
Applied Analysis Preliminary Examination—January 2016

Name:

• Turn in problems 1 to 4, and exactly two out of problems 5,6,7. Only 6 solutions will be
graded. Each problem is worth 20 points.

• Be sure to show all your relevant work. Rewrite your solutions, if necessary, so they are neat
and easy to read.

• Only write on one side of each sheet.

• Start a new sheet of paper for every problem, copy the entire problem statement, and write
your name and the problem number on every sheet. Number the pages within each problem.

• Justify your solutions.

• If you use a theorem from Rudin or class, state it. If you are unsure if a statement must be
proved or may merely be stated, ask your friendly proctor.
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Section 1: Complete ALL four of the following questions.

1. Let (an) and (bn) be bounded nonnegative sequences. Prove that

lim sup
n→∞

anbn ≤
(

lim sup
n→∞

an

)(
lim sup
n→∞

bn

)
.

Solution 1.. We use the definition that lim sup of a sequence is the supremum of all
subsequence limits. Since the sequences here are bounded, we do not need to consider subse-
quences with infinite limits, so let (ank

bnk
) be a convergent subsequence of (anbn). Since (an)

is bounded, there exists a convergent subsequence
(
ankl

)
. Since

(
bnkl

)
is bounded, we can

select from it further a convergent subsequence
(
bnklm

)
. Since the limit of a subsequence is

the same as the limit of the sequence it was selected from, we have

lim
k→∞

ank
bnk

= lim
m→∞

anklm
bnklm

= lim
m→∞

anklm
lim
m→∞

bnklm
≤
(

lim sup
n→∞

an

)(
lim sup
n→∞

bn

)
.

Because (ank
bnk

) was an arbitrary convergent subsequence of (anbn), it follows that

lim sup
n→∞

anbn = sup

{
lim
k→∞

ank
bnk
| (ank

bnk
) converges

}
≤
(

lim sup
n→∞

an

)(
lim sup
n→∞

bn

)
.

Solution 2. We use the equivalent definition

lim sup
n→∞

xn = lim
n→∞

sn, sn = sup {xn, xn+1, . . .} .

Define the sets

An = {an, an+1, . . .} , Bn = {bn, bn+1, . . .} , Cn = {anbn, an+1bn+1, . . .} .

By the definition of lim sup, we have

lim sup
n→∞

an = lim
n→∞

(supAn) , lim sup
n→∞

bn = lim
n→∞

(supBn) , lim sup
n→∞

anbn = lim
n→∞

(supCn) .

(1)
Fix n. We will estimate supCn terms of supAn and supBn. Because supAn is an upper
bound on An, we have

∀k ≥ n : 0 ≤ ak ≤ supAn

and similarly
∀k ≥ n : 0 ≤ bk ≤ supBn

Consequently,
∀k ≥ n : 0 ≤ akbk ≤ (supAn) (supBn) .

Thus, (supAn) (supBn) is an upper bound on Cn. Because supCn is the least upper bound
on Cn, we conclude that

supCn ≤ (supAn) (supBn) .
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Now taking the limit as n→∞, we have

lim
n→∞

supCn ≤ lim
n→∞

(supAn) (supBn) =
(

lim
n→∞

supAn

)(
lim
n→∞

supBn

)
,

where all limits exists because they are limits of monotone sequences. Thus, using (1), we
conclude that

lim sup
n→∞

anbn ≤
(

lim sup
n→∞

an

)(
lim sup
n→∞

bn

)
as desired. Note: Justifications required for full credit, such as using that ak, bk ≥ 0, that
limits exists and why, supremum is an upper bound, and the least upper bound, in appropriate
places.

Solution 3. We use the equivalent definition that for a bounded sequence xn, lim supn→∞ xn
is the smallest number x with the property

∀ε > 0∃N∀n > N : xn < x+ ε. (2)

The sequences (an) , (bn) are bounded, so a = lim supn→∞ an and b = lim supn→∞ bn are real
(that is, finite). Let ε > 0. Then there exists ε′ > 0 such that (a+ ε′) (b+ ε′) < ab+ ε (from
the continuity of multiplication, limε′→0 (a+ ε′) (b+ ε′) = ab). From (2),

∃Na∀n > Na : an < a+ ε′

∃Nb∀n > Nb : bn < b+ ε′

Then for all n > N = max {Na, Nb}, we have

anbn <
(
a+ ε′

) (
b+ ε′

)
< ab+ ε

(using an ≥ 0, bn ≥ 0). Since ε > 0 was arbitrary, lim supn→∞ anbn ≤ ab.

2. Suppose that (M,d) is a compact metric space. Prove that for every ε > 0, there exists a
finite set A ⊂M such that the distance of every point in M to A is less than ε.

Solution. The balls Bε (x) = {y ∈M |d (x, y) < ε} , x ∈ M , are open because every ball
in a metric space is open and they cover M , because d (x, x) = 0, so x ∈ Bε (x), hence
{x} ⊂ Bε (x), and

M =
⋃

x∈M
{x} ⊂

⋃
x∈M

Bε (x) .

That is, {Bε (x)}x∈M is an open cover of M . By the definition of compact metric space, there
exists a finite subcover Bε (xi), i = 1, . . . , n,

M ⊂
⋃n

i=1
Bε (xi) .

Every point x ∈ M is in at least one of the balls Bε (xi), then d (x, xi) < ε. Thus, A =
{x1, . . . , xn} is the desired set.
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3. Let f and g be continuous maps of a metric space (X, dX) into a metric space (Y, dY ). Let
h : X → R be defined by h(x) = dY (f(x), g(x)). Prove h is continuous and that the set
{x ∈ X : f(x) = g(x)} is closed.

