta>0$ such that if $d_{X}(a, b)<\delta$ then $d_{Y}(f(a), f(b))<\epsilon$. Since $\left(x_{n}\right)$ is a Cauchy sequence in $\left(X, d_{X}\right)$, we can choose $N$ such that

$$
n, m \geq N \Rightarrow d_{X}\left(x_{n}, x_{m}\right)<\delta
$$

So if $n, m \geq N$, then $d_{Y}\left(f\left(x_{n}\right), f\left(x_{m}\right)\right)<\epsilon$. Since $\epsilon$ was arbitrary, $\left(f\left(x_{n}\right)\right)$ is Cauchy in $\left(Y, d_{Y}\right)$.
3. (20 points) Find an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is differentiable at $x=0$ and discontinuous at every other $x \in \mathbb{R}$. Prove that your example works.

Solution. A simple example is

$$
f(x)=\left\{\begin{array}{rl}
x^{2} & x \in \mathbb{Q} \\
0 & x \notin \mathbb{Q}
\end{array}\right.
$$

where $\mathbb{Q}$ is the set of rational numbers. Since $|f(x)| \leq x^{2}$,

$$
\lim _{x \rightarrow 0}\left|\frac{f(x)-f(0)}{x-0}\right| \leq \lim _{x \rightarrow 0}\left|\frac{x^{2}}{x}\right|=0
$$

$f$ is differentiable at 0 with $f^{\prime}(0)=0$. Suppose $x \neq 0$ and $x \in \mathbb{Q}$. Then there is a sequence of irrational numbers $z_{n} \rightarrow x$. But $f\left(z_{n}\right)=0$, so $f\left(z_{n}\right) \nrightarrow f(x)=x^{2} \neq 0$. So $f$ is not continuous at $x$. Likewise, if $x$ is irrational then there is a sequence of rational numbers $\left(y_{n}\right)$ that converges to $x$. But $f\left(y_{n}\right)=y_{n}^{2} \rightarrow x^{2} \neq 0=f(x)$ so $f$ is not continuous at $x$. Since every nonzero real number is either rational or irrational, $f$ is discontinuous at every $x \neq 0$.
4. (20 points) For all $n \in \mathbb{N}$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a function with at most one discontinuity. Further assume that $f_{n} \rightarrow f$ uniformly for some function $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that $f$ has at most one discontinuity.
Solution. Suppose $f$ is discontinuous at $x_{1}$ and $x_{2}$. Then there exists $\delta>0$ such that

$$
\forall \epsilon>0 \exists y_{1}, y_{2} \in \mathbb{R}:\left|x_{i}-y_{i}\right|<\epsilon,\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|>\delta, i=1,2 .
$$

Since $f_{n} \rightarrow f$ uniformly, we can choose $N$ so that if $n \geq N$, then for all $x, \mid f_{n}(x)-$ $f(x) \mid<\delta / 3$. Let $n \geq N$. Let $\epsilon>0$, and choose $y_{1}$ and $y_{2}$ from above. Then for $i=1,2$,

$$
\underbrace{\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|}_{>\delta} \leq \underbrace{\left|f\left(x_{i}\right)-f_{n}\left(x_{i}\right)\right|}_{<\delta / 3}+\left|f_{n}\left(x_{i}\right)-f_{n}\left(y_{i}\right)\right|+\underbrace{\left|f_{n}\left(y_{i}\right)-f\left(y_{i}\right)\right|}_{<\delta / 3}
$$

thus

$$
\left|f_{n}\left(x_{i}\right)-f_{n}\left(y_{i}\right)\right|>\delta-\delta / 3-\delta / 3=\delta / 3
$$

We have proved that for every $\epsilon>0$, there exist $y_{1}$ and $y_{2}$ so that $\left|x_{i}-y_{1}\right|<\epsilon$ and $\left|f_{n}\left(x_{i}\right)-f_{n}\left(y_{i}\right)\right|>\delta / 3, i=1,2$. But then $f_{n}$ is discontinuous at $x_{1}$ and $x_{2}$, which contradicts the assumption that it has at most one discontinuity.

