
Optimal Collision Avoidance of Operational
Spacecraft in Near-Real Time

Final Report of the Spring 2011 Mathematics Clinic

Sponsored by SpaceNav, LLC

Department of Mathematical and Statistical Sciences

University of Colorado Denver

The Clinic Team

Student Participants

• Kannanut Chamsri

• Jeremy Doan

• Rebeccah Dutcher

• Yonas Getachew

• Pamela Hunter

• Michael Kasko

• Volodymyr Kondratenko

• Anna Le

• Danielle Matazzoni

• Austin Minney

• Mark Mueller

• Brian Wainwright

Faculty Advisor

• Alexander Engau

Sponsor Advisors

• Matthew Duncan

• Joshua Wysack

ii

Sponsor: SpaceNav

SpaceNav LLC is a Colorado-based aerospace engineering firm providing
technical solutions in the areas of Space Situational Awareness, Systems
Engineering, and Mission Operations. Their process-driven approach to
problem-solving enables to deliver on-time, error free products and services
in a variety of functional areas including Systems Engineering and Integra-
tion, Space Situational Awareness, Orbit Analysis Mission Operations, and
Advanced Concepts Research and Development Cell.

The SpaceNav team brings technical expertise and experience from a vast
number of programs spanning the U.S. Department of Defense (DoD), Na-
tional Aeronautics and Space Administration (NASA) and National Oceanic
and Atmospheric Administration (NOAA) customer base. Leveraging a pas-
sion for space combined with in-depth knowledge of space operations, Space-
Nav provides cost-effective solutions to a vast array of technical problems.

Figure 1: SpaceNav web site at http://www.space-nav.com

iii

http://www.space-nav.com

Acknowledgments

The math clinic is a key element in the mathematics education at UC Denver
and offers our students a unique experience to collaboratively learn, advance,
and apply their knowledge and skills to a challenging, real-life problem. How-
ever, we could not do it without the exceptional support by our sponsors who
commit resources and often dedicate a tremendous amount of their own time
to help us, and to help our students. Participating in a clinic for the first
time myself, I am most thankful to Matthew Duncan, President of SpaceNav,
and his colleague Joshua Wysack not only for making this clinic possible, but
also for taking an outstanding role in getting involved, showing students di-
rections, and spurring motivation by demanding results. Like many of the
students, I could learn a lot myself and stay indebted to Matt’s and Josh’s
patience, their encouragement, and our shared leadership throughout the full
semester. Needless to say, the problem offered is fantastic and remains an
active stimulation for further work or collaboration.

The ability to work with our students in such an open and interactive
learning environment is easily one of the best aspects that a clinic offers
also to faculty. I therefore like to recognize the wide variety of contributions
made by the twelve participating students ranging from literature reviews
and presentations to the class over independent studies and mutual tutoring
to the development or implementation of software and the compilation of
this final report. Despite regular guidance by faculty and sponsor advisers,
it is ultimately the students’ initiative and decision to take responsibility
that make a clinic successful, and I congratulate those for whom meeting
expectations was just the beginning but never enough.

Finally, I thank my colleague Stephen Billups for his service as Clinic
Director and his substantial contributions to the Math Clinic Program in our
department. While Steve’s repeated recruitment of partners and sponsors
keeps this program alive, his genuine interest and habitual willingness to

iv

share his experiences and offer advice truly fills it with life. I also like to
thank our Department Chair Michael Jacobson for trusting me with this
clinic and allowing me to learn along, and to Angela Beale, Lindsay Hiatt,
and Russel Boice for their continuous logistical and technical support.

Alexander Engau
Denver, June 2011

Student Acknowledgments to Sponsor

“Thank you for your organization of such an interesting class. It
was a great topic and a good experience of teamwork for me.”

Volodymyr Kondratenko

“I would like to thank you for your time and all the support for the
math clinic class. Showing up every single class was very impres-
sive; giving us advice, comments and explanations was creating
excellent working conditions. Your insight and your thoughtful
explanation made a complex problem easy to understand. With-
out your guidance and mentorship this class would have been
impossible.

For me, working on this problem gave me the opportunity to
prepare myself for conducting research and strengthening my ex-
perience, accumulating more professional knowledge, proficiency
and skills.

I wish you and your families comfort on difficult days, faith so
that you can believe, confidence for when you doubt, patience to
accept the truth, and I wish your company having excellent dis-
tribution to provide great profits to the company and the world.”

Kannanut (Mon) Chamsri

v

Table of Contents

The Clinic Team . ii
Sponsor: SpaceNav . iii
Acknowledgments . iv
Table of Contents . vi
List of Figures . viii

1 Introduction 1
1.1 Overview and Conduct of Clinic 5

1.1.1 Project Warmup (January-February) 6
1.1.2 Phase 1 Projects (February-March) 6
1.1.3 Phase 2 Projects (March-April) 8
1.1.4 Project Closeout (May) 9

1.2 Outline of Report . 9

2 Background 10
2.1 Satellites and Orbits . 10
2.2 Fundamental Orbital Mechanics 13

2.2.1 Planetary Motion and Two-Body Equation 15
2.2.2 Motion in Space: Spacecrafts and Rockets 16
2.2.3 Trajectory Changes by Hohmann Transfers 18

2.3 Coordinate Frames and Analytic Representations 23
2.3.1 From Cartesian Coordinates to Keplerian Elements . . 24
2.3.2 From Keplerian Elements to Cartesian Coordinates . . 27
2.3.3 Closed-Form Analytic Representation 28
2.3.4 Discussion of Implementation 35

2.4 Error Propagation and Collision Probabilities 37
2.4.1 Representation of Uncertainty Errors 38
2.4.2 Calculation of Collision Probabilities 39
2.4.3 Discussion of Implementation 43

vi

3 Optimization 45
3.1 Terminology and Model Assumptions 45
3.2 Strategies and Closed-Form Solutions 49

3.2.1 Miss Vector Approach 49
3.2.2 Probability Gradient Approach 52

3.3 Discussion of Implementation 54

4 Implementation 55
4.1 General Assumptions . 56
4.2 The Trade Space Tool . 56

4.2.1 Data Flow . 57
4.2.2 Inputs and Outputs . 59
4.2.3 Propagation Versus Interpolation 59

4.3 The Collision Module . 62
4.3.1 Data Flow . 63
4.3.2 Inputs and Outputs . 63
4.3.3 Calculation of TCA and Collision Probabilities 64

5 Experiment 68
5.1 Trade Space Comparison . 69
5.2 Discussion of Results . 70

6 Conclusion 72

List of References 75

A Other Web Resources 83

B Homework Assignments 85

C MATLAB Implementation 87
C.1 Running The Code . 87
C.2 List of Subfunctions . 89

C.2.1 Main Code: Satellite Model 91
C.2.2 Supplemental Code: Optimization 104
C.2.3 Supplemental Code: Analytic Form 113
C.2.4 Supplemental Code: Homework Solutions 119

C.3 Ephemeris Data Files . 126

vii

List of Figures

1 SpaceNav web site at http://www.space-nav.com iii

1.1 Artwork showing space debris in low and geostationary Earth
orbit (based on density data, but not to scale) 2

1.2 Generic decision flow chart for collision risk management . . . 4

2.1 Spatial density of equivalent satellite objects in low earth orbits 11

2.2 Spatial density of cataloged space objects in low earth orbits . 12

2.3 Spatial density of cataloged space objects in total 12

2.4 Illustration of a single-burn maneuver at t = tb and the cor-
responding trajectory change to avoid an original conjunction
at t = tc . 19

2.5 Illustration of a Hohmann transfer to change satellite trajectories 21

2.6 Output of the Kepler function showing the Keplerian elements
as a function of time in minutes, before pre-processing 31

2.7 Output of the Periodic Test function showing the power
spectrum of the Keplerian elements in the frequency domain . 32

2.8 Output of the Kepler function showing the Keplerian elements
as a function of time in minutes, after pre-processing 34

2.9 Two objects with low covariance interaction and collision risk 40

2.10 Two objects with larger covariance interactions and significant
ellipsoidal overlap resulting in a larger risk of collision 40

2.11 Illustration of the encounter plane and its basis vectors 41

2.12 Illustration of a probability surface with a secondary object . . 42

3.1 Encounter plane with the primary object at its origin and two
equiprobability curves for current risk and target risk 47

3.2 Two maneuver strategies for lowering the collision probability
and equiprobability curves from current to target risk 47

viii

http://www.space-nav.com

3.3 Illustration of the miss vector approach: the primary moves
directly along the miss vector in direction opposite to the in-
tersection of secondary and the physical encounter plane . . . 48

3.4 Illustration of the probability gradient approach: the primary
moves along the negative gradient in the probability space,
resulting in the shortest path out and away from the predicted
collision ellipsoid . 48

3.5 Magnitude of the optimal delta-v maneuver versus time of burn 54
3.6 Angle of the optimal delta-v maneuver versus time of burn . . 54
3.7 Reduced collision probability after the optimal delta-v maneuver 54

4.1 Generic data flow within the collision module 63
4.2 Illustration of miss distances: two object trajectories 66
4.3 Illustration of the distances between two objects over time . . 67
4.4 Illustration of the miss distances between two objects over time 67

5.1 2D contours of aggregate probabilities in full ∆v trade space . 69
5.2 2D contours of aggregate probabilities in negative ∆v space . . 70

A.1 Top 5 collision predictions by SOCRATES in early May 2011 . 84

C.1 Overview of functions in final MATLAB implementation . . . 88

ix

Chapter 1

Introduction

Scientific discoveries over the last centuries and technological breakthroughs
during the last few decades have fundamentally changed the way how we
organize and live our lives in the 21st century. Ongoing progress and its re-
sulting new challenges impact practically all areas of human activity includ-
ing medicine and drugs, public policy and service, transportation and energy,
engineering and economics, and new computing technologies. Besides private
and public research institutes, governments, and many other commercial or
non-profit organizations, one of the most successful and influential players is
the aerospace industry. Telecommunication and broadcasting; mobile data
exchange and wireless transmission; global positioning, geographic imagin-
ing, mapping, navigation, and planning; remote sensing, search, rescue, and
defense; weather forecasting and prediction; space exploration and astron-
omy – the list goes on and on of what we depend on space for, and what
particularly satellites provide for us on a routinely and often daily basis.

In consequence of the increasing exploration and exploitation of space,
already today there are more than 2,000 active satellites orbiting our planet,
about half of which at the relatively small altitude of 500 to 600 miles (for
comparison, the Earth’s mean radius is approximately 3,958.76 miles, or
6,371 kilometers). Since the launch of the first satellite Sputnik I by the
Soviet Union on October 4, 1957, according to the National Space Science
Data Center (NSSDC) Master Catalog a total of at least 6,642 spacecrafts
were launched into orbit as of May 2011, twenty thereof in 2011 with the
last one on April 26 (Progress M-10M) [22]. Soon, on June 10, they will be
joined by yet another: a new NASA Aquarius/SAC-D satellite is scheduled
for a joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Cient́ıficas

1

(SAC)-D mission that will map the salinity (concentration of dissolved salt)
at the ocean surface and improve our understanding of two major components
of Earth’s climate system: the water cycle and ocean circulation.

Fascinated by such satellite missions and in view of the vastness and per-
ceived emptiness surrounding our planet, it is easy to overlook the question
whether there is actually sufficient space for yet another satellite. In fact,
although there is still plenty of room for many more, an increasing amount
of space debris from previous missions has grown to pose a significant threat
to the safety of modern spacecraft operations. In addition to the current
estimate of about 22,000 trackable objects with a size of a golf ball or larger,
including discarded launch equipment or inactive satellites, there is an es-
timated number of roughly 350,000 extra pieces of fragments of broken up
spacecraft (such as nuts or bolts), equipment lost by astronauts (such as
screw drivers or gloves), or other debris from past collisions that are travel-
ing with relative velocities of up to 15 kilometers per second [7, 11]. Hence,
because of speed and size, respectively, the avoidance of spacecraft collisions
with these objects is of crucial importance but can become tricky and quite
challenging. The artwork in Figure 1.1 from the Science Photo Library of
the European Space Agency (ESA) alarmingly depicts this situation [12].

Figure 1.1: Artwork showing space debris in low and geostationary Earth
orbit (based on density data, but not to scale)

2

CHAPTER 1. INTRODUCTION

While this problem is known and discussed among industry practitioners
for a long time, two major debris-generating events during the last five years
have noticeably increased the concern in both the aerospace industry and
national governments. First, during a Chinese Anti-Satellite Missile Test
on January 11, 2007, the Chinese government intentionally destroyed one of
their own polar-orbiting weather satellites (Fengyun 1C) at an altitude of
537 miles (865 kilometers). Although the test was done in secret, it was later
announced publicly and until today remains that single event that produced
the largest amount of space debris in history, with a cataloged number of
3,135 pieces of debris as of May 20, 2011 and an estimated number of more
than 150,000 pieces larger than 1 cm according to the NASA’s Orbital De-
bris Program Office [16]. Two years later, on February 10, 2009, the U.S.
Iridium 33 communication satellite collided with the Russian Cosmos 2251
satellite at an altitude of 490 miles (789 kilometers). Whereas the Iridium
satellite was an operational part of a 66 satellite-constellation for the com-
pany, the Cosmos satellite had been inactive for nearly 10 years and was
non-operational without a working maneuver system. Although both satel-
lites had been tracked without indication of a critically close encounter, at
the time of closest approach the Iridium went silent and only after a few min-
utes a collision became apparent. This was the first time in history that two
satellites collided in orbit, and as of May 13, 2011 the U.S. Space Surveillance
Network (USSSN) has cataloged 547 pieces of debris (47 pieces of which have
already decayed from orbit) associated with Iridium 33 and 1,488 pieces of
debris (99 pieces of which have decayed) associated with Cosmos 2251 [15].

Because any debris produced subsequently endangers other pieces of equip-
ment, that often cost billions of dollars to build and launch, there is a clear
interest by the aerospace industry and commercial satellite operators in keep-
ing any more of these events from happening. In effect, collision risk man-
agement is now standard for all space operations, and close-approach predic-
tions of spacecrafts with other satellites or tracked debris are now published
routinely every day. Additional initiatives are also taken on the political
stage, and improved data sharing agreements are currently being developed
between commercial satellite operators together with the U.S. and other in-
ternational organizations. In particular, according to the goals laid out in
the 2010 U.S. Space Policy, “domestic and international measures to promote
safe and responsible operations in space; improved information collection and
sharing for space object collision avoidance; protection of critical space sys-
tems and supporting infrastructures, with special attention to the critical

3

interdependence of space and information systems; and strengthening mea-
sures to mitigate orbital debris” are now a central focus of the U.S. national
space programs to strengthen stability in space [23].

From an industrial, operational perspective, collision risk management
and collision avoidance (COLA) is a rather complex process that typically
involves at least the following four major steps (compare Figure 1.2):

1. Identification of all conjunction events over some future time span;

2. Assessment and quantification of the collision risk for each event;

3. Evaluation and action/no-action decision from satellite operators;

4. Development and execution of collision avoidance maneuvers.

Figure 1.2: Generic decision flow chart for collision risk management

In the above list, we typically refer to a conjunction between two objects
when their separation or difference in position violates an a priori specified
miss distance tolerance threshold value. Given the high velocities of these
objects together with the large distances from where their positions can be
measured, and considering the multiplicity of possible conjunction events at
any given point of time or time horizon, however, an optimal prediction,
evaluation, and reaction is faced by several severe challenges:

• Conjunction events are inherently uncertain and subject to both track-
ing inaccuracies and numerous other numerical or computational errors.

4

CHAPTER 1. INTRODUCTION

• The number of possible conjunction events grows exponentially with
the size of the space object catalog and the number of tracked objects.

• A successful collision avoidance maneuver for one conjunction may lead
to new conjunction events and increase the likelihood of other collisions.

Thus motivated, the goals of this clinic are to mathematically describe and
model the process of collision avoidance in an attempt to address the urgent
need of better planning or execution tools and methods. Specifically, this
report outlines an operational strategy that determines and reduces the risk
of collisions between a primary satellite and other spacecrafts or space debris
by altering the satellite’s trajectory. The ultimate objective of this effort
is to assist both researchers and practitioners in formulating tractable opti-
mization models and developing algorithms for this problem, and to make
recommendations for collision avoidance maneuvers in the future.

1.1 Overview and Conduct of Clinic

Despite the fact that mathematics clinics at UC Denver are offered as part
of the regular curriculum, these courses are typically run as much as possible
like real-world projects and focus around activities and initiatives led by the
students. As a consequence, most clinics have no or only very few lectures
at the beginning of the term, whereas most of the class time is then spent
working in individual groups to exchange, develop, and pursue new ideas and
learn how to effectively communicate strategies and results to each other.
For many students, this is the first opportunity to tackle a challenging and
important real-life problem whose solution is not to be found in a textbook
but only in their own deep analysis and understanding. Hence, students
typically do not only learn new mathematics and other subjects related to
the specific clinic topic, but especially successful students will also:

• gain experience in applying math to a challenging real-world problem;

• be exposed or get involved in an interdisciplinary industrial project;

• improve their oral and written (technical) communication skills;

• develop their (soft) project management and teamwork skills.

In addition to these educational objectives, of course the final clinic outcome
is equally important and should demonstrate a solid understanding and a

5

1.1. OVERVIEW AND CONDUCT OF CLINIC

clear step toward an acceptable solution of the originally posed problem. To
ensure the success of a clinic, this means that students, faculty, and sponsors
often need to work together as equal partners in the project activities. It is
important to emphasize, however, that a clinic is not intended to compete
with the private sector for providing professional consulting services or for
producing high-end software applications, but to offer a fresh look paired with
mathematical expertise in order to think up innovative solution strategies and
possibly prototype a couple of new approaches or ideas.

1.1.1 Project Warmup (January-February)

The final Spring 2011 clinic team consisted of 12 students (8 undergraduates
and 4 graduates) who where joined by one member from the UC Denver math
faculty and two advising representatives from the clinic sponsor SpaceNav
(also compare pages ii and iii). Over a period of sixteen weeks, between the
initial meeting on January 19 and the final project presentation on May 10,
we met twice a week excluding the week of spring break. During the first two
weeks (the last two weeks in January), the students were given an introduc-
tion to the class and clinic concept, a problem description by the sponsor,
and two faculty lectures on computing collision probabilities using 2D/3D
integration and Monte Carlo simulations, and times of closest approaches
between moving objects using optimization based on several journal articles
and technical reports [1, 2, 3, 6, 17, 29]. At the same time, students started
to review other basic literature and were given small writing and two home-
work assignments (see Appendix B) to independently learn or refresh their
working knowledge of the mathematical software system MATLAB [25] and
the text-processing system LATEX [18] which had to be used for all homework
assignments and other written materials in the clinic.

1.1.2 Phase 1 Projects (February-March)

Based on sponsor input, at the beginning of February students were separated
into five groups to prepare important background topics and acquire certain
mathematical prerequisites. Each group was assigned the same set of general
goals and objectives:

• to collect, learn, summarize, and explain all major findings to the other
students in the class (in both written and oral form);

6

CHAPTER 1. INTRODUCTION

• to identify aspects with opportunities for improvement and original
research (that could later lead to Phase II projects);

• to put their new knowledge and expertise to service for others through-
out the rest of the semester and project.

More specific tasks and key take-away points were customized to each indi-
vidual group by the sponsor:

1. Propagation of Error and Uncertainty (Anna, Danielle, Pam)

• Understand state errors, acknowledge that representation of errors
can be in the form of a covariance matrix.

• At close approach point, draw two error ellipsoids (note overlap).

• Generate a covariance time history via Monte Carlo simulation.

• Convert a covariance matrix from R-I-C frame to Cartesian frame.

2. Analytic Representation of Orbital Trajectories (Volodymyr, Yonas)

• Conversion of Cartesian to Keplerian element set.

• Examine time history to observe period behavior.

• Create Matlab script that takes as an input a Cartesian time his-
tory file; output time history of Keplerian file (make plots, etc).

• Explore different analytic representations for Keplerian element
sets. How do we measure the error between the original set and
the analytic representation? This needs to be sufficiently close.

3. Computation of Collision Risk Probabilities (Mark)

• Develop understanding between Monte Carlo, 3-D and 2-D ap-
proaches to computing collision probability.

• Create Matlab script that computes the 2-D collision probability.

• Draw the combined covariance matrix in the conjunction plane.

4. Trajectory Changes and Delta-V Maneuvers (Austin, Beccah, Mike)

• Hohmann Transfer describes an in-plane orbit change (assumes no
other perturbations to the orbit).

• Generic orbit change in the V-N-B frame.

7

1.1. OVERVIEW AND CONDUCT OF CLINIC

• Modify homework M-files to a script that does the propagation,
performs a delta-V maneuver, and then does more propagation.

• If you have a range of delta-Vs that you want to apply to a nominal
trajectory, modify above to loop . . . and then come up with a way
to collect and present the output.

5. Finding Points of Closest Approach (Brian, Jeremy, Mon)

• Create a Matlab script that takes as inputs two time history files
and outputs all close approach points for a (user specified) sepa-
ration distance. Does your algorithm find all minimums and then
only report the ones that violate the user specified threshold? Is
there a better, more efficient way to do this?

• How would you modify your script if you had to find separation
distances for multiple time history files . . . what if you only had
analytic expressions (vs time history files)?

The written outcomes from each of these groups are reported in Chapter 2.

1.1.3 Phase 2 Projects (March-April)

Based on those outcomes successfully achieved by the beginning of March,
for the second phase we decided to continue with only three groups focusing
primarily on mathematical models and optimization strategies to find op-
timal trajectory changes (Brian, Mark, and Yonas with help by Anna and
Danielle), the implementation of a software tool to compute and either man-
ually or automatically change satellite trajectories (Jeremy, Mike, Mon, and
Volodymyr), and a writing team who facilitated the collection of materials
(Austin and Beccah) and the compilation of the final report (Pam). All
teams worked largely independent of each other and received regular input
and feedback from faculty and sponsor advisers.

Following the original clinic concept, students were initially left with sig-
nificant freedom and independence to determine and explore new approaches,
take on responsibility, and also develop initiatives on their own. After an in-
troductory faculty lecture on basic principles of optimization models and for-
mulations, the optimization group combined knowledge from several Phase 1
projects (collision probabilities, trajectory changes, and closest approach
points) to investigate two existing approaches for trajectory optimization

8

CHAPTER 1. INTRODUCTION

from the literature [21, 24]. The mathematical derivation in Chapter 3 gives
a nice account of this study undertaken by these students.

Following feedback from the sponsor, the coding group directed its main
focus in Phase 2 on finishing and improving the computational tasks and
results from Phase 1 and writing several new program codes in MATLAB,
including routines to compute analytic approximations of satellite trajecto-
ries, the propagation of space objects based on interpolation between ob-
served states, and the enhanced computation of closest approach points (for
a full list, see Appendix C.2). Without a particular emphasis on new mathe-
matical developments, the explanations in Chapter 4 are kept at a relatively
general level and give a mostly verbal overview of some of the mathematics
underlying the actual code, that is fully given in Appendix C.2.1.

1.1.4 Project Closeout (May)

After an initial draft of this report was delivered by the writing team at the
end of April, it was distributed, proofread and collaboratively edited by the
full class. All major initiatives were completed during the first week of May,
in which two summarizing presentations were given to collect concluding feed-
back from the sponsor. The final presentation was rehearsed in the morning
of Tuesday 10th by Anna, Beccah, Mike, Pam, Volodymyr, and Yonas, and
given as part of the Operations Research Seminar on the same day by Austin,
Beccah, Brian, Danielle, Jeremy, and Mon. The presentation slides can be
requested by e-mail from alexander.engau@ucdenver.edu. The final report
was subsequently updated and eventually finished in the middle of June.

1.2 Outline of Report

The objective of this report is to provide a detailed account of the materials
we learned and the work we accomplished throughout the Spring 2011 clinic.
As indicated by the clinic overview in Section 1.1, the basic structure of this
report follows the two main phases providing some fundamental background
in Chapter 2, and summarizing activities by the optimization and coding
groups in Chapters 3 and 4, respectively. Based on some of these results,
Chapter 5 presents a small case study using data provided by our sponsor
SpaceNav. Concluding remarks are offered in the final Chapter 6 and followed
by our references and some supplemental materials in the appendices.

9

Chapter 2

Background

This section describes the topics we learned throughout the two phases of our
project. We begin with a brief overview of satellites and orbits in Section 2.1,
followed by three major sections on some orbital mechanics fundamentals in
Section 2.2, a description of different coordinate frames and possible trajec-
tory representations in Section 2.3, and a sketch of different ways to represent
and deal with the uncertainty in determining exact satellite positions and ve-
locities, and computing collision probabilities in Section 2.4.

2.1 Satellites and Orbits

To better understand the need of collision avoidance in practice, it is use-
ful to address how satellites are distributed in the space around our planet.
Obviously, each satellite will be launched at an altitude that matches its in-
tended functionality. For instance, the satellites that operate our cell phones
are in so-called geosynchronous or geostationary orbits. Geosynchronous or-
bits are typically used for satellites at an altitude of approximately 35,800
kilometers that have the same orbital period as the Earth. These circular
orbits sit on top of a specific point on the Earth and rotate along with us,
which allows the satellite to maintain its fixed relative position and provide
constant coverage. There are currently about 300 active satellites in geosyn-
chronous orbit. Because of the associated space limitations of this type of
orbit, there are international regulations governing the assignment of indi-
vidual longitude slots. In addition to communication satellites, this is also
a good orbit for many weather satellites like GOES and METEOSAT. From

10

CHAPTER 2. BACKGROUND

this altitude, one satellite can provide weather coverage for almost an entire
hemisphere [20].

The second type of orbits are the so-called Low Earth Orbits (LEO) that
correspond to an altitude of about 300 to 1500 kilometers. This altitude has
the highest concentration of satellites. Below the altitude of 150 kilometers,
an orbit will decay back into the Earth’s atmosphere. For example, the
Hubble Space Telescope is in a low Earth orbit at 600 kilometers and can
operate from an unobstructed view. In low Earth orbits, the period can
vary with altitude. For example, a satellite at 900 km will orbit the earth
14 times in a day. The low Earth orbits can be further divided into three
sub-categories:

• equatorial orbits near the Earth, where the satellite orbits the equator
at various distances and eccentricities (the elliptical shape of the orbit);

• polar orbits, where the satellite orbits the north and south poles at
various eccentricities and altitudes;

• specialty orbits, which can include spy satellites and other types of
satellites with special functions.

The density distribution of objects in orbit is indicated in Figure 2.1 [4].
Figures 2.2 and 2.3 depict similar information and were provided by Matthew
Duncan from our sponsor SpaceNav.

Figure 2.1: Spatial density of equivalent satellite objects in low earth orbits

11

2.1. SATELLITES AND ORBITS

Figure 2.2: Spatial density of cataloged space objects in low earth orbits

Figure 2.3: Spatial density of cataloged space objects in total

12

CHAPTER 2. BACKGROUND

There are several methods for tracking satellites in these different orbits.
Because satellite operators usually control satellites from a ground basis, con-
stant contact with the satellites is hugely important. There are a number
of tracking systems that can be used to find the instantaneous position of
a satellite and its rate of change. The majority of these systems uses radio
signals transmitted from a ground antenna. These radio tracking systems
perform angle measurements by locating the direction of a radio signal that
is transmitted by the satellite. The turn-around delay or Doppler shift of a ra-
dio signal that is sent and returned from the satellite can give both distance
and velocity information. If the satellites do not have an active transmit-
ter, then a sufficiently powered radar can be used for tracking. Because of
complications with ground-based tracking of LEO satellites, geostationary
satellites can be used to track another satellite via a relay transponder. It
is also possible to use GPS ranging signals to find position measurements on
board of a satellite without using a ground station at all. Another way of
tracking is to use optical sensors. Imaging telescopes can be used for finding
unknown spacecraft and debris as far out as geostationary distances. Satel-
lite laser ranging systems are very useful and obtain very accurate distance
measurements by measuring the time it takes for a laser pulse transmitted
to the satellite to be returned. These devices are mostly used for scientific
and geodetic missions that need very high precision [20].

2.2 Fundamental Orbital Mechanics

This section revisits some orbital mechanics fundamentals and lays out the
basics for planetary motion and its relationship to the motion of other, arti-
ficial space objects such as spacecrafts and satellites. Classic references for
this topic are the monographs by Bate, Mueller and White [5], Prussing and
Conway [26], Montenbruck and Gill [20], and Chobotov [10], among many
others. We begin our own attempt to explain how satellites move using the
laws of motion by Issac Newton and Johannes Kepler.

Newton’s laws of motion are the governing ideas behind all of orbital
mechanics, specifically the second and third law.

Newton’s Second Law: The sum of the forces acting on an object is equal
to the mass of the object times the acceleration of the object, which is

13

2.2. FUNDAMENTAL ORBITAL MECHANICS

also equal to the rate of change of the momentum of the object:

~F = m~a =
d~p

dt
. (2.1)

This equation is useful for both laws of gravity and for rocket propul-
sion.

Newton’s Third Law: For every action there is an equal and opposite re-
action:

~F12 = −~F21. (2.2)

Kepler came up with the laws of planetary motion in the 16th century.
Kepler mostly concentrated on planetary motion around the sun, but espe-
cially his third law is useful for any orbital motion.

Kepler’s Third Law: The square of the orbital period of an object in orbit
around a much more massive object is proportional to the cube of the
distance between the two objects:

P 2 = kr3 (2.3)

where k is a constant of proportionality.

The above laws can be combined by a simple matter of substitution and
rearrangement. If we write the period in terms of the orbit’s circumference
and assume a constant velocity of an object with mass m, we get that

P =
2πr

v
. (2.4)

If we square this value for P and use Kepler’s law, we obtain a value that is
equal to the centripetal force for circular motion:

4π2r2

v2
= kr3. (2.5)

Substitution into the former equations gives

m
v2

r
=

4π2m

kr2
(2.6)

14

CHAPTER 2. BACKGROUND

which can equivalently be written as

F =
4π2m

kr2
. (2.7)

This implies that the centripetal force keeping an object of mass m in orbit
about a larger object (of mass M) is equal to right side of the last equation.
By symmetry, the force must also be the same for the larger object M .
Regrouping and combining terms, we find that

F =
4π2Mm

kr2
. (2.8)

This equation gives a value for the force of gravity between two objects. If we
group the constants together, we obtain the universal gravitational constant

G =
4π2

k
≈ 6.673× 10−11 N m2 kg−2. (2.9)

Hence, the force of gravity between two objects of masses M and m is

F =
GMm

r2
. (2.10)

In order to apply this derivation to satellites in orbit, we only need to
substitute the mass of the satellite and the mass of the earth, and let the
distance r equal the radius of the earth plus the altitude of the satellite. The
resulting law provides much of the information needed when working with
satellites.

