University of Colorado Denver
 Department of Mathematical and Statistical Sciences
 Applied Linear Algebra Ph.D. Preliminary Exam
 July 12, 2019

Name: \qquad
Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to complete all six problems.
- Each problem is worth 20 points
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Notation: Throughout the exam, \mathbb{R} and \mathbb{C} denote the sets of real and complex numbers, respectively. \mathbb{F} denotes either \mathbb{R} or $\mathbb{C} . \mathbb{F}^{n}$ and $\mathbb{F}^{n, n}$ are the vector spaces of n-tuples and $n \times n$ matrices, respectively, over the field \mathbb{F}. $\mathcal{L}(V)$ denotes the set of linear operators on the vector space $V . T^{*}$ is the adjoint of the operator T and λ^{*} is the complex conjugate of the scalar λ. In an inner product space V, U^{\perp} denotes the orthogonal complement of the subspace U.
- Ask the proctor if you have any questions.

> Good luck!

Total \qquad

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.
Applied Linear Algebra Preliminary Exam Committee:
Steve Billups, Steffen Borgwardt (Chair), Yaning Liu.

Problem 1.

a. (6 points) Prove or reject:

There exists a matrix $A \in \mathbb{R}^{4 \times 4}$ for which the column space and null space are identical.

Solution

We provide a matrix A that satisfies the claim. By the rank theorem, $\operatorname{rank}(A)+$ $\operatorname{dim} \operatorname{nul}(A)=4$. This implies that $\operatorname{rank}(A)=\operatorname{dim} \operatorname{nul}(A)=2$, otherwise the column space and null space would be of different dimensions.

Particularly simple matrices A that satisfy the claim are

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { or }\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

It is easy to see that then

$$
\operatorname{col}(A)=\operatorname{nul}(A)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right\} \quad \text { or } \quad=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

respectively. The design principle is to pick two of the columns of an identity matrix and put them in the column positions not used.
b. (9 points) Let $A \neq 0$ be an $m \times n$ matrix with $m \leq n$, let $b \in \mathbb{R}^{m}$ such that $A x=b$ has no solution, and let $d \neq 0 \in \mathbb{R}^{m}$ for which there exists a solution to $A x=d$.
What is the minimal and maximal dimension of the set of solutions for $A x=d$? Provide the best bounds available based on the given information, prove that your bounds are correct, and prove that they can be tight for all well-defined m, n.

Solution

As $A x=d$ has a solution, the dimension of its solution set is the same as $\operatorname{dim} \operatorname{nul}(A)$. Further note $m \geq 2$, otherwise the conditions $A \neq 0$ and $A x=b$ having no solution could not be satisfied at the same time. Recall that the null space is the orthogonal complement of the row space. By finding the possible $\operatorname{rank}(A)$, we also identify $\operatorname{dim} \operatorname{nul}(A)=n-\operatorname{rank}(A)$.
As $A \neq 0$, one immediately obtains $\operatorname{rank}(A) \geq 1$ and thus $\operatorname{dim} \operatorname{nul}(A) \leq n-1$. For an upper bound, first recall the trivial bound $\operatorname{rank}(A) \leq \min \{m, n\}$. As $m \leq n$, this simplifies to $\operatorname{rank}(A) \leq m$. However, this is not the best bound possible yet: As there exists a b for which the system $A x=b$ is inconsistent, we know that
there is a row of all zeros in the unique reduced echelon form matrix B that is rowequivalent to A. This implies that $\operatorname{rank}(A) \leq m-1$. Thus $\operatorname{dim} \operatorname{nul}(A) \geq n-m+1$. Together, one obtains the bounds

$$
n-m+1 \leq \operatorname{dim} \operatorname{nul}(A) \leq n-1,
$$

which is well-defined as $m \geq 2$.
To prove that these are the best bounds available for the given information, one should provide $m \times n$ matrices of rank 1 and rank $m-1$ for all $2 \leq m \leq n$, for example

$$
\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0
\end{array}\right) \text { and }\left(\begin{array}{ccccccc}
1 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
1 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right)
$$

as well as a right-hand side b that differs in the first two entries, and a right-hand side d where these entries are the same.
c. (5 points) Suppose that S is a fixed, invertible $n \times n$ matrix. Let W be the set of all matrices A for which $S^{-1} A S$ is diagonal.
Prove or reject: W is a vector space.

