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Part I. Work all of problems 1 through 4.

Problem 1. Let A and B be two real 10× 10 matrices. Suppose that the rank of A is
6 and the rank of B is 4. Justify your answers to the following questions.

(a) What is the minimum possible rank of the matrix A2

(b) What is the maximum possible rank of the matrix ABT ?

(c) If the columns of A are orthogonal to the columns of B, must the rank of A + B
be equal to 10?

Solution

(a) Note that null A2 = null A+W , where W = {x ∈ Row A|Ax ∈ null A}. Consider
the mapping T : Row A → R10 defined by T (x) = Ax. Since kerT = {0}, T is
injective, so dimW ≤ dim null A. Thus,

dim null A2 ≤ dim null A+ dimW ≤ dim null A+ dim null A = 4 + 4 = 8.

It follows that
rank A2 = 10− dim null A2 ≥ 10− 8 = 2.

To see that this bound can be attained, let

A =

[
0 I6
0 0

]

where Ik denotes the k× k identity matrix. Then A2 =

[
0 I2
0 0

]
, which has rank

2.

(b) Note that Col (ABT ) ⊂ Col A, so rank ABT ≤ rank A. Also, null BT ⊂ null (ABT ),
so rank (ABT ) = 10− dim null (ABT ) ≤ 10− dim null (BT ) = rank BT = rank B.
Thus,

rank (ABT ) ≤ min{rank A, rank B} = 4.

To see that this bound can be attained, let A =

[
I6 0
0 0

]
and B =

[
I4 0
0 0

]
.

Then ABT =

[
I2 0
0 0

]
, which has a rank of 4.



(c) This is false. The idea of the following counterexample is that in general, col(A+
B) 6= col(A) + col(B):

A =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, B =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0



A+B =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0



Problem 2. Let Pn denote the real vector space of polynomials of degree strictly less
than n. For two functions f and g in Pn, define the inner product by

〈f, g〉 =

∫ 1

0
f(t)g(t)dt.

(a) Verify that this is an inner product.

(b) Apply the Gram-Schmidt procedure to the basis {1, t, t2} to find an orthogonal
basis for P3.

Solution

(a) We show that 〈·, ·〉 satisfies the properties of inner products:

• (symmetry): For all f, g ∈ Pn, 〈f, g〉 =
∫ 1
0 f(t)g(t)dt =

∫ 1
0 g(t)f(t)dt = 〈g, f〉.



• (additivity): For all f, g, h ∈ Pn and α, β ∈ R,

〈αf + βg, h〉 =

∫ 1

0
(αf(t) + βg(t))h(t)dt

= α

∫ 1

0
f(t)h(t)dt+ β

∫ 1

0
g(t)h(t)dt

= α 〈f, h〉+ β 〈g, h〉 .

• (positivity): For f 6= 0 ∈ Pn, 〈f, f〉 =
∫ 1
0 f(t)2d > 0, and 〈0, 0〉 =

∫ 1
0 0dt = 0.

(b) Define the orthogonal basis {f1, f2, f3} as follows

f1(t) = 1

f2(t) = t− 〈t, f1〉
〈f1, f1〉

f1 = t−
∫ 1
0 sds∫ 1
0 ds

= t− 1

2

f3(t) = t2 −
〈
t2, f1

〉
〈f1, f1〉

f1 −
〈t2, f2〉
〈f2, f2〉

f2

= t2 −
∫ 1

0
s2ds−

(∫ 1
0

(
s3 − 1

2s
2
)
ds∫ 1

0 (s− 1
2)2ds)

)(
t− 1

2

)
= t2 − 1

3
− 1/12

1/12

(
t− 1

2

)
= t2 − t+

1

6

Problem 3. Suppose V is a finite-dimensional vector space over F.

(a) Prove or disprove: if S and T are nilpotent operators on V , then S+T is nilpotent.

(b) Prove or disprove: if S and T are nilpotent operators on V and ST = TS, then
S + T is nilpotent.