2.2.1 Planetary Motion and Two-Body Equation

Writing the scalar equation (2.10) in vector form, we recover Newton’s Law
of Gravitation:

~F =
−GMm~r

r3
(2.11)

where ~F is the force of gravity, G is the universal constant of gravitation, M
and m are the mass of the objects, and ~r is the position vector of magnitude
r = ‖~r‖. The quantity

r̈s =
−GMe~r

r3
(2.12)

15

2.2. FUNDAMENTAL ORBITAL MECHANICS

is defined as the acceleration vector for the satellite, and

r̈e =
−Gms~r

r3
(2.13)

is the acceleration vector of the Earth. The combined acceleration vector

r̈ =
−Gms~r

r3
+
−GMe~r

r3
(2.14)

is the pull of the two objects on each other. To write this acceleration as a
system of first order equations, first we define the velocity vector r as s. Then
we define the derivative s as the second derivative of the position vector r.
Now, if we define s in terms of the position vector r, we can write

ṙ = s

ṡ =
−µe~r

r3

(2.15)

Here, the acceleration vector is defined by the position vector times the scalar
−µe divided by the cubed radius. This is a system of six first-order differential
equations where the first three equations are given in terms of the (x, y, z)
components of the velocity vector, and the last three equations are given in
terms of the acceleration vectors. Using this system of equations, we can
easily solve the above differential equation, say by using the ode45 solver
in MATLAB as done for Homework 1 (compare Appendices B and C.2.4).
Running this solver produces time, position, and velocity of these objects in
space. Effectively, this is an approximation of the trajectory.

2.2.2 Motion in Space: Spacecrafts and Rockets

This section shows a derivation of the governing equation for the motion of
a spacecraft or rocket. Rockets work by conservation of linear momentum: if
there are no “outside” forces, then linear momentum is conserved and does
not change over time. The linear momentum formula is

~p = m · ~v (2.16)

where ~p is linear momentum, ~v is velocity, and m is mass. In the context
of rockets, gravity is an outside force, but for simplicity we will ignore any
gravitational forces on the rocket.

16

CHAPTER 2. BACKGROUND

Mass

Rockets burn fuel in order to accelerate, and the rocket’s mass decreases as
the fuel is burnt. Let

m(t) = mass of the rocket, including fuel, at time t (2.17)

and

dm(t) = change in the rocket’s mass during the time interval

from t to t+ dt due to the decrease in fuel.

Recalling the definition of change as a new value minus an old value, one can
write

dm(t) = m(t+ dt)−m(t) < 0. (2.18)

It is important to remember that dm(t) is always negative.

Velocity of the Rocket

Let ~v(t) and v(t) respectively be the velocity and the speed of the rocket at
time t, relative to an observer on the ground.

Velocity of the Rocket’s Exhaust

Let w be the speed of the exhaust relative to the rocket. For simplicity, we
will make two assumptions about the rocket’s exhaust:

1. The direction of the exhausted is opposite the direction of motion of
the rocket. This, for example, is the situation when a rocket is first
launched.

2. The speed of the exhaust, relative to the rocket, is constant.

Relative Motion

The exhaust’s simple motion hides an important but subtle point which we
now investigate. If, for example, the rocket is moving straight up, its exhaust
moves straight down. To be specific, let’s say the rocket is moving upward
at 1,000 meters per second relative to an observer on the ground, and its
exhaust is moving down at 100 meters per second relative to the rocket.
Then the motion of the exhaust relative relative to a observer on the ground
is 900 meters per second upward. Even though the exhaust is always pointed
down, the rocket and its exhaust are moving upward.

17

2.2. FUNDAMENTAL ORBITAL MECHANICS

Equation of Motion

The motion of our simple rocket is determined by conservation of linear
momentum. The momentum of the rocket at time t is the same same as the
momentum of the rocket at time t+ dt plus the momentum of the fuel burnt
during the time period t to t+ dt. The momentum of the rocket at time t is

m(t) · v(t). (2.19)

The momentum of the rocket at time t+ dt is

(m(t) + dm(t)) · (v(t) + dv(t)) . (2.20)

Now recall that dm(t) is negative. The momentum of the fuel burnt during
the time period t to t+ dt is

dm(t) · (v(t)− w) . (2.21)

By conservation of linear momentum

m(t) · v(t) = (m(t) + dm(t)) · (v(t) + dv(t))

− dm(t) (v(t)− w)
(2.22)

yielding

m(t) · v(t) = m(t) · v(t) +m(t) · dv(t) + dm(t) · v(t) + dm(t) · dv(t)

− dm(t) · v(t) + dm(t) · w. (2.23)

2.2.3 Trajectory Changes by Hohmann Transfers

In order to avoid conjunctions and potential collisions between space objects,
at times we may need to re-maneuver spacecrafts or satellites using certain
trajectory changes caused by extra fuel burns; see Figure 2.4 [24].

The idea behind Hohmann transfers between elliptical orbits is to move
a satellite from its current orbit to another orbit. It is named after Walter
Hohmann (1880-1945), a German engineer interested in interplanetary space
travel who, after reading about it in science fiction books, began to study
orbital dynamics. In his book The Attainability of the Heavenly Bodies [13,
14], Hohmann outlined many of his findings about interplanetary space travel
including an approach to optimize the increase of energy that a spacecraft

18

CHAPTER 2. BACKGROUND

Figure 2.4: Illustration of a single-burn maneuver at t = tb and the
corresponding trajectory change to avoid an original conjunction at t = tc

needs in order to change from its current orbit to another. Because this
increase in energy is typically caused by a physical change in velocity, such
maneuvers are also called delta-v maneuvers and denoted by ∆v. Whereas
the motivation to Hohmann was to send a satellite from an orbit around
Earth to another planet, our own motivation is to move a satellite from a
collision orbit to another, preferably non-collision orbit. Thus, a discussion
of delta-v maneuvers is important for addressing possible solution methods
investigated in this project.

The Hohmann transfer lays a groundwork for the orbital mechanics of
satellites. Because Hohmann was studying orbital mechanics before actual
space travel had been attempted (recall that the first satellite in space was
Sputnik I in 1957), he imposed several fundamental assumptions that are
still standard within the study of celestial mechanics. Before deriving the
equations that are necessary to explain a Hohmann transfer, we summarize
and explain the three major assumptions that the maneuver is built upon:

1. We assume Newtonian Gravity so that we consider the Earth to be
a point-mass system. This is a common assumption within the gen-
eral study of orbital mechanics and only rarely changed to alternatives
systems one might be working within for some other specific problem.

2. We assume that both of our two impulse velocity changes (our satellite
“burns”) are instantaneous. This assumption is typically satisfied as
long as the burns are under a minute, which is often the case. For
accuracy within the specific system that one might be studying, the

19

2.2. FUNDAMENTAL ORBITAL MECHANICS

delta-v impulses become exact. The Hohmann transfer simply makes a
generalization about the velocity changes necessary for orbit transfer.

3. We assume that the orbits of the satellites and other space vehicles
or debris are co-planar. If the satellites in question are not co-planar,
then the equations become much more difficult and a different delta-
v maneuver becomes necessary for the satellites in question. Having
co-planar orbits, on the other hand, allows for studying orbit trans-
fer without the need of additional dimensions which keeps the algebra
relatively simple.

Clearly, we know in many cases that these assumptions are not perfectly
true. In view of the first assumption we know that the earth is nowhere
near a perfect point mass: it has a varied surface, and we know that there
are much more complicated gravity models for the earth. In view of the
second assumption, we know that velocity changes cannot be instantaneous,
so there is an error involved with this calculation. However, we know that if
the velocity transfer is fast, say less than a minute, then the error involved
in calculation is close to zero. Finally, in view of the third assumption, our
experience with these problems is that satellites are rarely ever co-planar, but
rather inclined toward each other which escalates the amount of calculation
involved. Some other aspects that violate the above simplifications and may
render the computation of Hohmann transfers questionable are continuous
thrust, and situations where more than two delta-v maneuvers are needed.
More subtle deviations may also arise from other gravitational forces from
the moon or sun causing drag or other non-measurable effects. Although
such forces may not violate our assumptions completely, over time they may
allow for sufficient error to build up and eventually become significant.

Despite these limitations, there is a reason that the Hohmann transfer is
still relevant and used to this day. First, it is one of the simplest explanations
to understand orbit transfer. Hence, by looking at a rather simple Hohmann
transfer we can develop an idea of the orbital mechanics necessary to alter a
satellite’s trajectory and subsequently avoid satellite collisions. This gives a
useful foundation on which further progress in this clinic can be based.

Let us now suppose that the above assumptions are satisfied, and let

F =
µm

r2
(2.24)

where F denotes force, µ ·m is the constant for G ·M ·m which is the product
of gravitational constant with mass M of the Earth and the mass m of the

20

CHAPTER 2. BACKGROUND

satellite, and r is the distance between the two masses. Assumptions 1 and 2
imply that the orbits are Keplerian and correspond to conic orbits. Moreover,
under Newtonian gravity which applies to the satellite in question, we know
that the total mechanical energy as well as all angular momentum will be
conserved. Hence, we can solve for the delta-v maneuvers by manipulating
the energy equations.

Figure 2.5: Illustration of a Hohmann transfer to change satellite trajectories

Compare Figure 2.5. The Hohmann transfer starts from the initial circu-
lar orbit of radius R1, where we know that its circular speed is given by

V1 =

√
µ

R1

. (2.25)

Because we want to end on a final circular orbit of radius R2, we can compute

21

2.2. FUNDAMENTAL ORBITAL MECHANICS

the required circular speed as

V2 =

√
µ

R2

. (2.26)

Now, to derive the Hohmann transfer equation for elliptical orbits, we let the
transfer be achieved by performing a thruster burn at R, for some unknown
velocity change ∆V . This maneuver places the spacecraft on new elliptical
orbit with a corresponding perigee speed

Vp = V + ∆V. (2.27)

Analogously, the resulting apogee speed is

Va = V ′ + ∆V ′. (2.28)

Observe that when the apogee is reached, a second ∆V ′ maneuver must be
performed to re-circularize the orbit at R′ to prevent the satellite from falling
back down again.

Now, to solve equations (2.27) and (2.28) for ∆V and ∆V ′, we need to
determine the transfer orbit. In order to do this we use our assumptions
of conservation of angular momentum, and conservation of total mechanical
energy.

Conservation of angular momentum

First, by conservation of angular momentum, we know that

R · (V + ∆V) = R′ · V ′ (2.29)

which can be solved for V ′:

V ′ =
R

R′
· (V + ∆V). (2.30)

Conservation of total mechanical energy

Second, by conservation of total mechanical energy, we know that the term

1

2
mV 2 − µ

R
(2.31)

22

CHAPTER 2. BACKGROUND

is constant. Hence, after setting the energy at the apoapsis equal to the
energy at the periapsis, we can find the solution for the initial ∆V :

∆V =

√
µ

R

(√
2R′

R′ +R
− 1

)
. (2.32)

Similarly, the ∆V ′ solution is

∆V ′ =

√
µ

R′

(
1−

√
2R′

R′ +R

)
. (2.33)

These delta-v equations give us the change in velocity in order to “jump”
from one elliptical orbit to another and form one possible basis for our ulti-
mate goal to build a program that can optimally alternate the trajectories
of satellites that are on a known, close collision path. In continuation of this
idea, the approaches described in Chapter 3 propose techniques to actually
define the minimally required delta-v to calculate an in some sense optimal
trajectory change when presented with an obstacle.

2.3 Coordinate Frames and Analytic Closed-

Form Representations

It is often convenient to represent satellite positions and trajectories in one
of several available coordinate frames.

Cartesian/Earth-Centered Inertial (ECI) Frame: The Cartesian sys-
tem or Earth-centered inertial (ECI) frame has its origin at the center
of the Earth. It uses the common (x, y, z) elements of the satellite’s po-
sition, and the (ẋ, ẏ, ż) elements of its velocity, where the x-axis points
toward the vernal equinox, the y-axis points along the Earth’s axis of
rotation, and the z-axis is perpendicular to the x and y axes. The
term “inertial” means the law of inertia holds. The implication is the
coordinate system does not rotate with the Earth, but it is fixed with
respect to the stars.

Keplerian Frame: The Keplerian frame also uses sets of six elements that
are denoted by (a, e, i,Ω, ω,M) and described in more detail in Sec-
tion 2.3.1 below.

23

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

Radial/In-Track/Cross-Track (RIC) Frame: Calculations involving a
single satellite often use a coordinate system in which the satellite is
the origin. One axis points in the radial direction, that is from the
center of the Earth toward the satellite. This is called the radial axis.
A second axis, called the in-track axis, points in the general direction
of the satellite’s velocity vector but perpendicular to the radial axis.
(The velocity typically is not perpendicular to the radial axis.) The
third axis is orthogonal to these axes and called the cross axis. This
coordinate system is called the radial-in-track-cross (RIC) frame.

Encounter Frame: Finally, calculation that involve the encounter of two
satellites also use a fourth coordinate system based on the satellites’
relative positions and velocities. One of the satellites, the “primary”,
is chosen as the origin. The y-axis points along the direction of their
relative velocity. The plane through the origin, perpendicular to the
y-axis is known as the “encounter plane.” The secondary satellite will
pass through the encounter plane at some point (unless there is a col-
lision). The x-axis points from the origin to that point. The z-axis is
orthogonal to the other two axes. This coordinate system is called the
encounter frame.

In the following section, we briefly describe how to convert the position
and velocity of a satellite given in the ECI (Cartesian) frame to Keplerian
element sets and vice versa. A useful reference for this is given by Shapiro
[27]. The RIC frame and the encounter frame will become important later,
for the discussion of collision probabilities in Section 2.4.2.

2.3.1 Conversion From Cartesian Coordinates to Ke-
plerian Elements

To convert from Cartesian coordinates to Keplerian elements, we first calcu-
late the angular momentum vector ~h and the node ~n:

~h = ~r × ~v
~n = k̂ × ~h.

(2.34)

Since the position and velocity are in the orbital plane of the satellite, ~h
points in the normal direction of the orbital plane. The node vector ~n points

24

CHAPTER 2. BACKGROUND

in the direction of the intersection of the orbital and the equatorial plane,
called the ascending node.

Eccentricity (e)

The eccentricity determines the shape of the orbit. The eccentricity is a
number between 0 and 1: if e = 0, then the orbit is circular and if e ≈ 1,
then the orbit is highly elliptical. The eccentricity is calculated from the
eccentricity vector point in the direction of perigee (closest approach) and is
defined as

~e =
1

µ

[(
v2 − µ

r

)
~r − (~r · ~v)~v

]
. (2.35)

The scalar value of the eccentricity is calculated as the norm of the eccen-
tricity vector:

e = ‖~e‖. (2.36)

Semi-major axis (a)

The semi-major axis of an orbit describes the size of the orbit. In an ellipse
with the Earth at one focus, the semi-major axis defines the furthest point
at which the orbiting object (satellite) orbits the Earth. A large value of a
indicates that the object orbits at a large distance from the Earth, whereas
a small value of a indicates that the object orbits within a smaller radius.
The semi-major axis is calculated as

~a =
~h · ~h

µ(1− e2) . (2.37)

Inclination Angle (i)

The inclination angle determines the orientation of the entire orbit. The
inclination angle is defined either as the angle between the equatorial plane
and the orbit plane, or as the angle between the North pole (z-axis) and the

normal to the orbital plane (direction of ~h). The equation to find i is

i = cos−1

(
k̂ · ~h
h

)
(2.38)

where the inverse cosine is defined so that 0 ≤ i < π.

25

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

Right Ascension of Ascending Node (Ω)

The right ascension Ω describes the location of the ascending node with
respect to the x-axis in the ECI frame. Using the node defined in equation
(2.34), we get

Ω = cos−1

(
ı̂ · ~n
n

)
. (2.39)

Note that because cos−1(x) gives angles between 0 and π, if the direction of
the ascending node has a negative y component then Ω is in the negative
y-axis and has value between π and 2π. Hence, we define Ω as follows:

If ~n · ̂ < 0 then Ω = 2π −
[
cos−1

(
ı̂ · ~n
n

)]
. (2.40)

Argument of Perigee (ω)

The argument of perigee is the angle between the ascending node and the
direction of perigee given by ~e:

ω = cos−1

(
~n · ~e
e

)
. (2.41)

For the same reason as above, we set ω as follows:

If ~e · k̂ < 0 then ω = 2π −
[
cos−1

(
~n · ~e
e

)]
. (2.42)

Mean Anomaly (M)

The mean anomaly is also known as Kepler’s equation and calculated as

M = E − e sin (E) (2.43)

where E is the eccentric anomaly described below.

Eccentric Anomaly (E) The eccentric anomaly is the angle between the
semi-major axis and the satellite in the orbit plane.

E = cos−1

(
e+ cos (θ)

1 + e cos (θ)

)
(2.44)

where θ is the true anomaly described below.

26

CHAPTER 2. BACKGROUND

True Anomaly (θ) The true anomaly is simply the angle between the
perigee, the eccentricity vector, and the position vector of the satellite. Using
the dot product, it is given as

θ = cos−1

(
~e · ~r
re

)
. (2.45)

For the same reason as described for equations (2.40) and (2.42), it is modified
if necessary:

If ~r · ~v < 0 then θ = 2π −
[
cos−1

(
~e · ~r
re

)]
. (2.46)

2.3.2 Conversion From Keplerian Elements to Carte-
sian Coordinates

The next step is to go from a Keplerian element set to ECI (Cartesian)
coordinates given only the six elements a, e, i, Ω, ω, and M . The first
parameter to be calculated is the eccentric anomaly by solving equation (2.43)
for E. Since it is easier to do this numerically, the algorithm shown as
Algorithm 1 is usually used instead. The final eccentric anomaly from the
loop is the value we use for E.

Algorithm 1: Eccentric Anomaly

i = 1

Ei = M

tolerance = 1e-15 % Note: value can be changed by user.

difference = 1

while difference ≥ tolerance do

Ei+1 = Ei −
Ei − e sinEi −M

1− e cosEi

difference = |Ei − Ei−1|
if difference ≤ tolerance then

Exit the loop

end if

i = i + 1

end while

Next, we use ω and Ω to find the unit vectors of the perifocal coordinate
system. The perifocal coordinates are based on the motion of the satellite

27

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

in that two of its three components are inside its orbital plane. The vector
~P points along the periapsis (closest approach) and the vector ~Q is rotated
90◦ in the direction of the orbital motion. The third component that is
determined by ~P × ~Q points orthogonal to the orbital plane into the same
direction as ~h.

Hence, after some algebra and by writing ~P and ~Q in terms of the Kep-
lerian elements we find that

Px = cos (ω) cos (Ω)− sin (ω) cos (i) sin (Ω)

Py = cos (ω) sin (Ω) + sin (ω) cos (i) cos (Ω)

Pz = sin (ω) sin (i)

Qx = − sin (ω) cos (Ω)− cos (ω) cos (i) sin (Ω)

Qy = − sin (ω) sin (Ω) + cos (ω) cos (i) cos (Ω)

Qz = sin (i) cos (ω).

(2.47)

These six components make up the vectors ~P and ~Q as shown below:

~P = Pxı̂+ Py ̂+ Pzk̂

~Q = Qxı̂+Qy ̂+Qzk̂.
(2.48)

Finally, from equation (2.48) we see that ~r and ~v are defined as

~r = a(cos (E)− e)~P + a
√

1− e2 (sin (E)) ~Q

~v = −a(sin (E))E ′ ~P + a
√

1− e2 (cos (E))E ′ ~Q,
(2.49)

where

E ′ =
1

(1− e cos (E))

√
µ

a3
. (2.50)

2.3.3 Closed-Form Analytic Representation

The next task after converting Cartesian coordinates from the ECI frame
to Keplerian elements is to determine or approximate their analytical ex-
pression. The main source we used to solve this problem was the analysis
offered by Liu and Segrest [19] who discuss the frequency domain using Fast
Fourier Transformations (FFT). More specifically, they outline a method to
represent the orbital elements with general analytical expressions of the form

Xj =
∑̀

i=0

Xs
jit

i +
m∑

k=1

Xp
jk cos (θ̇jkt+ φjk) (2.51)

28

CHAPTER 2. BACKGROUND

where the index j = 1, 2, . . . , 6 stands for the six Keplerian elements. The
Xj0 terms represent the initial values of the elements without the periodic
terms, and the superscripts s and p represent the polynomial and periodic
terms, respectively. The first term on the right hand side of equation (2.51)
is the polynomial term where the Xs

ji terms are the coefficients of the non-
periodic (polynomial terms) terms. The second term on the right hand side
of equation (2.51) is the periodic term where the terms Xp

jk, θ̇jk, and φjk are
the amplitude, frequency, and phase angle of the periodic term, respectively.

The authors continue to describe the following technique to find the an-
alytical expressions of the Keplerian elements.

1. First, compute the terms Xp
jk, θ̇jk, and φjk using a Fast Fourier Trans-

form (FFT) for a specific periodic motion of a Keplerian element. Then
remove the entire periodic component form Xj by adding the out-of-
phase term

Xp
jk cos (θ̇jkt+ φjk + π) (2.52)

to the periodic term Xp
jk cos (θ̇jkt+ φjk). The result of this step is

that the periodic term in equation (2.51) is 180◦ out of phase with
equation (2.52) and therefore cancel outs.

2. Next, after all the periodic terms are canceled out, only the polynomial
terms will remain. Hence, it is now possible to find the analytical
expression and to determine the coefficients Xs

ji of the polynomial terms
using interpolation techniques.

3. Finally, combine the polynomial terms determined in the previous step
with the periodic terms from the first step, by adding the appropri-
ate terms to produce a time dependent expression for the particular
Keplerian element Xj.

Below we describe the work involved in three three steps in a little bit
more detail. Whereas the authors’ original discussion contains an analysis
using their own data of Keplerian elements, in our analysis we use data
provided by our sponsor SpaceNav formatted as a column of equally spaced
time stamps with corresponding position and velocity measurements in the
(x, y, z) ECI frame. Hence, we first need to convert the ECI coordinates into
Keplerian elements as described earlier in Section 2.3.1.

As mentioned for the first step above, the primary technique to find the
amplitude, frequency, and phase is the FFT method which involves the trans-
formation of a time signal into a frequency signal to better or more efficiently

29

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

describe some of the parameters involved. The FFT is the transformation
of N time dependent signals into a frequency dependent signal. The result
is a complex number of length N . We can weigh out the results of the FFT
signals by N and then find the (power) spectrum of the signal by taking only
half (N/2) of the complex weighted signals and squaring them.

The plot of the Keplerian elements before we find the spectrum is shown
as a function of time in Figure 2.6. There are several things to note:

1. The entire range of the data is not shown, but we zoomed in to about
the first fourth of the entire data span.

2. The periodicity of the Keplerian elements depends somewhat on the
data, and for different types of orbits the shape of some of the param-
eters could be slightly different.

To restate the purpose of our analysis, recall that we are interested to
simplify these seemingly busy, cumbersome, and quite complex plots of the
time dependent signal in order to allow their easy interpretation once we find
the power spectrum. Using the FFT function in MATLAB, we can directly
determined the spectrum of the Keplerian elements. The results we got are
shown in Figure 2.7 with logarithmic scales on both axes. Note here that
since we are moving to the frequency domain, it is natural to adjust the axes
to log scale to see the entire spectrum, and to re-adjust (go back to linear
scale) only later as needed. It is also important to notice that the first decade
of the data is irrelevant in determining frequency because it is a contribution
from low or zero frequency measurements.

The graphs shown in Figure 2.7 should be interpreted carefully because
they do not necessarily represent the actual amplitude (power) spectrum.
This is mainly because a low frequency component of the signals (DC in
analysis) is present in the first decade, from 10−6 to 10−5 on the x-axis. This
low frequency part does not contribute to the periodicity of the signal but
rather offsets the entire spectrum by a particular amount. Moreover, the DC
component usually has a large magnitude which subsequently has an effect
of “swallowing-up” or “leaking into” near-by measurements. The resulting
effect of this is to raise (or lower) close-by measurements.

There is a common method in signal analysis called off-setting or zeroing
out the DC term, which involves subtracting the average of the entire signal
from each component of that same signal. For example, suppose that we have
a time dependent signal f(t) with N components given by (f1, f2, . . . , fN)

30

CHAPTER 2. BACKGROUND

(a) Semi-MajorAxis vs. time. (b) Eccentricity vs. time.

(c) Inclination vs. time. (d) Right ascension of ascending node
vs. time.

(e) Argument of perigee vs. time. (f) Mean anomaly vs. time.

Figure 2.6: Output of the Kepler function showing the Keplerian elements
as a function of time in minutes, before pre-processing

31

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

(a) Spectrum of the semi-MajorAxis on
a log-log plot.

(b) Spectrum of the eccentricity vs. fre-
quency.

(c) Spectrum of the inclination angle. (d) Spectrum of right ascension of as-
cending node.

(e) Spectrum of the argument of perigee. (f) Spectrum of the mean anomaly.

Figure 2.7: Output of the Periodic Test function showing the power
spectrum of the Keplerian elements in the frequency domain

32

CHAPTER 2. BACKGROUND

whose average is denoted by f̄ = (
∑N

i=1 fi)/N . The new signal looks like
(f1− f̄ , f2− f̄ , . . . , fN − f̄). This is done to bring the magnitude of the signal
close to the zero on the y-axis which enables the signal to be represented as
much as a purely sinusoidal signal as possible. However this method only
works for functions that are oscillating between two constant values like the
spectrum in Figures 2.6(a), 2.6(b), 2.6(e), and 2.6(f).

The other issue to consider when interpreting log plots is that equally
spaced peaks in the spectrum may appear to be bunched up on the right side
of the decade. This is shown in all the graphs in Figure 2.7 but 2.7(d). So we
improve this effect by plotting the power spectrum with a linear x-axis and a
logarithmic y-axis. Figure 2.8 shows the combined result of the zeroing out
the low frequency and adjusting the log x-axis to a linear scale. Note again
that the entire range of the data is not shown and that the periodicity of the
Keplerian elements depends somewhat on the data.

There are two important frequencies in a time signal to check in every
equally spaced signal, the sampling frequency, and the Nyquist frequency:

• The sampling frequency fs = 1/(∆t) = 1
(ti−ti+1)

is the number of sam-

ples per second taken, and a particular value of the sample represents
the magnitude of the input signal at the sampling frequency.

• The Nyquist frequency fN = 1
2
fs is defined such that for the signal

analysis to have any meaning the sampling frequency should be at
least twice the Nyquist frequency. Another way to state this is that the
sampling frequency should be at least two times the highest frequency
contained naturally in the signal.

It is important to mention that there are other sources that define these
two frequencies differently; for example, sometimes the sample frequency is
used instead of the Nyquist frequency. In our case, up to this point the
frequencies in Figures 2.7 and 2.8 were found by weighting the N/2 bins that
were constrained by the Nyquist frequency. Hence, the frequencies have the
form

f =
kfN

N/2
for k = 1, 2, . . . , N/2. (2.53)

The first parameters to be calculated from the FFT are the frequencies θ̇jk

from equation (2.51). So naturally the next step is to describe the important
features of the FFT so that the numerical methods give reasonable results.

33

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

(a) Spectrum of the semi-MajorAxis on
log-linear scale after DC offset.

(b) Spectrum of the eccentricity vs. fre-
quency on log-linear scale after DC off-
set.

(c) Spectrum of the inclination angle on
log-linear scale without DC offset.

(d) Spectrum of right ascension of as-
cending node on log-linear scale without
DC offset.

(e) Spectrum of the argument of perigee
on log-linear scale after DC offset.

(f) Spectrum of the mean anomaly on
log-linear after DC offset.

Figure 2.8: Output of the Kepler function showing the Keplerian elements
as a function of time in minutes, after pre-processing

34

CHAPTER 2. BACKGROUND

In order to use FFT for performing a Discrete Fourier Transform (DFT), the
input to the FFT needs to be equally spaced data [19].

Moreover, if the sampling frequency has a low rate, then the frequency
components with values greater than fs/2 will be merged with, or ‘fold back’,
into the analyzed spectrum and alter the result in a phenomenon known as
‘aliasing’ in signal analysis. For now, we are not sure if the data we get has
a low sampling frequency. The common solution to ‘aliasing’ is to take a
different set of data with a different sampling rate and find the spectrum.
Unfortunately, we are only provided with data with a fixed sampling rate.

Several other aspects were mentioned in the original paper [19], including
the importance of a correct interpretation of frequency and phase angles
for which the authors propose the Blackman amplitude weighting methods
together with frequency centering techniques from signal analysis. In view
of the above difficulties, these techniques were not studied any further.

2.3.4 Discussion of Implementation

Based on the graphs in Figure 2.6 we can observe that the Keplerian elements
have a decaying periodic form that can be modeled using periodic and poly-
nomial functions. Hence, under the additional assumption that the decaying
term goes down linearly, we expect to be able to find analytic expressions for
the elements by decomposing the time signal into linear and trigonometric
terms.

Analytic form.m

Given periodic data, we construct a MATLAB function Analytic form to
compute the coefficients of an analytic expression of the form

F (x) = T (x) + P (x), (2.54)

where T (x) represents the periodicity by trigonometric functions and P (x)
contains the linear offset of the data as a polynomial. We assume that F (x)
is given as discrete data, for example, as time history of a Keplerian element
set based on which the analytic form needs to be formulated.

• Input: There are four inputs into the function Analytic form each of
which is described below:

35

2.3. COORDINATE FRAMES AND ANALYTIC REPRESENTATIONS

data: the vector from periodic data of Keplerian elements needed to
be transformed to analytic form;

period: the period of the data;

start pnt: the number of the vector element, that is starting point of
the first cycle;

crcl num: the number of total cycle.

• Output: The outputs labeled T and P are arrays that contain all the
coefficients needed to construct the trigonometric and polynomial form.

First, we interpolate on one cycle where we we take a first cycle from
start pnt of length period, and find the function T (x). Next, we interpolate
for the polynomial expression of the data by subtracting the periodic part
from the general Keplerian element data F (x), simply yielding P (x) = F (x)−
T (x). To find the linear function that starts at the beginning of the first cycle,
we label the first point where the periodicity starts as A and let the last point
of the last given cycle be the second point denoted by B. Each cycle is part
of the same data history with a total number of elements equal to its period,
so that ideally all elements are equal to the elements of any other cycle. After
we found points A and B, we build P (x) as that function that goes through
this two points by the slope formula

x− A(x)

B(x)
− A(x) = y − A(y)

B(y)
− A(y). (2.55)

Here, the coefficients for the polynomial function are found by evaluating the
trigonometric function at the points A and B.

Run analytic form.m

The function run analytic form creates a sample of bigger size from a given
sample of Cartesian coordinates. This routine can be used in cases where our
own two data files (input data of time history of two objects) are of different
size. In this case, to make them of the same size, we need to increase the
size of smaller file by increasing its data history.

• Input: The inputs to the function run analytic form are as follows:

36

CHAPTER 2. BACKGROUND

data: the first column contains time in seconds, columns two to four
contain position of in the ECI fame, and columns five to seven
contain the corresponding velocity;

period: an array of six periods for the six Keplerian elements a, e, i,
Ω, ω, and M ;

sample num: the size of the sample for the output data;

dt: the time step for output data in seconds.

• Output: A sample of Cartesian coordinates for time history of an
object for a needed size.

The way this function works can be separated in several steps:

1. The time history of the satellite is converted into Keplerian elements.

2. The analytic form of each Keplerian element is determined as a sum of
trigonometric and polynomial form.

3. Using these analytic form expression we create a sample of bigger size
for each set of the Keplerian elements.

4. We convert the set of Keplerian elements back to the Cartesian history,
which now has a bigger size.

Form calc.m

Finally, the function form calc.m takes all the coefficients for trigonometric
and polynomial components that we get from analytic form as input and
calculates the value of a particular Keplerian element at any given time t.
This function is a subfunction of run analytic form and can be used in the
case that we have two input files of different sizes.

