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Name:

Exam Rules:

• This exam lasts 4 hours.

• There are 8 problems. Each problem is worth 20 points. All solutions will be graded
and your final grade will be based on your six best problems. Your final score will be
out of 120 points.

• You are not allowed to use books or any other auxiliary material on this exam.

• Start each problem on a separate sheet of paper, write only on one side, and label all
of your pages in consecutive order (e.g., use 1-1, 1-2, 1-3, . . . , 2-1, 2-2, 2-3, . . . ).

• Read all problems carefully, and write your solutions legibly using a dark pencil or pen
in “essay-style” using full sentences and correct mathematical notation.

• Justify your solutions: cite theorems you use, provide counterexamples for disproof,
give clear but concise explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, you may not merely quote or rephrase that theorem
as your solution; instead, you must produce a complete proof.

• Parts of a multipart question are not necessarily worth the same number of points.

• If you feel that any problem or any part of a problem is ambiguous or may have been
stated incorrectly, please indicate your interpretation of that problem as part of your
solution. Your interpretation should be such that the problem is not trivial.

• Please ask the proctor if you have any questions.
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Problem 1

Let V = P2(R), the space of real-valued polynomials of total degree less than or equal to 2.
Let S = {x, 1− x, 1− x2} be a set of vectors in V .

(a) Show that S is a basis of V .

(b) Let T : V → V given by p(x)→ xp′(x). Find the matrix of T with respect to S.

(c) Is T invertible? If not, express its nullspace in terms of S.

Solution:

(a) In terms of the standard basis (1, x, x2) and writing the vectors in S as the columns of
a matrix yield: 0 1 1

1 −1 0
0 0 −1


Exchanging row 1 and row 2 yields a matrix in upper triangular form with a pivot in
every column, so the columns of S are linearly independant, and as the dimension of
P2 is 3, we have a basis.

(b) T (x) = x → [1, 0, 0]>; T (1 − x) = T (1) − T (x) = [0, 0, 0] + [−1, 0, 0]; T (1 − x2) =
T (1)− T (x2) = −2x2 = −2S1 − 2S2 + 2S3. So

MT =

1 −1 −2
0 0 −2
0 0 2

 .

(c) MT has linearly dependant columns, so T is not invertible. Any constant function will
get mapped to the 0 polynomial, so the nullspace of T (one-dimensional as MT has
two pivots) is equal to c(S1 + S2), c ∈ R.



Problem 2

Suppose V1, V2, . . . , Vs are subspaces of V .

(a) Show that the sum of V1, V2, . . . , Vs is a direct sum if and only if

Vi ∩
∑
j 6=i

Vj = 0, i = 1, . . . , s.

(b) Show that the sum of V1, V2, . . . , Vs is a direct sum if and only if

V1 ∩ V2 = 0, (V1 + V2) ∩ V3 = 0, . . . , (V1 + V2 + · · ·+ Vs−1) ∩ Vs = 0.

Solution:

(a) Suppose

Vi ∩
∑
j 6=i

Vj = 0, i = 1, . . . , s.

Let vk ∈ Vk, k = 1, . . . , s such that

v1 + v2 + · · ·+ vi + · · ·+ vs = 0.

Then for each i = 1, . . . , s

vi = −v1 − · · · − vi−1 − vi+1 − · · · − vs ∈ Vi ∩
∑
j 6=i

Vj = 0.

So vi = 0, i = 1, . . . ,. So
∑s

i=1 Vi is a direct sum.

Now suppose
∑s

i=1 Vi is a direct sum. For each i and any v ∈ Vi ∩
∑

j 6=i Vj, we have

v = v1 + · · ·+ vi−1 + vi+1 + · · ·+ vs ∈ Vi.

So
v1 + · · ·+ vi−1 + (−v) + vi+1 + · · ·+ vs = 0.

Since
∑s

i=1 Vi is a direct sum, v = 0. So Vi ∩
∑

j 6=i Vj = 0, i = 1, . . . , s.

(b) Suppose V1 + · · ·+ Vs is a direct sum, then based on Part (a), we have

Vi ∩
∑
j 6=i

Vj = 0, i = 1, . . . , s.

For each i, it is obvious that

Vi ∩
∑
j<i

Vj ⊆ Vi ∩
∑
j 6=i

Vj.