(c) Prove if S is a nilpotent operator on V , then I +S and I −S are invertible, where
I is the identity operator on V .

(d) Let N be an operator on an n-dimensional vector space, n ≥ 2, such that Nn = 0,
Nn−1 6= 0. Prove there is no operator T with T 2 = N .

Solution:



(a) The conclusion does not hold. Take

S =

[
0 1
0 0

]
, T =

[
0 0
1 0

]
as two operators (matrix transformations) on F2. Note

S2 =

[
0 0
0 0

]
, T 2 =

[
0 0
0 0

]
So S and T are nilpotent. However,

S + T =

[
0 1
1 0

]
, (S + T )2 =

[
0 1
1 0

]
So S + T is not nilpotent.

(b) Let SkS = 0 and T kT = 0. Then due to commutativity,

(S + T )kS+kT =

kS+kT∑
i=0

(
kS + kT

i

)
SiT kS+kT−i

Note if i < kS , T kS+kT−i = 0; otherwise, Si = 0.

(c) Since S is nilpotent, neither ±1 are eigenvalues of S. So null(I±S) = 0. Otherwise,
±1 are eigenvalues of S. So I ± S are invertible.

(d) Suppose such T exists. Then T is nilpotent and Tn = 0. However, this is a
contradiction, since T 2n−2 6= 0 and 2n− 2 > n. (We proved that N does not have
a square root.)

Problem 4.

A is a real 3× 3 matrix, and we know that

A

 1
1
1

 =

 −3
−3
−3

 , A

 −1
1
0

 =

 0
0
0

 , A

 1
1
−2

 =

 2
2
−4

 .

(a) What are the eigenvalues and associated eigenvectors of A? Can we use the set of
eigenvectors as a basis for R3? Why or why not? If yes, does this basis have any
special properties?

(b) Calculate

A2020

 0
2
1

 .



(c) Does the linear system Ax = b have a solution for any b ∈ R3? If so, why? If not,
for what kind of b ∈ R3 is Ax = b solvable?

(d) Determine whether matrix A has the following properties. Explain your reasoning.

(i) diagonalizable

(ii) invertible

(iii) orthogonal

(iv) symmetric

1. What are the eigenvalues and associated eigenvectors of A? We have the
following eigencouples:

(λ1 = −3, v1 =

 1
1
1

) (λ2 = 0, v2 =

 −1
1
0

) and (λ3 = 2, v3 =

 1
1
−2

).

Can we use the set of eigenvectors as a basis for R3?

Yes, this set of three eigenvectors (v1, v2, v3) is a basis of R3.

Why or why not?

Few reasons why “yes”.

First, we can see that these three vectors:

v1 =

 1
1
1

) v2 =

 −1
1
0

 and v3 =

 1
1
−2

 .

are linearly independent. Three linearly independent vectors in a space of dimen-
sion 3 form a basis.

Second, we see that the three associated eigenvalues

λ1 = −3, λ2 = 0, and λ3 = 2.

are distinct. So the three associated eigenvectors are linearly independent. Three
linearly independent vectors in a space of dimension 3 form a basis.

If yes, does this basis have any special properties?

We can see that these three vectors are mutually orthogonal. In other worlds:
vT1 v2 = 0, vT2 v3 = 0, and vT1 v3 = 0. So (v1, v2, v3) is not only a basis of R3, it is an
orthogonal basis of R3.

Here we should probably realize two quick things.



(a) We can normalize each of these vectors (v1, v2, v3) so as to obtain (q1, q2, q3),
an orthonormal basis of R3 of eigenvectors of A. We get:

q1 =
1√
3

 1
1
1

) q2 =
1√
2

 −1
1
0

 and q3 =
1√
6

 1
1
−2

 .

(b) We should realize that, since (1) A has an orthonormal basis of (real) eigen-
vectors, and (2) the eigenvalues of A are real, then A is a real symmetric
matrix.