2.4 Error Propagation and Computation of

Collision Probabilities

In addition to the computational challenge of finding good representations
of satellite trajectories with inevitable numerical errors and inaccuracies,
another key source of error is the difficulty to accurately track objects in
space and determine their current, actual positions and velocities. Clearly,

37

2.4. ERROR PROPAGATION AND COLLISION PROBABILITIES

to identify an optimal collision avoidance maneuver, it therefore is important
to understand how error in trajectories can be represented and dealt with.
Let us begin to define an error in trajectory as the uncertainty in the position
of an orbiting object. Due to many constraints and technological limitations,
it is generally impossible for us to know the exact location of a satellite at an
arbitrary time t. We may have an idea of where a satellite is, but we are not
certain of the exact position. If the error in a satellite’s trajectory is neither
known nor sufficiently understood, there is little hope that we can find a
reasonable solution to our problem. Mathematically, error propagation is a
complex topic that has numerous pieces to it, as described by Bush [8] who
addresses the main constraints seen when trying to estimate error in orbital
trajectories. He also provides a covariance method to propagate into the
future. Tsuda [28] addresses the state transition matrix for orbiting objects
around a single mass, explains how the state transition matrix is created,
and and discusses its role in error propagation.

2.4.1 Representation of Uncertainty Errors

Three common mathematical quantities used to represent errors from un-
certainty are covariance matrices, state error transition matrices, and error
ellipsoids that are briefly described below.

Covariance Matrices

To begin, error analysis of objects in orbit have what is called a covariance
matrix. This matrix has entries of the variance in distance where a satellite
can be positioned in reference to its actual position. In a multi-dimensional
system, the covariance is a symmetric matrix as exemplified below:




4.44 2.73 2.23 −0.27 −1.91 −1.05 −1.24
2.73 3.92 2.64 −0.17 −1.59 −1.29 −1.61
2.23 2.64 2.35 0.00 −1.28 −1.01 −1.36
−0.27 −0.17 0.00 0.23 0.13 0.01 −0.11
−1.91 −1.59 −1.28 0.13 1.63 1.12 1.28
−1.05 −1.29 −1.01 −0.01 1.12 1.20 1.26
−1.24 −1.61 −1.36 −0.11 1.28 1.26 1.95




. (2.56)

The diagonal contains the covariances in distance, and the off-diagonal
terms are the cross covariances. The off-diagonal terms can be transformed

38

CHAPTER 2. BACKGROUND

into error correlations. The covariance is estimated and then propagated
using the linear state transition matrix.

State Transition Matrices

The state transition matrix is a Jacobian matrix (i.e. a set of partial deriva-
tives) that relates changes in a state vector from one point in time to another:

J =




∂y1

∂x1

. . .
∂y1

∂xn
...

. . .
...

∂ym

∂x1

. . .
∂ym

∂xn



. (2.57)

It is formulated using the position vector in Cartesian or Keplerian coordi-
nates. A matrix derivation is explained in detail by Tsuda [28]. The state
transition matrix is used to find the probability of collision of two objects in
orbit based on their associated error correlations.

Error Ellipses

The different positions of an object in orbit can also be represented in a
cluster around the actual position of the object that is usually in the shape
of an ellipse. This is what is called an error ellipse, or a state uncertainty as
explained by Campbell [9]. If these ellipsoids overlap we have a probability
of collision. The magnitude of this probability is related to the percentage of
overlap of these ellipses. Figures 2.9 and 2.10 illustrate these relationships
between covariance-based error ellipses and their overlaps, and the result-
ing collision risks for two objects with low and high covariance interactions,
respectively.

2.4.2 Calculation of Collision Probabilities

Let us now consider two objects and suppose that there are uncertainties in
the positions of both objects. These uncertainties are handled by combing
them into a single larger uncertainty in the position of one object. We then
assume complete certainty in the position of the other object, but treat its
size as the combined sizes of the two objects. This is known as the combined
hard-body radius. As an encounter unfolds, the latter object passes through a

39

2.4. ERROR PROPAGATION AND COLLISION PROBABILITIES

Figure 2.9: Two objects with low covariance interaction and collision risk

Figure 2.10: Two objects with larger covariance interactions and significant
ellipsoidal overlap resulting in a larger risk of collision

certain volume of the error ellipsoid representing the probability distribution
of the former object. Ultimately, we want to measure and control this volume.

Let us further assume that the primary object of concern is also the
object that we can control, and that we simply refer to as the primary.
Analogously, the other object whose trajectory passes through the collision
volume with a positive probability is referred to as the secondary. To simplify
this preliminary discussion and the mathematics involved, we typically treat
the primary as a point mass and the secondary as if it had the physical radii
of both objects combined. This combined radius is called hard-body radius.
The time of closest approach corresponds to that point in time at which the
probability of collision is greatest, and we will call this event our (critical)
encounter. The encounter plane is the plane perpendicular to the relative

40

CHAPTER 2. BACKGROUND

Figure 2.11: Illustration of the encounter plane and its basis vectors

velocity vector near the time of closest approach, with our primary object at
the center. The miss vector is defined as the vector that stretches from our
primary to our secondary at the actual time of closest approach, when the
secondary is intersecting the encounter plane. The cross-product of these
two vectors gives a third basis vector for this encounter frame, shown in
Figure 2.11.

As mentioned earlier, we suppose that the position of each object is sub-
ject to uncertainty, where the covariances are assumed to have an approxi-
mately normal distribution. In an effort to maintain a common standard by
which to measure this uncertainty, Air Force personnel at the Joint Space
Operations Center (JSpOC) at the Vandenberg Air Force Base in California,
and the North American Aerospace Defense Command (NORAD) at the Pe-
terson Air Force Base in Colorado Springs generates these covariances and
includes them with the ephemeris data that is provided to satellite operators.
We can therefore use the combined uncertainty of the primary and secondary
to generate a probability surface, centered at our primary. The general equa-
tion to find the probability of collision between two passing objects is then

41

2.4. ERROR PROPAGATION AND COLLISION PROBABILITIES

Figure 2.12: Illustration of a probability surface with a secondary object

given as follows [24]:

P =
r2
a

2πσxσz

√
1− ρ2

xz

∫ ∫

Aa

exp

[
− 1

2(1− ρ2
xz)

·

((
x

σx

)2

− 2ρxz

(
xz

σxσz

)
+

(
z

σz

)2
)] (2.58)

where

P = probability of collision;

ra = combined hard-body radius;

Aa = cross-sectional area of the combined hard-body radius(= πr2
a);

x, z = components of the hard-body radius in the encounter plane;

σx, σz, ρxz = parameters in the combined covariance in the encounter plane.

Here, the z-direction is from the primary object to the secondary object
at the time of closest approach. The x-direction is perpendicular to both
the z-direction and the relative velocity of the objects. Furthermore, if the
secondary (now defined with the hard-body radius) is much smaller than the
primary covariance ellipse, it turns out that the integrand does not need to
be evaluated but can be simply replaced by the value at the center of the
hard body [24].

42

CHAPTER 2. BACKGROUND

Now take a look at Figure 2.12 which shows a probability surface overlaid
on the encounter plane, with a secondary object near the time of closest
approach. Here it is worth making special note of the level equiprobability
curves, where the curve through which the secondary is passing corresponds
to the calculated probability of collision. Hence, we can now see that there
is a direct mapping between the probability space and the physical space.
Later, when we move our primary as part of a delta-v maneuver, this will
also effect its corresponding probability surface thus causing the secondary to
pass through some other, and preferably less critical equiprobability curve.

In practice, it is typical the role of the satellite operator to determine
that probability of collision that is deemed low enough to be safe. This is
referred to as the threshold probability PT . The equation for the threshold
probability contour is [24]:

(
xT

σx

)2

− 2ρxz

(
xT zT

σxσz

)
+

(
zT

σz

)2

=

(
xC

σx

)2

− 2(1− ρ2
xz) ln

(
PT

PC

)
. (2.59)

Note that all the terms on the right hand side are known, and that this is
the equation of an ellipse on which the probability of collision PC equals the
threshold probability PT .

2.4.3 Discussion of Implementation

Following the previous discussion, we have developed a program to deter-
mine if a possibility of collision is substantial, or can safely be ignored. The
information we are given consists of positions, times of closest approach and
a miss distance of two objects. The inputs for the program are:

1. the position vector of the first object;

2. the position vector of the second object;

3. the velocity vector of the first object;

4. the velocity vector of the second object;

5. the covariance of uncertainty of first object;

6. the covariance of uncertainty of second object;

7. the hard body radius of the two objects, or miss distance.

43

2.4. ERROR PROPAGATION AND COLLISION PROBABILITIES

From this information, we determine a probability of collision between the
primary and secondary satellite around the particular time specified. If the
probability is high enough for there to be concern, we move on to the next
stage of the collision avoidance process (review the decision chart in Fig-
ure 1.2).

The first thing that is handled by the program is a change of coordinate
systems; compare the beginning of Section 2.3. Three right-handed coordi-
nate systems are used.

• The inputs use the Earth-centered inertial (ECI) frame with the origin
at the center of the Earth.

• After converting each satellite’s ECI coordinates to a radial(R), in-track
(I), and cross-track (C) component, all calculations involving a single
satellite the corresponding (RIC) frame.

• Finally, calculations involving the encounter of two satellites are based
on the satellites’ relative positions and velocities, and therefore use the
frame associated with the corresponding encounter plane as depicted
in Figure 2.11.

We convert between these frames by using orthogonal matrices. The
relative position of the secondary object with respect to the primary object
is converted from the ECI frame to the encounter frame. The covariance
matrix of each satellite is converted from the ECI basis to the satellite’s RIC
frame. It adds the resulting covariance matrices and the combined matrix is
then transformed into the encounter frame.

Now we can actually calculate the probability of collision. We have the
relative position of the secondary object, along with its matrix of covariance
representing the uncertainty in its position in the encounter frame. This allow
us to define a two-dimensional normal distribution centered on the secondary
object. The primary satellite is assumed to be spherical with its radius equal
to the hard-body radius input parameter. The primary satellite covers a
circular area in the encounter plane. This area has a probability associated
with it, which can be calculated by integrating the two-dimensional Gaussian
distribution over the circular area. This explains the output of our program.

44

Chapter 3

Optimization

Combining some of our new knowledge about the geometry of satellite tra-
jectories, the possibility to influence them using delta-v maneuvers, and the
existence of an underlying probability or encounter plane, we studied two rel-
evant strategies for trajectory optimization described by Peterson [24]. These
two strategies, that we refer to as “Miss Vector Approach” and the “Probabil-
ity Gradient Approach” for reasons outlined below, determine and calculate
orbital maneuvers that lower the risk of collision when two objects are about
to have a close encounter. In comparison to other methods that often rely
on numerical solutions that can be computationally expensive, the methods
we chose for implementation provide approximate analytical solutions of the
optimal delta-v maneuver, and hence are relatively easy to code and quick
to compute. In each case, our maneuver will consist of time, magnitude and
direction of an associated burn of fuel.

3.1 Terminology and Model Assumptions

Let us begin by speaking about the objects and their encounter. Analogous to
Section 2.4.2, we refer to the two objects of interest as primary and secondary.
As before, it is convenient to treat the primary object as a single point mass
and to add its actual radius to that of the secondary yielding its new, hard-
body radius. The encounter plane is defined as the plane perpendicular to the
relative velocity vector of the two objects near the time of closest approach,
with our primary object at the center. The miss vector is defined as the
vector that stretches from our primary to the secondary at the actual time

45

3.1. TERMINOLOGY AND MODEL ASSUMPTIONS

of closest approach, when the secondary is intersecting the encounter plane.
The cross-product of these two vectors gives a third basis vector for this
encounter frame, that is described in more detail in Section 2.3 and depicted
in Figures 2.11 and 3.1.

We now assume that the operator determines a probability of collision
that is deemed low enough to be safe. This is referred to as the threshold
probability and set by the owners or operators of the satellite depending
on its age or particular mission. Using the probability of collision and the
time of closest approach codes, we can calculate the chance of there being
a collision. If the resulting probability exceeds the allotted threshold of risk
that we are willing to take, then we need perform a delta-v maneuver to
redirect the primary in order to lower a probability of collision. The time of
this maneuver is also decided by the operator. Hence, for a given time and
threshold probability, we need to find the direction and magnitude of the
optimal burn.

As indicated above, the goal of our maneuver is to change and effectively
increase the distance of the objects at the time of their closest approach:

• In the miss vector approach illustrated in Figures 3.2 and 3.3, we move
the objects directly away from each other. “Directly” means that we
move the primary satellite along the actual miss vector in direction op-
posite to the intersection of secondary object and the physical encounter
plane. This assumes that the objects actually occupy the positions that
the tracking system indicates.

• In the probability gradient approach illustrated in Figures 3.2 and 3.4,
we more directly target to lower the probability of collision by moving
the primary in the direction of the negative gradient of the underly-
ing probability distribution. This reduces the probability of collision
as quickly as possible, resulting in the shortest relative path for the
secondary out and away from the predicted collision ellipsoid of the
primary. This approach assumes that the relative position of the ob-
jects is a normally distributed random variable.

The following section analyzes the type of maneuvers that need to be per-
formed at an a priori specified time to effect one of these changes at the time
of closest approach. We emphasize that the optimization problems underly-
ing these methods have analytic solutions, so that they can be calculated in
real or near-real time.

46

CHAPTER 3. OPTIMIZATION

Figure 3.1: Encounter plane with the primary object at its origin and two
equiprobability curves for current risk and target risk

Figure 3.2: Two maneuver strategies for lowering the collision probability
and equiprobability curves from current to target risk

47

3.1. TERMINOLOGY AND MODEL ASSUMPTIONS

Figure 3.3: Illustration of the miss vector approach: the primary moves
directly along the miss vector in direction opposite to the intersection of

secondary and the physical encounter plane

Figure 3.4: Illustration of the probability gradient approach: the primary
moves along the negative gradient in the probability space, resulting in the

shortest path out and away from the predicted collision ellipsoid

48

CHAPTER 3. OPTIMIZATION

3.2 Strategies and Closed-Form Solutions

The given inputs are the estimated positions and velocities of the primary and
secondary object at time t, and the covariance matrices of the two objects.
We combine the individual covariance matrices to get σx and σz where the
variables x and z represent the Keplerian planes in which our objects are
located. Although our data usually comes in ECI coordinates and our final
result is reported in ECI coordinates as well, for our analysis and probability
calculations it is more convenient to convert all coordinates into RTN form
(see Section 2.3).

3.2.1 Miss Vector Approach

We begin to discuss the first strategy that we call the miss vector approach.
Compare Figure 3.3 and recall that the miss vector is that vector that
stretches from the primary to the secondary at the time of closest approach.
In this method, we seek to increase the magnitude of this vector and and
hence solve the maneuver problem under the constraint that the change in
the miss vector due to the burn must be collinear with the original miss
vector. To accomplish this, we perform a delta-v maneuver that directs the
primary in the negative miss vector direction with the effect of placing the
secondary on a lower-level equiprobability curve as it intersects the encounter
plane. In effect, this thereby reduces our probability of collision.

Angle of Burn to Increase the Miss Vector

In order to burn in the negative miss vector direction, we must first find the
angles for the burn. Let

r̂ = (r̂R, r̂T , r̂N) (3.1)

be the unitized ECI vectors for the primary at the time of closest approach
in the RTN frame (using Radial, Transverse, and Normal coordinates), and

(r̂rel, v̂rel, ĥrel) (3.2)

be the unitized ECI vectors for the relative miss vector, relative velocity
vector, and their cross product (the previously defined basis vectors for our
encounter frame). Let θ and φ respectively be the in-plane and out-of-plane
angle of burn (for our purposes, φ = 0). The following terms are the orbit

49

3.2. STRATEGIES AND CLOSED-FORM SOLUTIONS

elements for the primary object, where the subscript b refers to the trajectory
before the burn whereas the subscript c refers to the desired time of the
solution (i.e., the time of the original conjunction):

Pb = semi-latus rectum before burn;

ub = argument of latitude before burn;

ξb = eccentricity · cos(arg. of perigee) before burn;

ηb = eccentricity · sin(arg. of perigee) before burn;

nb = mean motion before burn;

hb = angular momentum magnitude before burn;

rbc = magnitude of position vector before burn at the time of conjunction;

t = time before conjunction when burn is applied;

We also let Cubc and Subc be the cosine and sine of the argument of latitude
at the time of conjunction before the burn is applied, and we let Cub and Sub

be the cosine and sine of the argument of latitude at the time of the burn
whose angle can be found through a rotation backwards in time:

Sub = Subc cos (nbt)− Cubc sin (nbt)

Cub = Cubc cos (nbt) + Subc sin (nbt).
(3.3)

Finally, we let

a =

[
r2
bc

hb

sin (nbt)

]

b =− 3 (ξbSub − ηbCub) t

c =
r2
bc

hb

[2− ξbCubc − ηbSubc − (2− ξbCub − ηbSubc) cos (nbt)]

− 3(ξbSubc − ηbCubc)t

d =− 3t

(
1− ξbCubc − ηbSubc

1− ξbCub − ηbSub

)

(3.4)

be a group of functions that depend on the orbital elements of the primary at
some specific time before we initiate our delta-v maneuver. It can be shown

50

CHAPTER 3. OPTIMIZATION

that this setup is sufficient to find the angles of our maneuver [24]:

sin θmv = ±c(r̂ · r̂rel) + d(r̂T · r̂rel)

[Kmv]1/2

cos θmv = ±a(r̂ · r̂rel) + b(r̂T · r̂rel)

[Kmv]1/2

tanφmv = ±e(r̂N · r̂rel)

[Kmv]1/2

(3.5)

where

Kmv = (a2+c2)(r̂·r̂rel)
2+(b2+d2)(r̂T ·r̂rel)

2+2(ab+cd)(r̂T ·r̂rel)(r̂·r̂rel). (3.6)

This in turn gives us our maneuver vector as

∆~V = (∆VR,∆VT ,∆VN) (3.7)

where

∆VR = ∆V cos θ cosφ

∆VT = ∆V sin θ cosφ

∆VN = ∆V sinφ

(3.8)

are the radial, transverse and normal components of the maneuver.

Magnitude of Burn in Miss Vector Approach

Now that we know the direction in which we move the primary, we must
determine how far we need to move. Ideally, to minimize the magnitude of
the burn and thus limit the amount of fuel necessary, we would like to go
just far enough to achieve the maximally permissible probability of collision
threshold. The key idea by Peterson [24] is the observation that the coordi-
nates of the miss vector change in the encounter plane due to the burn must
match the boundaries of the equiprobability ellipse, which allows us to find
the magnitude of the maneuver burn as follows.

First, we set the equation for our equiprobability ellipse equal the coor-
dinates of the miss vector change in the encounter plane:

(xT , zT) = (xC , 0) + (∆~ṙ̂rrel,∆~ṙ̂hrel). (3.9)

51

3.2. STRATEGIES AND CLOSED-FORM SOLUTIONS

Then we can substitute this into our equation for the desired equiprobability
curve:

(
xT

σx

)2

− 2ρxz

(
xT zT

σxσz

)
+

(
zT

σz

)2

=

(
xC

σx

)2

− 2(1− ρ2
xz) ln

(
PT

PC

)
≡ KC .

(3.10)

This yields the quadratic equation

A∆V 2 +B∆V + C = 0 (3.11)

where

A =
(∆r̃ · r̂rel)

2

σ2
x

+
(∆r̃ · ĥrel)

2

σ2
z

− 2ρxz(∆r̃ · r̂rel)(∆r̃ · ĥrel)

σxσz

B =
2xC

σx

[
(∆r̃ · r̂rel)

σx

− ρxz(∆r̃ · ĥrel)

σz

]

C =
x2

C

σ2
x

−KC = 2(1− ρ2
xz) ln

(
PT

PC

)
.

(3.12)

From here, we can use any suitable numerical method such as the secant
method to find the solution.

3.2.2 Probability Gradient Approach

The second strategy already indicated in Figure 3.4 is the probability gra-
dient approach. In this case we move the primary in the direction of the
probability gradient in order to place the secondary onto the desired lower
level equiprobability curve in the most direct way possible. Clearly, this ma-
neuver will typically be different than the one resulting from the miss vector
approach. The direction in which we choose to thrust is determined by max-
imizing the dot product of the change in the miss vector resulting from the
burn, and the gradient vector.

Angle of Burn in Probability Gradient Approach

Using the same notation as before, the negative gradient of the collision
probability in equation (2.58) at the original closest approach is given by the

52

CHAPTER 3. OPTIMIZATION

following expression [24]:

∆Pc(xc, 0) =
−Pcxc

σ2
x(1− ρ2

xz)

(
r̂rel − ρxz

σx

σz

ĥrel

)
. (3.13)

To force a change in this direction, the angle of the required burn is:

sin θsg =
±D2

[D1
2 +D2

2]1/2
(3.14)

where

D1 = (ar̂ + br̂T) · (r̂rel − ρxz
σx

σz

ĥrel)

D2 = (cr̂ + dr̂T) · (r̂rel − ρxz
σx

σz

ĥrel).
(3.15)

Magnitude of Burn in Probability Gradient Approach

The size of the burn is again found so that the point of closest approach is
at the threshold probability. This magnitude is the solution of the equation

A∆V 2 +B∆V + C = 0 (3.16)

where

A =
(∆r̃ · r̂rel)

2

σ2
x

+
(∆r̃ · ĥrel)

2

σ2
z

− 2ρxz(∆r̃ · r̂rel)(∆r̃ · ĥrel)

σxσz

B =
2xC

σx

[
(∆r̃ · r̂rel)

σx

− ρxz(∆r̃ · ĥrel)

σz

]

C = 2(1− ρ2
xz) ln

(
PT

PC

)
(3.17)

and

∆r̃ = (a cos θ′ + c sin θ′)r̂ + (b cos θ′ + d sin θ′)r̂T . (3.18)

Here note that equations (3.17) are identical to (3.12) and differ only in
the value of θ′, that is either the angle from the steepest gradient in equa-
tion (3.14), or the angle from increasing the miss vector in equation (3.5) of
the previous approach, respectively.

53

3.3. DISCUSSION OF IMPLEMENTATION

3.3 Discussion of Implementation

We ran two simulations with our data titled Opt3 and TestOpt3. Opt3 is
the original implementation by Peterson [24] and uses real data supplied
by a satellite operator. This includes basic and important pieces of data
such as the current position and velocity. The code that we have written
ourselves, called TestOpt3, is our own test case and was used to ensure we
are getting reasonable numbers. It uses a variety of other codes written for
this project, including the Kepler conversion, programs to switch between
ECI and RTN frames, the probability of collision calculator, and the time of
closest approach finder. These codes are included in Appendix C.2.2.

To run a simulation in TestOpt3 we need to make several assumptions
to get us started. Without real data supplied by a satellite tracker, we
create our own data such as the position and velocity of the two satellites.
We assume that the position and velocity of the primary and secondary are
similar because then there is a higher probability of collision. However, we
act as if that we do not know the time of closest approach because it will be
given, but we chose the time span that we wish to monitor. Once we have
assigned a time period we run our simulation backwards in time. This allows
us to look at a large spans of time in which the two objects have passed by
each other while orbiting.

The resulting output we are looking at in Figures 3.5, 3.6 and 3.7 are
the size of the delta-v and the angle in which we should thrust our satellite.
These two quantities are basically the magnitude and the radial direction
of where we like to move the primary, out of the path of the approaching
secondary.

Figure 3.5: Magnitude
of the optimal delta-v
maneuver versus time
of burn

Figure 3.6: Angle of
the optimal delta-v
maneuver versus time
of burn

Figure 3.7: Reduced
collision probability af-
ter the optimal delta-v
maneuver

54

Chapter 4

Implementation

To validate the optimization strategies developed in Chapter 3, a significant
amount of time was spent to implement a basic “trade space tool” that can
compare a specific delta-v maneuver against an enumerative collection of
alternative maneuvers. Given an initial, high probability of collision between
two objects, we assume that only one of the objects (the primary) is under
the control of a satellite operator whereas the secondary object, possibly a
piece of space junk, is under no such control. The goal of the trade space tool
is to simulate the effects that various choices of ∆v applied to the primary
object at different times have on the probability of collision.

In order to design an actual implementation of the given problem, several
mathematical principles have to be understood and utilized. As described in
some detail in the previous chapters, we decided to break the problem into
different pieces where each group had to prepare and translate relevant infor-
mation into mathematical formulas. Clearly, decomposing real-world situa-
tions into a mathematical formulation does not only require a good working
knowledge of basic mathematical principles and modeling techniques, but it
also requires a solid understanding of the assumptions and boundaries that
make these models work or fail. Specifically, our program employs three basic
concepts:

• properties of vectors from linear algebra and analytic geometry;

• first-order systems of ordinary differential equations;

• local linearization and Lagrange interpolation.

Before we explain the tools and structure of the code it is important to
reemphasize some of the adopted assumptions. Hence, let us now turn our

55

4.1. GENERAL ASSUMPTIONS

attention to the reasoning behind the code and only later discuss how the
code actually works.

4.1 General Assumptions

To find a practical set of solutions certain assumptions must be made or met.
For the most part these assumptions are not directly mathematical in nature
but rather based on the information that is given in order to yield a relevant
output.

1. The first major assumption is that we only have control of one object,
the primary object. Some cases could occur where communication with
another party would yield a solution, but it is not practical to make that
assumption. Many collisions happen between operating satellites and
space junk. For example, the 2009 Cosmos-Iridium collision occurred
between an operable and a non-operable satellite. In that case, the
only way to avoid a collision is by moving the primary object.

2. The second major assumption is that after a maneuver the primary
object must stay inside its mission box. The mission box is defined as
the allowable range of new orbits in order to maintain the utility of the
satellite. An extension of this idea is that we assume that all solutions
are coplanar. In other words, any new orbit must share the same
plane as the old orbit. There can be instances where a non-coplanar
maneuver is optimal but it is considered as a last resort because non-
coplanar maneuvers involve more unknowns.

3. The third major assumption is that the covariances of the objects are
available. In practice, these are usually calculated by the Air Force and
included in the time-history data of the objects. When the Air Force
releases time histories the covariance is part of the information in order
to maintain a high standard and deliver good-quality, workable data.

4.2 The Trade Space Tool

For every given time t and every value of ∆v included in our trade space, we
need to compute the resulting new times of closest approach and the asso-
ciated new collision probabilities. In order to do this, the trajectory of the

56

CHAPTER 4. IMPLEMENTATION

primary object must be altered. This is done by changing the velocity. Once
a given time for applying some delta-v maneuver has been established, the
changes in velocity are similar to Hohmann transfers with the exception that
there is only one burn. This is justified because our changes in velocity are
very small, in the order of centimeters per second, whereas the velocity of
the object that is measured in kilometers per second is typically much larger.
Hence, if ∆v is small, then the shape of the original orbit will usually not
change dramatically and thus no correction is needed later for the satellite to
stay within its mission box. As discussed in Section 2.2.3, it is also assumed
that the changes in velocities occur instantaneously so that no additional
adjustment for acceleration becomes necessary (with the exception of accel-
eration due to pull of gravity). In summary, only one very small burst or
burn is applied virtually instantaneously to change the velocity at a given
point.

Following the above discussion together with the background on Hohmann
transfers provided in Section 2.2.3 and on trajectory optimization in Chap-
ter 3, it follows that each delta-v maneuver is uniquely characterized as a
combination of the following three quantities:

• the time at which the delta-v maneuver is executed;

• the angle in which the delta-v maneuver is applied;

• the magnitude or size of the delta-v maneuver burn.

The trade space tool that we describe here allows to select a finite set of
possible times and a finite set of possible values for ∆V , and then compute
the resulting collision probabilities in search of an acceptable combination.
Moreover, at any given point of time it also allows to validate the optimization
strategies from Chapter 3, by including those values of ∆V corresponding to
the miss vector approach or the probability gradient approach.

4.2.1 Data Flow

Note that the above search space is four-dimensional in both time and space,
in principle, but can be reduced to merely two dimensions if we require that
the new orbit stays co-planar with the old orbit. To do this, we need to
ensure that the direction of our delta-v points into the (tangential) direction
of velocity. Therefore, we switch all given position data from Cartesian vec-
tors into the VNB frame. Similar to the RIC frame, the VNB frame takes

57

4.2. THE TRADE SPACE TOOL

Cartesian coordinates and changes them to vectors in a tangential direction
(V), the normal direction (N), and the bi-normal direction (B).

• The (V) component is computed directly from the given velocities of
the object.

• The (B) component is obtained as the cross product of the V compo-
nent with the position vector. By definition, it is orthogonal to any
other vector that lies in the plane of the velocity and position vectors.

• The (N) component is defined as the cross product of the velocity vector
(V) and the bi-normal vector (B).

The velocity vector and the bi-normal vector define a new plane which is or-
thogonal to velocity and position plane and runs along the velocity direction.
Hence, a change in the angle of the tangential direction can be represented
by a right triangle in the (V,N) plane. The directions corresponding to the
x-axis and the y-axis are defined as the tangential velocity of the object and
the normal direction, respectively. The resulting Cartesian coordinates are
in the same plane as the original orbit, and any addition of two vectors in
the same plane will also be in this plane.

Let us define the set of possible delta-v maneuvers as a set of pairs

(ti,∆vj) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n (4.1)

where ti ∈ [tmin, tmax] are given points of time in the trade space time interval
[tmin, tmax] indexed over i, and vj ∈ [∆vmin,∆Vmax] are given scalar values in
the trade space velocity interval [∆vmin,∆vmax] that can be applied to the
velocity vector associated with nominal state of the object at that time. By
default, the program divides the specified trade range intervals into m = n
equidistant values for t and ∆v, where the value of n can be chosen by the
user. The corresponding values for delta-v are then added to the velocity of
the object at this time, resulting in a new velocity and thus affecting both
the trajectory of the primary object, and the probability of collision with any
secondary objects.

Specifically, for each trade space pair (ti,∆vj), we can then compute the
associated critical encounters k = 1, 2, . . . with their corresponding times,
miss distances, and collision probabilities pijk. To combine all probabilities
into a single risk measure, we define the aggregated probability of each trade
space pair as the probability of at least one collision:

P agg
ij = 1−

∏

k

(1− pijk) for i = 1, 2 . . . ,m and j = 1, 2, . . . , n. (4.2)

58

CHAPTER 4. IMPLEMENTATION

We briefly summarize the inputs and outputs of this trade space tool in
Section 4.2.2, and then focus in a little bit more detail on the propagation
of the modified trajectories in Section 4.2.3. The computation of encounters
and collision probabilities is handled by the separate collision module sub-
routine that we review in additional detail in Section 4.3.

4.2.2 Inputs and Outputs

As indicated above, the initial input data consists of the states of the objects,
and the trade space intervals of time and velocity.

• The states of the objects are described by time histories of their po-
sitions and velocities, together with covariance matrices that describe
their errors in position.

• The trade space for the primary object is a range of possible values for
∆v and a set of times at which these maneuvers can be applied.