## Section 2: do two of the following four problems

5. Let $f:[0,1] \rightarrow \mathbb{R}$ have the following property: For every $x \in[0,1]$ and $\epsilon>0$, there exists $\delta>0$, such that for every $y \in[0,1]$ with $|x-y|<\delta$, we have $f(y)<f(x)+\epsilon$.
(a) (10 points) Prove that $f$ is bounded above, and
(b) (10 points) $f$ attains its maximum (i.e., there exists $z \in[0,1]$ such that $f(x) \leq f(z)$ for all $x \in[0,1])$.

Solution.
(a) Fix $\epsilon>0$. For every $x$, choose $\delta_{x}>0$ such that

$$
|x-y|<\delta_{x} \Rightarrow f(y)<f(x)+\epsilon .
$$

Define $O_{x}=\left(x-\delta_{x}, x+\delta_{x}\right)$. Then $\left\{O_{x}: x \in[0,1]\right\}$ is an open cover of $[0,1]$. Since $[0,1]$ is compact, there exist $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that

$$
[0,1] \subset \bigcup_{i=1}^{n} O_{x_{i}} .
$$

Thus, every $x \in[0,1]$ is in at least one of the $O_{x_{i}}, i=1, \ldots, n$, and, consequently,

$$
f(x)<\max \left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right\}+\epsilon,
$$

so $f$ is bounded above.
(b) Denote $y=\sup _{x \in[0,1]} f(x)$. From part (a), $y<\infty$ and from the properties of supremum, there exists a sequence $\left(x_{n}\right) \subset[0,1]$ such that $f\left(x_{n}\right) \rightarrow y$. Since $[0,1]$ is compact, there is a subsequence $x_{n_{i}} \rightarrow z$ for some $z \in[0,1]$. Suppose $f(z)<y$. Then

$$
f(z)<y-\epsilon, \text { with } \epsilon=(y-f(z)) / 2>0 .
$$

From the assumption on $f$, we can choose $\delta>0$ so that

$$
|x-z|<\delta \Rightarrow f(x)<f(z)+\epsilon / 2<y-\epsilon+\epsilon / 2=y-\epsilon / 2
$$

But $f\left(x_{n_{i}}\right) \rightarrow y$, so there is an $m$ such that

$$
i>m \Rightarrow f\left(x_{n_{i}}\right)>y-\epsilon / 2 .
$$

Since $x_{n_{i}} \rightarrow z$, there exists $i>m$ such that $\left|x_{n_{i}}-z\right|<\delta$. But this implies $f\left(x_{n_{i}}\right)<y-\epsilon / 2$, which is a contradiction. Thus $f(z) \geq y$. But since $f(z) \leq y$ by the definition of $y$, we have $f(z)=y$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function with

$$
\lim _{x \rightarrow \infty}\left(f(x)+\int_{0}^{x} f(t) d t\right)=0
$$

(a) (5 points) Suppose $f(x) \nrightarrow 0$. Prove that there exists $\epsilon>0$ such that for any $K>0$, there exist $x>K$ and $y>x$ such that $|f(x)|<\epsilon / 2$ and $|f(y)|>\epsilon$.
(b) (15 points) Use (a) to prove that $\lim _{x \rightarrow \infty} f(x)=0$.

Solution.
(a) We are given that

$$
\begin{equation*}
g(x) \equiv f(x)+\int_{0}^{x} f(t) d t \rightarrow 0 \text { as } x \rightarrow \infty \tag{1}
\end{equation*}
$$

Suppose that $f(x) \nrightarrow 0$ as $x \rightarrow \infty$, which is the same as

$$
\begin{equation*}
\exists \epsilon>0 \forall K>0 \exists z>K:|f(z)|>\epsilon . \tag{2}
\end{equation*}
$$

