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Exam Rules:

• This exam lasts 4 hours.

• There are 8 problems. Each problem is worth 20 points. All solutions will be graded
and your final grade will be based on your six best problems. Your final score will
count out of 120 points.

• You are not allowed to use books or any other auxiliary material on this exam.

• Start each problem on a separate sheet of paper, write only on one side, and label all
of your pages in consecutive order (e.g., use 1-1, 1-2, 1-3, . . . , 2-1, 2-2, 2-3, . . . ).

• Read all problems carefully, and write your solutions legibly using a dark pencil or pen
in “essay-style” using full sentences and correct mathematical notation.

• Justify your solutions: cite theorems you use, provide counterexamples for disproof,
give clear but concise explanations, and show calculations for numerical problems.

• If you are asked to prove a theorem, you may not merely quote or rephrase that theorem
as your solution; instead, you must produce an independent proof.

• If you feel that any problem or any part of a problem is ambiguous or may have been
stated incorrectly, please indicate your interpretation of that problem as part of your
solution. Your interpretation should be such that the problem is not trivial.

• Please ask the proctor if you have any other questions.
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Problem 1

Let P be the vector space of single-variable polynomials over the reals of degree at most 4.
Let D be the differential operator.

(a) Prove that D is a linear operator on P .

(b) Determine the rank and nullity of D as a linear operator on P . Find bases for the
nullspace of D and the image of D.

Solution:
It is a linear map: 1) Let p1 =

∑
j ajx

j, p2 =
∑

j bjx
j. D(p1 + p2) =

∑
j j(aj + bj)x

j−1;

D(p1) =
∑

j j(aj)x
j−1, D(p2) =

∑
j j(bjx

j−1.

2) D(λp1) =
∑

j jλajx
j−1 = λ

∑
j jajx

j−1 = λD(p1).
3) D(0)=0. D is a linear operator as differentiation reduces the total degree by one so D(p1) ∈
V . From part 1), we know that D(p) = 0→ jaj = 0∀j → Null D = span{a0}. So the nullity
of D is the dimension of the nullspace(1), and the total dimension is 5 (a0 + a1x . . . a4x

4) so
the rank of D (dimension of the Range/image of D)is 5-1=4.
The image of D(p) = a1+2a2x+3a3x

2+4a4x
3, ai ∈ R. Thus a basis for Im(D)={1, x, x2, x3}



Problem 2

Let V = Rm, and let W be a subspace of V with basis {x1, x2, . . . , xn}. Let v be any vector
in V . Derive the normal equations method for computing the best approximation w ∈ W to
v.

Solution:
Let v be a vector in V and let A = [x1|x2| . . . xn], where the columns of A represent the
coordinates of the basis vectors of V with respect to the standard basis for Rm. We can
represent any w =

∑
yjxj = Ay, where y is the n dimensional column vector of coordinates

of w in the basis {x1, x2, . . . , xn}. The best approximation in the least squares sense to v
in W minimizes ‖w − v‖. This is equivalent to minimizing ‖w − v‖2 = 〈w − v, w − v〉 =
〈Ay − v,Ay − v〉. Expanding and using the fact that we are using the Euclidean inner
product, we have 〈Ay− v, Ay− v〉 = (Ay− v)T (Ay− v) = yTATAy+ vTv− yTATv− vTAy.
As v is fixed, and using the symmetry of the inner product, we may rewrite this minimization
as miny f(y) = yTATAy + vTv − yTATv − vTAy. As v is fixed, taking the gradient with
respect to y and looking for critical points yields: ATAy−ATv = 0, so we get ATAy = ATv.
The Hessian, D2f = ATA is symmetric positive definite (as the columns of A are linearly
independent), so any critical point (the solution of the normal equations) is a minimizer.



Problem 3

Let V be a real vector space, let A and B be two subspaces of V , let Ã be a subspace of V
such that Ã⊕ (A∩B) = A and let B̃ be a subspace of V such that B̃⊕ (A∩B) = B. Prove
that A+B = (A ∩B)⊕ Ã⊕ B̃.