All of this data can either be entered manually or read into the program from
a set of files.

The goal of the program is to compare several different time and changes
in velocity and establish a family of solutions to reach an acceptable level of
risk. Hence, the output of the program gives a list of the aggregated probabil-
ities P agg

ij defined in Equation (4.2) whereas the full results are not displayed
by default but stored separately for later retrieval, if desired. In particular,
these full results also include the individual encounters k = 1, 2, . . . with their
corresponding time and ∆v as well as all individual TCAs, miss distances,
and individual probabilities pijk. The aggregated probabilities of collision
are also visualized in a two-dimensional contour to facilitate an intuitive
interpretation and their further analysis.

4.2.3 Propagation Versus Interpolation

After the initial data input, the time-history files are continuously used to
either look up or compute the expected states of the two objects at the time
of the proposed ∆v. Since the time history file only include observations
at discrete times, it is clear that we need to find intermediate observations
using different means. This can be done by one of three different methods,
in principle, including propagation from a single close-by observation or by
using some sort of interpolation.

59

4.2. THE TRADE SPACE TOOL

Numerical Propagation using Differential Equation Solvers

An easily implemented approach to propagate an object out (or back) in time
is to use the two-body differential equation derived in equation (2.13). This
equation relates acceleration of an object with the position of that object
at a given time and gives a simplified description of the orbit of an object
around the Earth. The benefit of this method is that it is quite simple to
implement, as explained for Homework Assignment 1 in Appendix B. On the
negative side, this method is often not very accurate:

• The orbit of an actual object is nearly always much different than what
is obtained from this simplified equation.

• Whereas Newton’s two-body equation assumes spherical objects with
uniform densities, the shape of the Earth is not a perfect sphere but an
an oblate spheroid that is flattened near the poles and fattened around
the equator. Because of this, and due to the rotation of the Earth more
mass centers exist around the equator so that the gravitational force
at each point is not constant.

• The gravitational force exerted by the Earth onto each point in space
is also not constant. This will cause the trajectory of the satellite to
vary slightly in both velocity and position.

• Atmospheric drag is another factor that the two-body equation does
not account for. Very small quantities of particles are being released
by the Earth’s atmosphere. The collision of these particles with the
satellite will cause a small amount of drag. Although the drag has a
very insignificant effect on the velocity and position of the satellite, it
will slightly alter the actual position.

Hence, a numerical propagation using the two-body equation is only accept-
able for propagating very small time spans, or when no other, more accurate
methods are available or computationally feasible.

Numerical Propagation using Lagrangean Interpolation

As indicated above, a numerical propagation technique using the two-body
equation and the resulting set of differential equations is not one of the most
accurate methods. Because the two-body equation simplifies the problem
greatly and the new trajectory is estimated from only a single other point,

60

CHAPTER 4. IMPLEMENTATION

this method is often very sensitive and alternative, more robust methods of
estimating trajectories are generally preferably.

Interpolation is a method of estimating intermediate data points from a
set of given observations or control points. The method of interpolation we
use is Lagrangean interpolation. Lagrangean interpolation uses Lagrangean
polynomials that form a least-degree polynomial that will run though the
control points of the given data set. The interpolation is the sum of basis
polynomials. A basis polynomial is a polynomial of smallest degree that runs
through a control point with the property of being equal to zero at any of
other given control points. For example, an interpolation between four points
would have four scaled basis polynomials. Each of these basis polynomial
would run through their own single control point and be a polynomial of
degree three. In general, a basis polynomial would be of degree one less than
the number of points, because it equals zero at any other control point of the
interpolation. The final polynomial is the sum of all these polynomials and
will constitute the least-degree fit for the given points in the data set.

Not difficult to implement, the default method used in our program is
the interpolation method. Using the time histories of two different objects
we can interpolate the data to estimate the state of the object at any given
point using the points surrounding that point. This is more favorable than
an ODE solver:

• The estimation is based on several points rather than just one.

• The estimation is better localized based on points in close proximity to
the actual time of interest.

Using the time history files of the objects, the first step is to calculate the
orbital periods. These periods are not consistent and can vary by a couple of
minutes each orbit. Therefore, the program calculates several of these periods
and then takes their average. The next step is the interpolate the data.
Normally, the time history includes readings (states of the objects) at specific
time intervals, which can be anywhere from 5 to 20 minutes. Interpolation
produces new points between these existing readings, essentially fitting a
curve to the data. This enlarged set of data combined with the calculated
orbital period results in an estimation of the orbital trajectory of the two
satellites. Now, given a future time, the program can estimate the states of
the two objects at that time.

61

4.3. THE COLLISION MODULE

Important Note: Despite the advantages of interpolation over propaga-
tion, it is important to note that in order to estimate the new trajectory of
the primary object after a delta-v maneuver, there is no other choice but to
use the ODE propagation in order to find approximate positions and veloc-
ities of the primary object. Because this is a new trajectory, a time-history
does not exist and interpolation is not possible. Hence, in order to calcu-
late the probability of collision between the secondary object and the new
trajectory of the primary object, an ODE solver must be used. Specifically,
the approach we implemented uses Newton’s two-body equation (2.15) and
MATLAB’s ode45 solver.

Analytic Propagation using Closed-Form Representations

One last method that we briefly consider is the use of an analytic closed-form
expression to represent the trajectories in their entirety. For this method Ke-
plerian elements can be used, in principle, as discussed in Section 2.3.3. Un-
fortunately, although this methods may produce the most accurate results,
analytic expression are typically very difficult to obtain. The major chal-
lenge lies in the large amount of data required and the long time histories of
satellite observations needed to calculate the periodicity of the orbit in terms
of Keplerian elements. If there is not sufficient data, then this calculation is
unreliable. Furthermore, because in our case the size of the time history files
varies from one satellite to the other, an analytic propagation is unlikely to
give a practical method and is not used in our implementation.

4.3 The Collision Module

As discussed in Section 4.2, we simulate a delta-v maneuver applied to the
primary object by computing a new time history using a trajectory propaga-
tion based on the two-body equation. We spent a significant amount of time
in writing a working code that compares two given time histories in order
to find all times and points of closest approach together with their corre-
sponding collision probabilities. Here we give a verbal overview of this major
piece of code implemented. The full code of this routine, together with all
its subroutines, is given in Appendix C.

62

CHAPTER 4. IMPLEMENTATION

4.3.1 Data Flow

As outlined above, the two key steps in the collision module are the computa-
tion of the times of closest approach, and the calculation of the new collision
probabilities. The generic data flow is indicated in Figure 4.1.

Figure 4.1: Generic data flow within the collision module

4.3.2 Inputs and Outputs

The initial input data consists primarily of a nominal time of closest approach
and the new states of the primary object after a given delta-v maneuver
(ti,∆vj), as well as the the original time histories of the secondary objects
and possibly a covariance matrix for each object that describes the error in
position. The main output of this routine is the single aggregated probability
P agg

ij defined in equation (4.2), whereas the full results are stored separately
for later retrieval, if desired. As before, these full results also include the
individual encounters k = 1, 2, . . . with their corresponding time and ∆v as
well as all individual TCAs, miss distances, and individual probabilities pijk

for fixed values of i and j.
As an optional input parameter we can also consider an additional prob-

ability threshold that allows to ignore especially small probabilities for which

63

4.3. THE COLLISION MODULE

an encounter is not deemed critical. Note, however, that conceptually the
computed aggregated probability is largely independent of this threshold as
small (or zero) probabilities pijk ≈ 0 do only very minor (or not) contribute
to the aggregated probability value P agg

ij .

4.3.3 Calculation of TCA and Collision Probabilities

The new time of closest approach (TCA) is computed using an iterative
scheme that is successively refined using a sequential local linearization tech-
nique. It is based on the assumption that at times when two objects are
close their relative trajectories can be estimated accurately linearly. The
justification for this assumption is that these objects are moving very fast:

• Because of the speed of these objects moving in space the window of
time for approaching a collision is very short.

• Because the window of time is very short, the only points we are dealing
with are values that are close to the original position.

TCA Calculation

Since the ∆v has changed the trajectory, it is now necessary to re-calculate
the known nominal TCA for a new, actual TCA. The program first calculates
the states of the two objects at the nominal TCA. While the interpolation
method still works for the secondary object since its trajectory has remained
unchanged, the velocity of the primary object is now different so that the
interpolation method will no longer work without a valid time history. Hence,
our only choice is to use the two-body equation and an ODE solver.

Once the states of objects at the nominal TCA are known, the new TCA
can be obtained by finding the minimum of their new, relative distance. Let
rp(t) and rs(t) be the positions of the primary and secondary object:

rp(t) = rp0 + vpt and rs(t) = rs0 + vst (4.3)

where rp0 and rs0 be the initial positions of the two objects (in this case their
position at the nominal TCA), and vp and vs be their velocities. Let p(t)
represent their miss distance that is defined as the distance between the two

64

CHAPTER 4. IMPLEMENTATION

objects as a function of time:

p(t) = rp(t)− rs(t)

= rp0 + vpt− rs0 + vst

= (rp0 − rs0) + (vp − vs)t

= pr + vrt.

(4.4)

Note that (rp0 − rs0) is the relative position, denoted by pr, and (rp0 − rs0)
is the relative position, denoted by vr.

To find the time of closest approach, we need to minimize the norm, or
equivalently the squared norm of the relative position vector. This is an
unconstrained optimization problem in a single variable and can be solved
easily by computing the gradient derivative, setting it equal to zero, and then
solving it for time t. First, we note that

‖p(t)‖2 = pTp = (pr + vrt)
T (pr + vrt) = pT

r pr + 2pT
r vrt+ t2vT

r vr. (4.5)

The minimum of this function is where the derivative with respect to time
vanishes:

d

dt
‖p(t)‖2 = 2pT

r vr + 2tvT
r vr = 0. (4.6)

Solving this expression for t yields the desired actual TCA:

t = −p
T
r vr

vT
r vr

. (4.7)

Because our goal is to find that time t when the derivative of the relative
position function is zero, the only thing that matters is the numerator. If
pT

r vr = 0, then we know that the relative position vector is orthogonal to the
relative velocity vector, which therefore defines the time of closest approach.
This suggests the following iterative two-step procedure:

1. To find the new TCA, the value for t in the above formula is calculated
at the (current) nominal TCA.

2. If the value is not 0, then it is added to the nominal TCA and the
calculation is re-done at that new time.

The program repeats this procedure until the value for t is less than some
specified threshold ε. At this point, the TCA as well as the states of the
objects can be computed.

65

4.3. THE COLLISION MODULE

Figures 4.2, 4.3, and 4.4 illustrate the trajectories, distances and miss
distances between two randomly selected objects. As to be expected, we
can see that the intersections of the graphs in Figure 4.3 coincide with those
times in Figure 4.4 where the respective miss distances are approaching zero.

Figure 4.2: Illustration of miss distances: two object trajectories

Calculation of Collision Probabilities

Finally, given the TCA and the corresponding states of the two objects from
the close approach finder, our program calculates the probability of collision
as already explained in Section 2.4.2. Starting from the time at which the
∆v is applied, a separate function propagates the covariance matrix of the
primary object to the new TCA. For simplicity, in our implementation the
covariance of the secondary object is simply taken to be a scalar multiple of
the new covariance of the primary object. These two covariance matrices,
along with the states of the objects at the new TCA, form the input for
our probability calculator. This calculator numerically estimates the value
of the probability density function over a specified hard body radius. It
also calculates the miss vector as the difference between the position vectors
of the two objects in the RIC frame of the primary object, and returns its
magnitude as the corresponding miss distance.

66

CHAPTER 4. IMPLEMENTATION

Figure 4.3: Illustration of the distances between two objects over time

Figure 4.4: Illustration of the miss distances between two objects over time

67

Chapter 5

Experiment

In this chapter, we demonstrate how to apply and utilize our collision func-
tion to analyze the time history files for three satellites (primary, secondary-1,
and secondary-2). The data is courtesy to Joshua Wysack from our spon-
sor SpaceNav and shown in Appendix C.3. For each data set, the starting
date was 16-Jan-2005 02:14:37.212. The time history files contains ephemeris
data at 5-minute intervals. Running the core function on the primary and
secondary-1, we obtain the following output:

TCA Collision Probability Miss Distance (km)
17-Jan-2005 02:14:37.272 1.67E-05 0.192

The TCA is just over 1 day after the start of the file. The miss distance of
192 meters is just over the hard-body radius used in the probability calculator
(which is 100 meters). Observe that if there were no uncertainty regarding
the positions, the two objects would miss each other by approximately 92
meters. Yet, because of the uncertainty, we obtain a collision probability of
1.02× 10−6. Next we have the output for the primary and secondary-2:

TCA Collision Probability Miss Distance (km)
16-Jan-2005 04:49:25.410 3.37E-05 1.99E-04
16-Jan-2005 14:54:44.266 3.40E-05 1.05E-04
16-Jan-2005 15:44:36.136 2.22E-05 1.31E-05
17-Jan-2005 09:24:28.860 1.78E-05 1.39E-04
17-Jan-2005 19:29:47.745 1.95E-05 1.54E-04
17-Jan-2005 20:19:39.617 5.86E-05 2.93E-05

68

CHAPTER 5. EXPERIMENT

There is much more risk for these two objects. For each of the six close
approach points, the calculated miss distance is less than 1 meter. Note
again that the uncertainty in position is reflected in the collision probability,
which hovers between 1.7× 10−5 and 5.7× 10−6. The first TCA is just over
2 hours after the start of the data. This will make applying a ∆v to avoid
this collision difficult.

5.1 Trade Space Comparison

We want to generate some cases using values from a trade space. We set the
trade-space interval for ∆v to [−5× 10−5, 5× 10−5], which is in cm/sec, and
we set the trade-space range of times to [.1, 1.1], which represents a fraction
of a day from the beginning of the files. Figure 5.1 is a graph of the resulting
aggregate probabilities:

Figure 5.1: 2D contours of aggregate probabilities in full ∆v trade space

The graph is somewhat symmetric about the point where no ∆v is ap-
plied. Intuitively, this is how it should be. The lower probabilities are where
the larger ∆v is applied earlier. The later the ∆v is applied, the more TCAs
it misses, so the probability is higher.

69

5.2. DISCUSSION OF RESULTS

5.2 Discussion of Results

Figure 5.2 is a closer look at the left side of the graph.

Figure 5.2: 2D contours of aggregate probabilities in negative ∆v space

This closer inspection helps us see more specifically what is happening
with these probabilities. We see to the left, where ∆v’s of -5 cm/sec are
applied, that the probability starts higher and then jumps down a bit. Since
the first TCA is right around this point, one would guess that the probability
would raise once the ∆v was applied after the TCA. The graph seems to
suggest something else. Looking closely at this case, we obtain the following
output, when a ∆v of -5 cm/sec is applied at 144 minutes:

TCA Collision Probability Miss Distance (km)
16-Jan-2005 04:49:25.287 3.03E-05 0.067
16-Jan-2005 14:54:44.213 2.02E-05 0.943
16-Jan-2005 15:44:36.080 4.75E-05 1.037

We see that the first ∆v managed to avoid the TCA with secondary-1
and the last three TCAs with secondary-2. It also changed the probabilities
and miss distances with the first three TCAs with secondary-2. Now we look
a bit later, where a ∆v of -5 cm/sec was applied at 334 minutes:

70

CHAPTER 5. EXPERIMENT

TCA Collision Probability Miss Distance (km)
16-Jan-2005 04:49:25.410 3.37E-05 1.99E-04

This ∆v was applied before the first TCA, and therefore did not change
any of the associated numbers. It did avoid all the subsequent TCAs. Look-
ing back at Figure 5.1) we see that the bottom right side is not the same as
the bottom left side. We can compare the output from these points. Follow-
ing is the output from when a ∆v of 5 cm/sec was applied at 144 minutes:

TCA Collision Probability Miss Distance (km)
16-Jan-2005 04:49:25.533 1.78E-05 0.065
16-Jan-2005 14:54:44.309 3.51E-05 1.18
16-Jan-2005 15:44:36.158 2.24E-05 1.31

These results are very similar to when a ∆v of -5 cm/sec was applied at
the same time. The TCAs are all a few milliseconds different, and the miss
distances are all a bit larger. The probabilities are all a tad smaller. This
demonstrates some of the complexity of the problem. By simply changing
the direction of the ∆v, we obtain quite different output. We also see how
fast the objects are moving. A difference in just a couple of milliseconds in
TCA can result in many meters (even a kilometer) in miss distance.

71

Chapter 6

Conclusion

Collision avoidance of operational spacecrafts is a major concern for the
aerospace industry, and a fascinating problem for learning and applying a
broad array of mathematical areas and related disciplines:

1. Fundamentals of Orbital Mechanics and Astrodynamics

• equations of motion in space (Newton laws of motion and gravity)

• changing trajectories of space objects using delta-v maneuvers

2. Modeling and Propagation of Tracking Uncertainties

• state error covariance matrices and state transition matrices

• stochastic approximations based on Monte Carlo simulations

3. Elements of Numerical Analysis and Scientific Computing

• numerical integration methods to calculate collision probabilities

• analytic approximations of orbital elements and space trajectories

4. Overview of Optimization Techniques and Optimal Control

• computing time and separation distances at close-approach points

• finding optimal trajectory changes and making maneuver decisions

This report summarizes the work of 12 undergraduate and graduate stu-
dents, that were advised by one faculty member and two industry representa-
tives to learn about the problem, understand its implications, and begin the

72

CHAPTER 6. CONCLUSION

development and implementation of strategies that may eventually contribute
to a solution of this challenging problem. Combining small pieces from each
of the above areas, this project centered around determining strategies and
finding maneuvers that minimize the risk of collision between space objects
by altering their trajectories. The final goal of this clinic was to assist our
sponsor SpaceNav in using optimization models and developing software to
implement a practical collision avoidance method.

As undergraduate and graduate students in mathematics and physics, we
were provided with the opportunity to tackle this problem and to design
a system both for analyzing the risk of collision of a satellite with other
objects in space, and for determining one or several trajectory maneuvers
for the satellite to lower that risk. In this report, we describe our method
that allows to analyze incoming data with satellite information to detect and
subsequently provides a collection of maneuvers able to reduce an initial high
risk of collision.

In order to accomplish this goal, we divided the problem into a number
of parts and initially tackled these components separately. The preliminary
information that we were given or that was assumed to be known was a
table providing a primary satellite’s position and velocity information, and
a covariance matrix to account for the uncertainty in position that exists
when tracking a satellite in orbit. There is also a list of all those satellites
within a certain distance (a close encounter), together with their positions
and covariance matrices.

Using this information, we apply a number of steps to find suitable ma-
neuvers (review Figure 1.2):

1. First we convert the Cartesian coordinates into Keplerian coordinates.

2. Then we take the transforms and calculate the probability of collision
between the primary satellite and the ones in close proximity.

3. If any probability exceeds a certain threshold, we specify a window of
possible trajectory maneuvers to reduce the risk of collision between
the two satellites. This is again done by a number of steps:

(a) First we apply several changes in velocity from a trade space at
several times before the time of closest approach.

(b) Then we calculate a new time of closest approach for each velocity
change and chosen maneuver time.

73

(c) With these new times of closest approach, we calculate new prob-
abilities of collision with the primary satellite.

4. Now it is easy to find the best trajectory change for reducing the risk
and recommend which delta-v maneuver should be implemented.

While the above strategy guarantees to find a best maneuver among those
taken into consideration, it is inherently a search method and not an opti-
mization method. Hence, as alternative, two additional strategies are de-
scribed that are based on actual optimization:

• The first method is the “Miss Vector Approach” in which we move the
primary satellite directly along the miss vector in direction opposite to
the intersection of secondary object and the physical encounter plane.

• The second method is the “Probability Gradient Approach” in which
we move the primary satellite along the negative gradient in the prob-
ability space, resulting in the shortest and presumably quickest path
out and away from the predicted collision ellipsoid.

With closed-form solutions available, each approach is relatively quick in
response which makes it possible to use all three strategies and compare their
results, in principle. However, it remains hard to declare a winner and say
which one is better because it seems to vary in different situations. A deeper
analysis and more computational experiments are necessary to arrive at any
additional conclusions.

74

List of References

[1] M. R. Akella and K. T. Alfriend. Probability of collision between space
objects. Journal of Guidance, Control and Dynamics, 23(5):769–772,
2000.

[2] S. Alfano. Satellite conjunction Monte Carlo analysis. In AIAA Space
Flight Mechanics Meeting, Paper AAS 09-233, February 2009.

[3] K. T. Alfriend, M. R. Akella, J. Frisbee, J. L. Foster, D.-J. Lee, and
M. Wilkins. Probability of collision error analysis. Space Debris, 1(1):21–
35, 1999.

[4] P. D. Anz-Meador. International guidelines for the preservation of space
as a unique resource. Online Journal of Space Communication, 6, Winter
2004.

[5] R. R. Bate, D. D. Mueller, and J. E. White. Fundamentals of Astrody-
namics. Dover Publications, 1971.

[6] N. Bérend. Estimation of the probability of collision between two cat-
alogued orbiting objects. Advances in Space Research, 23(1):243–247,
1999.

[7] A. M. Bradley and L. M. Wein. Space debris: Assessing risk and re-
sponsibility. Advances in Space Research, 43(9):1372–1390, 2009.

[8] N. Bush. Unmodeled error analysis on trajectory and orbital estimation.
Technometrics, 13(2):303–314, May 1971.

[9] M. Campbell. Collision monitoring within satellite clusters. IEEE Trans-
actions on Control Systems Technology, 13(1):42–55, 2005.

75

LIST OF REFERENCES

[10] V. A. Chobotov. Orbital Mechanics, Third Edition. AIAA Education
Series. The Aerospace Corporation, third edition, 2002.

[11] L. David. Space debris: a growing challenge. Aerospace America,
47(9):30–36, 2009.

[12] Euopean Space Agency. Multimedia Gallery (topic: operations,
subtopic: space debris). Http://www.esa.int/esa-mmg/mmghome.pl,
2011.

[13] W. Hohmann. Die Erreichbarkeit der Himmelskörper. R. Oldenbourg,
München, Berlin, 1925.

[14] W. Hohmann. The Attainability of Heavenly Bodies. [Translation of
“Die Erreichbarkeit der Himmelskörper”]. NASA Technical Translation
F-44, November 1960.

[15] T. S. Kelso. Iridium 33/Cosmos 2251 Collision (Coverage started March
5, 2009). Http://celestrak.com/events/collision, updated May 13, 2011.

[16] T. S. Kelso. Chinese ASAT Test (Coverage started January 19, 2007).
Http://celestrak.com/events/asat.asp, updated May 20, 2011.

[17] A. Lambert, G. Saint-Pierre, and D. Gruyer. A Monte Carlo approach
for collision probability computation. In Workshop IROS 2008 on Per-
ception, Planning and Navigation for Intelligent vehicles, Nice, France,
26 September 2008.

[18] L. Lamport. LaTeX: A Document Preparation System. Addison-Wesley
Professional, second edition, 1994.

[19] J. F. Liu and J. F. Segrest. An analysis of orbit motion in frequency do-
main. Technical report, Directorate of Astrodynamics DCS/Operations,
Peterson AFB, Colorado, March 1986.

[20] O. Montenbruck and E. Gill. Satellite Orbits: Models, Methods and
Applications. Springer, 2000.

[21] J. B. Mueller and R. Larsson. Collision avoidance maneuver planning
with robust optimization. In GNC 2008, 7th International ESA Confer-
ence on Guidance, Navigation & Control Systems, Tralee, County Kerry,
Ireland, 2-5 June 2008.

76

Http://www.esa.int/esa-mmg/mmghome.pl
Http://celestrak.com/events/collision
Http://celestrak.com/events/asat.asp

LIST OF REFERENCES

[22] NASA National Space Sciece Data Center. NSSDC Master Catalog.
Http://nssdc.gsfc.nasa.gov/nmc, version 4.0.16, 26 April 2011.

[23] B. Obama. National Space Policy of the United States of America.
Http://www.whitehouse.gov/sites/default/files/national space policy 6-
28-10.pdf, June 28, 2010.

[24] G. E. Peterson. Maneuver selection for probability reduction of near-
circular orbit conjunctions. In AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, Paper AIAA-2002-4630, Monterey, CA, 5-8 Au-
gust 2002.

[25] R. Pratap. Getting Started with MATLAB: A Quick Introduction for
Scientists and Engineers. Oxford University Press (USA), 2009.

[26] J. E. Prussing and B. A. Conway. Orbital Mechanics. Oxford University
Press, USA, September 1993.

[27] B. Shapiro. Conversion between kepler and cartesian elements. Technical
report, California State University CSUN/JPL PAIR Program, 2001.

[28] Y. Tsuda. State transition matrix approximation with geometry preser-
vation for general perturbed orbits. Acta Astronautica, 68(7-8):1051–
1061, April-May 2011.

[29] W. H. de Vries and D. W. Phillion. Monte Carlo method for collision
probability calculations using 3D satellite models. Technical Report
LLNL-CONF-454474, Lawrence Livermore National Laboratory, 2010.

77

Http://nssdc.gsfc.nasa.gov/nmc

Further Readings

[30] J. R. Alarcon, H. Klinkrad, J. Cuesta, and F. M. Martinez. Independent
orbit determination for collision avoidance. In Proceedings of 4th Eu-
ropean Conference on Space Debris, Darmstadt, Germany, 18-20 April
2005.

[31] S. Alfano. Method for determining maximum conjunction probability
of rectangular-shaped objects. United States Patent, Patent No.: US
7,383,153 B2, Jun. 3, 2008.

[32] S. Alfano. Satellite collision probability enhancements. Journal of guid-
ance, control, and dynamics, 29(3):588–592, 2006.

[33] K. Assmann, J. Berger, and S. Grothkopp. The COLA collision avoid-
ance method. In Proceedings of 5th European Conference on Space De-
bris, Darmstadt, Germany, 30 March - 2 April 2009.

[34] R. W. Beard and T. W. McLain. Multiple UAV cooperative search
under collision avoidance and limited range communication constraints.
In Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii, USA, December 2003.

[35] H. Blake. Space so full of junk that a satellite collision could destroy
communications on earth. The Telegraph, 3 February 2011. Retrieved
from http://www.telegraph.co.uk/science/space/8295546/Space-so-
full-of-junk-that-a-satellite-collision-could-destroy-communications-on-
Earth.html.

[36] F. K. Chan. Spacecraft maneuvers to mitigate potential collision threats.
In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Paper
AIAA-2002-4629, Monterey, CA, 5-8 August 2002.

78

http://www.telegraph.co.uk/science/space/8295546/Space-so-full-of-junk-that-a-satellite-collision-could-destroy-communications-on-Earth.html
http://www.telegraph.co.uk/science/space/8295546/Space-so-full-of-junk-that-a-satellite-collision-could-destroy-communications-on-Earth.html
http://www.telegraph.co.uk/science/space/8295546/Space-so-full-of-junk-that-a-satellite-collision-could-destroy-communications-on-Earth.html

FURTHER READINGS

[37] F. K. Chan. Spacecraft Collision Probability. AIAA/Aerospace Press,
2008.

[38] K. Chan. Collision probability analysis for earth orbiting satellites. In
Proceedings of the 7th International Space Conference of Pacific-Basin
Societies, pages 1033–1048, Nagasaki, Japan, 15-18 July 1997.

[39] V. A. Chobotov. Classification of orbits with regard to collision hazard
in space. Journal of Spacecraft and Rockets, 20:484–490, Oct 1983.

[40] J. C. Clements. The optimal control of collision avoidance trajectories in
air traffic management. Transportation Research Part B: Methodological,
33(4):265–280, 1999.

[41] Commission on Engineering and Technical Systems (CETS). Collision
avoidance. In Protecting the Space Shuttle from Meteoroids and Orbital
Debris, chapter 5, pages 36–41. The National Academies Press, 1997.

[42] P. B. de Selding. Satellite collision avoidance methods ques-
tioned after space crash. Space News, 27 February 2009. Re-
trieved from http://www.space.com/2386-satellite-collision-avoidance-
methods-questioned-space-crash.html on January 20, 2011.

[43] N. Fulton and T. Tarnopolskaya. Optimal cooperative collision avoid-
ance strategy for coplanar encounter: Merz’s solution revisited. Journal
of Optimization Theory and Applications, 140(2):355–375, 2009.

[44] I. Garcia and J. P. How. Trajectory optimization for satellite recon-
figuration maneuvers with position and attitude constraints. In 2005
American Control Conference, Portland, OR, USA, 8-10 June 2005.

[45] D. Gaylor, R. Gottlieb, and S. Sponaugle. Satellite collision prediction
and avoidance system. Prior Art Database, 1 May 2000. Retrieved from
http://priorartdatabase.com/IPCOM/000009823.

[46] R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor. Orbit determi-
nation accuracy requirements for collision avoidance. In 11th Annual
AAS/AIAA Space Flight Mechanics Meeting, Paper AAS-01-181, Santa
Barbara, CA, February 2001.

79

http://www.space.com/2386-satellite-collision-avoidance-methods-questioned-space-crash.html
http://www.space.com/2386-satellite-collision-avoidance-methods-questioned-space-crash.html
http://priorartdatabase.com/IPCOM/000009823

FURTHER READINGS

[47] F. Y. Hadaegh, Y. Kim, and M. Mesbahi. Multiple-spacecraft reconfig-
uration through collision avoidance, bouncing, and stalemate. Journal
of Optimization Theory and Applications, 122(2):323–343, 2004.

[48] International Space University. Space university report of-
fers ways to avoid further satellite collisions. Retrieved from
http://www.isunet.edu/index.php/news-mediacenter/566-space-
university-report-offers-ways-to-avoid-further-satellite-collisions.

[49] D. J. Kessler. Derivation of the collision probability between orbiting
objects: the lifetimes of Jupiter’s outer moons. Icarus, 48(1):39–48,
1981.

[50] D. J. Kessler. Collision probability at low altitudes resulting from ellip-
tical orbits. Advances in Space Research, 10(3-4):393–396, 1990.

[51] D. Kestenbaum. Chinese missile destroys satellite in 500-
mile orbit. NPR, January 19, 2007. Retrieved from
http://www.npr.org/templates/story/story.php?storyId=6923805.

[52] I. Klotz. A traffic cop for satellites. Discovery
News, Space News, 1 September 2010. Retrieved from
http://news.discovery.com/space/satellites-traffic-cop.html.

[53] E. Lalish. Distributed Reactive Collision Avoidance. PhD thesis, De-
partment of Aeronautics and Astronautics, University of Washington,
2009.

[54] M. R. Lehto, J. D. Papastavrou, T. A. Ranney, and L. A. Simmons.
An experimental comparison versus optimal collision avoidance warning
system thresholds. Safety Science, 36(3):185–209, 2000.

[55] T. Malik. Debris from space collision poses threat to other
satellites. Space News, 12 February 2009. Retrieved from
http://www.space.com/5540-debris-space-collision-poses-threat-
satellites.html on January 20, 2011.

[56] F. A. Marcos, M. J. Kendra, J. M. Griffin, J. N. Bass, D. R. Larson, and
J. J. F. Liu. Precision low earth orbit determination using atmospheric
density calibration. In Proceedings of the AAS/AIAA Astrodynamics
Conference, pages 501–513, Sun Valley, ID, USA, 4-7 August 1997.