Solution

Let $W=\left\{A \in \mathbb{R}^{n \times n}: S^{-1} A S\right.$ is diagonal $\}$. Recall $\mathbb{R}^{n \times n}$ is a vector space itself, so it suffices to show that W is a subspace of it. To do so, we have to check whether $0 \in W$ and whether W is closed under addition and scaling.

- $0 \in W$ is a diagonal matrix, as $S^{-1} 0 S=0$.
- Let $A, B \in W$. Then $S^{-1}(A+B) S=S^{-1} A S+S^{-1} B S$ and both parts of this sum are diagonal. Then so is their sum, which shows $A+B \in W$.
- Let $A \in W$ and $c \in \mathbb{R}$. Then $S^{-1}(c A) S=c S^{-1} A S$, which is diagonal because $S^{-1} A S$ is diagonal. This shows $c A \in W$.

Problem 2.

a. (4 points) Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ be an operator that maps $p(t)=a_{0}+a_{1} t^{1}+a_{2} t^{2}+a_{3} t^{3}$ onto $q(t)=a_{3} t^{1}+a_{2} t^{2}+a_{1} t^{3}$.
Prove or reject: T is a linear transformation. If so, provide a matrix representation.

Solution

Using the standard basis of monomials of \mathbb{P}_{3}, the provided information can be written using coordinate vectors as

$$
T\left(\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)\right)=\left(\begin{array}{c}
0 \\
a_{3} \\
a_{2} \\
a_{1}
\end{array}\right) .
$$

It is easy to verify that

$$
\left(\begin{array}{c}
0 \\
a_{3} \\
a_{2} \\
a_{1}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right),
$$

which is a matrix representation of T. The ability to provide such a representation immediately implies that T is a linear transformation.
b. (7 points) The first four Hermite polynomials are

$$
1, \quad 1-t, \quad-2+4 t^{2}, \quad-12 t+18 t^{3} .
$$

They form a basis β of \mathbb{P}_{3}, the space of polynomials of degree at most 3 .
Compute the change-of-coordinates matrix $P_{\beta \rightarrow \gamma}$ from β to a new basis γ of \mathbb{P}_{3} given by

$$
t^{3}+t^{2}+2 t, \quad t^{2}+2 t, \quad 1+t, \quad t
$$

(Hint: $P_{\beta \rightarrow \gamma}$, when multiplied with a coordinate vector with respect to β gives a coordinate vector with respect to γ.)

Solution

Let E denote the standard basis of monomials of \mathbb{P}_{3}. Then

$$
P_{\beta \rightarrow E}=\left(\begin{array}{cccc}
1 & 1 & -2 & 0 \\
0 & -1 & 0 & -12 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 18
\end{array}\right) \quad \text { and } \quad P_{\gamma \rightarrow E}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
2 & 2 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Now, note $P_{\beta \rightarrow \gamma}=P_{E \rightarrow \gamma} \cdot P_{\beta \rightarrow E}$ and $P_{E \rightarrow \gamma}=P_{\gamma \rightarrow E}^{-1}$. In a short computation, we invert $P_{\gamma \rightarrow E}$ to find

$$
P_{E \rightarrow \gamma}=P_{\gamma \rightarrow E}^{-1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 \\
1 & 0 & 0 & 0 \\
-1 & 1 & -2 & 0
\end{array}\right)
$$

and finally

$$
P_{\beta \rightarrow \gamma}=P_{E \rightarrow \gamma} \cdot P_{\beta \rightarrow E}=\left(\begin{array}{cccc}
0 & 0 & 0 & 18 \\
0 & 0 & 4 & -18 \\
1 & 1 & -2 & 0 \\
-1 & -2 & -6 & -12
\end{array}\right)
$$

