University of Colorado Denver
Department of Mathematical and Statistical Sciences
Applied Linear Algebra Ph.D. Preliminary Exam
January 18, 2019

Name: \qquad

Exam Rules:

- This is a closed book exam. Once the exam begins, you have 4 hours to do your best. Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your six best solutions.
- Each problem is worth 20 points.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations, and show calculations for numerical problems.
- If you are asked to prove a theorem, do not merely quote that theorem as your proof; instead, produce an independent proof.
- Begin each solution on a new page and use additional paper, if necessary.
- Write only on one side of paper.
- Write legibly using a dark pencil or pen.
- Ask the proctor if you have any questions.

> Good luck!
Total \qquad

DO NOT TURN THE PAGE UNTIL TOLD TO DO SO.

Applied Linear Algebra Preliminary Exam Committee:

Steve Billups, Julien Langou (Chair), Yaning Liu.

Problem 1.

1. Let x and y be distinct eigenvectors of a matrix A such that $x+y$ is also an eigenvector of A. Is $x-y$ necessarily an eigenvector of A ? Prove or give a counterexample.
2. Let S and T be linear operators on a finite-dimensional vector space over \mathcal{C}. Prove that $S T$ and $T S$ have the same eigenvalues.

Problem 2.

1. Prove or disprove: Two $n \times n$ real matrices with the same characteristic polynomials and the same minimal polynomials must be similar.
2. Let A be an $n \times n$ idempotent matrix (i.e., $A^{2}=A$) with real entries. Prove that A must be diagonalizable.

Problem 3. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be a list of n independent vectors in a vector space V. Show that the list of vectors

$$
\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}+\boldsymbol{v}_{1}
$$

is linearly independent if and only if n is odd.

Problem 4.

1. Let V_{1} and V_{2} be two non-trivial (neither $\{\mathbf{0}\}$ nor V) subspaces of a vector space V on \mathbb{F}. Show that there exists vector $\boldsymbol{v} \in V$ such that $\boldsymbol{v} \notin V_{1}$ and $\boldsymbol{v} \notin V_{2}$.
2. Show the result holds for any s non-trivial subspaces. In other words, let $V_{1}, V_{2}, \ldots, V_{s}$ be s non-trivial subspaces of a vector space V on \mathbb{F}. Show that there exists vector $\boldsymbol{v} \in V$ such that $\boldsymbol{v} \notin V_{1}, \boldsymbol{v} \notin V_{2}, \ldots, \boldsymbol{v} \notin V_{s}$.

Problem 5. Find real numbers x, y and z such that

$$
\int_{0}^{1}\left(\ln (t)-x-y t-z t^{2}\right)^{2} d t
$$

is minimal.

Hints:

$$
\begin{aligned}
& \int_{0}^{1} \ln (t) d t=-1 ; \quad \int_{0}^{1} t \ln (t) d t=-\frac{1}{4} ; \quad \int_{0}^{1} t^{2} \ln (t) d t=-\frac{1}{9} ; \\
& \int_{0}^{1} d t=1 ; \quad \int_{0}^{1} t d t=\frac{1}{2} ; \quad \int_{0}^{1} t^{2} d t=\frac{1}{3} ; \quad \int_{0}^{1} t^{3} d t=\frac{1}{4} ; \quad \int_{0}^{1} t^{4} d t=\frac{1}{5} .
\end{aligned}
$$

Problem 6.

Let n be an integer. Find all n-by- n matrices A with complex entries such that $A=A^{H}$ and

$$
A^{3}=2 A+4 I .
$$

Problem 7. Let m be an integer. Let $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots, \boldsymbol{\alpha}_{m}$ and $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{m}$ be two lists of vectors in a real inner-product vector space V. Prove if

$$
\left\langle\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}\right\rangle=\left\langle\boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{j}\right\rangle, i, j=1, \ldots, m
$$

then the subspaces $V_{1}=\operatorname{span}\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{m}\right)$ and $V_{2}=\operatorname{span}\left(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{m}\right)$ are isomorphic.

Problem 8. Let A and B be $m \times n$ and $n \times p$ matrices over \mathbb{R}, respectively.

1. Prove that $\operatorname{dim}(\operatorname{Null}(A B)) \leq \operatorname{dim}(\operatorname{Null}(A))+\operatorname{dim}(\operatorname{Null}(B))$. (Hint: it may be convenient to let $V=\left\{x \in \mathbb{R}^{p}: A B x=0\right\}$ and $W=\left\{y=B x: x \in \mathbb{R}^{p}, A y=0\right\}$. Then consider the map $T_{B}: V \rightarrow W$ defined by $T_{B}: x \mapsto B x$ for all $\left.x \in V\right)$.
2. Prove that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq \operatorname{rank}(A B)+n$.
