Part I - solve all 4 problems

1. Let {y,} be a sequence of real numbers. Prove that there exists a continuous function
f R — R with f (%) =y, if and only if the sequence {y,} converges.

Proof: (=>) Suppose f (%) = 1,. Since f is continuous and limn_m% = 0, it follows
that lim, . ¥, = f(0).

(<=) Suppose lim, oy, = yo. Construct f(x) as a piecewise linear interpolation

between the values .
f<_):yn7 n:1a27"'
n

extended by constants outside of the interval (0, 1),

fz) = i ifz>1
1 n-—Yn 3 1 1 J—
yn+1+($—n—+1)ﬁ 1fx€[n_+1’ﬁ]’n_1’2""

Function f is therefore continuous except possibly at x = 0. To show that f is contin-

uous at x = 0, let € > 0. Since lim,,_, ¥, = Yo, there exists N such that |y, — yo| < €

if n > N. Let « be such that |z| < &. If # <0, then f(z) = yo by the definition of f.
11

If z >0, then x € [#1, %] for some n > N. Since f is linear on [—5, ], so is f — o,

and using the definition of f,
£ (@) = yol < max{[yns1 — vol, [yn — vol} < e

2. (a) Prove that if (¢,) is an increasing bounded sequence, then it converges.
(b) Let

1
Cn:Zn—i—i

i=1
Prove that (¢,,) converges. Hint: Use part (a).

Proof: (a) Since (¢,) is bounded, the set {c,} has a supremum ¢ € R. Let € > 0. Since
¢ is upper bound on {¢,}, we have ¢, < ¢ < ¢+ € for all n. Since is the least upper
bound, ¢ — € is not an upper bound, and there exists N such that ¢y > ¢ — €. Since
{cn} is increasing, ¢, > ¢y > ¢ — ¢ for all n > N. Thus, |c —¢,| < € for all n > N.
Since € > (0 was arbitrary, ¢, — ¢ as n — oc.



(b) We have
n+1 n
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so (¢,) is increasing. Also, (c,) is bounded since

u 1
0<Cn_zn+z Zﬁ:

=1

Since the sequence (c¢,) is increasing and bounded, it converges by part (a).

. Prove that & is not compact, using (a) open covers, and (b) sequences..

Proof (a) Let O,, = (n — 1,n+ 1),n € Z. Then {O,} is an open cover of R. Let
{Onys...,0y,} be a finite subset of {O,}. Define m = max(|n],..., |ng|). Then
U0, C (=(m+1),m + 1) # R. Thus, {O,} has no finite subcover, so R is
not compact.

(b) Let z, =n, n =1,2,.... Then every subsequence of {z,} diverges to oo, so R is
not compact.

. Suppose f, : ® — R is bounded for each n = 1,2, ..., i.e., | fn(2)| < ¢, Suppose f,, = f
uniformly. Prove or find a counterexample: f is bounded.

Proof: Since f,, — f uniformly, there exists n such that
VeeR:|fu(x) — f(x)] < 1.
Let x € R. By triangle inequality,
[f(@)] < [fal2) + 1f(z) = ful@)] <en+ 1,
so f is bounded.



D.

Part 2 - choose 2 out of 4

(a) Suppose x > —1. Use the Taylor’s Theorem to express f(z) = In(1 + x) with the
remainder in the z?® term.

(b) Determine
lim e ™ (1 + z)”2

n—00 n

for any x € . Hint: Take the logarithm and use part (a).
Proof: (a) Suppose x > —1. Then,

/ _ 1 " _ 1 " (p) = 2
=1 )= T f"(x) 0t

Since f”exists and f” is continous on (1,00), from Taylor’s theorem, there exists &,
between 0 and x such that

F@= O+ @o+5f @+l @),

that is,

1 1 1
ln 1+:1: :$——$2—|———[E3.
(1+2) 2 3(1+¢,)°

(b) Denote y,(z) = e (1 + %)”2 Let x € R. Then from (a), for sufficiently large n
so that = > —1,

Iny,(r) = —nx +n*In(1 + f)
n

e (G e ()

n

x? x? x?

=t = —— —
2 3TL<1—|—€%)3 9 as n o0

since {z is between 0 and ¥, thus £z — 0 as n — 0o0. So, limy, 0 Yn(x) = e~e/2,

(a) Write the power series for ﬁ, prove that it converges on (—1,1), and that the

convergence is uniform on any interval [—r,r| with 0 < r < 1.

(b) Integrate the power series for 1+Lﬂgto get the power series for In(1 + ) and justify

your steps.
(=yr*t

(¢c) Find )7 | *—— from (b) and justify your steps.