80

http://www.isunet.edu/index.php/news-mediacenter/566-space-university-report-offers-ways-to-avoid-further-satellite-collisions
http://www.isunet.edu/index.php/news-mediacenter/566-space-university-report-offers-ways-to-avoid-further-satellite-collisions
http://www.npr.org/templates/story/story.php?storyId=6923805
http://news.discovery.com/space/satellites-traffic-cop.html
http://www.space.com/5540-debris-space-collision-poses-threat-satellites.html
http://www.space.com/5540-debris-space-collision-poses-threat-satellites.html

FURTHER READINGS

[57] F. A. Marcos, M. J. Kendra, J. M. Griffin, J. N. Bass, D. R. Larson, and
J. J. F. Liu. Precision low earth orbit determination using atmospheric
density calibration. Journal of the Astronautical Sciences, 46(4):395–
409, 1998.

[58] J. B. Mueller. Onboard planning of collision avoidance maneuvers using
robust optimization. In AIAA Infotech at Aerospace Conference and
Exhibit and AIAA Unmanned . . . Unlimited Conference, Seattle, WA,
USA, 2009.

[59] K. Muinonen, J. Virtanen, and E. Bowell. Earth-crossing asteroids using
orbital ranging. Physics and astronomy celestial mechanics and dynam-
ical astronomy, 81(1-2):93–101, 2001.

[60] R. P. Patera. Satellite collision probability for non-linear relative mo-
tion. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit,
Monterey, CA, 5-8 August 2002.

[61] A. Platzer and E. M. Clarke. Formal verification of curved flight collision
avoidance maneuvers: A case study. Technical Report CMU-CS-09-147,
School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 2009.

[62] A. Richards, T. Schouwenaars, J. P. How, and E. Feron. Spacecraft tra-
jectory planning with avoidance constraints using mixed-integer linear
programming. Journal of Guidance, Control, and Dynamics, 25(4):755–
764, 2002.

[63] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo
Method. A John Wiley & Sons, Inc., 2007.

[64] N. Sanchez-Ortiz, M. Bello-Mora, and H. Klinkrad. Collision avoid-
ance manoeuvres during spacecraft mission lifetime: Risk reduction and
required ∆v. Advances in Space Research, 38(9):2107–2116, 2006.

[65] D. P. Scharf, A. B. Acikmese, S. R. Ploen, and F. Y. Hadaegh. A di-
rect solution for fuel-optimal reactive collision avoidance of collaborating
spacecraft. In Proceedings of the American Control Conference, pages
5201–5206, 2006.

81

FURTHER READINGS

[66] J. A. Snyman. Introduction. In Practical Mathematical Optimization,
chapter 1, pages 1–31. Springer, 2005.

[67] Q. Tang, B. J. Pang, and W. Zhang. Collision risk assessment for a
spacecraft in space debris environment, pages 721–724. Number 587 in
(Special Publication) ESA SP. European Space Agency, 2005.

[68] R. J. Tayler. The rapid computation of Earth-satellite ephemerides by
a method using Fourier series. Technical Note Space 61, Royal Aircraft
Establishment Farnborough (UK), March 1964.

[69] M. Tillerson, G. Inalhan, and J. P. How. Coordination and control
of distributed spacecraft systems using convex optimization techniques.
International Journal of Robust and Nonlinear Control, 12(2-3):207–242,
2002.

[70] R. H. Vassar and R. B. Sherwood. Formation keeping for a pair of satel-
lites in a circular orbit. Journal of Guidance, Control, and Dynamics,
8(2):235–242, 1985.

[71] S. Wang and H. Schaub. Spacecraft collision avoidance using Coulomb
forces with separation distance and rate feedback. Journal of Guidance,
Control, and Dynamics, 31(3):740–750, 2008.

[72] S. Wang and H. Schaub. Electrostatic spacecraft collision avoidance
using piecewise-constant charges. Journal of Guidance, Control, and
Dynamics, 33(2):510–520, 2010.

[73] Wikipedia. 2009 satellite collision. Retrieved from
http://en.wikipedia.org/wiki/2009 satellite collision.

[74] Wikipedia. Collision avoidance (spacecraft). Retrieved from
http://en.wikipedia.org/wiki/Collision avoidance (spacecraft).

[75] Wikipedia. Delta-v. 15 November 2010. Retrieved from
http://en.wikipedia.org/wiki/Delta-v on January 20, 2011.

[76] Wikipedia. Orbital maneuver. 19 January 2011. Retrieved from
http://en.wikipedia.org/wiki/Orbitali maneuver on January 20, 2011.

82

http://en.wikipedia.org/wiki/2009_satellite_collision
http://en.wikipedia.org/wiki/Collision_avoidance_(spacecraft)
http://en.wikipedia.org/wiki/Delta-v
http://en.wikipedia.org/wiki/Orbitali_maneuver

Appendix A

Other Web Resources

This appendix includes a brief list of additional resources that are available
online and were explored or used for some additional background information.

GMAT (General Mission Analysis Tool) This software package seems
to be one of the better examples of current technology that deals with satel-
lite collision avoidance. It is a continuing, collaborative team project between
NASA and the open industry. The system can be downloaded for free from
the GMAT homepage at http://gmat.gsfc.nasa.gov/index.html. According
to its mission statement, “the goal of the GMAT project is to develop new
space trajectory optimization and mission design technology by working in-
clusively with ordinary people, universities, businesses, and other government
organizations, and to share that technology in an open and unhindered way.”
Currently, the system can be used to analyze flight trajectories of satellites
and to find the optimal change of trajectory given a certain set of parameters.

CelesTrak/SOCRATES (Satellite Orbital Conjunction Reports As-
sessing Threatening Encounters in Space) This service is provided by
the Center for Space Standards & Innovation (CSSI) and accessible through
http://celestrak.com/SOCRATES. It runs a list of all satellite payloads in or-
bit against a list of objects in orbit using the catalog of unclassified NORAD
data and looks for weekly satellite conjunctions. The goal of SOCRATES
is to provide satellite operators with a tool to assess the possible risks of
collision between their payloads and other objects in orbit. The data is up-
dated twice a day. Any data that could compromise U.S. security is omitted.
SOCRATES takes data sorted for all conjunctions that will come within 1 km

83

http://gmat.gsfc.nasa.gov/index.html
http://celestrak.com/SOCRATES

at the time of closest approach and reports the minimum distance and the
maximum probability for each conjunction. A top ten risk sheet is then re-
leased, sorted by maximum probability and showing position, velocity, miss
distance and TCA information. For example, the top five collision predictions
reported at the beginning of May 2011 are shown in Figure A.1.

Figure A.1: Top 5 collision predictions by SOCRATES in early May 2011

Http://www.space-track.org The space-track website (which interested
parties can apply for and be accepted as members) has plenty of data, al-
though the site warns that it should not be used for conjunction probabilities.
Nevertheless, this was one of the most useful of the various websites for find-
ing data on satellite time histories.

Http://www.shatters.net/celestia This page provides a free space sim-
ulation software package to look at the universe from perspectives other than
just Earth. There are many extra, add-on downloads as well. The website
does a pretty good job explaining what it does, and although not particularly
useful for our project it is still kind of cool.

Http://www.satobs.org/orbsoft.html This page offers several satellite-
related software descriptions and links for many different operating systems.

Http://www.satobs.org/tletools.html Similar to the former, this ser-
vice deals more with tracking software and other two-line element resources.

84

Http://www.space-track.org
Http://www.shatters.net/celestia
Http://www.satobs.org/orbsoft.html
Http://www.satobs.org/tletools.html

Appendix B

Homework Assignments

Math 4779/5779 Homework Assignment 1

Numerical Solution of ODE using Matlab

Due Tuesday, 1 February 2011

Newton’s law of gravitation states that any two objects attract one another with a force
proportional to their combined mass and inversely proportional to the square of the distance
between them. This law can be expressed mathematically as

F = −GMm

r2

~r

‖~r‖ ≡ −
GMm~r

r3
(1)

where F is the force on mass m due to mass M and G is a gravitational constant. Newton’s
law of gravity and Newton’s second law can be combined to develop the so-called ’two-body’
equation of relative motion. The two-body equation is given to be

r̈ = −G(M +m)~r

r3
. (2)

For a space object orbiting the Earth, the equation above can further reduced to

r̈ +
µE~r

r3
= 0. (3)

1. Discuss how this formulation could have been produced. What assumptions were
made? Can you determine the definition of µE?

2. Equation (3) is a second-order vector differential equation. Express this equation as a
first-order system.

3. Given the following initial conditions, numerically solve the differential system using
Matlab’s ODE45 solver for t = 0 to t = 1000 minutes. Produce a plot showing total
position and total velocity as a function of time. (µE = 398600.5 km3/ sec2, [x, y, z] =
[−2436.45,−2436.45, 6891.037] km, [ẋ, ẏ, ż] = [5.088611,−5.088611, 0.0] km/ sec)

Type your solutions using LATEX and submit a zip file with all tex and graphics files needed
for its compilation to the Drop Box on Blackboard. Please also bring a hard copy of the
compiled pdf to class on Tuesday, February 1. Please ask if you have any questions!

85

Math 4779/5779 Homework Assignment 2

Uncertainty Propagation and Collision Probabilities using Monte Carlo Simulations

Due Tuesday, 8 February 2011

Recall from Assignment 1 that the ‘two-body equation’ for space objects orbiting Earth is given by

r̈ +
µEr

r3
= 0 (1)

where the constant µE = 398600.5 km3/ sec2 is the product of reduced mass and gravitational force
of the Earth, r = [x, y, z] is the Cartesian position vector, r = ‖r‖ is the distance between the center
of the Earth and the object, and ṙ = [ẋ, ẏ, ż] and r̈ = [ẍ, ÿ, z̈] denote velocity and acceleration,
respectively. Using the time span from t = 0 to t = 1000 minutes with initial position vector
r(0) = [x(0), y(0), z(0)] = [−2436.45,−2436.45, 6891.037] km and initial velocity vector ṙ(0) =
[ẋ(0), ẏ(0), ż(0)] = [5.088611,−5.088611, 0.0] km/ sec, at t = 1000 minutes you should have found
the new position and velocity vectors r(1000) = [−5145.24, 1174.72, 5614.94] km and ṙ(1000) =
[2.827993,−5.464932, 3.729041] km/ sec (please check and – if necessary – correct your code first).

1. To reflect uncertainty and inevitable tracking inaccuracies of the initial position of the object
(its velocity be known for certain), let r̂ = r(0) be the mean (in Cartesian coordinates) and

Σ = E(r − r̂)(r − r̂) =




0.613 −0.271 −0.018
−0.271 0.613 −0.144
−0.018 −0.144 0.312




be the covariance matrix of a trivariate Gaussian (normal) distribution. Draw random sam-
ples from this distribution (hint: search the web for “sampling from multivariate Gaussian
distribution” for help if needed) and use your code from Assignment 1 to compute and plot
all perturbed trajectories, positions, and velocities from t = 0 to t = 1000 minutes. Use a
single plot for all sample trajectories and (if necessary) zoom in around t = 1000. Describe
the effects of the initial state’s uncertainty propagation using your Monte Carlo Simulation.

2. Consider a second object with (nominal) initial position r̄ = [−5351.66, 1596.76, 5310.02] km
and initial velocity ṙ(0) = [ẋ(0), ẏ(0), ż(0)] = [−2.471876, 5.370908,−4.099681] km/ sec (the
state error covariance matrix be the same as before). If a total (Euclidean) distance of 100
meters or less between the two objects is considered a collision, verify that the two objects
collide after t = 50 minutes on their nominal trajectories and estimate the actual collision
probability after t = 50 minutes using a Monte Carlo Approximation (hint: disable any
plotting to gain speed and crank up your sample size – expect probabilities to be very small!).

3. As discussed in class, in the presence of uncertainty the time of reaching the closest point of
approach may not anymore be at t = 50 minutes. Improve your estimate of the collision prob-
ability taking into account the actual time of closest approach between the objects (you may
try to use the Matlab functions “fminsearch” or “fminunc” for unconstrained minimization).

Type your solutions using LATEX and submit a zip file with all tex and graphics files needed
for its compilation to the Drop Box on Blackboard. Please also bring a hard copy of the
compiled pdf to class on Tuesday, February 8. Please ask if you have any questions!

86

Appendix C

MATLAB Implementation

We describe our two main functions written in MATLAB to model satellite
collisions. The first function is the collision module, which compares two
data history files and finds all points of closest approach. It also calculates
the miss distances and the collision probabilities at these points. The second
function is the case generator, used for the experiment in Chapter 5. The
inputs to this function are three data history files, a range of delta-Vs, a range
of times for the delta-v, and the number of points into which the ranges will
be divided. Section C.1 explains these inputs a little bit better and describes
how to execute the code. Figure C.1 shows a conceptual diagram of the
above functions together with all their subfunctions and dependencies, that
are also listed in Section C.2. The full code and some supplemental routines
are given in Section C.2.1, and Sections C.2.3 and C.2.4, respectively.

C.1 Running The Code

To execute the program, the first program to run is collision model.m. On
the command line, input

output = collision model(′datafile1′,′ datafile2′)

where ’data file 1’ and ’data file 2’ correspond to the names of the
two data files. The output will be an array containing the times of closest
approach in date number format for the two objects, along with the corre-
sponding collision probabilities and miss distances.

87

C.1. RUNNING THE CODE

Figure C.1: Overview of functions in final MATLAB implementation

The second main function is case generator.m. On the command line,
input

Cases = case generator(′datafile1′,′ datafile2′,′ datafile3′, . . .

[rangeofdelta Vs], [rangeoftimefordelta v], . . .

numberofdivisionsforthetworanges)

where the output will be returned in n2 cell arrays with n being the specified
number of divisions. The extension from three to an arbitrary number of
data files is not yet implemented but will require an only minor modification
of the current code.

88

APPENDIX C. MATLAB IMPLEMENTATION

C.2 List of Subfunctions

Figure C.1 gives a general overview of the different functions implemented as
well as their dependencies: all the functions used by some other function are
contained in the box of the calling function. The following is an alphabetical
listing the various functions together with a brief description of each:

Case generator.m

generates a series of cases in which a delta-v is applied

• Input: 3 data history files, a range of delta-Vs, a range of times for
the delta-V, and the number of points into which the ranges will be
divided

• Output: A n2× 6 cell array containing: Case number, [delta-v, time],
aggregate probability, TCAs, miss distances, collision probabilities

Collision model.m

calculates TCA, miss distances, and collision probabilities (used in case gen-
erator)

• Input: 2 sets of data files

• Output: an array containing TCAs, miss distances, and collision prob-
abilities

coordinateFrame ric.m

calculates a matrix to transform coordinates from ECI to RIC frame (used
in collision model)

• Input: position and velocity of an object

• Output: a transformation matrix

coordinateFrame vbn.m

calculates a matrix to transform coordinates from ECI to VBN frame (used
in prob collision)

• Input: position and velocity of an object

• Output: a transformation matrix

89

C.2. LIST OF SUBFUNCTIONS

Covariance LEO.m

propagates covariance matrix to a given time (used in collision model)

• Input: a time range

• Output: a covariance matrix

interp.m

takes 6 data points and interpolates to produce new data points within the
range, then finds the points at a specific time (used in collision model)

• Input: an array of time, position, and velocity for an object, along
with a tea (time at which new points are needed)

• Output: a vector with states at TCA

prob collision.m

calculates the probability of collision between two objects (used in collision
model)

• Input: states of two objects at TCA

• Output: probability of collision

propagate.m

propagates the state of an object using the two-body differential equation
and an ode solver (used in tca exact)

• Input: initial position and velocity of an object, and a time span

• Output: a new array of states

read file.m

reads data from a file and places into an array (used in case generator)

• Input: a data file

• Output: a data array

90

APPENDIX C. MATLAB IMPLEMENTATION

tca exact.m

calculates the exact TCA near the minimum relative position points (used
in tca finder)

• Input: states of two objects at minimum relative position

• Output: exact time of close approach

tca finder.m

calculates all the times of close approach when the relative position vector is
below a certain threshold (used in collision model)

• Input: two data arrays containing times and corresponding states (po-
sition and velocity)

• Output: an array of TCAs (in date number format)

time history generator.m

generates a new set of data that includes a delta-v (used in case generator)

• Input: a matrix containing time history data for one object, a delta-v,
and a time of delta-v (which refers the row of the data array)

• Output: a new matrix containing the altered time history data

trade space steps.m

used to create vectors of evenly spaced points from two ranges of values (used
in case generator)

• Input: a range of delta-Vs and a range of delta-Ts

• Output: two vectors of evenly spaced points within the range

C.2.1 Main Code: Satellite Model

%%%
%
% Col l i s i on mode l .m
%
%%%
function Cases=ca s e g en e r a t o r (thf1 , thf2 , thf3 , range dv , range t , num dvs)

91

C.2. LIST OF SUBFUNCTIONS

%%%
%
% This func t i on completes the f o l l ow i n g :
% ! . Generates new time h i s t o r y f i l e s t ha t contain a d e l t a v
% 2. Computes the new s e t o f c l o s e approach data .
% 3. Store each output in a c e l l array
% 4. Graphs the aggrega te p r o b a b i l i t i e s over the trade−space .
%
%%%

data1=r e a d f i l e (thf1 , 1) ;
data2=r e a d f i l e (thf2 , 1) ;
data3=r e a d f i l e (thf3 , 1) ;

% We d iv i d ed in the trade space in to n sepments .
[t rade space dv , s t ep s i z e dv , t r ade spac e t , s t e p s i z e t] = . . .

t r a d e s p a c e s t e p s (range dv , range t , num dvs) ;

% Counter f o r the t o t a l case
counter =1;
% Counter f o r the d i f f e r e n t d e l t a v s
counter v =1;
% Counter f o r the time of the d e l t a v s
count e r t =1;

for i=t rade space dv (1) : s t e p s i z e dv : t rade space dv (end)
for j = t r ad e spa c e t (1) : s t e p s i z e t : t r ad e spa c e t (end)

% We need the d e l t a v to be at a s p e c i f i c time node . We assume the
% data i s in 5 minute i n t e r v a l s , and there are 288 such i n t e r v a l s
% per day .
d e l t a t=f loor (j ∗288) ;

% Only generate new data i f the d e l v a v does not equa l 0
i f i ˜= 0

data1 v=t ime h i s t o r y g en e r a t o r (data1 , i , d e l t a t) ;
else

data1 v = data1 ;
end

% Output here w i l l be TCAs and corresponding p r o b a b i l i t y and miss
% d i s tance
output 1=c o l l i s i o n mod e l (data1 v , data2) ;
output 2=c o l l i s i o n mod e l (data1 v , data3) ;

% The next few l i n e s conca ten ta te the data in s i n g l e c e l l arrays .
% At t h i s point , the data i s arranged by ob j ec t−−t ha t i s , a l l the
% data from one o b j e c t i s t o g e t h e r .
p r o b a b i l i t i e s =[output 1 {2} ; output 2 { 2 }] ;
t c a s =[output 1 {1} ; output 2 { 1 }] ;
m i s s d i s t an c e s =[output 1 {3} ; output 2 { 3 }] ;

aggregate prob=1−prod(1− p r o b a b i l i t i e s) ;

% Now we combine the var ious c e l l s from above in to one array .

92

APPENDIX C. MATLAB IMPLEMENTATION

Cases (counter , :)= { counter , [i , j] , aggregate prob , tcas ,
m i s s d i s t ance s , p r o b a b i l i t i e s } ;

counter=counter +1;

% We use t h i s to c rea t e the p r o b a b i l i t y p l o t
prob matr ix (counter t , counter v)=aggregate prob ;
count e r t=count e r t +1;

end
counter v=counter v +1;
count e r t =1;

end
% We p l o t the aggrega te p r o b a b i l i t e s over the trade space .
prob p lo t (t rade space dv , t r ade spac e t , prob matr ix) ;
end

%%%
%
% coordinateFrame ric .m
%
%%%
function [M ric]= coord inateFrame r i c (pos 1 , v e l 1)
%%%
%
% This produces a matrix t ha t transforms coord ina te s from ECI to RIC fo r a
% s p e c i f i c o b j e c t
%
%%%

R=pos 1 /norm(pos 1) ; V=ve l 1 /norm(v e l 1) ;
h=cross (R,V) ; C=h/norm(h) ; I=cross (C,R) ;
%
M ric=zeros (3 , 3) ; M ric (1 , :)=R; M ric (2 , :)=I ; M ric (3 , :)=C;
end

%%%
%
% coordinateFrame vbn .m
%
%%%
function [M vbn] = coordinateFrame vbn (pos 1 , ve l 1 , pos 2 , v e l 2)
%%%
%
% This produces a matrix t ha t tranforms coord ina te s to an or thogona l
% r e l a t v i e v e l o c i t y frame
%
%%%

v e l r=ve l 2−v e l 1 ; po s r=pos 2−pos 1 ;
R=pos r /norm(po s r) ; V=v e l r /norm(v e l r) ;
h=cross (R,V) ; C=h/norm(h) ; I=cross (C,V) ;
%
M vbn=zeros (3 , 3) ; M vbn (: , 1)=C; M vbn (: , 2)=V; M vbn (: , 3)=I ;
end

93

C.2. LIST OF SUBFUNCTIONS

% Fi l e to c rea t e Covariance Time His tory F i l e
% S ing l e Time His tory to be used f o r a l l s econdar ie s .

function [cov new] = Covariance LEO (t0 , t end)
tVec = [t0 t end] ; % t represen ted in days

% Input Co e f f i c i e n t s f o r Error P r o f i l e s (assumes quadra t i c error
% func t i ons) − un i t s are meters

% −−−−−−−−−−− Pos i t ion Error , Radial InTrack CrossTrack −−−−−−−−

%Radial Error Co e f f i c i e n t s
PosErrorCoef f R = [− . 3 , 2 . 5 , 2] ;

%In−Track Error Co e f f i c i e n t s
PosErrorCoef f IT = [6 . 2 , 3 0 , 6] ;

% CrossTrack Error Co e f f i c i e n t s
PosErrorCoeff CT = [− . 3 , 4 . 5 , 2] ;

% −−

% Input Corre la t ion Terms :

Corr21 = − .8;
Corr31 = 0 . 5 ;
Corr32 = − .45;

% Evaluate Polynominals
PosError Radia l = polyval (PosErrorCoeff R , tVec) ;
PosError InTrack = polyval (PosErrorCoef f IT , tVec) ;
PosError CrossTrack = polyval (PosErrorCoeff CT , tVec) ;

PosError Tota l = sqrt (PosError Radia l .ˆ2+ PosError InTrack .ˆ2+
PosError CrossTrack . ˆ 2) ;

P21 = Corr21∗PosError Radia l .∗ PosError InTrack ;
P31 = Corr31∗PosError CrossTrack .∗ PosError Radia l ;
P32 = Corr32∗PosError CrossTrack .∗ PosError InTrack ;

CovMatrix = zeros (length (tVec) ,7) ;

CovMatrix (: , 1) = tVec ;
CovMatrix (: , 2) = PosError Radia l . ˆ 2 ;
CovMatrix (: , 3) = P21 ;
CovMatrix (: , 4) = PosError InTrack . ˆ 2 ;
CovMatrix (: , 5) = P31 ;
CovMatrix (: , 6) = P32 ;
CovMatrix (: , 7) = PosError CrossTrack . ˆ 2 ;

cov new=zeros (3) ;
cov new (1 , 1)=CovMatrix (end , 2) ;
cov new (1 , 2)=CovMatrix (end , 3) ;
cov new (1 , 3)=CovMatrix (end , 5) ;
cov new (2 , 1)=CovMatrix (end , 3) ;
cov new (2 , 2)=CovMatrix (end , 4) ;
cov new (2 , 3)=CovMatrix (end , 6) ;
cov new (3 , 1)=CovMatrix (end , 5) ;

94

APPENDIX C. MATLAB IMPLEMENTATION

cov new (3 , 2)=CovMatrix (end , 6) ;
cov new (3 , 3)=CovMatrix (end , 7) ;

%%%
%
% in t e rp .m
%
%%%
function po s v e l=in t e rp (data , tca)
% Using Lagrange i n t e r p o l a t i o n f i n d s po s i t i on and v e l o c i t y out o f 6 po in t s
% of data1 , t ha t are around tca
da t a s i z e=s ize (data) ;
i f (d a t a s i z e (2)==7)
time=data (: , 1) ;
s i z e t ime=s ize (time) ;
x=data (: , 2) ;
y=data (: , 3) ;
z=data (: , 4) ;
x1=data (: , 5) ;
y1=data (: , 6) ;
z1=data (: , 7) ;
p o s v e l (1)=tca ;
% 1) f ind the c l o s e s t po in t to the tca in the data1
time1=time−tca ;
min abs=min(abs (time1)) ;
index=find (time1==min abs) ;
s i z e i n d e x=s ize (index) ;
i f (s i z e i n d e x (1)==0) % so we look f o r nega t i v e

index=find (time1==−min abs) ;
s i z e i n d e x=s ize (index) ;

end
i f (s i z e i n d e x (1)==0)

d i sp l ay (’ Error in i n t e rp .m, can not f i nd the c l o s e s t po int to the tca ’) ;
end
po s v e l (1)=tca ;

i f (index (1)>=s i z e t ime (1)−3) % take 5 indexes from the l e f t
po s v e l (2)=interp1 (time (index (1)−5: index (1)) , x (index (1)−5: index (1)) , tca ,

’ s p l i n e ’) ;
p o s v e l (3)=interp1 (time (index (1)−5: index (1)) , y (index (1)−5: index (1)) , tca ,

’ s p l i n e ’) ;
p o s v e l (4)=interp1 (time (index (1)−5: index (1)) , z (index (1)−5: index (1)) , tca ,

’ s p l i n e ’) ;
p o s v e l (5)=interp1 (time (index (1)−5: index (1)) , x1 (index (1)−5: index (1)) , tca

, ’ s p l i n e ’) ;
p o s v e l (6)=interp1 (time (index (1)−5: index (1)) , y1 (index (1)−5: index (1)) , tca

, ’ s p l i n e ’) ;
p o s v e l (7)=interp1 (time (index (1)−5: index (1)) , z1 (index (1)−5: index (1)) , tca

, ’ s p l i n e ’) ;
e l s e i f (index (1) <3) % take 5 indexes from the r i g h t

po s v e l (2)=interp1 (time (index (1) : index (1)+5) , x (index (1) : index (1)+5) , tca ,
’ s p l i n e ’) ;

p o s v e l (3)=interp1 (time (index (1) : index (1)+5) , y (index (1) : index (1)+5) , tca ,
’ s p l i n e ’) ;

95

C.2. LIST OF SUBFUNCTIONS

po s v e l (4)=interp1 (time (index (1) : index (1)+5) , z (index (1) : index (1)+5) , tca ,
’ s p l i n e ’) ;

p o s v e l (5)=interp1 (time (index (1) : index (1)+5) , x1 (index (1) : index (1)+5) , tca
, ’ s p l i n e ’) ;

p o s v e l (6)=interp1 (time (index (1) : index (1)+5) , y1 (index (1) : index (1)+5) , tca
, ’ s p l i n e ’) ;

p o s v e l (7)=interp1 (time (index (1) : index (1)+5) , z1 (index (1) : index (1)+5) , tca
, ’ s p l i n e ’) ;

else % take 2 from the l e f t and 3 from the r i g h t

po s v e l (2)=interp1 (time (index (1)−2: index (1)+3) , x (index (1)−2: index (1)+3) ,
tca , ’ s p l i n e ’) ;

p o s v e l (3)=interp1 (time (index (1)−2: index (1)+3) , y (index (1)−2: index (1)+3) ,
tca , ’ s p l i n e ’) ;

p o s v e l (4)=interp1 (time (index (1)−2: index (1)+3) , z (index (1)−2: index (1)+3) ,
tca , ’ s p l i n e ’) ;

p o s v e l (5)=interp1 (time (index (1)−2: index (1)+3) , x1 (index (1)−2: index (1)+3)
, tca , ’ s p l i n e ’) ;

p o s v e l (6)=interp1 (time (index (1)−2: index (1)+3) , y1 (index (1)−2: index (1)+3)
, tca , ’ s p l i n e ’) ;

p o s v e l (7)=interp1 (time (index (1)−2: index (1)+3) , z1 (index (1)−2: index (1)+3)
, tca , ’ s p l i n e ’) ;

end
else
d i sp l ay (’ data should conta in 7 columns ’)
end

%%%
%
% prob p l o t .m
%
%%%
function prob p lo t (t rade space dv , t r ade spac e t , prob matr ix)
%%%
%
% Creates a contour p l o t over a m by n matrix
% S p e c i f i c a l l y used to p l o t p r o b a b i l i t i e s over t rade space
%
%%%

% x−ax i s i s the range o f d e l t a v s
X=trade space dv .∗1 e+5;
% y−ax ix i s the range o f t imes
Y=t r ad e spa c e t .∗1440 ;
% contours r e l a t e to the p r o b a b i l i t i e s
Z=prob matr ix ;
[C, h]= contour f (X,Y,Z) ;
xlabel (’ Delta vs (in cm/ sec) ’ , ’ Fonts i ze ’ ,24) ;
ylabel (’Time o f d e l t a v (minutes from s t a r t o f f i l e) ’ , ’ Fonts i z e ’ , 24) ;
clabel (C, h) ;
colormap (cool) ;
colorbar (’ EastOutside ’) ;
t i t l e (’ P robab i l i t y Contours ’ , ’ Fonts i ze ’ , 32) ;
end

96

APPENDIX C. MATLAB IMPLEMENTATION

%%%
%
% Pro b c o l l i s i o n .m
%
%%%
function [p i n t] = p r o b c o l l i s i o n (pos 1 , ve l 1 , cov 1 , pos 2 , ve l 2 , cov 2)
%%%
%
% This computes the p r o b a b i l i t y o f c o l l i s i o n us ing a two dimensional

i n t e g r a l .
% We f i r s t numer ica l l y e va l ua t e the doub le i n t e g r a l .
% We then es t imate the i n t e g r a l by a s imple sum per Got t l i e b , Sponaugle ,

Gaylord
% code by mark mue l l er and jeremy doan
%
%%%

% i n i t a l data , which w i l l be inpu t s :
% 2 covariances , 2 pos i t i ons , 2 v e l o c i t i e s , hard body rad ius

% hard body rad ius
d i s t = . 1 0 0 ;

% Combined covar iance matrix in an or thogona l r e l a t i v e v e l o c i t y frame
[M vbn]=coordinateFrame vbn (pos 1 , ve l 1 , pos 2 , v e l 2) ;
pos r2=M vbn ’ ∗ (pos 2−pos 1) ’ ; mu=pos r2 (1 : 2 : 3) ;
G=M vbn∗(cov 1+cov 2) ∗M vbn ’ ;
g=G(1 : 2 : 3 , 1 : 2 : 3) ; g inv=inv (g) ;

% This w i l l g i v e us the p r o b a b i l i t y
[p i n t] = p r o b c o l l i s i o n i n t (g , mu, ginv , d i s t) ;
end