c. (9 points) Let $a, b \neq 0 \in \mathbb{R}$ be fixed. Find a basis for the subspace in \mathbb{R}^{4} created from intersecting

$$
S=\operatorname{span}\left\{\left(\begin{array}{l}
a \\
0 \\
0 \\
a
\end{array}\right),\left(\begin{array}{l}
a \\
0 \\
a \\
0
\end{array}\right),\left(\begin{array}{l}
b \\
b \\
0 \\
0
\end{array}\right)\right\} \quad \text { and } T=\operatorname{span}\left\{\left(\begin{array}{l}
b \\
0 \\
0 \\
a
\end{array}\right),\left(\begin{array}{l}
0 \\
a \\
b \\
0
\end{array}\right)\right\} .
$$

Solution

First, note that scaling any spanning vectors does not change the span. So S and T can be represented using $c=\frac{b}{a}$ as

$$
S=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)\right\} \quad \text { and } T=\operatorname{span}\left\{\left(\begin{array}{l}
c \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
c \\
0
\end{array}\right)\right\}
$$

An element $x \in \mathbb{R}^{4}$ belongs to the intersection $S \cap T$ if and only if
$x=\lambda_{1}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)+\lambda_{2}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+\lambda_{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}\lambda_{1}+\lambda_{2}+\lambda_{3} \\ \lambda_{3} \\ \lambda_{2} \\ \lambda_{1}\end{array}\right)=\mu_{1}\left(\begin{array}{l}c \\ 0 \\ 0 \\ 1\end{array}\right)+\mu_{2}\left(\begin{array}{l}0 \\ 1 \\ c \\ 0\end{array}\right)=\left(\begin{array}{c}c \mu_{1} \\ \mu_{2} \\ c \mu_{2} \\ \mu_{1}\end{array}\right)$,
for scalars $\lambda_{1,2,3}$ and $\mu_{1,2}$. It follows that $\lambda_{1}=\mu_{1}, \lambda_{2}=c \mu_{2}, \lambda_{3}=\mu_{2}$, and $\lambda_{1}+\lambda_{2}+\lambda_{3}=c \mu_{1}$.
We now assume that x is given through $\mu_{1,2}$ (and the fixed c), and identify when the above linear system has a solution. The augmented matrix is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \mu_{1} \\
0 & 1 & 0 & c \mu_{2} \\
0 & 0 & 1 & \mu_{2} \\
1 & 1 & 1 & c \mu_{1}
\end{array}\right)
$$

which reduces to

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \mu_{1} \\
0 & 1 & 0 & c \mu_{2} \\
0 & 0 & 1 & \mu_{2} \\
0 & 0 & 0 & (c-1) \mu_{1}-(c+1) \mu_{2}
\end{array}\right)
$$

This system is solvable if and only if

$$
(c-1) \mu_{1}-(c+1) \mu_{2}=0 \Leftrightarrow(c-1) \mu_{1}=(c+1) \mu_{2} .
$$

If $c \neq 1$, this is equivalent to $\mu_{1}=\frac{c+1}{c-1} \mu_{2}$. This gives

$$
S \cap T=\operatorname{span}\left\{\left(\begin{array}{c}
\frac{c+1}{c-1} c \\
1 \\
c \\
\frac{c+1}{c-1}
\end{array}\right)\right\}
$$

Otherwise, that is if $c=1$, then $\mu_{2}=0$ and one obtains

$$
S \cap T=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

Problem 3.

Let V be a finite-dimensional vector space.
a. (7 points) Suppose $T \in \mathcal{L}(V)$ is such that every vector in V is an eigenvector of T. Prove or disprove that T is a scalar multiple of the identity operator.