2. Calulate

A2020

 0
2
1

 .

Let us call x such that:

x =

 0
2
1

 .

Since  0
2
1

 =

 1
1
1

+

 −1
1
0

 .

We see that
x = v1 + v2.

So

Ax = A(v1 + v2) = −3v1; A2x = 32v1; A3x = −33v1 . . . A2020x = 32020v1.

So

A2020

 0
2
1

 = 32020

 1
1
1

 .

3. Does the linear system Ax = b have a solution for any b ∈ R3?

No, there exist some b ∈ R3 for which the linear system Ax = b has no solution.

If so, why?

Few reasons:

(a) Since dim(Null(A)) = 1, then dim(Range(A)) = 3 − 1 = 2. So, since
dim(Range(A)) = 2, Range(A) does not span R3, so there exist some b ∈ R3

for which the linear system Ax = b has no solution.



(b)

Range(A) = Span(

 1
1
1

 ,

 1
1
−2

).

So for example, there is no solution when b is

b = v2 =

 −1
1
0

 or b = v1 + v2 + v3 =

 1
3
−1

 or etc.

(As long as the coefficient on v2 is not zero, there is no solution.)

If not, for what kind of b ∈ R3 is Ax = b solvable?

Ax = b is solvable if and only if b ∈ Range(A) if and only if

b ∈ Span(

 1
1
1

 ,

 1
1
−2

 .

4. Determine whether matrix A has the following properties. Explain your
reasoning.

(a) diagonalizable

Certainly yes.

(b) invertible

Certainly not.

(c) orthogonal

No. Few reasons again. For a matrix to be orthogonal, all eigenvalues need
to be of modulus 1. The eigenvalues of A are certainly not of modulus 1.

(d) symmetric

Yes! Basis of orthogonal eigenvectors and real eigenvalues implies symmetric.

We note that, while not needed to answer any of the questions asked, we can compute
the matrix A explicitly. Either using a11 a12 a13

a21 a22 a23
a31 a32 a33

 1 −1 1
1 1 1
1 0 −2

 =

 −3 0 1
−3 0 1
−3 0 −2



A

 1 −1 1
1 1 1
1 0 −2

 =

 −3 0 1
−3 0 1
−3 0 −2





Therefore

A =

 −3 0 1
−3 0 1
−3 0 −2

 1 −1 1
1 1 1
1 0 −2

−1 =
1

6

 −3 0 1
−3 0 1
−3 0 −2

 2 2 2
−3 3 0

1 1 −2

 = −1

3

 2 2 5
2 2 5
5 5 −1

 .

Or using A = V DV −1 with

V =

 1 −1 1
1 1 1
1 0 −2

 and D =

 −3 0 0
0 0 0
0 0 2


We get that

V −1 =
1

6

 2 2 2
−3 3 0

1 1 −2

 .

We find

A = −1

3

 2 2 5
2 2 5
5 5 −1

 .

From this, we can, for example, see that A is symmetric. We can see that ATA is not
identity, so that A is not orthogonal.



Part II. Work two of problems 5 through 8.

Problem 5.

We consider the inner product space Rn with its standard inner product. (〈u, v〉 =
u1v1 + . . .+ unvn.) Let T : Rn → Rn be defined by

T (z1, z2, . . . , zn) = (z2 − z1, z3 − z2, . . . , z1 − zn).

(a) Give an explicit expression for the adjoint, T ∗.

(b) Is T invertible? Explain.

(c) Find the eigenvalues of T .

Solution

(a) Note that

〈Tu, v〉 = (u2 − u1)v1 + (u3 − u2)v2 + · · ·+ (u1 − un)vn

= u1(vn − v1) + u2(v1 − v2) + . . .+ un(vn−1 − vn)

= 〈u, T ∗v〉 .

Thus, T ∗v = (vn − v1, v1 − v2, . . . , vn−1 − vn).