% Subfunct ions

function [p i n t] = p r o b c o l l i s i o n i n t (g , mu, ginv , d i s t)
% This numer ica l l y e va l ua t e s the doub le i n t e g r a l
% l im i t s o f i n t e g r a t i on

n=d i s t ; m=−n ;
f 2 = 1/(2∗pi∗sqrt (det (g))) ; t o l = 1 .0 e−9;
a = ginv (1 , 1) ; b = ginv (1 , 2) ; c = ginv (2 , 1) ; d = ginv (2 , 2) ;
i n t1 = @(x , y)exp(− .5∗(a ∗(x−mu(1)) . ˆ2 + (c+b) ∗(x−mu(1)) . ∗ (y−mu(2))+ d∗(y−mu

(2)) ˆ2)) . ∗ (x.ˆ2+y.ˆ2<nˆ2) ;
out2=dblquad (int1 , m, n , m, n , t o l) ;
p i n t = f2 ∗out2 ;

end

%%%
%

97

C.2. LIST OF SUBFUNCTIONS

% propogate .m
%
%%%
function [X] = propagate (pos 0 , ve l 0 , tspan)
%%%
%
% This func t i on uses ode45 (an ordinary d i f f e r e n t i a l equat ion s o l v e r) to
% propagate the s t a t e s o f two s a t e l l i t e s us ing the famed two−body
% d i f f e r e n t i a l equat ion .
%
%%%

% These are op t ions t ha t we would use f o r the ode s o l v e r .
opt ions = odeset (’ RelTol ’ ,1 e−9, ’ AbsTol ’ ,1 e−9) ;

% The i n i t i a l s t a t e must be one vec tor conta in ing po s i t i on and v e l o c i t y .
x0=[pos 0 , v e l 0] ;

% The output X w i l l be the propogated s t a t e s o f the o b j e c t s .
% The output tp1 i s the time in seconds .
[tp1 ,X] = ode45 (@orbit , tspan , x0 , opt ions) ;
end

function f = o rb i t (t , y)
%%%This func t i on turns our second order two body problem equat ion
%%%into a system of f i r s t order d i f f e r e n t i a l equa t ions .
%%%Inputs : t = time
%%%Output : used in ode45 .
mu = 398600 . 5 ;
f = zeros (6 , 1) ;
f (1) = y (4) ;
f (2) = y (5) ;
f (3) = y (6) ;
f (4) = −(mu∗y (1)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
f (5) = −(mu∗y (2)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
f (6) = −(mu∗y (3)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
end

%%%
%
% r e a d f i l e .m
%
%%%
function [S]= r e a d f i l e (thf ,num)
%%%
%
% This func t i on reads in date from a time h i s t o r y f i l e .
%
%%

% This w i l l come from a time h i s t o r y f i l e
f i d = fopen (thf , ’ r ’) ;
thd =text scan (f id , ’%24c %f %f %f %f %f %f ’) ;
fc lose (f i d) ;

98

APPENDIX C. MATLAB IMPLEMENTATION

% The f i r s t 24 p l a ce s are the date s t r i n g . This i s what i s found in thd {1}
comb=thd {1} ; %time (dd mmm yyyy HH:MM:SS .FFF)

% We can use t h i s func t i on whether the date in the time h i s t o r y f i l e i s in
% Ju l ian format (a date number) or in Gregorian (a date s t r i n g) .
i f num ==1

T= datenum(comb) ;
end

i f num ==2
T= datenum(comb) ;
T = da t e s t r (T, ’dd−mmm−yyyy HH:MM: SS .FFF ’) ;

end

% We p lace the vau l e s in to an array .
% T i s the time .
% x , y , z are the po s i t i on components .
% vx . vy , vz are the v e l o c i t y components .
x = thd {2} ; vx = thd {5} ;
y = thd {3} ; vy = thd {6} ;
z = thd {4} ; vz = thd {7} ;
S = [T, x , y , z , vx , vy , vz] ;
end

%%%
%
% tca e xa c t .m
%
%%%
function [t ca] = t ca exac t (pos primary , ve l pr imary , pos secondary ,

ve l s e condary)
%%%
%
% This func t i on c a l c u l a t e s the time of c l o s e s t approach (TCA) .
%
%%%

% To begin , we s e t t d i f f , which i s the time d i f f e r e n c e between the
% po s i t i o n s at the i n i t i a l time and the po s i t i o n s at the ac tua l tca . We
% i t e r a t e u n t i l t d i f f i s l e s s than some smal l e p s i l on .
% I n i t i a l l y , we s e t t d i f f equa l to 1 (so t ha t the loop w i l l run) .
% We a l so s e t tca = 0 . ;

t d i f f = 1 ;
tca =0;

% This loop w i l l c a l c u l a t e t d i f f , and then make the new tca the former tca
% p lus t d i f f . This loop runs u n t i l t d i f f i s l e s s than the s p e c i f i c e d
% ep s i l on .
while abs (t d i f f) > 1e−10

% The f i r s t time the loop runs , we w i l l use the s t a t e s supp l i e d as
% imputs . For each time afterward , we use the s t a t e s at the new tca .

% We ca l c u l a t e the r e l a t i v e s t a t e s , and then use the se to c a l c u l a t e
% t d i f f , the d i f f e r e n c e in time between the nomical tca and the ac tua l

99

C.2. LIST OF SUBFUNCTIONS

% tca .
pr = pos primary−pos secondary ;
vr = vel pr imary−ve l s e condary ;

% This equat ion i s der i ved from the formula p =p o + vt , where :
% p i s the po s i t i on at the tca ,
% p 0 i s the i n t i t i a l r e l a t i v e pos i t i on ,
% v t r ep re s en t s the d i f f e r e n c e between the two .
% We ca l c u l a t e (p∗p) , take the d e r i v a t i v e , and then s o l v e f o r t .
% The t t ha t we ob ta in i s t d i f f . The r e l a t i v e po s i t i on i s at a
% minimum when t d i f f =0;
t d i f f = −dot (pr , vr) /norm(vr) ˆ2 ;

% Our new tca i s the o ld one p lu s the ca l cua ted d i f f e r e n c e in time . As
% we i t e r a t e t h i s t d i f f becomes sma l l e r and e v en t ua l l y we w i l l have
% our new tca as we l l as the s t a t e s at t ha t time .
tca = tca + t d i f f ;

% We need to propagate to the new tca . tspan i s the time span over
% which we propagate .
tspan = [0 t d i f f] ;

% We use the ode s o l v e r to propogate the s t a t e s to the necessary t imes
[X] = propagate (pos primary , ve l pr imary , tspan) ;
[Y] = propagate (pos secondary , ve l s econdary , tspan) ;

% We i d e n t i f y the s t a t e s at t h i s new tca .
pos pr imary = X(end , 1 : 3) ;
ve l pr imary = X(end , 4 : 6) ;

pos secondary = Y(end , 1 : 3) ;
v e l s e condary = Y(end , 4 : 6) ;

end

end

%%%
%
% tc a f i n d e r .m
%
%%%
function [t c a s]= t c a f i n d e r (thf1 , th f2)
%%%
%
% This func t i on f i n d s a l l the t imes o f c l o s e approach when the r e l a t i v e
% po s i t i on i s below a s p e c i f i e d thre sho ld , the d i s t s e p va lue .
%
%%

d i s t s e p = 2 ; % in k i l ome t e r s

100

APPENDIX C. MATLAB IMPLEMENTATION

%%%
% INPUTS: t h f 1 = time h i s t o r y f i l e o f o b j e c t 1
% th f 2 = time h i s t o r y f i l e o f o b j e c t 2
%%%

% I f we need to read f i l e s d i r e c t l y by t h i s program , we can .
% Otherwise , we w i l l j u s t use the data arrays .
%th f 1 = r e a d f i l e (th f1 , 1) ; % read in time h i s t o r y data 1
%th f 2 = r e a d f i l e (th f2 , 1) ; % read in time h i s t o r y data 2

% We assume tha t the time data f i l e s have the same l eng t h . So we can use
% the same va lue f o r both data s e t s .
stop = length (th f1 (: , 1)) ;

% This counter i s used to organize the output
counter =1;

% Our loop f i r s t c a l c u l a t e s the r e l a t i v e po s i t i on vec tor . I f the magnitude
% of the vec to r i s below d i s t s e p (which can be s e t a r b i t r a r i l y or f o r a
% s p e c i f i c va lue) , then the func t i on f i n d s the l o c a l minimum data po in t .
% At tha t po in t i t c a l c u l a t e s the each tca (time o f c l o s e approach) then
% then uses i n t e r p o l a t i o n to d i s cove r the s t a t e s at t ha t time .
for i = 1 : stop

pos 1 (i , 1 : 3)=th f1 (i , 2 : 4) ;
pos 2 (i , 1 : 3)=th f2 (i , 2 : 4) ;
v e l 1 (i , 1 : 3)=th f1 (i , 5 : 7) ;
v e l 2 (i , 1 : 3)=th f2 (i , 5 : 7) ;

% We ca l c u l a t e the r e l a t i v e po s i t i on vec tor . We p lace i t in to an array
% so tha t i t i s indexed and we can r e f e r to i t l a t e r
p o s r e l (i , 1 : 3) = pos 1 (i , 1 : 3)−pos 2 (i , 1 : 3) ;

end
t c a s = [0] ;
% This loop c a l c u l a t e s the l o c a l minimums−−the po in t s from the time h i s t o r y
% f i l e s t ha t are lower than the ones around i t . We assume tha t the graph
% of the magnitude o f the r e l a t i v e po s i t i on vec t o r s w i l l be s inuso ida l−i sh ,
% and thus there w i l l e x i s t s e v e r a l l o c a l minimums .
for j =2: stop−1

% This f i l t e r s out r e l a t i v e p o s i t i o n s whose magnitude i s above
% d i s t s e p .
i f norm(p o s r e l (j , 1 : 3)) < d i s t s e p

% This cond i t i ona l l ook s f o r the po in t at which the s l ope i s
% changing from nega t i v e to po s i t i v e , which w i l l be a l o c a l
% minimum.
i f norm(p o s r e l (j −1 ,1 :3)) > norm(p o s r e l (j , 1 : 3)) && . . .

norm(p o s r e l (j +1 ,1:3)) > norm(p o s r e l (j , 1 : 3))

%disp (da t e s t r (t h f 1 (j , 1) , ’mm−ddd−yyyy HH:MM:SS .FFF’))

% Using the l o c a l minimum from above , we take the s t a t e s at
% tha t po in t and c a l c u l a t e the tca
tca=tca exac t (pos 1 (j , 1 : 3) , v e l 1 (j , 1 : 3) , pos 2 (j , 1 : 3) , v e l 2 (j

, 1 : 3)) ;

101

C.2. LIST OF SUBFUNCTIONS

% To ge t the exac t time in dd−mmm−yyyy HH:MM:SS .FFF format , we
% take the time from the data f i l e (which we be a date number
% repre s en t ing days) .
% The va lue from the t c a e xa c t func t i on w i l l be in seconds .
% We d i v i d e tca by 86400 (seconds in a day) and then add i t to
% our time from the data f i l e .
% When we conver t t h i s date number back to a date s t r ing , we
% w i l l have the exacat day and mi l l i s e cond o f the day fo r the
% tca .
time = th f1 (j , 1) ;
tca=time + tca /86400;

% We p lace the date s t r i n g in to an array .
t c a s (counter)=tca ;

counter=counter +1;
end

end
end

end

%%%
%
% t ime h i s t o r y g ene ra t o r .m
%
%%%
function new data=t ime h i s t o r y g en e r a t o r (data , de l ta v , d e l t a t , theta)
%%%
%
% Creates a s e t o f data t ha t i n c l ude s a d e l t a v at a s p e c i f i c time .
% Current ly , i t saves the new data in a matrix .
%
%%%

% Creates a d e f a u l t ’ the ta ’ , which i s measured from the r a d i a l d i r e c t i on
% (i . e . s t r a i g h t out from the center o f the ear th
i f ˜exist (’ theta ’ , ’ var ’)

theta = pi /2 ;
end

% Pul l s t a t e s from data at time of d e l t a v
po s i t i o n = data (d e l t a t , 2 : 4) ;
v e l o c i t y = data (d e l t a t , 5 : 7) ;

% To apply the de l t a v , we need a trans format ion matrix .
% We apply the d e l t a v in the RIC frame , and then tranform back to
% Cartes ian
[M ric]= coord inateFrame r i c (po s i t i on , v e l o c i t y) ;
v e l o c i t y=v e l o c i t y + de l t a v . ∗ [cos (theta) , sin (theta) , 0]∗M ric ’ ;

% Set the l eng t h o f the f o r loop .
stop = length (data (d e l t a t : end , 1)) ;
time = data (d e l t a t , 1) ;

102

APPENDIX C. MATLAB IMPLEMENTATION

% Each loop propagates out 300 seconds (5 min) to crea t e a s e t o f data at 5
% minute i n t e r v a l s .
for i =1: stop−1

tspan=[0 3 0 0] ;

X = propagate (po s i t i on , v e l o c i t y , tspan) ;

p o s i t i o n = X(end , 1 : 3) ;
v e l o c i t y = X(end , 4 : 6) ;

time = data (d e l t a t+i , 1) ;

new data (i , :) =[time , po s i t i on , v e l o c i t y] ;
end

new data=ve r t c a t (data (1 : d e l t a t , :) , new data) ;
end

%%%
%
% trad s pa c e s t e p s .m
%
%%%
function [t rade space dv , s t ep s i z e dv , t r ade spac e t , s t e p s i z e t] =

t r ad e sp a c e s t e p s (range dv , range t , n)
%%%
%
% This func t i on take s the trade space made up o f max and min d e l t a v and
% max and min d e l t a t , and then d i v i d e s the range in to e qua l l y d i s tanced
% d i s c r e t e po in t s .
%
%%%

% n i s the number o f po in t s we use to d i v i d e our p o s s i b l e d e l t a v ’ s and
% the time of the d e l t a v ’ s

% F i r s t we ge t the range o f p o s s i b l e d e l t a v s

min dv = range dv (1 , 1) ;
max dv = range dv (1 , 2) ;

% We need to d i v i d e the range o f d e l t a v s in to n d i s c r e t e segments
t rade space dv= linspace (min dv , max dv , n) ;
s t e p s i z e dv = trade space dv (2)−t rade space dv (1) ;

% Next we ge t the range o f t imes in terms of days .
max t = range t (1 , 2) ;
min t = range t (1 , 1) ;

% We then d i v i d e t h i s time span in the d i s c r e t e po in t s .
t r ad e spa c e t = linspace (min t , max t , n) ;
s t e p s i z e t= t r ad e spa c e t (2)− t r ad e spa c e t (1) ;
end

103

C.2. LIST OF SUBFUNCTIONS

C.2.2 Supplemental Code: Optimization

Opt3 F.m

function [Del V , theta] = Opt3 F (N, r 1 , v 1 , r 2 , v 2 , cov 1 , cov 2 , t ,P T ,
P C)

i f ˜((N == 1) | | (N == 2)) ; error (’Opt3 : N must be 1 or 2 ’) ; end

[cov ,M]=Comb cov (r 1 , v 1 , cov 1 , r 2 , v 2 , cov 2) ; h r e l = M(: , 3) ;
s igma x = sqrt (cov (1 , 1)) ; s igma z = sqrt (cov (3 , 3)) ; rho xz = cov (1 , 2) /(

sigma x ∗ s igma z) ;

S = [r 1 , v 1 ; r 2 , v 2] ; Y = Kepler3 (S) ;
[x i b , eta b , u b , C ubc , S ubc , r bc , n b , C ub , S ub , P b]= ge to rb i tda ta (

Y, r 1 , t) ;

M = ECI to RTN(r 1 , v 1) ; r = M(1 , :) ; r T = M(2 , :) ; % r N = M(3 , :) ; % to
be checked

[a , b , c , d , e]= g e t o r b i t f n (x i b , eta b , C ubc , S ubc , r bc , n b , C ub , S ub , P b
, t , Y(: , 3)) ;

r r e l = r 2−r 1 ;

i f N == 1 ; [theta , De l r] = get the ta1 (a , b , c , d , r r e l , r T) ;
else [theta , De l r] = get the ta2 (a , b , c , d , r , r T , r r e l , h r e l ,

sigma x , sigma z , rho xz) ;
end

[A, B, C] = getABC(r r e l , h r e l , Del r , sigma x , sigma z , rho xz , P T , P C) ;

f = @(x) A∗xˆ2 + B∗x + C; x0 = 0 ; x1 = 100 ; t o l = eps ; n=1000; % Max #
i t e r a t i o n s

Del V = secant2 (x0 , x1 , n , f , t o l) ;
end

Test Opt3 F.m

% Test program for the op t imi za t i on program
% t e s t nonc i rcu lar o r b i t s

clear ; clc ; close a l l

P T = 1e−10; % p r o b a b i l i t y o f c o l l i s i o n t h r e s ho l d

N=2; % 1 for miss vec to r ; 2 f o r g rad i en t

cov 1 = [0 . 6 1 3 −0.271 −0.018; −0.271 0 .613 −0.144; −0.018 −0.144 0 . 3 1 2] ;
cov 2 = [3 . 0 9 9E+03 −2.437E+04 1 .010E+02; −2.437E+04 2 .051E+05 −3.100E+02;

1 .010E+02 −3.100E+02 2 .248E+02] ;

%%%%%%%%%%%%%%%%%%%%%%%%%% cons t ruc t t e s t case %%%%%%%%%%%%%%%%%%%%%%%%%%%

%We use somewhat a r b i t r a r y po s i t i o n s and v e l o c i t i e s , such tha t they meet
%the requirement o f v i o l a t i n g our p r o b a b i l i t y o f c o l l i s i o n t h r e s ho l d at the

tca .

104

APPENDIX C. MATLAB IMPLEMENTATION

r1=[−2400 −2400 6900] ;
r2=[−2400 −2400.01 6 8 9 9 . 9 9] ;
v1 =[5.0 −5.0 0 . 0] ;
v2 =[5.0 −5.0 3 . 6] ;
t e s t t c a = 5000 ; % seconds to be run ’ backwards ’ to ge t our i n i t i a l

cond i t i ons
[r 1 , r 2 , v 1 , v 2]= g e t t e s t c a s e (r1 , r2 , v1 , v2 , t e s t t c a) ; % g i v e s us our

i n i t i a l s t a t e
%ax i s (’ square ’) ; p l o t 3 (Y1(: , 1) ,Y1(: , 2) ,Y1(: , 3) , ’− ’ , ’ LineWidth ’ , 1) ; p l o t 3 (Y2

(: , 1) ,Y2(: , 2) ,Y2(: , 3) , ’− ’ , ’ LineWidth ’ , 1) ;
%%%
M=ECI to RTN(r 1 , v 1) ;
%We conver t our primary ob j ec t ’ s coord ina te s from the ECI frame to the RTN

frame ,
%to perform our maneuver .
y1 = cat (2 , r 1 , v 1) ’ ; y2 = cat (2 , r 2 , v 2) ’ ;
%%
kmax = 500 ; %t h i s i s the number o f unique Delta−V’ s we want to t e s t
t d e l = 10 ; %t h i s i s the amount o f time between the t e s t Delta−V’ s
Del V = zeros (kmax , 1) ; theta = zeros (kmax , 1) ; P C = zeros (kmax , 1) ;

tca=t nominal (r 1 , r 2 , v 1 , v 2) ; %t nominal f i n d s a r u f f e s t imate o f our
tca ,

%used below , to g i v e c lose approach2 a p lace to s t a r t l ook ing f o r the
%pre c i s e tca (accurate to the mi l l i s e cond) .
tca0=tca ;
[pos p , ve l p , pos s , v e l s , tca] = c lo s e approach2 (r 1 , v 1 , r 2 , v 2 , tca)

;
disp (tca) ;
P C0 = p r o b c o l l i s i o n 6 (pos p , ve l p , pos s , v e l s , cov 1 , cov 2) ;
i f P C0 <= P T ; fpr intf (’ p r obab i l i t y o f c o l l i s i o n i s below thre sho ld : %10.3 e

ver sus %10.3 e \n ’ ,P C0 , P T) ; break ;
else fprintf (’ p r obab i l i t y o f c o l l i s i o n i s %10.3 e and the p r obab i l i t y

th r e sho ld i s %10.3 e \n ’ ,P C0 , P T) ; end

[V, th]=Opt3 F (N, pos p , ve l p , pos s , v e l s , cov 1 , cov 2 , tca , P T , P C0) ;
Del V (1 , 1)=V; theta (1 , 1)=th ;

v 1 new = v 1 + V∗ [cos (th) , sin (th) , 0]∗M’ ;

tca=t nominal (r 1 , r 2 , v 1 new , v 2) ;
[pos p , ve l p , pos s , v e l s , t ca 1] = c lo s e approach2 (r 1 , v 1 new , r 2 , v 2

, tca) ;
P C(1 , 1) = p r o b c o l l i s i o n 6 (pos p , ve l p , pos s , v e l s , cov 1 , cov 2) ;
t t r i x = zeros (kmax , 1) ;
t t r i x (1 , 1) = tca 1 ;
for k = 2 :kmax ; i f mod(k , 1 0)==0; disp (k) ; end
% update s a t e l l i t e s pos i t i on , v e l o c i t y
t=tca 1 −((k−1)∗ t d e l) ; tspan = [0 t] ;
[T1 ,Y1]=ode45 (@orbit , tspan , y1 , odese t (’ RelTol ’ ,1 e−9)) ;
[T2 ,Y2]=ode45 (@orbit , tspan , y2 , odese t (’ RelTol ’ ,1 e−9)) ;
r 1 t=Y1(end , 1 : 3) ; r 2 t=Y2(end , 1 : 3) ; v 1 t=Y1(end , 4 : 6) ; v 2 t=Y2(end

, 4 : 6) ;
t t r i x (k , 1) = t ;
% update s a t e l l i t e s tca
tca=t nominal (r 1 t , r 2 t , v 1 t , v 2 t) ;
[pos p , ve l p , pos s , v e l s , tca] = c lo s e approach2 (r 1 t , v 1 t , r 2 t ,

v 2 t , tca) ;

105

C.2. LIST OF SUBFUNCTIONS

% current maneuver
[V, th]=Opt3 F (N, pos p , ve l p , pos s , v e l s , cov 1 , cov 2 , tca−t , P T , P C0)

; Del V (k , 1)=V; theta (k , 1)=th ;
M t=ECI to RTN(r 1 t , v 1 t) ;
v 1 new = v 1 t + V∗ [cos (th) , sin (th) , 0]∗M t ’ ;

% update prob c o l l i s i o n
tca=t nominal (r 1 t , r 2 t , v 1 new , v 2 t) ;
[pos p , ve l p , pos s , v e l s , tca] = c lo s e approach2 (r 1 , v 1 new , r 2 , v 2 ,

tca) ;
P C(k , 1) = p r o b c o l l i s i o n 6 (pos p , ve l p , pos s , v e l s , cov 1 , cov 2) ;
end

%%%

hold on
figure (1) ; plot (tca0 −(1:kmax) ∗ t d e l , Del V , ’ r− ’) ; t i t l e (’ Delta V ’) ;
axis ([0 5100 0 . 5]) ; xlabel (’ time in seconds ’) ; ylabel (’ change in v e l o c i t y

in km/ s ’) ;
figure (2) ; plot (tca0 −(1:kmax) ∗ t d e l , theta , ’b−. ’) ; t i t l e (’ theta ’) ;
xlabel (’ time in seconds ’) ; ylabel (’ rad ians ’) ;
figure (3) ; plot (tca0 −(1:kmax) ∗ t d e l , P C , ’ g . ’) ; t i t l e (’ P robab i l i t y o f

C o l l i s i o n ’) ;
axis ([0 5100 0 1 .0 e−255]) ;

moves = horzcat (t t r i x , Del V , theta , P C) ;
disp (moves) ;

%subp l o t (3 ,1 ,1) , p l o t (tca −(1:kmax)∗ t d e l , Del V , ’ r ’)
%subp l o t (3 ,1 ,2) , p l o t (tca −(1:kmax)∗ t d e l , the ta , ’ b ’)
%subp l o t (3 ,1 ,3) , p l o t (tca −(1:kmax)∗ t d e l ,P C , ’ g ’)

%f p r i n t f (’ time Del V the t a \n ’) ;
%f p r i n t f (’%6d %10.4 f %10.4 f \n ’ , k , Del V (k , 1) , t h e t a (k , 1)) ;

close approach2.m

%%%
%
% close approach2 .m
%
%%%

% This func t i on c a l c u l a t e s the time of c l o s e s t approach (TCA) . I t ou tput s
% the po s i t i on vec tor at t h i s time .

function [pos pr im ca , ve l pr im ca , po s s e c ca , v e l s e c c a , tca] = . . .
c l o s e approach2 (pos primary , ve l pr imary , pos secondary , ve l s econdary ,

tca)

% t d i f f i s the d i f f e r e n c e between the nominal tca and the ac tua l tca . At
% the s t a r t we s e t out t d i f f to be equa l to the nomial tca . t d i f f becomes
% the time span over which we search . In the end , we want t d i f f to be
% zero .
t d i f f = tca ;

106

APPENDIX C. MATLAB IMPLEMENTATION

% These op t ions are f o r the ode s o l v e r .
opt ions = odeset (’ RelTol ’ ,1 e−12, ’ AbsTol ’ ,1 e−12) ;

% This loop w i l l c a l c u l a t e t d i f f , and then make the new tca the former tca
% p lus t d i f f . This loop runs u n t i l t d i f f i s l e s s than the s p e c i f i c e d
% ep s i l on .
while abs (t d i f f) > 1e−09

% We se t our i n i t t i a l s t a t e f o r the ode s o l v e r . The f i r s t time the
% loop runs , we w i l l use the s t a t e s supp l i e d as imputs . For each time
% afterward , we use the s t a t e s at the new tca .
x0=[pos primary , ve l pr imary] ;
y0=[pos secondary , ve l s e condary] ;

% We want to make sure t ha t the time s t ep f o r the ode s o l v e r i s smal l
% enough to c a l c u l a t e the exac t tca . We use a time s t ep o f t d i f f ∗ .01
% so tha t as t d i f f ge t s , smal ler , we have a descreas ing s t e p s i z e .
% Also , s ince t d i f f i s not always po s i t i v e , we w i l l have a vec tor with
% the proper l y s igned va lue s .
tspan = [0 : t d i f f ∗ . 0 1 : t d i f f] ;

% We use the ode s o l v e r to propogate the s t a t e s to the necessary t imes
[tp1 , x] = ode45 (@orbit , tspan , x0 , opt ions) ;
[tp2 , y] = ode45 (@orbit , tspan , y0 , opt ions) ;

% The end time , which w i l l be the i n i t i a l time p lu s t d i f f , i s the new
% s t a t e s f o r the two o b j e c t s . Notice t ha t at f i r s t t d i f f i s equa l to
% the nominal tca .
pos pr imary = x(end , 1 : 3) ;
ve l pr imary = x(end , 4 : 6) ;

pos secondary = y(end , 1 : 3) ;
v e l s e condary = y(end , 4 : 6) ;

% We ca l c u l a t e the r e l a t i v e s t a t e s , and then use the se to c a l c u l a t e
% t d i f f , the d i f f e r e n c e in time between the nomical tca and the ac tua l
% tca .
pr = pos primary−pos secondary ;
vr = vel pr imary−ve l s e condary ;

t d i f f = −dot (pr , vr) /norm(vr) ˆ2 ;

% Our new tca i s the o ld one p lu s the ca l cua ted d i f f e r e n c e in time . As
% we i t e r a t e t h i s t d i f f becomes sma l l e r and e v en t ua l l y we w i l l have
% our new tca as we l l as the s t a t e s at t ha t time .
tca = tca + t d i f f ;

end

pos pr im ca = pos pr imary ;
v e l p r im ca = ve l pr imary ;
p o s s e c c a = pos secondary ;
v e l s e c c a = ve l s e condary ;

end

107

C.2. LIST OF SUBFUNCTIONS

%%%
function f = o rb i t (t , y)
%%

%%%This func t i on turns our second order two body problem equat ion
%%%into a system of f i r s t order d i f f e r e n t i a l equa t ions .
%%%Inputs : t = time
%%% y = some po s i t i on
%%%Output : used in ode45 .

mu = 398600 . 5 ;
f = zeros (6 , 1) ;
f (1) = y (4) ;
f (2) = y (5) ;
f (3) = y (6) ;
f (4) = −(mu∗y (1)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
f (5) = −(mu∗y (2)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
f (6) = −(mu∗y (3)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
end

Comb cov.m

function [combined cov ,M] = Comb cov (pos 1 , ve l 1 , cov 1 , pos 2 , ve l 2 , cov 2)
% RIC frame fo r o b j e c t 1
R 1=pos 1 /norm(pos 1) ; V 1=ve l 1 /norm(v e l 1) ;
h 1=cross (R 1 , V 1) ; C 1=h 1/norm(h 1) ; I 1=cross (C 1 , R 1) ;
% conver t s from i n e r t i a l c a r t e s i an frame to RIC #1 frame
M 1=zeros (3 , 3) ; M 1 (1 , :)=R 1 ; M 1 (2 , :)=I 1 ; M 1 (3 , :)=C 1 ;
cov 1n = M 1 ’∗ cov 1 ∗M 1 ;

% RIC frame fo r o b j e c t 2
R 2=pos 2 /norm(pos 2) ; V 2=ve l 2 /norm(v e l 2) ;
h 2=cross (R 2 , V 2) ; C 2=h 2/norm(h 2) ; I 2=cross (C 2 , R 2) ;
% conver t s from i n e r t i a l c a r t e s i an frame to RIC #2 frame
M 2=zeros (3 , 3) ; M 2 (1 , :)=R 2 ; M 2 (2 , :)=I 2 ; M 2 (3 , :)=C 2 ;
cov 2n = M 2 ’∗ cov 2 ∗M 2 ;

% r e l a t i v e v e l o c i t y and two a r b i t r a y or thogona l v e c t o r s frame
v e l r=ve l 2−v e l 1 ; po s r=pos 2−pos 1 ;
R r=pos r /norm(po s r) ; V r=v e l r /norm(v e l r) ;
h r=cross (R r , V r) ; C r=h r /norm(h r) ; I r=cross (C r , V r) ;
% conver t s from i n e r t i a l c a r t e s i an frame to r e l a t i v e v e l o c i t y frame
M=zeros (3 , 3) ; M(: , 1)=C r ; M(: , 2)=V r ; M(: , 3)=I r ;

combined cov=M∗(cov 1n+cov 2n) ∗M’ ;

ECI to RTN.m

function M = ECI to RTN(r , v)
% conver t s from i n e r t i a l Earth−centered ca r t e s i an frame to Radial ,
% Transverse , Normal
R=r/norm(r) ; V=v/norm(v) ; h=cross (R,V) ; T=h/norm(h) ; N=cross (T,R) ;
M=zeros (3 , 3) ; M(1 , :)=R; M(2 , :)=T; M(3 , :)=N;
%cov n = M’∗ cov∗M;

108

APPENDIX C. MATLAB IMPLEMENTATION

getABC.m

function [A, B, C] = getABC(r r e l , h r e l , Del r , sigma x , sigma z , rho xz ,
P T , P C)

% Determine the de l ta−V magnitude
A = (dot (Del r , r r e l) / sigma x) ˆ2 + (dot (Del r , h r e l) / s igma z) ˆ2 − . . .