Solution

If $\operatorname{dim} V \leq 1$, every linear operator on V is a scalar multiple of the identity operator, so there is nothing to prove. Otherwise, suppose u and v are two linearly independent vectors in V. Since all vectors in V are eigenvectors, there exist scalars α, β and γ such that

$$
T u=\alpha u, T v=\beta v, \text { and } T(u+v)=\gamma(u+v) .
$$

But, $T(u+v)=T u+T v=\alpha u+\beta v$, so $(\gamma-\alpha) u+(\gamma-\beta) v=0$. This implies $\alpha=\beta=\gamma$ since u and v are linearly independent. Thus, T has only one eigenvalue, α. Thus, $T v=\alpha v$ for all $v \in V$, so T is a scalar multiple of the identity operator.
b. (13 points) Suppose $T \in \mathcal{L}(V)$ is such that every subspace of V with dimension $\operatorname{dim} V-1$ is invariant under T. Prove that T is a scalar multiple of the identity operator.

Solution

Suppose $v \in V$ is not an eigenvector of T and let $u=T v$. Since v is not an eigenvector, u and v are linearly independent. Thus, $\{u, v\}$ can be extended to a basis $\left\{u, v, w_{3}, \ldots, w_{n}\right\}$ of V. Let $W=\operatorname{span}\left\{v, w_{3}, \ldots, w_{n}\right\}$. Observe that $\operatorname{dim} W=\operatorname{dim} V-1$, so W is invariant under T. Since $v \in W$, it follows that $T v=u \in W$, which is a contradiction. Thus, every vector in V is an eigenvector, so by part a), T is a scalar multiple of the identity operator.

Problem 4.

Let $\|\cdot\|$ denote an arbitrary vector norm on \mathbb{R}^{p}. The matrix norm induced by $\|\cdot\|$ is defined by

$$
\|P\|=\max _{x \neq 0} \frac{\|P x\|}{\|x\|}
$$

for each $p \times p$ real matrix P.
a. (7 points) Prove that $\|\cdot\|$ is a norm on the vector space of real $p \times p$ matrices.

Solution

We need to verify that the induced norm satisfies the three properties of norms: 1) $\|P\|>0$ for $P \neq 0 ; 2$) for any scalar α and matrix $P,\|\alpha P\|=|\alpha|\|P\|$ and 3) for any two matrix P and $Q,\|P\|+\|Q\| \leq\|P\|+\|Q\|$.

1) Since $\|\cdot\|$ is a vector norm, $\|P x\| \geq 0$ for all P and x. Thus, the right hand side in the definition above is always nonnegative, so $\|P\| \geq 0$. Moreover, if $P \neq 0$, it has rank ≥ 1; thus, we can find $\bar{x} \in \mathbb{R}^{p}$ such that $P \bar{x} \neq 0$. But then $\|P\| \geq \frac{\|P \bar{x}\|}{\|x\|}>0$. Thus, $\|P\|>0$ for all $P \neq 0$.
2) For any scalar α we have

$$
\|\alpha P\|=\max _{x \neq 0} \frac{\|\alpha P x\|}{\|x\|}=\max _{x \neq 0} \frac{|\alpha|\|P x\|}{\|x\|}=|\alpha| \max _{x \neq 0} \frac{\|P x\|}{\|x\|}=|\alpha|\|P\| .
$$

3) For two matrices P and Q, we have

$$
\begin{aligned}
\|P+Q\| & =\max _{x \neq 0} \frac{\|(P+Q) x\|}{\|x\|} \leq \max _{x \neq 0} \frac{\|P x\|+\|Q x\|}{\|x\|} \\
& \leq \max _{x \neq 0} \frac{\|P x\|}{\|x\|}+\max _{y \neq 0} \frac{\|Q y\|}{\|y\|}=\|P\|+\|Q\|
\end{aligned}
$$

b. (13 points) Let P be a $p \times p$ real matrix. Suppose that $\|P\|<1$. Prove that $I+P$ is nonsingular and that