Fix $\epsilon$ satisfying (2). Let $K>0$. Take $z>K$ so that $f(z)>\epsilon$. (The argument is identical if $f(z)<-\epsilon$.) Suppose that $f(x) \geq \epsilon / 2$ for all $x>z$. Then, for any $x>z$,

$$
g(x)=f(x)+\int_{0}^{x} f(t) d t \geq \epsilon / 2+\int_{0}^{z} f(t) d t+(x-z) \epsilon / 2
$$

and since $\int_{0}^{z} f(t) d t \in \mathbb{R}$, it follows that $g(x) \rightarrow \infty$, which contradicts (1). Thus, there exists $x>K$ such that $|f(x)|<\epsilon / 2$. Using (2) with $x$ in place of $K$, we get that there exists $y>x$ such that $|f(y)|>\epsilon$.
(b) Suppose $f(x) \nrightarrow 0$. Take $\epsilon>0$ as in part (a). Since $g(x) \rightarrow 0$ as $x \rightarrow \infty$, there exists $K>0$ such that

$$
\begin{equation*}
x>K \Rightarrow|g(x)|<\epsilon / 4 \tag{3}
\end{equation*}
$$

From part (a), there exist $x, y$ such that

$$
x>K, \quad y>x, \quad|f(x)|<\epsilon / 2, \quad|f(y)|>\epsilon .
$$

Assume that $f(y)>\epsilon$ since the argument is identical if $f(y)<-\epsilon$. Define

$$
u=\sup \{v \in(x, y): f(v)<\epsilon / 2\} .
$$

Since $f$ is continuous, $f(u)=\epsilon / 2$. By the construction of $u$, for all $t \in(u, y), f(t) \geq$ $\epsilon / 2$. Thus, using (3)

$$
\begin{aligned}
\epsilon / 4 & >g(y)=f(y)+\int_{0}^{y} f(t) d t \\
& =f(u)+(f(y)-f(u))+\int_{0}^{u} f(t) d t+\int_{u}^{y} f(t) d t \\
& =\underbrace{g(u)}_{>-\epsilon / 4}+(\underbrace{f(y)}_{>\epsilon}-\underbrace{f(u)}_{=\epsilon / 2})+\int_{u}^{y} \underbrace{f(t)}_{\geq \epsilon / 2} d t \\
& >-\epsilon / 4+\epsilon-\epsilon / 2+(y-u) \epsilon / 2 \geq \epsilon / 4
\end{aligned}
$$

which is a contradiction.
7. (20 points) Let $M$ be a metric space. Prove that if every nested decreasing sequence $\left(X_{n}\right)$ of closed nonempty subsets $M \supseteq X_{1} \supseteq X_{2} \supseteq \ldots$ has $\bigcap X_{n} \neq \emptyset$, then $M$ is compact. Hint: You can use without proof that sequentially compact space is compact.
Solution. Suppose that $M$ is not compact, then $M$ is not sequentially compact, i.e., there exists a sequence $\left(x_{n}\right) \subset M$ which has no convergent subsequence. Denote $X_{n}=\left\{x_{n}, x_{n+1}, \ldots\right\}$. Then $X_{1}$ has no limit points, so every subset of $X_{1}$ is closed, in particular every $X_{n}$ is closed. Since $X_{n} \neq \emptyset, X_{n}$ is closed, and $\left(X_{n}\right)$ is a decreasing sequence of sets, by assumption $\cap_{n=1}^{\infty} X_{n} \neq \emptyset$. But if $x \in \cap_{n=1}^{\infty} X_{n}$, then $x$ equals to inifinitely many $x_{n_{i}}$; otherwise, the set $\left\{i: x_{i}=x\right\}$ is finite,

$$
x \notin \cap_{\max \left\{i: x_{i}=x\right\}} X_{n} \subset \cap_{n=1}^{\infty} X_{n},
$$

a contradiction with $x \in \cap_{n=1}^{\infty} X_{n}$. But $\left(x_{n_{i}}\right)$ is a constant sequence and thus a convergent subsequence of $\left(x_{n}\right)$, which contradicts the assumption that $\left(x_{n}\right)$ has no convergent subsequence. .
8. Let $M$ be a compact metric space, let $f_{n}: M \rightarrow \mathbb{R}$ be a sequence of continuous functions, such that for all $x \in M,\left(f_{n}(x)\right)$ is monotonically decreasing with limit 0 . Prove that $f_{n}$ converges uniformly to the zero function. Here is one path to a proof, but you can try another, e.g., using the converse of the statement of problem 7.
(a) (5 points) Argue that each $f_{n}$ attains its maximum at some $x_{n} \in M$.
(b) (5 points) Prove that $\left(f_{n}\left(x_{n}\right)\right)$ is a monotonically decreasing sequence.
(c) (10 points) Argue from (a) and (b) that $f_{n} \rightarrow 0$ uniformly.

