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Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to complete
all six problems.

• Each problem is worth 20 points

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Notation: Throughout the exam, R and C denote the sets of real and complex
numbers, respectively. F denotes either R or C. Fn and Fn,n are the vector spaces
of n-tuples and n × n matrices, respectively, over the field F. L(V ) denotes the
set of linear operators on the vector space V . T ∗ is the adjoint of the operator T
and λ∗ is the complex conjugate of the scalar λ. In an inner product space V , U⊥

denotes the orthogonal complement of the subspace U .

• Ask the proctor if you have any questions.

Good luck!
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Problem 1.

a. (6 points) Prove or reject:

There exists a matrix A ∈ R4×4 for which the column space and null space are
identical.

b. (9 points) Let A 6= 0 be an m×n matrix with m ≤ n, let b ∈ Rm such that Ax = b
has no solution, and let d 6= 0 ∈ Rm for which there exists a solution to Ax = d.

What is the minimal and maximal dimension of the set of solutions for Ax = d?
Provide the best bounds available based on the given information, prove that your
bounds are correct, and prove that they can be tight for all well-defined m,n.

c. (5 points) Suppose that S is a fixed, invertible n× n matrix. Let W be the set of
all matrices A for which S−1AS is diagonal.

Prove or reject: W is a vector space.



Problem 2.

a. (4 points) Let T : P3 → P3 be an operator that maps p(t) = a0 + a1t
1 + a2t

2 + a3t
3

onto q(t) = a3t
1 + a2t

2 + a1t
3.

Prove or reject: T is a linear transformation. If so, provide a matrix representation.

b. (7 points) The first four Hermite polynomials are

1, 1− t, −2 + 4t2, −12t+ 18t3.

They form a basis β of P3, the space of polynomials of degree at most 3.

Compute the change-of-coordinates matrix Pβ→γ from β to a new basis γ of P3

given by
t3 + t2 + 2t, t2 + 2t, 1 + t, t.

(Hint: Pβ→γ, when multiplied with a coordinate vector with respect to β gives a
coordinate vector with respect to γ.)

c. (9 points) Let a, b 6= 0 ∈ R be fixed. Find a basis for the subspace in R4 created
from intersecting

S = span
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Problem 3.

Let V be a finite-dimensional vector space.

a. (7 points) Suppose T ∈ L(V ) is such that every vector in V is an eigenvector of T .
Prove or disprove that T is a scalar multiple of the identity operator.

b. (13 points) Suppose T ∈ L(V ) is such that every subspace of V with dimension
dimV − 1 is invariant under T . Prove that T is a scalar multiple of the identity
operator.



Problem 4.

Let ‖ · ‖ denote an arbitrary vector norm on Rp. The matrix norm induced by ‖ · ‖ is
defined by

‖P‖ = max
x 6=0

‖Px‖
‖x‖

for each p× p real matrix P .

a. (7 points) Prove that ‖ · ‖ is a norm on the vector space of real p× p matrices.

b. (13 points) Let P be a p× p real matrix. Suppose that ‖P‖ < 1. Prove that I +P
is nonsingular and that

1

1 + ‖P‖
≤ ‖(I + P )−1‖ ≤ 1

1− ‖P‖
.



Problem 5.

Let V be an n-dimensional inner product space over F.

a. (5 points) Suppose T ∈ L(V ) and U is a subspace of V . Prove or reject: U⊥ is
invariant under T ∗ if U is invariant under T .

b. (5 points) Let T1 and T2 be two self-adjoint operators on V . Prove or reject:
T1T2 + T2T1 is also self-adjoint.

c. (10 points) Let T be a self-adjoint operator on V . Show that T is a nonnegative
self-adjoint operator on V if and only if the eigenvalues of T are all nonnegative
real numbers.



Problem 6.

a. (6 points) Let A ∈ Fn,n be a square matrix that satisfies A2 = A. Show that A is
similar to the diagonal matrix.

C =



1
. . .

1
0

. . .

0


=

[
Ir

0

]

That is, Ir is an identity square block of order r, 0 ≤ r ≤ n.

b. (6 points) Let A ∈ Fn,n, B ∈ Fn,n be square matrices such that A2 = A, B2 = B,
and AB = BA. Suppose P0 is an invertible matrix such that

P−10 AP0 =

[
Ir 0
0 0

]
Let B0 = P−10 BP0. Show that B0 is in the form of

B0 =

[
B1

B2

]
where B1 is of order r, and B2

1 = B1 and B2
2 = B2.

c. (8 points) Let A ∈ Fn,n, B ∈ Fn,n be square matrices such that A2 = A, B2 = B,
and AB = BA. Show that there exists an invertible matrix P such that P−1AP
and P−1BP are both diagonal, and the diagonal entries are 0 and 1 for both.
(Hint: Let P0 be the invertible matrix for A in part (b). Let Q1 and Q2 be invertible
matrices that serve the same role for B1 and B2, respectively. Use P0, Q1 and Q2

to construct the matrix P .)