(b) Notice that if v = (c, c, . . . , c) is any constant vector, then Tv = 0. Thus, T has a
nontrivial null space and is not invertible.

(c) The eigenvalues satisfy Tv = λv. Writing this relation in terms of components
gives

u2 − u1 = λu1 or u2 = (1 + λ)u1.

In general, uj+1 = (1 + λ)uj , j = 1, . . . , n− 1, and u1 = (1 + λ)un. Thus,

u1 = (1 + λ)un = (1 + λ)2un−1 = · · · = (1 + λ)nu1.

This implies that (1 + λ)n = 1. Thus, the eigenvalues have the form λ = µ − 1,
where µ is any of the nth roots of unity, ei2kπ/n, for k = 0, 1, . . . , n− 1.

Problem 6.



(a) Let n ≥ 2 and Let V be an n-dimensional vector space over C with a set of basis
vectors e1, . . . , en. Let T be the linear map of V satisfying

T (ei) = ei+1, i = 1, . . . , n− 1 and T (en) = e1

Is T diagonalizable?

(b) Let V be a finite-dimensional vector space and T : V → V a diagonalizable linear
transformation. Let W ⊆ V be a subspace which is mapped into itself by T . Show
that the restriction of T to W is diagonalizable.

Solution:

(a) The matrix of T with respect to the basis B = {e1, . . . , en} is:

M(T,B) =



0 0 0 · · · 0 1
1 0 0 · · ·
0 1 0 · · ·

. . .
. . .
. . .

. . .

0 0 0 · · · 1 0


The characteristic polynomial of the matrix is:

det(M(T,B)− λI) = ±(λn − 1)

which has n distinct roots in C for all n. So the eigenvalues of T are distinct and
hence T is diagonalizable.

(b) Let λ1, . . . , λm be the distinct eigenvalues of T . Since T is diagonalizable, V can
be decomposed as the direct sum of the eigenspaces. So for any w ∈ W , we can
UNIQUELY write

w = v1 + · · ·+ vm (1)

where each vi ∈ V is an eigenvector of T corresponding to eigenvalue λi. Then for
any i ∈ {1, 2, . . . , n}, we have∏

j 6=i
(T − λj)

w =

∏
j 6=i

(λi − λj)

vi

Since W is invariant under T , the left hand side in the equation above lies in W ,
and so does the right hand side. So vi ∈ W for all i. This means λ1, . . . , λm are
eigenvalues of T |W , and vi ∈ E(λi, T |W ). Based on Eqn (1), T |W is diagonalizable.



Problem 7. Let V , W be finite-dimensional inner product spaces over C such that
dimV ≤ dimW . Prove that there is a linear map T : V →W satisfying

〈T (u), T (v)〉W = 〈u,v〉V

for all u, v ∈ V .

Solution: Let v1, . . . ,vn be an orthonormal basis for V and w1, . . . ,wn,wn+1, . . . ,wn+k,
k ≥ 0, be an orthonormal basis for W . Define T : V →W such that

Tvj = wj , j = 1, . . . , n

Such T exists and is unique. For any u,v ∈ V , there are α1, . . . , αn, β1, . . . , βn ∈ F such
that

u = α1v1 + · · ·+ αnvn, v = β1v1 + · · ·+ βnvn

Then

〈T (u), T (v)〉W = 〈α1w1 + · · ·+ αnwn, β1w1 + · · ·+ βnwn〉W

=
n∑
i=1

n∑
j=1

αiβj 〈wi,wj〉W =
n∑
i=1

αiβi

by orthogonality. Also

〈u,v〉V = 〈α1v1 + · · ·+ αnvn, β1v1 + · · ·+ βnvn〉V

=

n∑
i=1

n∑
j=1

αiβj 〈vi,vj〉V =

n∑
i=1

αiβi

So
〈T (u), T (v)〉W = 〈u,v〉V

for all u, v ∈ V .

Problem 8.

Let V be a real finite dimensional inner product space and let T : V → V be a linear
transformation. Assume that 〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ V .