Solution.
We will give two proofs. The first uses parts (a),(b),(c) suggested on the exam, and (d) is an alternate proof.
(a) Continuous function on a compact metric space attains its maximum (e.g., Rudin Theorem 4.16), thus there exists $x_{n} \in M$ such that $f_{n}\left(x_{n}\right)=\max _{x \in M} f_{n}(x)$.
(b) We have

$$
f_{n+1}\left(x_{n+1}\right) \leq f_{n}\left(x_{n+1}\right) \leq f_{n}\left(x_{n}\right)
$$

The first inequality follows since for each $x,\left(f_{n}(x)\right)$ is a decreasing sequence. The second inequality follows since $x_{n}$ is where $f_{n}$ is maximized.
(c) Since $f_{n}\left(x_{n}\right)$ is decreasing and nonnegative, it converges to some limit, $L \geq 0$. Since $M$ is compact, there is a subsequence ( $x_{n_{i}}$ ) that converges to some $x \in$ $M$. If $n_{k}>N$ then $f_{N}\left(x_{n_{k}}\right) \geq f_{n_{k}}\left(x_{n_{k}}\right)$ since since the sequence $\left(f_{n}\left(x_{n_{k}}\right)\right)$ is monotonically decreasing by assumption, thus for any $N$,

$$
f_{N}(x)=\lim _{k \rightarrow \infty} f_{N}\left(x_{n_{k}}\right) \geq \lim _{k \rightarrow \infty} f_{n_{k}}\left(x_{n_{k}}\right)=L
$$

since $n_{k}>N$ for $k$ large enough. Similarly, since for a fixed $n, f_{n}\left(x_{n_{k}}\right) \geq f_{n_{k}}\left(x_{n_{k}}\right)$ for large enough $n_{k}>N$, we have

$$
0=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} f_{n}\left(x_{n_{k}}\right) \geq \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} f_{n_{k}}\left(x_{n_{k}}\right)=\lim _{n \rightarrow \infty} L=L .
$$

Thus, $L=0$, and $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=0$. To show this implies uniform convergence, let $\epsilon>0$. Since $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=0$, there exists $N$ such that $f_{n}\left(x_{n}\right)<\epsilon$ when $n \geq N$. Then for any $n \geq N$ and $x \in M, f_{n}(x) \leq f_{n}\left(x_{n}\right)<\epsilon$.
(d) As an alternate proof, fix $\epsilon>0$ and define

$$
X_{n}=\left\{x \in M: f_{n}(x) \geq \epsilon\right\} .
$$

Since $f_{n}$ is continuous, $X_{n}$ is closed, thus compact. Furthermore, $X_{n}$ is a decreasing sequence of sets since $f_{n}(x)$ is decreasing for every $x$. It is known that if each $X_{n}$ is nonempty then $\cap_{n=1}^{\infty} X_{n} \neq \emptyset$ (the Cantor intersection theorem, Rudin 2.36). But, if $x \in \cap_{n=1}^{\infty} X_{n}$ then $f_{n}(x) \geq \epsilon$ for all $n$, which implies that $f_{n}(x) \nrightarrow 0$ which is a contradiction. Thus there is $N$ such that $X_{N}=\emptyset$, hence for all $n \geq N$, $X_{n} \subset X_{N}=\emptyset$, that is, $f_{n}(x)<\epsilon$ by the definition of $X_{n}$. Since $\epsilon$ was arbitrary, $f_{n} \rightarrow 0$ uniformly.