(2∗ rho xz ∗dot (Del r , r r e l) ∗dot (Del r , h r e l)) /(sigma x ∗ s igma z) ;

B = (2∗norm(r r e l) / sigma x) ∗ ((dot (Del r , r r e l) / sigma x) − . . .
rho xz ∗(dot (Del r , h r e l) / s igma z)) ;

C = 2∗(1− rho xz ˆ2) ∗ log (P T/P C) ;

getorbitdata.m

function [x i b , eta b , u b , C ubc , S ubc , r bc , n b , C ub , S ub , P b]=
ge to rb i tda ta (Y, r 1 , t)

a= Y(: , 1) ; e = Y(: , 2) ; h= Y(: , 3) ; w = Y(: , 4) ; nu= Y(: , 5) ;

% The f o l l ow i n g eqaut ions are de sc r i b ed in the Appendix o f the paper .
x i b = e (1) ∗ cos (w(1)) ; % ec c e n t r i c i t y ∗ cos (arg . o f pe r i g e e)
e ta b = e (1) ∗ sin (w(1)) ; % ec c e n t r i c i t y ∗ s in (arg . o f pe r i g e e)
u b = nu (1) + w(1) ; % Argument o f Lat i tude be f o re burn
C ubc = cos (u b) ; % cos (arg . o f l a t i t u d e) at time of burn
S ubc = sin (u b) ; % sin (arg . o f l a t i t u d e) at time of burn
r bc = norm(r 1) ; % magnitude o f po s i t i on vec tor
mu = 398600 .4418 ; % G ∗ M Earth (kmˆ3/ s ˆ2) .
n b = sqrt (mu/a (1) ˆ3) ; % mean motion be f o r e burn (check v a l i d i t y o f

equn .)

C ub = C ubc∗cos (n b∗ t) + S ubc∗ sin (n b∗ t) ;
S ub = S ubc∗cos (n b∗ t) − C ubc∗ sin (n b∗ t) ;
P b = norm(h (1)) ˆ2/mu;

getorbitfn.m

function [a , b , c , d , e]= g e t o r b i t f n (x i b , eta b , C ubc , S ubc , r bc , n b , C ub ,
S ub , P b , t , h)

a = (r bc ˆ2/ h (1)) ∗ sin (n b ∗ t) ;
b = −3∗(x i b ∗S ub − e ta b ∗C ub) ∗ t ;
c = (r bc ˆ2/ h (1)) ∗(2 − x i b ∗C ub − e ta b ∗S ub − . . .

(2 − x i b ∗C ub − e ta b ∗S ub) ∗ cos (n b ∗ t)) − . . .
3∗(x i b ∗S ubc − e ta b ∗C ubc) ∗ t ;

d = −3∗t ∗((1− x i b ∗S ubc − e ta b ∗C ubc) /(1− x i b ∗C ub − e ta b ∗S ub)) ;
e = r bc ∗ (P b/h (1))∗(1− x i b ∗C ub − e ta b ∗S ub) ∗ sin (n b∗ t) ;

gettestcase.m

function [r 1 , r 2 , v 1 , v 2]= g e t t e s t c a s e (r1 , r2 , v1 , v2 , t e s t t c a)
y1=cat (2 , r1 , v1) ’ ; y2=cat (2 , r2 , v2) ’ ;
tspan=[0 −t e s t t c a] ;

109

C.2. LIST OF SUBFUNCTIONS

[T1 ,Y1]=ode45 (@orbit , tspan , y1 , odese t (’ RelTol ’ ,1 e−9)) ;
[T2 ,Y2]=ode45 (@orbit , tspan , y2 , odese t (’ RelTol ’ ,1 e−9)) ;
r 1=Y1(end , 1 : 3) ; r 2=Y2(end , 1 : 3) ; v 1=Y1(end , 4 : 6) ; v 2=Y2(end , 4 : 6) ;
%ax i s (’ square ’) ; p l o t 3 (Y1(: , 1) ,Y1(: , 2) ,Y1(: , 3) , ’− ’ , ’ LineWidth ’ , 1) ; p l o t 3 (Y2

(: , 1) ,Y2(: , 2) ,Y2(: , 3) , ’− ’ , ’ LineWidth ’ , 1) ;

gettheta1.m

function [theta , De l r] = get the ta1 (a , b , c , d , r , r r e l , r T)
% Find the burn ang l e s f o r inc rea s ing the miss vec to r . Equns (5−7)

K mv =(aˆ2 + c ˆ2) ∗(dot (r , r r e l) ˆ2) + (bˆ2 + dˆ2) ∗(dot (r T , r r e l) ˆ2) + . . .
2∗(a∗b + c∗d) ∗(dot (r T , r r e l)) ∗(dot (r , r r e l)) ;

K mv=sqrt (K mv) ;

% In−plane ang le o f the burn in RTN frame .
s i n t h e t a = (c ∗(dot (r , r r e l)) + d∗dot (r T , r r e l)) /K mv ;
co s th e t a = (a ∗(dot (r , r r e l)) + b∗dot (r T , r r e l)) /K mv ;
theta = asin (s i n t h e t a) ; theta2 = acos (c o s th e t a) ;

De l r = [a∗cos (theta)+ c∗ sin (theta) ; b∗cos (theta)+d∗ sin (theta) ; 0] ;
J=dot (Del r , r r e l) ;
i f J<0; theta=−theta ; end

end

gettheta2.m

function [theta , De l r] = get the ta2 (a , b , c , d , r , r T , r r e l , h r e l , sigma x
, sigma z , rho xz)

% Find the burn ang l e s f o r the s t e e p e s t g rad i en t Burn . Equns (10−12)
D 1 = dot ((a∗ r + b∗ r T) , (r r e l ’ − rho xz ∗(s igma x/ s igma z) ∗ h r e l)) ;
D 2 = dot ((c∗ r + d∗ r T) , (r r e l ’ − rho xz ∗(s igma x/ s igma z) ∗ h r e l)) ;

% D 3 = dot (e∗r N , (r r e l ’ − rho xz ∗(sigma x/ sigma x)∗ h r e l)) ;

% In plane ang le o f the burn in RTN frame .
s i n t h e t a = D 2/(sqrt (D 1ˆ2 + D 2ˆ2)) ;

% cos t h e t a = D 1/(s q r t (D 1ˆ2 + D 2ˆ2)) ;
theta = asin (s i n t h e t a) ; % the ta2 = acos (c o s t h e t a) ;

Del r = [a∗cos (theta)+ c∗ sin (theta) ; b∗cos (theta)+d∗ sin (theta) ; 0] ;
J=dot (De l r , r r e l ’ − rho xz ∗(s igma x/ s igma z) ∗ h r e l) ;
i f J<0; theta=−theta ; end

orbit.m

function f = o rb i t (t , y)

%%%This func t i on turns our second order two body problem equat ion
%%%in to a system of f i r s t order d i f f e r e n t i a l equa t ions .
%%%Inputs : t = time
%%% y = some po s i t i on
%%%Output : used in ode45 .

110

APPENDIX C. MATLAB IMPLEMENTATION

mu = 398600 . 5 ;
f = zeros (6 , 1) ;
f (1) = y (4) ;
f (2) = y (5) ;
f (3) = y (6) ;
f (4) = −(mu∗y (1)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
f (5) = −(mu∗y (2)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
f (6) = −(mu∗y (3)) / ((y (1)) ˆ2+(y (2)) ˆ2+(y (3)) ˆ2) ˆ(3/2) ;
end

prob collision6.m

function [p i n t] = p r o b c o l l i s i o n 6 (pos 1 , ve l 1 , pos 2 , ve l 2 , cov 1 , cov 2)
% This computes the p r o b a b i l i t y o f c o l l i s i o n us ing a two dimensional

i n t e g r a l .

% hard body rad ius in k i l ome t e r s
d i s t = . 0 1 5 ;

% RIC frame fo r o b j e c t 1
R 1=pos 1 /norm(pos 1) ; V 1=ve l 1 /norm(v e l 1) ;
h 1=cross (R 1 , V 1) ; C 1=h 1/norm(h 1) ; I 1=cross (C 1 , R 1) ;
% conver t s from i n e r t i a l c a r t e s i an frame to RIC #1 frame
M 1=zeros (3 , 3) ; M 1 (1 , :)=R 1 ; M 1 (2 , :)=I 1 ; M 1 (3 , :)=C 1 ;
cov 1n = M 1 ’∗ cov 1 ∗M 1 ;

% RIC frame fo r o b j e c t 2
R 2=pos 2 /norm(pos 2) ; V 2=ve l 2 /norm(v e l 2) ;
h 2=cross (R 2 , V 2) ; C 2=h 2/norm(h 2) ; I 2=cross (C 2 , R 2) ;
% conver t s from i n e r t i a l c a r t e s i an frame to RIC #2 frame
M 2=zeros (3 , 3) ; M 2 (1 , :)=R 2 ; M 2 (2 , :)=I 2 ; M 2 (3 , :)=C 2 ;
cov 2n = M 2 ’∗ cov 2 ∗M 2 ;

% r e l a t i v e v e l o c i t y and two a r b i t r a y or thogona l v e c t o r s frame
v e l r=ve l 2−v e l 1 ; po s r=pos 2−pos 1 ;
R r=pos r /norm(po s r) ; V r=v e l r /norm(v e l r) ;
h r=cross (R r , V r) ; C r=h r /norm(h r) ; I r=cross (C r , V r) ;
% conver t s from i n e r t i a l c a r t e s i an frame to r e l a t i v e v e l o c i t y frame
M=zeros (3 , 3) ; M(: , 1)=C r ; M(: , 2)=V r ; M(: , 3)=I r ;

G=M∗(cov 1n+cov 2n) ∗M’ ; pos r2=M’∗ pos r ’ ; mu=pos r2 (1 : 2 : 3) ;

g=G(1 : 2 : 3 , 1 : 2 : 3) ; g inv=inv (g) ;
a = ginv (1 , 1) ; b = ginv (1 , 2) ; c = ginv (2 , 1) ; d = ginv (2 , 2) ;

% l im i t s o f i n t e g r a t i on are [m, n]
n=d i s t ; m=−n ; t o l = 1 .0 e−9;
i n t1 = @(x , y)exp(− .5∗(a ∗(x−mu(1)) . ˆ2 + (c+b) ∗(x−mu(1)) . ∗ (y−mu(2))+ d∗(y−mu

(2)) ˆ2)) . ∗ (x.ˆ2+y.ˆ2<nˆ2) ;
out2=dblquad (int1 , m, n , m, n , t o l) ;
p i n t = 1/(2∗pi∗sqrt (det (g))) ∗out2 ;

secant2.m

111

C.2. LIST OF SUBFUNCTIONS

function [x0] = secant2 (x0 , x1 , n , f , t o l)
%UNTITLED2 Summary o f t h i s func t i on goes here
% x0 = f i r s t i n i t i a l va lue
% x1 = second i n i t i a l va lue
% n = the number o f i t e r a t i o n s the method execu te s be f o r e i t g i v e s up
% the func t i on which we are f i nd in g the root , f (x) .
%Secant method
format long
e r r = abs (x1 − x0) ; % error

fx0 = f (x0) ;
fx1 = f (x1) ;

i f abs (fx0) > abs (fx1)
temp = x0 ; % I f the va lue o f the func t i on at second po in t
x0 = x1 ; % x1 were sma l l e r than the va lue o f the func t i on
x1 = temp ; % at the f i r s t po in t x0 , then we in terchange
temp = fx0 ; % the va lue s so t ha t the po in t with the lower
fx0 = fx1 ; % index has a lower f unc t i ona l va lue .
fx1 = temp ;

end

k = 0 ;
while e r r > t o l

x new = (x1 − x0) /(fx1 − fx0) ;
x1 = x0 ;
fx1 = fx0 ;
x new = x new ∗ fx0 ;
i f abs (x new) < t o l

break ;
end
x0 = x0 − x new ;
fx0 = f (x0) ;
e r r = abs (x1 − x0) ;
k = k + 1 ;
i f k > n

disp (’Method f a i l e d to converge ’)
end

end
% f p r i n t f (’ root i s %4.16 f .\n ’ , x0) ;
end

t nominal.m

function [t] = t nominal (r 1 , r 2 , v 1 , v 2)
opt ions = odeset (’ RelTol ’ ,1 e−9, ’ AbsTol ’ ,1 e−9) ;
y0 = cat (2 , r 1 , v 1) ’ ;
x0 = cat (2 , r 2 , v 2) ’ ;
tspan = 0 : 1 : 6 0 0 0 ;
[tp1 , pv1] = ode45 (@orbit , tspan , y0 , opt ions) ;
[tp2 , pv2] = ode45 (@orbit , tspan , x0 , opt ions) ;
rp = pv1 (: , 1 : 3)−pv2 (: , 1 : 3) ;
[mins , t] = min(diag (rp∗rp ’)) ;
end

112

APPENDIX C. MATLAB IMPLEMENTATION

C.2.3 Supplemental Code: Analytic Form

analytic form.m

function Analyt i c form () %(data , period , s t a r t pn t , crcl num)

% The func t ion Analy t ic form transforms g iven pe r i od i c data to i t s ana l y t i c
form .

% Input :
% data = vec tor o f p e r i od i c data needed to be transformed to

i t s ana l y t i c form
% per iod = per iod o f the data
% s t a r t p n t = # of the vec to r element , t ha t i s
% s t a r t i n g po in t o f the f i r s t c i r c l e
% crcl num = number o f t o t a l c i r c l e s
% Output : Analy t ic form . t x t = t e x t f i l e conta in ing the ana l y t i c
% expres s ion o f the g i v e data
%
% Volodymyr Kondratenko Math C l in i c Spring 2011
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
%ht t p s :// ccrma . s tan fo rd . edu/˜ j o s /mdft/mdft . html
%
% Comments : According to the r e a l s i t u a t i o n the data needed to be
% desc r i b ed i s p e r i od i c and decaying . We assume , t ha t i t i s decaying
% l i n e a r l y and so the r e s u l t i n g func t i on F(x)=Tr(x)+P(x) , where
% Tr(x)− de s c r i b e s the p e r i o d i c i t y o f the func t i on ;
% P(x) − l i n e a r polynom , t ha t d e s c r i b e s the decay o f the func t i on
% We f i r s t i n t e r p o l a t e func t i on on one c i c l e and f ind Tr(x) ,
% then i n t e r p o l a t e P(x)=F(x)−Tr(x) , by f i nd in g the l i n e a r funct ion , which
% i s l i n e with the s t a r t o f the f i r s t c i c l e , as the f i r s t po in t and s t a r t o f

the
% l a s t g iven c i c l e , as the second po in t .

data = [1 1 2 2 3 3 4 4] ;
pe r iod = 2 ;
s t a r t pn t = 2 ;
crcl num = 3 ;

% Cut the data , throwing away the elements , t ha t are out o f the c i c l e

data = data (s t a r t pn t : (s t a r t pn t+per iod ∗ crcl num−1)) ;

% Finding the c o e f f i c i e n t s f o r f f t
t r i c o e f=f f t (data (1 : per iod)) ;
d i sp l ay (’ C o e f f i c i e n t s f o r t r i gonomet r i c i n t e r p o l a t i o n ’) ;
t r i c o e f
t r i s i z e=s ize (t r i c o e f) ;

% To f ind the c o e f f i c i e n t s f o r P, we eva lua t e Tr(x1) , Tr(x2) , where x1 , x2
% s t a r t i n g po in t s o f f i r s t and l a s t c i c l e
compl=complex (0 , 1) ;
x1=data (1) ;
x2=data ((crcl num−1)∗ per iod+1) ;
Tr1=0;
Tr2=0;

113

C.2. LIST OF SUBFUNCTIONS

i f (mod(t r i s i z e (2) ,2)==1)
a=(t r i s i z e −1) /2 ;

for i =1:a
Tr1=Tr1+t r i c o e f (i +1)∗exp(compl∗ i ∗x1)+t r i c o e f (i+1+a) ∗exp(−(t r i s i z e

(2)−i−a) ∗compl∗x1) ;
Tr2=Tr2+t r i c o e f (i +1)∗exp(compl∗ i ∗x2)+t r i c o e f (i+1+a) ∗exp(−(t r i s i z e

(2)−i−a) ∗compl∗x2) ;
end
Tr1=(Tr1+t r i c o e f (1)) / t r i s i z e ;
Tr2=(Tr2+t r i c o e f (1)) / t r i s i z e ;

else
for i =1: t r i s i z e /2

Tr1=Tr1+t r i c o e f (i) ∗exp(compl ∗(i −1)∗x1)+t r i c o e f (i+t r i s i z e (2)) ∗exp
(−(t r i s i z e (2)−i−a) ∗compl∗x1) ;

Tr2=Tr2+t r i c o e f (i) ∗exp(compl∗ i ∗x2)+t r i c o e f (i+1+a) ∗exp(−(t r i s i z e
(2)/2+i −1)∗compl∗x2) ;

end
Tr1=t r i c o e f (1) / t r i s i z e (2) ;
Tr2=t r i c o e f (1) / t r i s i z e (2) ;

end

y1=x1−Tr1 ;
y2=x2−Tr2 ;
z1=1;
z2=(crcl num−1)∗ per iod +1;

P1=y1−z1 ∗(y2−y1) /(z2−z1) ;
P2=(y2−y1) /(z2−z1) ;

% P(x)=P1+P2∗x ;
d i sp l ay (’P(x)=P1+P2∗x ’) ;
P1
P2

%Tr1+P1+P2
%data (1)

%Tr2+P1+P2∗x2
%data (x2)

%
x=5;
r e s=fo rm ca l c (x , t r i c o e f , P1 , P2)

Kepler.m

function Y = Kepler (N, p , t , u , S)
% Generates a Cartes ian or a Keplerian element s e t .
% Usage : Y = Kepler (N, p , t , u , S)
% Purpose1 : Given a vec tor o f Cartes ian s t a t e vector , time h i s t o r y as posi−
% t ion and v e l o c i t y , o f an or b i t i n g , o b j e c t t h i s func t i on genera−
% te s a vec tor o f the corresponding Keplerian element s e t and

114

APPENDIX C. MATLAB IMPLEMENTATION

% p l o t the e lements as a func to in o f time .
% Purpose 2 : Given a vec tor o f Keplerian element set , (a , e , i ,Omega , w, M) ,
% t h i s func t ion c a l c u l a t e s and genera te s a vec tor o f the corresp−
% onding Cartes ian s t a t e vec to r .
% N = 1 − Change Cartes ian coord ina te s in to Keplerian e lements .
% N = 2 − Change Keplerian elements in to Cartes ian s e t s .
% Note : I f N = 2 you can s e t p = t = u = [] ;
% p = 1 − Plot the k ep l e r i an element s e t s aga ins t time .
% p = 2 − Hold the p l o t t i n g .
% t = time column in un i t s o f seconds , minutes , or days .
% u = 1 − The un i t s o f time i s seconds .
% u = 2 − The un i t s o f time i s minutes .
% u = 3 − The un i t s o f time i s days .
% S = input martix with 6 columns . I f conver t ing from Cartes ian to Kepler
% i t shou ld be the po s i t i on and v e o l c i t y o f s a t e l l i t e . I f conver t ing
% from Keplerian to Cartes ian the order o f the e lements shou ld be
% (a , e , i , Omega , w, M)
% Keplerian elements : semi−major ax i s (a) , e c c e n t r i c i t y (e) ,
% i n c l i n a t i o n (I) , r i g h t ascent ion o f ascending node (Omega) ,
% argument o f pe r i g e e (w) , and mean anomaly (M)
%
% Math C l in i c February 2011 YDG
Y = [] ;
i f N == 1

%format long
[m, n] = s ize (S) ;
for j = 1 :m

r = S(j , 1 : 3) ; v = S(j , 4 : 6) ;
mu = 398600 .4418 ; % G ∗ M Earth (kmˆ3/ s ˆ2) .
R = [1 0 0 ; 0 1 0 ; 0 0 1] ; % Unit v e c t o r s in Cartes ian

coord inate

h = cross (r , v) ; % Angular momentum vec tor
n = cross (R(3 , :) , h) ; % The node vec tor .
% Eccen t r i c i t y vec to r .
e vec = (1/mu) ∗ ((norm(v) ˆ2 − (mu/norm(r))) ∗ r − dot (r , v) ∗ v) ;
e = norm(e vec) ; % Eccen t r i c i t y (u n i t l e s s) .
a = (dot (h , h)) / (mu∗(1 − e ˆ2)) ; % Semi−major ax i s (km) .
i = acos (dot (R(3 , :) , h) / norm(h)) ∗ (180/ pi) ; % Inc l i n a t i on (deg)
%−−−−−−−−−−−−− Right ascens ion o f ascending node −−−−−−−−−−
i f (dot (n , R(2 , :))) < 0

Omega = 360 − acos ((dot (R(1 , :) , n)) /(norm(n))) ∗ (180/ pi) ;
else

Omega = acos ((dot (R(1 , :) , n)) /(norm(n))) ∗ (180/ pi) ;
end
%−−−−−−−−−−−−− Argument o f pe r i g ee −−−−−−−−−−−
i f (dot (e vec , R(3 , :))) < 0

w = 360 −acos ((dot (n , e vec)) /(norm(n) ∗e)) ∗ (180/ pi) ;
else

w = acos ((dot (n , e vec)) /(norm(n) ∗e)) ∗ (180/ pi) ;
end
%−−−−−−−−−−−−− True anomaly (t h e t a) −−−−−−−−−−
i f (dot (r , v)) < 0

theta = 360 − acos ((dot (e vec , r)) /(norm(r) ∗e)) ∗ (180/ pi) ;
else

theta = acos ((dot (e vec , r)) /(norm(r) ∗e)) ∗ (180/ pi) ;
end

115

C.2. LIST OF SUBFUNCTIONS

%−−−−−−−−−−−−− Mean anomaly (M) −−−−−−−−−−
i f (theta > 90) && (theta < 360)

E = 360 − (acos ((dot (e vec , r)) /(norm(r) ∗e)) ∗ (180/ pi)) ;
else

E = acos ((e + cos (theta)) /(1+ e∗cos (theta))) ∗ (180/ pi) ;
end
M = E − e∗ sin (E) ;

Y = [Y; a , e , i ,Omega ,w, M] ; % Append to output
end % end foo fo r loop .

% Plot the k ep l e r i an elements as a func t i on o f time
i f p == 1

i f u == 1
uni t = ’Time (Sec) ’ ;

e l s e i f u == 2
uni t = ’Time (Min) ’ ;

e l s e i f u == 3
uni t = ’Time (Days) ’ ;

else
disp (’Not va l i d tim uni t ’)

end

i f length (t) == m
figure ;
subplot (3 , 2 , 1) ;

plot (t , Y(: , 1) , ’ k ’) ;
xlabel (un i t) ; ylabel (’ Semi−major ax i s (km) ’)

subplot (3 , 2 , 2) ;
plot (t , Y(: , 2) , ’ k ’) ;
xlabel (un i t) ; ylabel (’ E c c en t r i c i t y (Un i t l e s s) ’)

subplot (3 , 2 , 3) ;
plot (t , Y(: , 3) , ’ k ’) ;
xlabel (un i t) ; ylabel (’ I n c l i n a t i o n (deg) ’)

subplot (3 , 2 , 4) ;
plot (t , Y(: , 4) , ’ k ’) ;
xlabel (un i t) ;
ylabel (’ Right a s c ens i on o f ascending node (deg) ’)

subplot (3 , 2 , 5) ;
plot (t , Y(: , 5) , ’ k ’) ;
xlabel (un i t) ; ylabel (’Argument o f p e r i g e e (deg) ’)

subplot (3 , 2 , 6) ;
plot (t , Y(: , 6) , ’ k ’) ;
xlabel (un i t) ; ylabel (’Mean anomaly (deg) ’) ;

else
error (’ Dimension mismatch ’)

end
e l s e i f p == 2

disp (’No p lo t d i sp l ayed . ’)
t = [] ;

else
error (’Not a va l i d p l o t cho i c e ’)

end % end of p l o t cho ice
%−−−
e l s e i f N == 2 % input form {a , e , i , Omega , w, M}

format shor t
c l e a r v a r s [m, n , a , e , i , Omega , w, M]

116

APPENDIX C. MATLAB IMPLEMENTATION

[m, n] = s ize (S) ;
i f n == 6

for j = 1 :m
mu = 398600 .4418 ; % G ∗ M Earth (kmˆ3/ s ˆ2) .
a = S(j , 1) ; e = S(j , 2) ; i = S(j , 3) ;
Omega = S(j , 4) ; w = S(j , 5) ; M = S(j , 6) ;
% Compute e c c en t r i c anomaly .
e r r = 10e−15; % Allwed uncer ta in ty in E.
k = 1 ; % Index fo r loop .
E(k) = M; % I n t i n i a l i z e E.
t o l = 1 ; % I n i t i a l i z e t o l e rance .
while t o l > e r r

E(k+1) = E(k)−((E(k)−e∗ sin (E(k))−M)/(1−e∗cos (E(k)))) ;
t o l = abs (E(k+1) − E(k)) ;
i f t o l < e r r

break ;
end
k = k+1;

end % end of wh i l e
E = E(k+1) ;
% Compute the un i t v e c t o r s P and Q
P = [cos (w) ∗cos (Omega) − sin (w) ∗cos (i) ∗ sin (Omega) , . . .

cos (w) ∗ sin (Omega) + sin (w) ∗cos (i) ∗cos (Omega) , . . .
sin (w) ∗ sin (i)] ;

Q = [−sin (w) ∗cos (Omega) − cos (w) ∗cos (i) ∗ sin (Omega) , . . .
−sin (w) ∗ sin (Omega) + cos (w) ∗cos (i) ∗cos (Omega) , . . .

sin (i) ∗cos (w)] ;

r = a ∗(cos (E) − e) ∗P + a∗sqrt (1 − e ˆ2) ∗ sin (E) ∗Q;
E dot = sqrt (mu/aˆ3) ∗ (1/(1 − e∗cos (E))) ;
v = −a∗ sin (E) ∗E dot∗P + a∗sqrt (1 − e ˆ2) ∗cos (E) ∗E dot∗Q;

Y = [Y; r (1) , r (2) , r (3) , v (1) , v (2) , v (3)] ;
end

e l s e i f n > 6
disp (’The f i r s t s i x columns o f S are used . ’)

else
error (’Not enough columns . ’)

end
else

error (’Not a va l i d cho i c e o f problems . ’)
end % end of problem choice .

Kepler test.m

function Kep l e r t e s t
clc ; clear ;

tspan = [0 20000] ;
opt i ons = odeset (’ Re f ine ’ , 6 , ’ RelTol ’ ,1 e−13, ’ AbsTol ’ ,1 e−13) ;

IC = [−2436.45 −2436.45 6891.037 5.08611 −5.088611 0 . 0] ;

[t , S out] = ode45 (@odefun , tspan , IC , opt ions) ;

117

C.2. LIST OF SUBFUNCTIONS

y 1 = Kepler IV (1 , 1 , 1 , t , S out) ;

%S = [7567 .18 , 0 .06 , 55.77 , 134.99 , 351.83 , 124 . 65] ;

%y 2 = Kepler IV (2 , 1 , 1 ,1 , y 1) ;

function dS = odefun (t , S in)
mu = 398658 . 3 ;
dS (1 : 3 , 1) = S in (4 : 6 , 1) ;
dS (4 : 6 , 1) = − mu ∗ S in (1 : 3 , 1) / (norm(S in (1 : 3 , 1))) ˆ3 ;

form calc.m

function r e s=fo rm ca l c (x , t r i c o e f , P1 , P2)
% Ca lcu l a t e s the F(x) , by g iven Trigonometric c o e f i c i e n t s and Polynomial
% c o e f f i c i e n t s
t r i s i z e=s ize (t r i c o e f) ;
Tr1=0;
i f (mod(t r i s i z e (2) ,2)==1)
a=(t r i s i z e −1) /2 ;

for i =1:a
Tr1=Tr1+t r i c o e f (i +1)∗exp(compl∗ i ∗x)+t r i c o e f (i+1+a) ∗exp(−(t r i s i z e

(2)−i−a) ∗compl∗x) ;
end
Tr1=(Tr1+t r i c o e f (1)) / t r i s i z e ;

else
for i =1: t r i s i z e /2

Tr1=Tr1+t r i c o e f (i) ∗exp(compl ∗(i −1)∗x)+t r i c o e f (i+t r i s i z e (2)) ∗exp
(−(t r i s i z e (2)−i−a) ∗compl∗x) ;

end
Tr1=t r i c o e f (1) / t r i s i z e (2) ;

end

r e s=Tr1+P1+P2∗x ;

run analytic form.m

function data out=run ana ly t i c f o rm (data , per iod , sample num , dt)
% data − time − 1 s t column , 2−4 Cartez ian coord ina te s po s i t i on ; 5−7 −

v e l o c i t y . S i ze N by 7
% per iod − array o f s i x per iods f o r 6 kep l e r i an e lements : (a , e , i , Omega ,

w, M)
% Keplerian elements : semi−major ax i s (a) , e c c e n t r i c i t y (e) ,
% i n c l i n a t i o n (I) , r i g h t ascent ion o f ascending node (Omega) ,
% argument o f pe r i g e e (w) , and mean anomaly (M)
% sample num − s i z e o f the sample f o r the output data
% dt − t imes tep f o r output data in seconds
% s t a r t p n t assumed to be 1
% crcl num= kep l (: , i) mod per iod (i)
da ta s i z e=s ize (data) ;
t = data (: , 1) ;

118

APPENDIX C. MATLAB IMPLEMENTATION

t = t ∗(3600∗24) ;
time=t (1) ;

% 1 s t Step : Convert data to Keplerian elements

Y = Kepler (1 , 1 , 2 , t , 3 , data) ;

% Keplerian elements : semi−major ax i s (a) , e c c e n t r i c i t y (e) ,
% i n c l i n a t i o n (I) , r i g h t ascent ion o f ascending node (Omega) ,
% argument o f pe r i g e e (w) , and mean anomaly (M)
%
% Y = [a , e , i ,Omega ,w, M] ;

% 2nd Step : Bui ld Ana ly t i c func t i on fo r e lements and crea t e a b i g g e r sample
% for each o f them sepa ra t e l y
s t a r t pn t =1;

for j =1:6

crcl num=f loor (da t a s i z e (1) / per iod (j)) ;
data1 = Y(: , j) ;
per iod1=per iod (j) ;
[t r i c o e f , P1 , P2] = Analyt i c form (data1 , per iod1 , s t a r t pnt , crcl num) ;

for i =1: sample num
time=time+dt ;
kep l (i , j)=fo rm ca l c (time , t r i c o e f , P1 , P2) ;

end
% kep l (10 :20 , j)
% time=t (1) ;

end

% 3rd s t ep : Convert Keplerian e lements back to Cartes ian
t ime end=time+(sample num−1)∗dt ;
time1=time : dt : t ime end ;

%time1=time1 ’ ;
%kep l=kep l ’ ;
s ize (time1) ’ ;
s ize (kep l) ;
%time1 (10 :20)
%kep l (6 ,10 :20)

data out = Kepler (2 , 1 , 2 , time1 , 3 , kep l) ;

C.2.4 Supplemental Code: Homework Solutions

We include the solution code to the homework problems given in Appendix B,
that also gives some general suggestions for other programming assignments.