So
Vi ∩

∑
j<i

Vj = 0, i = 1, . . . , s.



On the other hand, we use induction to show the sufficiency. For s = 2, V1 ∩ V2 = 0
obviously shows V1 + V2 is a direct sum. Now suppose the sufficiency holds for s = k,
and we will show it also holds for s = k + 1. Suppose now we have

V1 ∩ V2 = 0, (V1 + V2) ∩ V3 = 0, . . . , (V1 + V2 + · · ·+ Vk) ∩ Vk+1 = 0.

Based on the induction, the first k−1 conditions above suggest V1 + · · ·+Vk is a direct
sum. In addition, the last condition above shows that (V1 + · · ·+Vk) +Vk+1 is a direct
sum. Combining the two facts, it is easy to show that V1 + · · ·+ Vk + Vk+1 is a direct
sum.



Problem 3

Let A be a real matrix satisfying A3 = A.

(a) Prove that A can be diagonalized.

(b) If A is a 3× 3 matrix, how many different possible similarity classes are there for A?

Solution:

(a) Note that A satisfies A3−A = 0. Hence, the minimal polynomial of A divides x3−x =
x(x − 1)(x + 1), which factors into linear factors. Each Jordan block in the Jordan
canonical form of A is 1× 1, since each eigenvalue is the root of a linear factor of the
minimal polynomial. Thus, the Jordan canonical form of A is a diagonal matrix.

(b) Since the minimal polynomial divides x3 − x, the possible eigenvalues of A are 0, 1,
and −1. Let tλ denote the number of Jordan blocks for eigenvalue λ (equivalently, tλ is
the geometric multiplicity of λ). Then t0 + t1 + t−1 = 3, where each tλ is a nonnegative
integer. There are 10 solutions for (t0, t1, t−1):

(3, 0, 0) (0, 1, 2) (1, 1, 1)
(0, 3, 0) (0, 2, 1)
(0, 0, 3) (1, 0, 2)

(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

Alternatively, a combinatorial stars-and-bars argument shows there are
(
5
2

)
= 10 solu-

tions. Thus, there are 10 different possible similarity classes.



Problem 4

Let T be a self-adjoint operator on an n-dimensional inner product space V . Let λ0 be an
eigenvalue of T . Show that the (algebraic) multiplicity of λ0 equals dim E(λ0, T ), i.e., the
dimension of the eigenspace of T corresponding to λ0.

Solution: Let m be the algebraic multiplicity of λ0. Then m ≥ dim E(λ0, T ), since m is
defined to be the dimension of the generalized eigenspace of T corresponding to λ0, which is
greater than or equal to dim E(λ0, T ).

Next we show that m ≤ dim E(λ0, T ). Since T is self-adjoint, based on the Spectral Theo-
rems, there exists an orthonormal basis e1, . . . , em such that

M(T, (e1, . . . , em)) =


λ1

λ2
. . .

λn


So the diagonal elements are all the eigenvalues of T . WLOG, let λ1 = · · · = λm = λ0. Then

Tei = λ0ei, i = 1, . . . ,m.

So e1, . . . , em are m linearly independent vectors in E(λ0, T ) and dim E(λ0, T ) ≥ m.
As a result, we have m = dim E(λ0, T ).



Problem 5

Let T and S be linear maps on inner product space V . For any vector v ∈ V ,

〈Tv, Tv〉 = 〈Sv, Sv〉 .

Show that range T and range S are isomorphic.

Solution: Let
ϕ : Tv → Sv

for any v ∈ V . We show that ϕ is an isomorphism between range T and range S.
First, the map ϕ is well-defined. Suppose Tv = Tw, w ∈ V . Then T (v −w) = 0. So

〈S(v −w), S(v −w)〉 = 〈T (v −w), T (v −w)〉 = 〈0,0〉 = 0.

Hence S(v −w) = 0, and Sv = Sw.
The map is also a linear map, since

ϕ(Tv + Tw) = ϕ(T (v + w)) = S(v + w) = Sv + Sw

ϕ(λTv) = ϕ(T (λv)) = S(λv) = λSv.

Finally, it is obvious that ϕ is surjective. In addition, suppose Tv 6= Tw. Then Sv 6= Sw.
Otherwise if Sv = Sw, Tv = Tw. So ϕ is injective. So ϕ is an isomorphism between
range T and range S.