(a) Prove that if λ and µ are distinct eigenvalues of T then the corresponding eigenspaces
Vλ and Vµ are orthogonal.



(b) If W is a subspace of V , prove that T (W ) ⊆W implies that T (W⊥) ⊆W⊥.

(c) Prove that there exists an eigenvector v1 ∈ V for T in V with associated (real)
eigenvalue λ1. Do not use a big theorem; prove directly. You may assume the
fundamental theorem of algebra however.

(d) Prove that there exists an orthonormal basis of V consisting of eigenvectors for T .

Solution

We note that the operator T is self-adjoint and we are asked to prove the Spectral
Theorem.

(a) Let λ and µ be distinct eigenvalues of T . Let x be an eigenvector associated with
λ and y be an eigenvector associated with µ. We want to prove that 〈x, y〉 = 0.

We have
Tx = λx and Ty = µy

We consider 〈Tx, y〉. On the one hand:

〈Tx, y〉 = 〈λx, y〉 = λ 〈x, y〉 .

On the other hand:

〈Tx, y〉 = 〈x, Ty〉 = 〈x, µy〉 = µ 〈x, y〉 .

So we have
λ 〈x, y〉 = µ 〈x, y〉 .

So we have
(λ− µ) 〈x, y〉 = 0.

We have assumed λ and µ to be distinct eigenvalues, so (λ− µ) 6= 0, so

〈x, y〉 = 0.

The eigenspaces Vλ and Vµ are orthogonal.

(b) Let W be a subspace of V . We assume that T (W ) ⊆ W . (In other words, W is
invariant under T .) We want to show that T (W⊥) ⊆W⊥. (In other words, W⊥ is
invariant under T .)

Let x ∈ T (W⊥), we want to show that x ∈W⊥.

Let y ∈W , we want to show that 〈x, y〉 = 0.

Since x ∈ T (W⊥), there exists z ∈W⊥ such that x = Tz.



We have
〈x, y〉 = 〈Tz, y〉 = 〈z, Ty〉 .

Now we note that y ∈W , and that W is invariant under T , so that Ty ∈W . Also
z ∈W⊥, so we get that 〈z, Ty〉 = 0, which proves that

〈x, y〉 = 0.

This proves that

(T (W ) ⊆W )⇒
(
T (W⊥) ⊆W⊥

)
.

(c) V is finite dimensional. Let n be the dimension of V .

We consider an arbritrary nonzero vector x ∈ V . We now consider the set of n+ 1
vectors:

x, Tx, T 2x, T 3x, . . . Tnx.

This set consists of n+ 1 vectors, therefore it is linearly dependent, therefore there
exists n+ 1 not all zeros scalars a0, a1, . . ., an such that

a0x+ a1Tx+ a2T
2x+ a3T

3x+ . . .+ anT
nx = 0. (2)

Let k the largest integer such that ak 6= 0. We note that k cannot be zero. k is at
least 1.

We now consider the polynomial of degree k

p(ζ) = a0 + a1ζ + a2ζ
2 + a3ζ

3 + . . .+ anζ
n.

Equation (2) writes:
p(T )x = 0.

Although our problem is in the real settng, we now use complex arithmetic because
this makes thing easier. By the Fundamental Theorem of Algebra, the polynomial
p has k roots (in complex arithemtic). We call them ζ1, ζ2, . . ., ζk and we have

p(ζ) = (ζ − ζ1)(ζ − ζ2) . . . (ζ − ζk).

(We note that k is at least 1. So there exists at least one root.)

So we have
(T − ζ1I)(T − ζ2I) . . . (T − ζkI)x = 0.

(We note that all these monomials commute. So the order of these monomials is
arbritrary. (As is the order of the ζi.)

Now we consider the following k exclusive cases:



• either (T − ζkI)x = 0 and x 6= 0. In this case, x is an eigenvector of T of
eigenvalue ζk.