Solution: A sum of spaces is a direct sum if and only if its intersection with the sum of
the other spaces is empty. Clearly A + B = (A ∩ B) + Ã + B̃. (Should they have to show
this, it’s fairly trivial?) Checking the 3 intersections: i) (A ∩B) ∩ (Ã+ B̃) is zero. Let v be
in A ∩ B and in (Ã + B̃). v = ã + b̃ by construction, but then ã = v − b̃ ∈ B by subspace
closure, but as ã ∈ A this means ã ∈ A ∩ B → ã = 0. A similar argument yields b̃ = 0 so
the intersection is zero.
ii) Ã∩ (B̃ + (A∩B)) = B is just the zero vector as Ã∩ (A∩B) is zero from the direct sum
in its definition.
iii) The same argument switching Ã and B̃.
As all three intersections are empty, the sum of (A ∩B) + Ã+ B̃ is direct.



Problem 4

Let

A =

(
1 2
2 1

)
.

Define

T :M2(R) −→ M2(R)

B 7−→ AB −BA.

(a) Fix an ordered basis B ofM2(R) and compute the matrix [T ]B that represents T with
respect to this basis.

(b) Compute a basis for each of the eigenspaces of T .

Solution:

(a) For simplicity, we will let our basis be given by vij, vij = eie
>
j . We map i, j to a single

index k via k = i+2(j−1). With this choice of basis, we have T (eij) = Aeie
>
j −eie>j A.

This simplifies to aie
>
j − eia>j , where we have used that A is symmetric (otherwise we

would get jth row of A). The first matrix is equal to

n∑
i=1

aj,ivi,j.

while the second is equal to

−
n∑
j=1

ai,jvi,j

yielding

MT =


0 −2 2 0
−2 0 0 2
2 0 0 −2
0 2 −2 0


(b) Solution using part (a). The characteristic polynomial of MT is z4 + 16z2, and the

eigenvalues are thus 0, 4i, and −4i. As the vector space was specified as over the reals,
0 is the only eigenvalue.

Note that m1 = −m4 and m2 = −m3, where mi is the ith column of MT . Thus the
nullspace (eigenspace of eigenvalue 0) of MT is two dimensional with basis(

1 0
0 1

)
,

(
0 1
1 0

)
.



Problem 5

For arbitrary complex scalars a, b, and c, compute the minimal polynomial of the matrix

A =

 0 0 a
1 0 b
0 1 c

 .

Solution: This is a companion matrix, so the characteristic and minimal polynomials are
identical and equal to −a − bz − cz2 + z3. To show this, the characteristic polynomials is
just computed via det(A − Iλ). The minimal polynomial, m(A) = 0, means that m(A)v
must be zero for for all v ∈ C3. Taking the standard basis for C3, we observe that Ae1 = e2,
A2e1 = e3. Thus (a0I + a1A + a2A

2)e1 = 0 imples that ai = 0. Therefore the minimal
polynomial cannot be quadratic (or lower). The characteristic polynomial is a multiple of
the minimal polynomial, and thus they must be equal.



Problem 6

Let V = P(R), and let U be a subspace of V given by span(1, x, x2).

(a) Pick a basis for U , and find the corresponding dual basis.

(b) Given the inner product on 〈p1, p2〉 =
∫ 1

0
p1(x)p2(x) dx, find the Riesz representers (in

U) of the dual basis in part a). Recall that the Riesz representer is the unique vector
u in V s.t., given a fixed φ in V ′, φ(v) = 〈v, u〉.

Solution:

(a) We pick the standard basis for U(u1, u2, u3 = 1, x, x2). The dual basis φi in U ′, the
dual space of U , are functionals on U s.t. φi(uj) = δij. What is an example of a
functional on U s.t. φ(1) = 1 but φ(x) = φ(x2) = 0? φ1(p) = p(0). The derivative
operator, which we encountered in the first problem, works for φ2 = Dp(0). Finally,
for φ3 = 1/2D2p(0). (In general, the dual basis of a monomial basis will be the
corresponding Taylor series coefficient).