Proof: (a) Let x € (—1,1) .Denote S = ) 2™. The partial sums S,, = 1+x+---+a" —

n=0

.S as n — oo by the root test. Since S, — xS, = 1 — 2", we have
g 1 — gttt 1 s . 1 .
= = — as n — 0o
1—=z l—z 1—2z 1—=x

3



and from uniqueness of limit, S = {1=. Let 0 < r < 1. Then, for all z € [—r,7] and

all n, |z|" < r™. Since Z r™ converges by the root test, Z x™ converges uniformly on
=0 n=0

[—r, 7] by the Weierstrass M test.

(b) Corollary to Theorem 7.16 says that if a series of functions converges uniformly on

la,b] then it can be integrated [a, b] term by term. Let z € (—1,1), and use (a) with

—u for x and |z| for r. Then, the series )" (—u)" converges uniformly on [—r,7],

r = |z|, and we can integrate term by term on [0, 2] if z > 0 and on [z,0] if z < 0,

1n(1+x):/0$1+u / ”du-Z/ )" du = %

n= 1

(¢) From (b) we know that the power series for In(1 + x) converges for |z| < 1. Since
=~ o
n=1

1ig a decreasing sequence, the alternating series theorem says > converges.
n

So by theorem 8.2 (Abel’s thm), we have

> —1)nt1
Z< ) =limIn(l+xz) =In2.
z—1

n

n=1

. Let €[0,1] be the set of continuous function, f : [0,1] — [0, 1] For f, g € C[0,1], let

_ / f(@) - g(a)|de

da(f,9) = sup |f(x) —g(z)|.

0<z<1

Let X be the set of sequences (z1, x9,...) where each x; € [0, 1], and for z,y € X, let

d(z,y) = sup |z — il

Let F: C[0,1] — X be given by
F(f) = (f(1), f(1/2), f(1/3),...)
(a) Verify that dy, dy, d are metrics.
(b) Fori = 1,2 prove or find a counterexample: F : (C[0,1],d;) = (X, d) is continuous

Proof: d; — d is not continuous. Counterexample: Define f, to be 0 except on

(l — % % + ) where f,, is piecewise linear given by the values

2
1 1 1 1 1
1(g=n) =0 1(5)=r (za) e

Then d;(f,,0) = fol fo=1/n—0asn — oo, but f,(1/2) =1 for every n, so for every
n, d(F(f,), F(0)) = 1.

dy — d is continuous since SUPg< < | f(2) — g(x)| < e = sup,, [f(1/k) — g(1/k)| < e

4



8.

(a) Prove or find a counterexample: If f is continuous on [a,b] then for any € > 0
there is a polynomial p(z) such that fj |f(z) — p(z)|de < e.

(b) Prove or find a counterexample: If f is Riemann integrable on [a, b] then for any
e > 0 there is a polynomial p(z) such that f; |f(z) — p(z)|de < e.

Proof: (a) Let € > 0. From the Weierstrass theorem, there exists polynomial p(x) such
that sup,ci, [/(2) — p(z)| < €/(b—a), so

/ |f(z |da:</abe/(b—a)dx:e

(b) Let ¢ > 0. Since f is Riemann integrable on [a,b] there is a partition P =
{a =29 <2 <--- <z, = b} such that

- €
U P) — L(f.P) =3 ({ awp [ i ]f> (@) < 5.
i—1 \[zi—1,%: Ti—1,Ti
Define non-overlapping intervals Iy = [xg, z1], I; = (x;_1,x;], i = 2,....n and piecewise
constant function g by
g(x)= sup f ifzxel,.
[@i—1,24]
Then, fab |f(z) — g(x)|dz < €/3 since
|f(l’) —g($)| < sup f_[ inf ]f if z € [xz laxz]
[zi—1,%i] Ti—1,Ti
thus
b
/ |£(2) = g(a)|dz < Z ( sup f— inf ]f> (v = 7i1) < 5.
a [;[Z 1, 1-2] -’Ez 1:%4

Construct h(z) from g(z) by replacmg the jumps by linear interpolations so that h is
continuous and

/ lg(z x)|dx < €/3.

E.g., choose 6 = min {m, ot x"*;_z”} . Note that z; + § < z;11 — d and

define h piecewise linear with the same values as ¢ at the points

To=a,r1—0,x1+0,29—0,...,Tp1+ 6, T, 1+06,x, =0

Now choose polynomial p(z) so that fab |h(z) — p(x)|dz < €/3 (which is possible from
part (a)). Then

b b b b
/!f—p\é/!f—g|+/\g—h\+/\h—p!<€-



