
Part I - solve all 4 problems

1. Let {yn} be a sequence of real numbers. Prove that there exists a continuous function
f : < → < with f( 1

n
) = yn if and only if the sequence {yn} converges.

Proof: (=>) Suppose f( 1
n
) = yn. Since f is continuous and limn→∞

1
n

= 0, it follows
that limn→∞ yn = f(0).

(<=) Suppose limn→∞ yn = y0. Construct f(x) as a piecewise linear interpolation
between the values

f

(
1

n

)
= yn, n = 1, 2, . . .

extended by constants outside of the interval (0, 1),

f(x) =


y0 if x ≤ 0
y1 if x ≥ 1

yn+1 + (x− 1
n+1

)yn−yn+1
1
n
− 1

n+1

if x ∈ [ 1
n+1

, 1
n
], n = 1, 2, . . .

Function f is therefore continuous except possibly at x = 0. To show that f is contin-
uous at x = 0, let ε > 0. Since limn→∞ yn = y0, there exists N such that |yn − y0| < ε
if n ≥ N . Let x be such that |x| < 1

N
. If x ≤ 0, then f(x) = y0 by the definition of f .

If x > 0, then x ∈ [ 1
n+1

, 1
n
] for some n ≥ N . Since f is linear on [ 1

n+1
, 1
n
], so is f − y0,

and using the definition of f ,

|f(x)− y0| ≤ max {|yn+1 − y0| , |yn − y0|} < ε.

2. (a) Prove that if (cn) is an increasing bounded sequence, then it converges.

(b) Let

cn =
n∑
i=1

1

n+ i

Prove that (cn) converges. Hint: Use part (a).

Proof: (a) Since (cn) is bounded, the set {cn} has a supremum c ∈ <. Let ε > 0. Since
c is upper bound on {cn}, we have cn ≤ c < c + ε for all n. Since is the least upper
bound, c − ε is not an upper bound, and there exists N such that cN > c − ε. Since
{cn} is increasing, cn ≥ cN > c − ε for all n ≥ N . Thus, |c− cn| < ε for all n ≥ N .
Since ε > 0 was arbitrary, cn → c as n→∞.
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(b) We have

cn+1 − cn =
n+1∑
i=1

1

n+ 1 + i
−

n∑
i=1

1

n+ i

=

(
1

n+ 2
+

1

n+ 3
+ · · ·+ 1

2n
+

1

2n+ 1
+

1

2n+ 2

)
−
(

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
=

1

2n+ 2
+

1

2n+ 1
− 1

n+ 1
>

1

2n+ 2
+

1

2n+ 2
− 1

n+ 1
= 0,

so (cn) is increasing. Also, (cn) is bounded since

0 < cn =
n∑
i=1

1

n+ i
<

n∑
i=1

1

n
= 1.

Since the sequence (cn) is increasing and bounded, it converges by part (a).

3. Prove that < is not compact, using (a) open covers, and (b) sequences..

Proof (a) Let On = (n − 1, n + 1), n ∈ Z. Then {On} is an open cover of <. Let
{On1 , . . . , Onk

} be a finite subset of {On}. Define m = max(|n1|, ..., |nk|). Then
∪ki=1Oni

⊂ (−(m + 1),m + 1) 6= <. Thus, {On} has no finite subcover, so < is
not compact.

(b) Let xn = n, n = 1, 2, .... Then every subsequence of {xn} diverges to ∞, so < is
not compact.

4. Suppose fn : < → < is bounded for each n = 1, 2, ..., i.e., |fn(x)| ≤ cn, Suppose fn → f
uniformly. Prove or find a counterexample: f is bounded.

Proof: Since fn → f uniformly, there exists n such that

∀x ∈ < : |fn(x)− f(x)| < 1.

Let x ∈ <. By triangle inequality,

|f(x)| ≤ |fn(x)|+ |f(x)− fn(x)| < cn + 1,

so f is bounded.
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Part 2 - choose 2 out of 4

5. (a) Suppose x > −1. Use the Taylor’s Theorem to express f(x) = ln(1 + x) with the
remainder in the x3 term.

(b) Determine

lim
n→∞

e−nx(1 +
x

n
)n

2

for any x ∈ <. Hint: Take the logarithm and use part (a).

Proof: (a) Suppose x > −1. Then,

f ′ (x) =
1

1 + x
, f ′′ (x) = − 1

(1 + x)2
, f ′′′ (x) =

2

(1 + x)3
.

Since f ′′′exists and f ′′ is continous on (1,∞), from Taylor’s theorem, there exists ξx
between 0 and x such that

f (x) = f (0) + f ′ (x)x+
1

2
f
′′

(x)x2 +
1

6
f
′′′

(ξx)x
3,

that is,

ln (1 + x) = x− 1

2
x2 +

1

3

1

(1 + ξx)
3x

3.

(b) Denote yn(x) = e−nx(1 + x
n
)n

2
. Let x ∈ <. Then from (a), for sufficiently large n

so that x
n
> −1,

ln yn(x) = −nx+ n2 ln(1 +
x

n
)

= −nx+ n2

(
x

n
− 1

2

(x
n

)2
+

1

3

1(
1 + ξ x

n

)3 (xn)3
)

= −x
2

2
+

x2

3n
(
1 + ξ x

n

)3 → −x22 as n→∞

since ξ x
n

is between 0 and x
n
, thus ξ x

n
→ 0 as n→∞. So, limn→∞ yn(x) = e−x

2/2.

6. (a) Write the power series for 1
1−x , prove that it converges on (−1, 1), and that the

convergence is uniform on any interval [−r, r] with 0 < r < 1.

(b) Integrate the power series for 1
1+x

to get the power series for ln(1 + x) and justify
your steps.