$$
\frac{1}{1+\|P\|} \leq\left\|(I+P)^{-1}\right\| \leq \frac{1}{1-\|P\|} .
$$

Solution

Suppose x is a solution to the equation $(I+P) x=0$. Then $x=-P x$, so

$$
\|x\|=\|-P x\| \leq\|P\|\|x\| .
$$

Since $\|P\|<1$, this implies that $x=0$. (Otherwise, we get the contradiction $\|x\|<\|x\|)$. Thus, the only solution to $(I+P) x=0$ is the trivial solution $x=0$, so $I+P$ is nonsingular.
Let $B=(I+P)^{-1}$. Then $I=B(I+P)$. Thus,

$$
1=\|I\|=\|B(I+P)\| \leq\|B\|\|I+P\| \leq\|B\|(1+\|P\|) .
$$

Thus,

$$
\frac{1}{1+\|P\|} \leq\|B\|=\left\|(I+P)^{-1}\right\| .
$$

To get the second inequality, observe that $I=B+B P$, so $B=I-B P$. Thus,

$$
\|B\|=\|I-B P\| \leq 1+\|B P\| \leq 1+\|B\|\|P\| .
$$

Hence, $\|B\|(1-\|P\|) \leq 1$ and $\|B\| \leq \frac{1}{1-\|P\|}$.

Problem 5.

Let V be an n-dimensional inner product space over \mathbb{F}.
a. (5 points) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove or reject: U^{\perp} is invariant under T^{*} if U is invariant under T.

Solution

Suppose U is invariant under T. To show U^{\perp} is invariant under T^{*}, let $\boldsymbol{v} \in U^{\perp}$, and then

$$
\left\langle\boldsymbol{u}, T^{*} \boldsymbol{v}\right\rangle=\langle T \boldsymbol{u}, \boldsymbol{v}\rangle=0
$$

for every $\boldsymbol{u} \in U$, since $T \boldsymbol{u} \in U$. So $T^{*} \boldsymbol{v} \in U^{\perp}$. So U^{\perp} is invariant under T^{*}.
b. (5 points) Let T_{1} and T_{2} be two self-adjoint operators on V. Prove or reject: $T_{1} T_{2}+T_{2} T_{1}$ is also self-adjoint.

Solution

For any $\boldsymbol{u} \in V, \boldsymbol{v} \in V$,

$$
\begin{aligned}
\left\langle\left(T_{1} T_{2}+T_{2} T_{1}\right) \boldsymbol{u}, \boldsymbol{v}\right\rangle & =\left\langle T_{1} T_{2} \boldsymbol{u}+T_{2} T_{1} \boldsymbol{u}, \boldsymbol{v}\right\rangle=\left\langle T_{1} T_{2} \boldsymbol{u} \boldsymbol{v}\right\rangle+\left\langle T_{2} T_{1} \boldsymbol{u} \boldsymbol{v}\right\rangle \\
& =\left\langle T_{2} \boldsymbol{u}, T_{1}^{*} \boldsymbol{v}\right\rangle+\left\langle T_{1} \boldsymbol{u}, T_{2}^{*} \boldsymbol{v}\right\rangle=\left\langle T_{2} \boldsymbol{u}, T_{1} \boldsymbol{v}\right\rangle+\left\langle T_{1} \boldsymbol{u}, T_{2} \boldsymbol{v}\right\rangle \\
& =\left\langle\boldsymbol{u}, T_{2}^{*} T_{1} \boldsymbol{v}\right\rangle+\left\langle\boldsymbol{u}, T_{1}^{*} T_{2} \boldsymbol{v}\right\rangle=\left\langle\boldsymbol{u}, T_{2} T_{1} \boldsymbol{v}\right\rangle+\left\langle\boldsymbol{u}, T_{1} T_{2} \boldsymbol{v}\right\rangle \\
& =\left\langle\boldsymbol{u}, T_{2} T_{1} \boldsymbol{v}+T_{1} T_{2} \boldsymbol{v}\right\rangle=\left\langle\boldsymbol{u},\left(T_{2} T_{1}+T_{1} T_{2}\right) \boldsymbol{v}\right\rangle
\end{aligned}
$$

So $T_{2} T_{1}+T_{1} T_{2}$ is self-adjoint.
c. (10 points) Let T be a self-adjoint operator on V. Show that T is a nonnegative self-adjoint operator on V if and only if the eigenvalues of T are all nonnegative real numbers.

