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Name:

Exam Rules:

• This is a closed book exam. Once the exam begins, you have 4 hours to do your
best. Submit as many solutions as you can. All solutions will be graded and your
final grade will be based on your six best solutions.

• Each problem is worth 20 points.

• Justify your solutions: cite theorems that you use, provide counter-examples
for disproof, give explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, do not merely quote that theorem as your
proof; instead, produce an independent proof.

• Begin each solution on a new page and use additional paper, if necessary.

• Write only on one side of paper.

• Write legibly using a dark pencil or pen.

• Ask the proctor if you have any questions.

Good luck!
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Problem 1.

1. Let x and y be distinct eigenvectors of a matrix A such that x + y is also an
eigenvector of A. Is x − y necessarily an eigenvector of A? Prove or give a coun-
terexample.

2. Let S and T be linear operators on a finite-dimensional vector space over C. Prove
that ST and TS have the same eigenvalues.



Problem 2.

1. Prove or disprove: Two n×n real matrices with the same characteristic polynomials
and the same minimal polynomials must be similar.

2. Let A be an n× n idempotent matrix (i.e., A2 = A) with real entries. Prove that
A must be diagonalizable.



Problem 3. Let v1,v2, . . . ,vn be a list of n independent vectors in a vector space
V . Show that the list of vectors

v1 + v2,v2 + v3, . . . ,vn−1 + vn,vn + v1

is linearly independent if and only if n is odd.



Problem 4.

1. Let V1 and V2 be two non-trivial (neither {0} nor V ) subspaces of a vector space
V on F. Show that there exists vector v ∈ V such that v /∈ V1 and v /∈ V2.

2. Show the result holds for any s non-trivial subspaces. In other words, let V1, V2, . . . , Vs

be s non-trivial subspaces of a vector space V on F. Show that there exists vector
v ∈ V such that v /∈ V1,v /∈ V2, . . . ,v /∈ Vs.



Problem 5. Find real numbers x, y and z such that∫ 1

0

(
ln(t)− x− yt− zt2

)2
dt

is minimal.

Hints: ∫ 1

0
ln(t)dt = −1;

∫ 1

0
t ln(t)dt = −1

4
;

∫ 1

0
t2 ln(t)dt = −1

9
;∫ 1

0
dt = 1;

∫ 1

0
t dt =

1

2
;

∫ 1

0
t2 dt =

1

3
;

∫ 1

0
t3 dt =

1

4
;

∫ 1

0
t4 dt =

1

5
.



Problem 6.

Let n be an integer. Find all n-by-n matrices A with complex entries such that A = AH

and
A3 = 2A + 4I.



Problem 7. Let m be an integer. Let α1,α2, . . . ,αm and β1,β2, . . . ,βm be two lists
of vectors in a real inner-product vector space V . Prove if

〈αi,αj〉 =
〈
βi,βj

〉
, i, j = 1, . . . ,m

then the subspaces V1 = span(α1, . . . ,αm) and V2 = span(β1, . . . ,βm) are isomorphic.



Problem 8. Let A and B be m× n and n× p matrices over R, respectively.

1. Prove that dim(Null(AB)) ≤ dim(Null(A)) + dim(Null(B)). (Hint: it may be
convenient to let V = {x ∈ Rp : ABx = 0} and W = {y = Bx : x ∈ Rp, Ay = 0}.
Then consider the map TB : V →W defined by TB : x 7→ Bx for all x ∈ V ).

2. Prove that rank(A) + rank(B) ≤ rank(AB) + n.