119

C.2. LIST OF SUBFUNCTIONS

%%%
%%% %%%
%%% CRASH.m %%%
%%% %%%
%%%AE

% This f i l e implements a s e r i e s o f f unc t i ons t ha t can be used to s o l v e the
% d i f f e r e n t problems from homework assignments 1 and 2. I u s ua l l y t r y to
% f o l l ow some s e t o f coding gu i d e l i n e s , and encourage you to do the same :

% 1. Documentation : add comments and g i v e s u f f i c i e n t exp lana t ion fo r o ther s
% to understand your code ; use meaningful v a r i a b l e names and minimize the
% number o f implementation ” t r i c k s ” t ha t nobody but you w i l l understand

% 2. Modular izat ion : put as much code as p o s s i b l e in to separa te func t ions ,
% tha t you can reuse l a t e r f o r o ther coding t a s k s wi thout major adjustment ;
% in par t i cu l a r , minimize the number o f ”hard” programming dec i s ions , use
% ac tua l numbers only f o r ac tua l constants , and o therwi se use v a r i a b l e s

% 3. Error Handling (my code i s s t i l l very weak on th i s , maybe l a t e r) : t r y
% to de t e c t p o s s i b l e e r ror s in input and f i x them or at l e a s t send warning
% to user ra ther than have the code crash (e . g . , row versus column vec tors ,
% p l o t t i n g time versus po s i t i on / v e l o c i t y v e c t o r s o f d i f f e r e n t s i z e s , e t c)

function crash % There are s e v e r a l reasons to wr i t e code us ing func t i ons :
% 1. You can inc lude sub func t ions , which i s not p o s s i b l e f o r procecures
% 2. You can c a l l the func t i on wi thout a c c i d en t l y us ing o l de r v a r i a b l e s
% 3. You enab le the d i s t i n c t i o n to a l ready e x i s i t i n g MATLAB func t i ons

format shor t ; format compact ; warning o f f ; % That ’ s the way I l i k e i t .

%%%
%%% %%%
%%% Some General S e t t i n g s f o r Homework 1 and Homework 2 %%%
%%% %%%
%%%

%%% Spec i f y s e t t i n g s f o r ode s o l v e r (reduce to l e rance , d i scused in c l a s s)
opt i ons ode = odeset (’ RelTol ’ ,10ˆ−9) ;

%%% Spec i f y s e t t i n g s f o r op t imi za t i on s o l v e r (d i s a b l e ”annoying” output)
opt ions opt im = optimset (’ d i sp l ay ’ , ’ o f f ’) ;

%%% Nominal I n i t i a l Pos i t ion and Ve loc i t y o f Object 1
pos1 0 nom = [−2436.45 −2436.45 6 8 9 1 . 0 3 7] ;
v e l 1 0 = [5 . 088611 −5.088611 0 . 0] ;

%%% Nominal I n i t i a l Pos i t ion and Ve loc i t y o f Object 2
pos2 0 nom = [−5351.66 1596.76 5 3 1 0 . 0 2] ;
v e l 2 0 = [−2.471876 5.370908 −4.099681] ;

%%% I n i t i a l S ta t e Error Covariance Matrix (both o b j e c t s)
sigma = 0∗ [0 . 6 13 −0.271 −0.018;

−0.271 0 .613 −0.144;
−0.018 −0.144 0 . 3 1 2] ;

120

APPENDIX C. MATLAB IMPLEMENTATION

%%%
%%% %%%
%%% Homework 1 %%%
%%% %%%
%%%

i f t rue% true to run (the e a s i e s t way to d i s a b l e par t s o f your code)

%%% Spec i f y time span fo r ode s o l v e r
tspan = [0 1000]∗60 ; % don ’ t f o r g e t to conver t from minutes to seconds

%%% Solve two−body problem (c a l l i n t e r na l Matlab s o l v e r ode45)
[t ime po int s , p o s v e l v e c] = . . .

ode45 (@odefun , tspan , [pos1 0 nom ve l 1 0] , opt i ons ode) ;

% Plot t r a j e c t o r i e s (c a l l i n t e r na l sub func t ion) in new f i g u r e
figure ; p l o tT r a j e c t o r i e s (t ime po int s , p o s v e l v e c) ;

end

return

%%%
%%% %%%
%%% Homework 2 %%%
%%% %%%
%%%

% For homework 2 , I changed e s s e n t i a l l y a l l o f my i n i t i a l code (t ha t so l v ed
% the problems but was very ” s e q u en t i a l ”) in to sub func t i ons t ha t we shou ld
% be ab l e to use a l s o f o r l a t e r par t s o f the p ro j e c t (modulo improvements ,
% of course) . Although I did not expec t you to do the same , I hope you
% recogn i ze the beauty and power o f such an approach to wr i t e (new) code
% tha t i s r e l a t i v e l y shor t (o f course , a l o t o f work i s hidden in the
% sub func t i ons) , and very easy to use and modify . Have some fun with i t !

%%% NOTE: Pos i t ions , v e l o c i t i e s , and covar iances are s p e c i f i e d above .

%%%
%%% Part 1 %%%
%%%

nbRuns = 10 ; % spe c i f y number o f runs , e ve ry th ing e l s e i s now automatic

%%%

%%% Do Monte Carlo s imu la t ion fo r f i r s t o b j e c t (compare func t i on at bottom)
[t ime po ints1 , po s v e l v e c 1] = mc45pert (nbRuns , @odefun , [0 60000] , . . .

pos1 0 nom , ve l1 0 , sigma , [] , op t i ons ode) ; % returns c e l l s t r u c t u r e s

%%% Plot at most 10 per turbed t r a j e c t o r i e s (o therwi se take s too much time)
figure ; for k = 1 : min(nbRuns , 10) ;

p l o tT r a j e c t o r i e s (t ime po in t s1 {k} , p o s v e l v e c 1 {k}) ;
end

121

C.2. LIST OF SUBFUNCTIONS

%%%
%%% Parts 2 and 3 %%%
%%%

nbTr ia l s = 1000 ; % number o f t r i a l s / Monte Carlo s imu la t i ons
tspan = [0 50]∗60 ; % span between i n i t i a l time and nominal crash
c o l l D i s t = . 1 ; % minimum separa t ion d i s t ance / c o l l i s i o n rad ius
seed = [] ; % op t i ona l random seed to repea t runs (can use [])

%%%

%%% Compute c o l l i s i o n p r o b a b i l i t y at nominal tcpa
[cp nominal , seed] = mcCollProb (’ nominal ’ , c o l lD i s t , nbTria ls , @odefun ,

tspan , . . .
pos1 0 nom , ve l1 0 , pos2 0 nom , ve l2 0 , sigma , seed , opt i ons ode) ;

%%% Compute c o l l i s i o n p r o b a b i l i t y at ac tua l tcpa (op t imi za t i on)
[cp actua l , seed] = mcCollProb (’ a c tua l ’ , c o l lD i s t , nbTria ls , @odefun ,

tspan , . . .
pos1 0 nom , ve l1 0 , pos2 0 nom , ve l2 0 , sigma , seed , opt ions ode ,

opt ions opt im) ;

%%% Compute c o l l i s i o n p r o b a b i l i t y at approximate tcpa (l i n e a r approx)
[cp approx , seed] = mcCollProb (’ approx ’ , c o l lD i s t , nbTria ls , @odefun ,

tspan , . . .
pos1 0 nom , ve l1 0 , pos2 0 nom , ve l2 0 , sigma , seed , opt i ons ode) ;

%%%
%%% %%%
%%% %%%
%%% SUBFUNCTIONS (that ’ s where a l l the hard work i s happening) %%%
%%% %%%
%%% %%%
%%%

%%%
function mat = rot mat x (theta)
%%%
% ro ta t i on matrix around x−ax i s (input r e qu i r e s ang le in radians)
%%%
mat = [1 0 0 ; 0 cos (theta) −sin (theta) ; 0 sin (theta) cos (theta)] ;

%%%
function mat = rot mat y (theta)
%%%
% ro ta t i on matrix around y−ax i s (input r e qu i r e s ang le in radians)
%%%
mat = [cos (theta) 0 sin (theta) ; 0 1 0 ; −sin (theta) 0 cos (theta)] ;

%%%
function mat = rot mat z (theta)
%%%
% ro ta t i on matrix around z−ax i s (input r e qu i r e s ang le in radians)
%%%
mat = [cos (theta) −sin (theta) 0 ; sin (theta) cos (theta) 0 ; 0 0 1] ;

122

APPENDIX C. MATLAB IMPLEMENTATION

%%%
function seed = initRandomGenerator (seed)
%%%
% crea t e s new random seed i f seed = [] ; i n i t i a l i z e s random number generator
%%%
i f isempty (seed) ; seed = sum(f ix (clock)) ; end ; randn(’ s t a t e ’ , seed) ;

%%%
function dr = odefun (t , r)
%%%
% encodes f i r s t −order system of the two−body problem d i f f e r e n t i a l equat ion
%%%
muE = 398600 . 5 ;
dr (1 : 3) = r (4 : 6) ;
dr (4 : 6) = −muE∗ r (1 : 3) /norm(r (1 : 3)) ˆ3 ;
dr = dr (:) ;

%%%
function rnd = rndgauss (mu, sigma , vara rg in)
%%%
% returns matrix o f Gaussian random vec to r s (in columns)
%%%
i f nargin > 2 ; N = vararg in {1} ; else N = 1 ; end
mu = mu(:) ;
n = length (mu) ;
[U,D,V] = svd (sigma) ;
rnd = (U∗sqrt (D)) ∗randn(n ,N) + mu∗ ones (1 ,N) ;

%%%
function d = d i s t (t , odefun , pos1 , vel1 , pos2 , vel2 , t0 , opt i ons)
%%%
% returns d i s t ance between two o b j e c t s at time t with i n i t i a l va lue s at t0
%%%
i f t == t0 ; d = norm(pos1−pos2) ; else

[tp1 , pvv1] = ode45 (odefun , [t0 , t] , [pos1 ve l1] , opt ions) ;
[tp2 , pvv2] = ode45 (odefun , [t0 , t] , [pos2 ve l2] , opt ions) ;
d = norm(pvv1 (end , 1 : 3) − pvv2 (end , 1 : 3)) ;

end

%%%
function [tp , pvv , seed] = mc45pert (. . .

n , odefun , tspan , pos0 , vel0 , cov , seed , opt ions)
%%%
% Monte Carlo Simulat ion o f per turbed t r a j e c t o r i e s with g iven i n i t i a l data
%%%
% input s : n = Monte Carlo sample s i z e , number o f p e r t u r ba t i on s
% odefun = func t ion handle to DE tha t d e s c r i b e s motion
% tspan = 2D time span in the form [t@beginning t@end]
% pos0 , ve l0 , cov = pos i t i on , v e l o c i t y , and covar iance
% seed = random seed , can be number or empty matrix []
% opt ions = add i t i ona l s e t o f opt ion s e t t i n g s f o r ODE
% outputs : tp = c e l l s t r u c t u r e o f l i s t o f time po in t h i s t o r i e s
% pvv = c e l l s t r u c t u r e o f n po s i t i on v e l o c i t y v e c t o r s
% seed = the random seed used , r epea t s va lue i f g iven
%%%

seed = initRandomGenerator (seed) ; % i n i t i a l i z e s random number generator

123

C.2. LIST OF SUBFUNCTIONS

%%% Simulate n ac tua l (per turbed) i n i t i a l p o s i t i o n s o f g iven o b j e c t
rnd0 = rndgauss (pos0 , cov , n) ; %mvnrnd(pos0 , cov , n) ;

%%% Compute the corresponding per turbed t r a j e c t o r i e s
for k = 1 : n ; [tp{k} , pvv{k}] = . . .

ode45 (odefun , tspan , [rnd0 (: , k) ’ ve l 0] , opt i ons) ;
end

%%
function [co l lProb , seed] = mcCollProb (t e s t , c o l lD i s t , n , odefun , . . .

tspan , pos1 , vel1 , pos2 , vel2 , cov , seed , opt ions ode , vara rg in) ;
%%
%func t ion [co l lProb , seed] = mcCollProb (t e s t , c o l lD i s t , n , odefun , tspan ,

. . .
% pos1 , ve l1 , pos2 , ve l2 , cov , seed , opt ions ode , [op t ions opt im]) ;
%%
% input s : odefun , pos1 , ve l1 , pos2 , ve l2 , cov , seed , op t ions ode (c l e a r)
% t e s t = s t r i n g i n d i c a t i n g the c o l l i s i o n t e s t to use
% − ’ nomial ’ = nominal c o l l i s i o n time (f o r 2 . 2 . only)
% − ’ ac tua l ’ = ac tua l c o l l i s i o n time (unconstrained op t imi za t i on)
% − ’ approx ’ = approximate c o l l i s i o n time (l i n e a r appromizat ion)
% n = number o f t r i a l s
% tspan = [t0 tX] = span between i n i t i a l time and nominal tcpa
% outputs : co l lProb = c o l l i s i o n p r o b a b i l i t y
% seed = the random seed tha t was used
% Note t ha t t h i s func t i on produces output (cou ld be moved to main f i l e .)
%%

t ic ; seed = initRandomGenerator (seed) ; % i n i t i a l i z e t imer and RN generator

% Co l l e c t and ass i gn op t i ona l op t imi za t i on s e t t i n g s
i f nargin == 13 ; opt ions opt im = vararg in {1} ; end ;

fpr intf (’MC Crash Test (%s tcpa , %d t r i a l s , seed %g) \n ’ , t e s t , n , seed) ;

%%% Run Monte Carlo s imu la t i ons to per turb t r a j e c t o r i e s f o r the two o b j e c t s
[tp1 , pvv1] = mc45pert (n , odefun , tspan , pos1 , vel1 , cov , seed , opt i ons ode)

;
[tp2 , pvv2] = mc45pert (n , odefun , tspan , pos2 , vel2 , cov , seed , opt i ons ode)

;

%%% I n i t i a l i z e c o l l i s i o n counter and s t a r t main loop
c o l l i s i o nCoun t e r = 0 ; for k = 1 : n

%%% Co l l e c t a c tua l p o s i t i o n s and v e l o c i t i e s at nominal tcpa
pos1 X nom = pvv1{k}(end , 1 : 3) ; vel1 X nom = pvv1{k}(end , 4 : 6) ;
pos2 X nom = pvv2{k}(end , 1 : 3) ; vel2 X nom = pvv2{k}(end , 4 : 6) ;

%%% Compute r e l a t i v e p o s i t i o n s and v e l o c i t i e s at nominal tcpa
posR X nom = pos1 X nom − pos2 X nom ;
velR X nom = vel1 X nom − vel2 X nom ;

switch t e s t %%% Compute separa t ion d i s t ance s us ing d i f f e r e n t methods

case ’ nominal ’ % nominal c o l l i s i o n time (f o r 2 . 2 . only)
dcpa = norm(pos1 X nom − pos2 X nom) ;

124

APPENDIX C. MATLAB IMPLEMENTATION

tcpa = tspan (2) ;

case ’ approx ’ % l i n e a r approximation o f t r a j e c t o r i e s
d e l t a t = − (posR X nom ∗ velR X nom ’) / . . .

(velR X nom ∗ velR X nom ’) ;
tcpa = tspan (2) + d e l t a t ;
dcpa = norm(posR X nom + de l t a t ∗ velR X nom) ;

case ’ a c tua l ’ % ac tua l d i s t ance minimization over time
[tcpa , dcpa] = fminunc (@(t) d i s t (t , odefun , . . .
pos1 X nom , vel1 X nom , pos2 X nom , vel2 X nom , . . .
tspan (2) , opt i ons ode) , tspan (2) , opt ions opt im) ;
%Function fminsearch works the same but was s lower .

end

%%% Count and en t e r t a in y ou r s e l f wi th c o l l i s i o n s
i f dcpa <= co l lD i s t ; c o l l i s i o nCoun t e r = co l l i s i o nCoun t e r + 1 ;

fpr intf (’ C o l l i s i o n %d in t r i a l %d at t = %g minutes\n ’ , . . .
c o l l i s i onCount e r , k , tcpa /60) ; end

end ; t i c t o c = toc ; % end main loop and timer

%%% Fina l l y , compute and output c o l l i s i o n p r o b a b i l i t y
co l lProb = co l l i s i o nCoun t e r /n ;
fpr intf (’ C o l l i s i o n Probab i l i t y %d/%d = %g (%g seconds) \n ’ , . . .
c o l l i s i onCount e r , n , co l lProb , t i c t o c) ;

%%%
function [s tatus , f i d] = wr i teTimeHis toryFi l e (f i l ename , tp , pvv)
%%%
% wr i t e s time h i s t o r y [tp , pvv] in to tab−separated f i l e c a l l e d ’name . t x t ’
%%%
f i d = fopen ([f i l ename , ’ . txt ’] , ’w ’) ;
for i = 1 : length (tp) ;

fprintf (f i d , ’%g\ t ’ , tp (i) , pvv (i , :)) ; fpr intf (f i d , ’ \n ’) ;
end
s t a tu s = fc lose (f i d) ;

%%%
function p l o tT r a j e c t o r i e s (tp , pvv , vara rg in)
%%%
% crea t e s 4x2 matrix p l o t o f o b j e c t p o s i t i o n s and v e l o c i t i e s
%%%
% input s : tp = Times Points
% pvv = Pos i t ion Ve loc i t y Vector
% vararg in (op t i ona l arguments) :
% co l o r = s t r i n g o f p l o t co l o r (’ k ’ , ’ r ’ , ’ b ’ , ’ g ’ , e t c)
% outputs : none
%%%

i f nargin > 3 c o l o r = vararg in {3} ; else c o l o r = ’k ’ ; end % de f a u l t co l o r

% 3D po s i t i on t r a j e c t o r y (parametric curve)
subplot (4 , 2 , 1) ; hold on ;

t i t l e (’ Po s i t i on Tra jec tory ’) ;
xlabel (’ x ’) ; ylabel (’ y ’) ; zlabel (’ z ’) ;
plot3 (pvv (: , 1) , pvv (: , 2) , pvv (: , 3) , [co lo r , ’− ’]) ;

125

C.3. EPHEMERIS DATA FILES

% 3D v e l o c i t y t r a j e c t o r y (parametric curve)
subplot (4 , 2 , 2) ; hold on ;

t i t l e (’ Ve loc i ty Tra jec tory ’) ;
xlabel (’ v x ’) ; ylabel (’ v y ’) ; zlabel (’ v z ’) ;
plot3 (pvv (: , 4) , pvv (: , 5) , pvv (: , 6) , [co lo r , ’− ’]) ;

% 2D time versus po s i t i on curves (x , y , z in same p l o t)
subplot (4 , 2 , 3) ; hold on ;

t i t l e (’Time ver sus Pos i t i on ’) ;
xlabel (’ time ’) ; ylabel (’ p o s i t i o n ’) ;
plot (tp , pvv (: , 1) , [co lo r , ’− ’] , . . .

tp , pvv (: , 2) , [co lo r , ’−. ’] ’ , . . .
tp , pvv (: , 3) , [co lo r , ’ : ’]) ;

legend (’ x ’ , ’ y ’ , ’ z ’) ;
% 2D time versus v e l o c i t y curves (x , y , z in same p l o t)
subplot (4 , 2 , 4) ; hold on ;

t i t l e (’Time ver sus Ve loc i ty ’) ;
xlabel (’ time ’) ; ylabel (’ v e l o c i t y ’) ;
plot (tp , pvv (: , 4) , [co lo r , ’− ’] , . . .

tp , pvv (: , 5) , [co lo r , ’−. ’] , . . .
tp , pvv (: , 6) , [co lo r , ’ : ’])

legend (’ v x ’ , ’ v y ’ , ’ v z ’) ;
% 2D time versus t o t a l p o s i t i on (measured by L2 norm)
subplot (4 , 2 , 5) ; hold on ;

t i t l e (’Time ver sus Total Pos i t i on (L 2−norm) ’) ;
xlabel (’ time ’) ; ylabel (’ t o t a l p o s i t i o n ’) ;
plot (tp , sqrt (sum(pvv (: , 1 : 3) . ˆ 2 , 2)) , [co lo r , ’− ’])

% 2D time versus t o t a l v e l o c i t y (measured by L2 norm)
subplot (4 , 2 , 6) ; hold on ;

t i t l e (’Time ver sus Total Ve loc i ty (L 2−norm) ’) ;
xlabel (’ time ’) ; ylabel (’ t o t a l v e l o c i t y ’) ;
plot (tp , sqrt (sum(pvv (: , 4 : 6) . ˆ 2 , 2)) , [co lo r , ’− ’])

% 2D time versus t o t a l p o s i t i on (measured by L1 norm)
subplot (4 , 2 , 7) ; hold on ;

t i t l e (’Time ver sus Total Pos i t i on (L 1−norm) ’) ;
xlabel (’ time ’) ; ylabel (’ t o t a l p o s i t i o n ’) ;
plot (tp , sum(abs (pvv (: , 1 : 3)) , 2) , [co lo r , ’− ’])

% 2D time versus t o t a l v e l o c i t y (measured by L1 norm)
subplot (4 , 2 , 8) ; hold on ;

t i t l e (’Time ver sus Total Ve loc i ty (L 1−norm) ’) ;
xlabel (’ time ’) ; ylabel (’ t o t a l v e l o c i t y ’) ;
plot (tp , sum(abs (pvv (: , 4 : 6)) , 2) , [co lo r , ’− ’])

C.3 Ephemeris Data Files

The following data underlies the computational experiment in Chapter 5.
For each satellite, the corresponding data entries are given in the form

time_stamp pos_x pos_y pos_z vel_x vel_y vel_z

and indicate the position and velocity at 577 specified time stamps. We only
show the first, middle and last five observations each; the full data sets can
be requested by e-mail from alexander.engau@ucdenver.edu.

126

APPENDIX C. MATLAB IMPLEMENTATION

sat1.txt
(primary)

16 Jan 2005 02:14:37.212 -6981.418748067837 926.2870386137012 1273.515447075486

-1.20595757568536 1.371138170924282 -7.247806683812038

16 Jan 2005 02:19:37.212 -6999.440404462371 1286.14489912759 -927.3210262172742

1.083601106410356 1.008903344271513 -7.305002980506311

16 Jan 2005 02:24:37.212 -6343.604280937016 1522.230700366655 -3039.184114708578

3.250341862753424 0.5529438074274717 -6.66141674625386

16 Jan 2005 02:29:37.212 -5081.985720926802 1613.00244489037 -4861.136970012316

5.090810166076802 0.04800045674356464 -5.389360612351899

16 Jan 2005 02:34:37.212 -3338.623347237927 1550.925281912202 -6222.618514459669

6.43786915158877 -0.4580412295233666 -3.616872640678516

. . .

17 Jan 2005 02:04:37.212 -4225.862115525803 1599.701581620111 -5635.6822379328

5.861568253087271 -0.218022087738775 -4.520226628595808

17 Jan 2005 02:09:37.212 -2295.928656734673 1459.936681989716 -6704.810421403832

6.901822184410294 -0.7059429502608741 -2.552510185060476

17 Jan 2005 02:14:37.212 -150.1262498418984 1182.974974382047 -7143.967726781428

7.290454501452286 -1.125695816360741 -0.35316243588648

17 Jan 2005 02:19:37.212 2009.799003259059 795.1622674856794 -6913.752799779228

6.995624492355361 -1.439334034311279 1.875696142916376

17 Jan 2005 02:24:37.212 3981.451389655614 332.8784938149461 -6035.984298689072

6.044735500923345 -1.618320975783792 3.930692752136895

. . .

18 Jan 2005 01:54:37.212 3070.472505376031 561.5499845159807 -6534.52146628431

6.579186615327043 -1.550539350244867 2.978032157757702

18 Jan 2005 01:59:37.212 4869.241157064861 77.3491327954868 -5348.641841918648

5.317188365688231 -1.652033740502962 4.866480243201368

18 Jan 2005 02:04:37.212 6209.920711838697 -414.0914673953902 -3659.800839616828

3.548125820206969 -1.598197414253326 6.304487619308354

18 Jan 2005 02:09:37.212 6963.192613757555 -866.3207249905576 -1625.029643208934

1.431033414225879 -1.392344725437844 7.153375352726526

18 Jan 2005 02:14:37.212 7053.152496262693 -1235.979317957119 564.2629929186934

-0.8392454538967212 -1.051748220338898 7.324702968356784

sat2.txt
(secondary-1)

16 Jan 2005 02:14:37.212 -4383.965242030842 -4020.483002583562 3921.074684039107

-3.928702489636912 -1.85833179423258 -6.103238356374871

16 Jan 2005 02:19:37.212 -5328.629535189863 -4371.985237086851 1928.001806161137

-2.320952991537846 -0.4689296946863907 -7.072422452556804

16 Jan 2005 02:24:37.212 -5756.266115881159 -4299.186367146359 -252.6650708287376

-0.5108370645853604 0.9471827302769824 -7.346809648726899

16 Jan 2005 02:29:37.212 -5632.504851993595 -3814.484909936124 -2409.568308179557

1.325761952278912 2.255749244817582 -6.918166575478212

16 Jan 2005 02:34:37.212 -4975.216970649736 -2968.398810037543 -4338.594093854739

3.018926831251242 3.338507349894456 -5.841599043383295

. . .

17 Jan 2005 02:04:37.212 -3453.414539270797 -1481.464972929916 -6203.032477188371

4.748605380703364 4.251824901325072 -3.679076777169923

127

C.3. EPHEMERIS DATA FILES

17 Jan 2005 02:09:37.212 -1889.99042067621 -156.7166093256909 -7000.254847099077

5.592423862670997 4.510523973169075 -1.594049564436147

17 Jan 2005 02:14:37.212 -150.2183392874946 1182.616608866891 -7144.10122129902

5.915074157661759 4.348047398579944 0.6441146131042568

17 Jan 2005 02:19:37.212 1603.465544400431 2411.012297779376 -6618.529766446501

5.683378524788908 3.775743190263148 2.834810383480659

17 Jan 2005 02:24:37.212 3205.494712269438 3411.586479023301 -5468.142198432629

4.910155634719813 2.839811005412897 4.776704656467614

. . .

18 Jan 2005 01:54:37.212 4799.143121915431 4209.894389535818 -3237.654607198698

3.219362398794622 1.230376414543775 6.613254962000633

18 Jan 2005 01:59:37.212 5515.310502255186 4367.827176463786 -1128.312409175688

1.511921600289397 -0.1894020191499937 7.335075818988195

18 Jan 2005 02:04:37.212 5688.967585581911 4096.212865496261 1091.510248694548

-0.3678973025313385 -1.609326953053296 7.340449094913762

18 Jan 2005 02:09:37.212 5296.014336948612 3416.703401699992 3202.18043489389

-2.233040917709377 -2.884822574431419 6.610733755013042

18 Jan 2005 02:14:37.212 4370.075566413979 2393.40702898179 4990.218951710357

-3.889410899329996 -3.88033715873083 5.206346754677181

sat3.txt
(secondary-2)

16 Jan 2005 02:14:37.212 -6984.973660222872 904.3787220685445 1269.763403464822

-1.185725927819648 1.49582236179512 -7.226453125156158

16 Jan 2005 02:19:37.212 -6996.851865159574 1302.097624809837 -924.5889439712788

1.103992412967993 1.134571484395886 -7.283480909565655

16 Jan 2005 02:24:37.212 -6335.120651959349 1574.513857020191 -3030.230040859446

3.268936652015534 0.667540318247676 -6.641790815347538

16 Jan 2005 02:29:37.212 -5068.416262510674 1696.62869987422 -4846.815040913616

5.10585411673506 0.1407137556190312 -5.373482425620123

16 Jan 2005 02:34:37.212 -3321.253426642681 1657.973136307084 -6204.285375173392

6.447965349905754 -0.3958200834075802 -3.606216575276211

. . .

17 Jan 2005 02:04:37.212 -4210.130578590749 1696.652357281327 -5619.078336023874

5.874186088721133 -0.1402605214711639 -4.50690909287064

17 Jan 2005 02:09:37.212 -2277.212737643814 1575.279695235145 -6685.056643626363

6.908947303705229 -0.6620320568005509 -2.544989954689555

17 Jan 2005 02:14:37.212 -130.1844597600511 1305.872821203338 -7122.920099473226

7.291440324937332 -1.119620354571165 -0.3521219452787474

17 Jan 2005 02:19:37.212 2029.098167572776 914.099721438983 -6893.383433931886

6.990388643010892 -1.4716016796969 1.870169948667327

17 Jan 2005 02:24:37.212 3998.300336406961 436.7156753542577 -6018.201022950543

6.033763299936839 -1.685940776744206 3.919112106859614

. . .

18 Jan 2005 01:54:37.212 3088.713077053014 673.9635128135495 -6515.269395485338

6.570873686934285 -1.601770508328205 2.96925825040537

18 Jan 2005 01:59:37.212 4884.171444675872 169.3619456926604 -5332.883621220775

5.303603991966441 -1.735751915942781 4.852142571703667

18 Jan 2005 02:04:37.212 6220.136740645512 -351.1318264530675 -3649.018298731265

3.530527368828313 -1.706653664806989 6.285913276470953

18 Jan 2005 02:09:37.212 6967.728748474798 -838.3653013649706 -1620.241965043422

1.411065363538796 -1.515404411871882 7.132300008579447

18 Jan 2005 02:14:37.212 7051.577403178862 -1245.686347653161 562.6005557931413

-0.8596917513337044 -1.177755259821945 7.303122857119323

128

	The Clinic Team
	Sponsor: SpaceNav
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Overview and Conduct of Clinic
	Project Warmup (January-February)
	Phase 1 Projects (February-March)
	Phase 2 Projects (March-April)
	Project Closeout (May)

	Outline of Report

	Background
	Satellites and Orbits
	Fundamental Orbital Mechanics
	Planetary Motion and Two-Body Equation
	Motion in Space: Spacecrafts and Rockets
	Trajectory Changes by Hohmann Transfers

	Coordinate Frames and Analytic Representations
	From Cartesian Coordinates to Keplerian Elements
	From Keplerian Elements to Cartesian Coordinates
	Closed-Form Analytic Representation
	Discussion of Implementation

	Error Propagation and Collision Probabilities
	Representation of Uncertainty Errors
	Calculation of Collision Probabilities
	Discussion of Implementation

	Optimization
	Terminology and Model Assumptions
	Strategies and Closed-Form Solutions
	Miss Vector Approach
	Probability Gradient Approach

	Discussion of Implementation

	Implementation
	General Assumptions
	The Trade Space Tool
	Data Flow
	Inputs and Outputs
	Propagation Versus Interpolation

	The Collision Module
	Data Flow
	Inputs and Outputs
	Calculation of TCA and Collision Probabilities

	Experiment
	Trade Space Comparison
	Discussion of Results

	Conclusion
	List of References
	Other Web Resources
	Homework Assignments
	MATLAB Implementation
	Running The Code
	List of Subfunctions
	Main Code: Satellite Model
	Supplemental Code: Optimization
	Supplemental Code: Analytic Form
	Supplemental Code: Homework Solutions

	Ephemeris Data Files