Solution

Since T is self-adjoint, all of its eigenvalues are real.
" \Rightarrow ": Suppose T is nonnegative and self-adjoint. Let λ be an eigenvalue of T, with corresponding eigenvector $\boldsymbol{v} \neq 0$. Then

$$
T \boldsymbol{v}=\lambda \boldsymbol{v}, \quad \boldsymbol{v} \neq \mathbf{0}
$$

and

$$
\langle T \boldsymbol{v}, \boldsymbol{v}\rangle=\langle\lambda \boldsymbol{v}, \boldsymbol{v}\rangle=\lambda\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0
$$

Since $\langle\boldsymbol{v}, \boldsymbol{v}\rangle>0, \lambda \geq 0$.
$" \Leftarrow "$: Since T is self-adjoint, by the Spectral Theorem, there exists an orthonormal basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ of V whose basis vectors are eigenvectors of V :

$$
\begin{aligned}
T \boldsymbol{e}_{1} & =\lambda_{1} \boldsymbol{e}_{1} \\
T \boldsymbol{e}_{2} & =\lambda_{2} \boldsymbol{e}_{2} \\
\vdots & \\
T \boldsymbol{e}_{n} & =\lambda_{n} \boldsymbol{e}_{n}
\end{aligned}
$$

where $\lambda_{i}, i=1, \ldots, n$ are all the eigenvalues of T.
For any vector $\boldsymbol{v} \in V$,

$$
\boldsymbol{v}=c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\cdots c_{n} \boldsymbol{e}_{n}
$$

Then

$$
\begin{aligned}
\langle T \boldsymbol{v}, \boldsymbol{v}\rangle & =\left\langle T\left(c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\cdots c_{n} \boldsymbol{e}_{n}\right), c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\cdots c_{n} \boldsymbol{e}_{n}\right\rangle \\
& =\left\langle c_{1} T \boldsymbol{e}_{1}+c_{2} T \boldsymbol{e}_{2}+\cdots c_{n} T \boldsymbol{e}_{n}, c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\cdots c_{n} \boldsymbol{e}_{n}\right\rangle \\
& =\left\langle c_{1} \lambda_{1} \boldsymbol{e}_{1}+c_{2} \lambda_{2} \boldsymbol{e}_{2}+\cdots+c_{n} \lambda_{n} \boldsymbol{e}_{n}, c_{1} \boldsymbol{e}_{1}+c_{2} \boldsymbol{e}_{2}+\cdots c_{n} \boldsymbol{e}_{n}\right\rangle \\
& =c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}+\cdots+c_{n}^{2} \lambda_{n}
\end{aligned}
$$

Since $\lambda_{i} \geq 0, i=1, \ldots, n$, the above quantity is nonnegative. So T is nonnegative.

Problem 6.

a. (6 points) Let $A \in \mathbb{F}^{n, n}$ be a square matrix that satisfies $A^{2}=A$. Show that A is similar to the diagonal matrix.

$$
C=\left[\begin{array}{lllll}
1 & & & & \\
& \ddots & & & \\
& & 1 & & \\
\\
& & & 0 & \\
\\
& & & & \ddots
\end{array}\right]=\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right]
$$

That is, I_{r} is an identity square block of order $r, 0 \leq r \leq n$.

Solution

Let $f(\lambda)=\lambda^{2}-\lambda$. Then

$$
f(A)=A^{2}-A=0
$$

So the minimal polynomial of A divides f. So the eigenvalues can only be 0 or 1 , and each Jordan block is of size 1×1. Rearranging the diagonal elements in the Jordan canonical form, we have A is similar to C.
b. (6 points) Let $A \in F^{n, n}, B \in F^{n, n}$ be square matrices such that $A^{2}=A, B^{2}=B$, and $A B=B A$. Suppose P_{0} is an invertible matrix such that

$$
P_{0}^{-1} A P_{0}=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]
$$

Let $B_{0}=P_{0}^{-1} B P_{0}$. Show that B_{0} is in the form of

$$
B_{0}=\left[\begin{array}{ll}
B_{1} & \\
& B_{2}
\end{array}\right]
$$

where B_{1} is of order r, and $B_{1}^{2}=B_{1}$ and $B_{2}^{2}=B_{2}$.