Problem 6

Let V be a complex-valued vector space.

(a) Give an example of an operator T that is surjective but not invertible.

(b) Given an example of an operator S that has no eigenvalue.

(c) Let V = C∞. Let U be the set of vectors in V with finitely many non-zero entries.
Prove that U is an infinite-dimensional subspace of V .

Solution:

(a) As T is a surjective operator, but not invertible, V must be infinite dimensional. As T is
not invertible, it must have a non-trivial nullspace. Consider the vector space of infinite
lists, C∞. The left-shift operator T : V → V , (z1, z2, . . . , ) → (z2, z3, . . .) is clearly
surjective as T (z1, z1, z2, . . .) = (z1, z2, . . .), but it is not injective as (z1, 0, 0, . . .)→ 0V .
T is linear, is trivial to check.

(b) Again, as we are over the complex field, S must be infinite dimensional. Consider the
right-shift operator S : V → V , (z1, z2, . . .) → (0, z1, z2, . . .). Let Sv = λv. Then
0 = λv1. Thus λ = 0 or v1 = 0. If λ = 0 then v = 0V , so v is not an eigenvector by
definition. If v1 = 0, then (Sv)2 = 0, which (as λ 6= 0) now implies that v2 = 0. By
induction, v = 0v, so again, v is not an eigenvector, and therefore S does not have an
eigenvalue.

(c) U is a subspace of V as ku will have finitely many non-zero entries, the vector of all
zeros has finitely any non-zero entries, and if u1 has M non-zeros and u2 has N nonzero
entries then u1 + u2 has at most M +N nonzeros, also finite, and hence u1 + u2 ∈ U .

Clearly ei is in U , and ei cannot be written as a linear combination of ej, j 6= i. We
have an infinite linear independant set in U , so U is infinite-dimensional.



Problem 7

Let A ∈ Rm×n and B ∈ Rn×m. Prove that tr(AB) = tr(BA).

Solution: Let ei be a unit vector in Rq. Cij =< ei, Cej >, so for square C, tr(C) =∑n
i=1 < ei, Cei >.

AB is m×m, so we have tr(AB) =
∑m

i=1 < ei, ABei >. Note < ei, ABei >=< A>ei, Bei >.
Bei is a column vector whose entries are the i-th column of B, i.e. (B1i, B2i, . . . , Bni)

>.
A>ei is a column vector whose entries are the i-th column of A> = (A>1i, A

>
2i, . . . , A

>
ni) =

(Ai1, Ai2, . . . , Ain). The inner product of these two vectors is given by
∑n

j=1AijBji. Com-
bining, we have

m∑
i=1

< ei, ABei >=
m∑
i=1

n∑
j=1

AijBji.

We also have (by an almost identical argument)

tr(BA) =
n∑
j=1

< ej, BAej >=
n∑
j=1

m∑
i=1

BjiAij.

Switching the order of summation and using the commutativity of the reals finishes the
proof.



Problem 8

LetW1 andW2 be two subspaces of an n-dimensional vector space V , and dim W1+dim W2 =
n. Show that there exists an operator T on V such that

null T = W1 and range T = W2.

Solution: Suppose dim W1 = s and dim W2 = m = n− s. Let a basis of W2 be

v1,v2, . . . ,vm.

Let a basis of W1 be
w1,w2, . . . ,ws,

and extend it to a basis of V :

w1,w2, . . . ,ws,ws+1, . . . ,wn.

Let T be the operator defined as

Tw1 = 0, Tw2 = 0, . . . , Tws = 0, Tws+1 = v1, Tws+2 = v2, . . . , Twn = vm.

It is obvious that the operator exists.
Note that

range T = span (v1, . . . ,vm) = W2.

In addition, it is obvious that

W1 = span (w1, . . . ,ws) ⊂ null T.

Let any v ∈ V and

v = k1w1 + · · ·+ ksws + ks+1ws+1 + · · ·+ knwn.

Then

Tv = T (k1w1 + · · ·+ ksws + ks+1ws+1 + · · ·+ knwn)

= ks+1Tws+1 + · · ·+ knTwn = 0

suggests ks+1 = · · · = kn = 0. So v ∈ W1, which means null T ⊂ W1. So null T = W1.