(b) The easy way to find the Riesz representors for φi is to find an orthonormal basis for
U and then use the result:

uφi =
∑
j

φi(oj)oj

We apply Gram-Schmidt to {1, x, x2}.

o1 = 1;

o2 =
x− 〈1, x〉1
‖x− 〈1, x〉1‖

=
(x− 1/2)

‖x− 1/2‖
=
√

6(x− 1/2)

p3 = x2 − 〈1, x2〉 − 〈
√

6(x− 1/2), x2〉
√

6(x− 1/2); o3 =
p3
‖p3‖

Need to compute o3, plut in to compute uφi

There is another way of solving most of the probem. If the choose an orthonormal basis for
U(by performing G-S on {1, x, x2} then part b) s trivial-the Riesz representor of the the dual
basis is just the orthonormal basis as 〈oj, oi〉 = δij. However, it is very difficult to construct
the corresponding functional of that representor. If the students followed this approach,
stating the definitions of the dual basis but getting stuck, I’d probably award 15 out of 20
points.



Problem 7

Suppose that A and B are two symmetric real n×n matrices and that A is positive definite.
Show that there is an invertible real matrix U such that UTAU is the identity matrix and
UTBU is diagonal.

Solution:
We will have a two-step approach. First, since A is symmetric positive definite, we will con-
struct W invertible such that W TAW = I. (There is a variety of ways to do this.) Second,
once we get such a W , we will look for U invertible such that UTAU is the identity matrix
and UTBU is diagonal.

Step 1. Method a. Since A is symmetric positive definite, A has a symmetric positive defi-

nite square root B such that A = B2. We note that B−1AB−1 = I. We set W = B−1. So
we have WAW = I. Since B is symmetric, so is B−1, so is W , so W = W T and we have
W TAW = I with W is invertible as well.

Step 1. Method b. Since A is symmetric positive definite, there exists C lower triangular

matrix such that A = CCT . (This is called the Cholesky factorization.) C is invertible. So
we can write C−1AC−T = I. We set W = C−T and we have W TAW = I with W is invertible.

Step 1. Method c. Since A is symmetric positive definite, A is diagonalizable in an or-
thogonormal basis with real positive eigenvalues, so there exists an orthonormal matrix V
and a diagonal with positive entries matrix D such that A = V DV T . Now we see that
D

1
2V TAVD−

1
2 = I. (The existence of D−

1
2 is well justified since D is diagonal with positive

entries.) (We used the fact that V is orthogonal to use V T instead of V −1 since we have

V T = V −1 for orthogonal matrices.) We repeat. We have D−
1
2V TAVD−

1
2 = I. We set

W = V D−
1
2 and we see that we have W TAW = I with W is invertible.

Step 2. Let us have a look at W TBW . This is a symmetric matrix. So we can diagonalize
this matrix in an orthonormal basis with real eigenvalues, so there exists an orthogonal ma-
trix Z and a diagonal with real diagonal entries D such that W TBW = ZDZT . So we get
(WZ)TBWZ = D. We set U = WZ and we have UTBU = D with U is invertible.

Step 3. We have that W TAW = I. We multiply on the left by ZT and on the right by Z,

so we get ZTW TAWZ = ZTZ. Now we have U = WZ and we have ZTZ = I so we end up
with UTBU = I.



Problem 8

Let V be a finite-dimensional real vector space.

(a) Suppose T ∈ L(V ) and m is a nonnegative integer such that

Range Tm = Range Tm+1.

Prove that Range T k = Range Tm for all k > m.

(b) Prove or give a counterexample: if T ∈ L(V ), then

V = Null T ⊕ Range T.

(c) Prove that if T ∈ L(V ), then

V = Null T n ⊕ Range T n,

where n = dim V .

Solution:

(a) Let k > m.

We have Range T k ⊆ Range Tm. (Easy to prove. True for any operator T .)

We want to prove that Range Tm ⊆ Range T k.

Let x in Range Tm.