(c) Find
∑∞

n=1
(−1)n+1

n
from (b) and justify your steps.

Proof: (a) Let x ∈ (−1, 1) .Denote S =
∞∑
n=0

xn. The partial sums Sn = 1+x+· · ·+xn →

.S as n→∞ by the root test. Since Sn − xSn = 1− xn+1, we have

Sn =
1− xn+1

1− x
=

1

1− x
− xn+1

1− x
→ 1

1− x
as n→∞
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and from uniqueness of limit, S = 1
1+x

. Let 0 < r < 1. Then, for all x ∈ [−r, r] and

all n, |x|n ≤ rn. Since
∞∑
n=0

rn converges by the root test,
∞∑
n=0

xn converges uniformly on

[−r, r] by the Weierstrass M test.

(b) Corollary to Theorem 7.16 says that if a series of functions converges uniformly on
[a, b] then it can be integrated [a, b] term by term. Let x ∈ (−1, 1), and use (a) with
−u for x and |x| for r. Then, the series

∑∞
n=0(−u)n converges uniformly on [−r, r],

r = |x| , and we can integrate term by term on [0, x] if x > 0 and on [x, 0] if x < 0,

ln(1 + x) =

∫ x

0

du

1 + u
=

∫ x

0

∞∑
n=0

(−u)ndu =
∞∑
n=0

∫ x

0

(−u)ndu =
∞∑
n=1

(−1)n+1xn

n
.

(c) From (b) we know that the power series for ln(1 + x) converges for |x| < 1. Since
1
n

is a decreasing sequence, the alternating series theorem says
∑∞

n=1
(−1)n+1

n
converges.

So by theorem 8.2 (Abel’s thm), we have

∞∑
n=1

(−1)n+1

n
= lim

x→1
ln(1 + x) = ln 2.

7. Let Ĉ[0, 1] be the set of continuous function, f : [0, 1]→ [0, 1] For f, g ∈ Ĉ[0, 1], let

d1(f, g) =

∫ 1

0

|f(x)− g(x)|dx

d2(f, g) = sup
0≤x≤1

|f(x)− g(x)|.

Let X be the set of sequences (x1, x2, . . .) where each xi ∈ [0, 1], and for x, y ∈ X, let

d̂(x, y) = sup
i
|xi − yi|

Let F : Ĉ[0, 1]→ X be given by

F (f) = (f(1), f(1/2), f(1/3), . . .)

(a) Verify that d1, d2, d̂ are metrics.

(b) For i = 1, 2 prove or find a counterexample: F : (Ĉ[0, 1], di)→ (X, d̂) is continuous

Proof: d1 → d̂ is not continuous. Counterexample: Define fn to be 0 except on(
1
2
− 1

n
, 1
2

+ 1
n

)
, where fn is piecewise linear given by the values

f

(
1

2
− 1

n

)
= 0, f

(
1

2

)
= 1, f

(
1

2
+

1

n

)
= 0.

Then d1(fn, 0) =
∫ 1

0
fn = 1/n→ 0 as n→∞, but fn(1/2) = 1 for every n, so for every

n, d̂(F (fn), F (0)) = 1.

d2 → d̂ is continuous since sup0≤x≤‘ |f(x)− g(x)| < ε⇒ supk |f(1/k)− g(1/k)| < ε.
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8. (a) Prove or find a counterexample: If f is continuous on [a, b] then for any ε > 0

there is a polynomial p(x) such that
∫ b
a
|f(x)− p(x)|dx < ε.

(b) Prove or find a counterexample: If f is Riemann integrable on [a, b] then for any

ε > 0 there is a polynomial p(x) such that
∫ b
a
|f(x)− p(x)|dx < ε.

Proof: (a) Let ε > 0. From the Weierstrass theorem, there exists polynomial p(x) such
that supx∈[a,b] |f(x)− p(x)| < ε/(b− a), so∫ b

a

|f(x)− p(x)|dx <
∫ b

a

ε/(b− a)dx = ε

(b) Let ε > 0. Since f is Riemann integrable on [a, b] there is a partition P =
{a = x0 < x1 < · · · < xn = b} such that

U(f, P )− L(f, P ) =
n∑
i=1

(
sup

[xi−1,xi]

f − inf
[xi−1,xi]

f

)
(xi − xi−1) <

ε

3
.

Define non-overlapping intervals I1 = [x0, x1] , Ii = (xi−1, xi], i = 2, . . . .n and piecewise
constant function g by

g (x) = sup
[xi−1,xi]

f if x ∈ Ii.

Then,
∫ b
a
|f(x)− g(x)|dx < ε/3 since

|f(x)− g(x)| ≤ sup
[xi−1,xi]

f − inf
[xi−1,xi]

f if x ∈ [xi−1, xi]

thus ∫ b

a

|f(x)− g(x)|dx ≤
n∑
i=1

(
sup

[xi−1,xi]

f − inf
[xi−1,xi]

f

)
(xi − xi−1) <

ε

3
.

Construct h(x) from g(x) by replacing the jumps by linear interpolations so that h is
continuous and ∫ b

a

|g(x)− h(x)|dx < ε/3.

E.g., choose δ = min
{

ε
6M(n−1)) ,

x1−x0
2

, . . . , xn−1−xn
2

}
. Note that xi + δ < xi+1 − δ and

define h piecewise linear with the same values as g at the points

x0 = a, x1 − δ, x1 + δ, x2 − δ, . . . , xn−1 + δ, xn−1 + δ, xn = b

Now choose polynomial p(x) so that
∫ b
a
|h(x) − p(x)|dx < ε/3 (which is possible from

part (a)). Then∫ b

a

|f − p| ≤
∫ b

a

|f − g|+
∫ b

a

|g − h|+
∫ b

a

|h− p| < ε.
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