Solution

Note

$$
\begin{aligned}
& \quad A B=B A \Leftrightarrow \\
& P_{0}\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right] P_{0}^{-1} \cdot P_{0} B_{0} P_{0}^{-1}=P_{0} B_{0} P_{0}^{-1} \cdot P_{0}\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right] P_{0}^{-1}
\end{aligned}
$$

which is equivalent to

$$
B_{0}\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right]=\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right] B_{0}
$$

So we can conclude that

$$
B_{0}=\left[\begin{array}{ll}
B_{1} & \\
& B_{2}
\end{array}\right]
$$

In addition,

$$
B_{0}^{2}=\left(P_{0}^{-1} B P_{0}\right)\left(P_{0}^{-1} B P_{0}\right)=P_{0}^{-1} B^{2} P_{0}=P_{0}^{-1} B P_{0}=B_{0}
$$

So

$$
\left[\begin{array}{ll}
B_{1}^{2} & \\
& B_{2}^{2}
\end{array}\right]=\left[\begin{array}{ll}
B_{1} & \\
& B_{2}
\end{array}\right]
$$

So $B_{1}^{2}=B_{1}$ and $B_{2}^{2}=B_{2}$.
c. (8 points) Let $A \in F^{n, n}, B \in F^{n, n}$ be square matrices such that $A^{2}=A, B^{2}=B$, and $A B=B A$. Show that there exists an invertible matrix P such that $P^{-1} A P$ and $P^{-1} B P$ are both diagonal, and the diagonal entries are 0 and 1 for both.
(Hint: Let P_{0} be the invertible matrix for A in part (b). Let Q_{1} and Q_{2} be invertible matrices that serve the same role for B_{1} and B_{2}, respectively. Use P_{0}, Q_{1} and Q_{2} to construct the matrix P.)

Solution

Since the B_{1} and B_{2} from (b) satisfy $B_{1}^{2}=B_{1}$ and $B_{2}^{2}=B_{2}$, there exist invertible matrices Q_{1} and Q_{2} such that

$$
Q_{1}^{-1} B_{1} Q_{1}=\left[\begin{array}{ll}
I_{s} & \\
& 0
\end{array}\right], s \leq r
$$

and

$$
Q_{2}^{-1} B_{2} Q_{2}=\left[\begin{array}{ll}
I_{t} & \\
& 0
\end{array}\right], t \leq n-r
$$

Let

$$
Q=\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right], \quad P=P_{0} Q
$$

Then

$$
\begin{aligned}
P^{-1} B P & =P^{-1}\left(P_{0} B_{0} P_{0}^{-1}\right) P=Q^{-1} P_{0}^{-1}\left(P_{0} B_{0} P_{0}^{-1}\right) P_{0} Q=Q^{-1} B_{0} Q \\
& =\left[\begin{array}{ll}
Q_{1}^{-1} & \\
& Q_{2}^{-1}
\end{array}\right]\left[\begin{array}{ll}
B_{1} & \\
& B_{2}
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right]=\left[\begin{array}{ll}
Q_{1}^{-1} B_{1} Q_{1} & \\
& Q_{2}^{-1} B_{2} Q_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
I_{s} & & \\
& 0 & \\
& & I_{t} \\
& & \\
& & \\
&
\end{array}\right.
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
P^{-1} A P & =Q^{-1} P_{0}^{-1} A P_{0} Q \\
& =\left[\begin{array}{ll}
Q_{1}^{-1} & \\
& Q_{2}^{-2}
\end{array}\right]\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & \\
& Q_{2}
\end{array}\right]=\left[\begin{array}{ll}
I_{r} & \\
& 0
\end{array}\right]
\end{aligned}
$$

So we have found the matrix P.