Since Range Tm ⊆ RangeTm+1, we have that there exists y(1) in V such that x =
Tm+1y(1). We rewrite as x = T (Tmy(1)).

Since Range Tm ⊆ RangeTm+1 and since Tmy(1)) ∈ Range Tm, we have that there
exists y(2) in V such that Tmy(1) = Tm+1y(2). We rewrite as x = T 2(Tmy(2)).
(This means that Range Tm ⊆ RangeTm+2.)

Since Range Tm ⊆ RangeTm+1 and since Tmy(2)) ∈ Range Tm, we have that there
exists y(3) in V such that Tmy(2) = Tm+1y(3). We rewrite as x = T 3(Tmy(3)).
(This means that Range Tm ⊆ RangeTm+3.)

We continue all the way to getting x = T k−m(Tmy(k−m)) = T ky(k−m),
which means that Range Tm ⊆ RangeT k.



(b) We can take the differentiation operator on the polynomial of degree at most 4. (See
Problem 1.) The nullspace is Span(1) and the Range is Span(1, x, x2, x3). So the
intersection of the nullspace and the Range of D is not {0} and so nullspace and
Range are not in direct sum. Another classic example would be the matrix:

A =

(
0 1
0 0

)
,

for which we have

Range(A) = Null (A) = Span(

(
1
0

)
),

and so nullspace and Range of A are not in direct sum.

(c) Step 1. Preliminary work.

We know that, for all i, Range T i+1 ⊆ Range T i. So we have rank T i+1 ≤ rank T i.
This says that (rank T i)i∈N is nondecreasing sequence of integers. Clearly (rank T i)i∈N
is bounded by n. So (rank T i)i∈N converges to an integer `. (0 ≤ ` ≤ n.) Say that we
“reach” this integer for i = m. So we have, for all i > m, rank T i = rank Tm = `. Now
Part (a) tells us that, as soon as (rank T i)i∈N stagnates, it stagnates “forever”. This
implies that m has to be less than or equal to n. (We have to stagnate before or at n
otherwise since we always increase by at least 1 we would end up with a dimension for
the rank larger than V , not possible.) So we get

for any operator T, there exists m ≤ n, for all i > m, rankT i = rankTm.

We can now derive

for any operator T, for all i > n, rankT i = rankT n.

Step 2.a. Using Range T 2n = Range T n to conclude.

Since for all i, Range T i+1 ⊆ Range T i, we have

for any operator T, for all i > n, Range T i = Range T n.

In particular, we get

for any operator T, Range T 2n = Range T n.

Now, let x ∈ V , then T nx ∈ Range T n. But Range T 2n = Range T n, so T nx ∈
Range T 2n, so there exists y such that T nx = T 2ny. Now consider the decomposition

x = x− T ny + T ny.

Clearly T ny ∈ Range T n. And we also have x − T ny ∈ Null T n (since T nx = T 2ny).
So

x ∈ Range T n + Null T n.

So
Range T n + Null T n = V.



Now, since we also have rank T n + dim Null T n = n, we get

Range T n ⊕ Null T n = V.

Step 2.b. Using Null T 2n = Null T n to conclude.

(Starting from the end of Step 1.) The rank theorem applied to T i gives rank T i +
dim Null T i = n. So we also get

for any operator T, for all i > n, dim Null T i = dim Null T n.

And since for all i, Null T i ⊆ Null T i+1, we have

for any operator T, for all i > n, Null T i = Null T n.

In particular, we get

for any operator T, Null T 2n = Null T n.

Now, let x ∈ Null T n ∩ Range T n, then, since x ∈ Range T n, there exists y such that
x = T ny. Since x ∈ Null T n, T nx = 0, so T 2ny = 0, so y ∈ Null T 2n. But we know
that Null T 2n = Null T n, so y ∈ Null T n, T ny = 0, but x = T ny, so x = 0.

So
Null T n ∩ Range T n = {0}.

Now, since we also have rank T n + dim Null T n = n, we get

Range T n ⊕ Null T n = V.