• xor (T − ζk−1I)(T − ζkI)x = 0 and (T − ζkI)x 6= 0. In this case, (T − ζkI)x
is an eigenvector of T of eigenvalue ζk−1.

• xor (T − ζk−2I)(T − ζk−1I)(T − ζkI)x = 0 and (T − ζk−1I)(T − ζkI)x 6= 0. In
this case, (T − ζk−1I)(T − ζkI)x is an eigenvector of T of eigenvalue ζk−1.

• . . .
• xor (T − ζ1I) . . . (T − ζkI)x = 0 and (T − ζ2I) . . . (T − ζkI)x = 0. In this case,

(T − ζ2I) . . . (T − ζkI)x is an eigenvector of T of eigenvalue ζ1.

For all of these cases, we find that T has an eigenvector v1 and an eigenvalue λ1.

As of now, it is possible for λ1 to be complex. It is also possible for v1 to be
complex. (v1 is of the form (T − ζiI)(T − ζk−1I)(T − ζkI)x where some ζi might be
complex.) However we now prove that λ1 must be real. And so must v1 be. Since
we have complex vectors and scalars, we must consider the complex inner product
〈x, y〉C associated with 〈x, y〉 .
We consider 〈v1, T v1〉C . One the one hand, we have

〈v1, T v1〉C = 〈v1, λ1v1〉C = λ1 〈v1, v1〉C .

One the other hand, we have

〈v1, T v1〉C = 〈Tv1, v1〉C = 〈λ1v1, v1〉C = λ1 〈v1, v1〉C .

We get
λ1 〈v1, v1〉C = λ1 〈v1, v1〉C .

And, since v1 6= 0, 〈v1, v1〉C 6= 0, so

λ1 = λ1.

So
λ1 ∈ R.

(And then so is v1.)

(d) We start by using part (c) to find an eigenvector v1 and an associated (real) eigen-
value λ1 of T .

We call W1 = Span(v1). W1 is invariant under T , so, by using part (b), we see that
W⊥1 is invariant under T . Therefore we can consider T1, the restriction of T to W⊥1 .
It is important to observe that, due to the invariance of W⊥1 , T1 is an operator.
We have: T1 : W⊥1 7→W⊥1 . Since T1 is an operator, it makes sense to speak about
eigenvalues and eigenvectors for T1. Also, any eigenvalues and eigenvectors of T1
will also be eigenvalues and eigenvectors of T . It is also important to note that T1



is self-adjoint. All this to say that, we can use part (c) on T1 to find an eigenvector
v2 ∈W⊥1 and an associated (real) eigenvalue λ2 of T1. This eigencouple (v2, λ2) of
T1 is also an eigencouple of T , and we have that v1 and v2 are mutually orthogonal
eigenvectors of A.

We call W2 = Span(v1, v2). We note that v1 and v2 are two eigenvectors of T and
there are mutually orthogonal. W2 is invariant under T , (as any subspace spanned
by eigenvectors of T is,) so, by using part (b), we see that W⊥2 is invariant under T .
Therefore we can consider T2, the restriction of T to W⊥2 . It is important to observe
that, due to the invariance of W⊥2 , T2 is an operator. We have: T2 : W⊥2 7→ W⊥2 .
Since T2 is an operator, it makes sense to speak about eigenvalues and eigenvectors
for T2. Also, any eigenvalues and eigenvectors of T2 will also be eigenvalues and
eigenvectors of T . It is also important to note that T2 is self-adjoint. All this to say
that, we can use part (c) on T2 to find an eigenvector v3 ∈W⊥2 and an associated
(real) eigenvalue λ3 of T2. This eigencouple (v3, λ3) of T2 is also an eigencouple of
T , and we have v1, v2, and v3 are mutually orthogonal eigenvectors of A.

We can continue in this manner until we find a basis of V made of n mutually
orthogonal eigenvectors of A.

The last step is to normalize our n vectors so as to obtain an orthonormal basis of
V made of eigenvectors of T .