Solution. First note that by the generalized triangle inequality (or just repeating the triangle
inequality) that for any x, z ∈ X,

dY (f(x), g(x)) ≤ dY (f(x), f(z)) + dY (f(z), g(z)) + dY (g(z), g(x))

⇒ dY (f(x), g(x))− dY (f(z), g(z)) ≤ dY (f(x), f(z)) + dY (g(x), g(z)).

By changing the roles of x and z, we see that

|dY (f(x), g(x))− dY (f(z), g(z))| ≤ dY (f(x), f(z)) + dY (g(x), g(z)).

Consider any x ∈ X. Let ε > 0. Since f and g are continuous on X, there exist δ1 > 0 and
δ2 > 0 such that for all z ∈ X with dX(x, z) < δ1, dY (f(x), f(z)) < ε/2 and for all z ∈ X
with dX(x, z) < δ2, dY (g(x), g(z)) < ε/2. Let δ = min{δ1, δ2}.
For any z ∈ X with dX(x, z) < δ, we then have

|h(x)− h(z)| = |dY (f(x), g(x))− dY (f(z), g(z))| ≤ dY (f(x), f(z))+dY (g(x), g(z)) < ε/2+ε/2 = ε.

Thus, h is continuous.

Since h is continuous, a standard theorem states that the inverse image of a closed set is
closed. Thus, h−1({0}) = {x ∈ X : h(x) = 0} = {x ∈ X : f(x) = g(x)} is a closed set.

4. Let (C([a, b]), d) denote the metric space of continuous functions on [a, b], where a < b are
real numbers, and d(f, g) = supx∈[a,b] |f(x)− g(x)|. Let (fn) ⊂ C([a, b]) be a uniformly
equicontinuous sequence of functions that converge pointwise to f on [a, b]. Prove that f is
continuous on [a, b].

Solution. Let ε > 0. Since the sequence (fn) is uniformly equicontinuous, there exists δ > 0
such that for all x, y ∈ [a, b] with |x− y| < δ, we have |fn(x)− fn(y)| < ε/3 for all n. Let
x, y ∈ [a, b] with |x− y| < δ. Since fn(x) → f(x) and fn(y) → f(y), there exists N1 and
N2 such that for all n > N1, |fn(x)− f(x)| < ε/3 and for all n > N2, |fn(y)− f(y)| < ε/3.
Choose n = max{N1, N2}+ 1, then by repeated application of the triangle inequality,

|f(x)− f(y)| < |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < ε.

Another solution. Since (fn) converge pointwise, they are pointwise bounded. Since the
interval [a, b] is compact, and (fn) are pointwise bounded and uniformly equicontinuous,
there exists a uniformly convergent subsequence (fnk

). Since uniform convergence implies
pointwise convergence, (fnk

) and (fn) converge pointwise to the same limit, thus fnk
converges

uniformly to f . Since the the limit of uniformly convergence sequence of continuous functions
is continuous, f is continuous.

Section 2: Complete exactly TWO of the following three questions. If you submit three
problems, only the first two will be graded.
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5. Prove that there exists exactly one x ∈ [1,+∞) such that x = 1+sin x
2 , using the contraction

theorem (also known as the Banach contraction principle). Verify all assumptions of the
theorem.

Solution. The problem is of the form x = f(x) with f (x) = 1 + sin x
2 . To apply the

contraction theorem, we need to verify that with a suitable choice of S, (i) f : S → S (ii) f
is a contraction (iii) S is complete. We cannot choose S = [1,∞) because it is not true that
f : [1,∞) → [1,∞); for example, 3π ∈ [1,∞) but f(π) = 1 + sin 3π

2 = 1 − 1 = 0 /∈ [1,∞).
So choose S = R, then (i) is satisfied. To show (ii) that f is a contraction, because f is
differentiable, for any x, y ∈ R

f(x)− f(y) = f ′(ξ)(x− y)

for some ξ between x and y by the mean value theorem. Now f ′(x) = 1
2 cos x2 , thus |f ′(ξ)| ≤ 1

2 ,
which gives

|f(x)− f(y)| ≤ 1

2
|x− y| .

To show (iii) just note that R is complete. So, from the Banach contraction principle, there is a
unique x∗ ∈ R such that x∗ = 1+sin x∗

2 . It remains to show that x ∈ [1,+∞). (Draw a picture,
then it is clear, but we need to actually prove this). Consider the function g (x) = x− f(x).
We have

g (1) = 1− f (1) = 1−
(

1− sin
1

2

)
= − sin

1

2
< 0,

because 1
2 ∈ (0, π), and

g (3) = 3−
(

1 + sin
3

2

)
= 2− sin

3

2
> 0,

because |sinx| ≤ 1. Since g (x) = x− f(x) is continuous, by the intermediate value theorem,
there exists a solution of x−f(x) = 0 in (1, 3); because the solution of x−f(x) = 0 is unique,
x∗ ∈ (1, 3) ⊂ [1,∞).

6. Let (gk) be a sequence of real-valued functions defined on S ⊂ R. If
∑∞

k=1 gk converges
uniformly on S to real-valued function g, prove that gk → 0 uniformly on S as k →∞.

Solution. Let ε > 0. Since
∑∞

k=1 gk converges uniformly on S, then it satisfies the Cauchy
criterion uniformly. Thus, there exists K such that for all n,m > K, with n ≥ m,∣∣∣∣∣

n∑
k=m

gk(x)

∣∣∣∣∣ < ε ∀x ∈ S.

Choosing n = m > K above shows that for all n > K,

|gn(x)| < ε ∀x ∈ S.

Another solution. Uniform convergence of
∑∞

k=1 gk = g means that the partial sums
sn =

∑n
k=1 gk → g uniformly. Then gn = sn − sn−1 → g − g = 0 uniformly.

5



7. Prove the following theorem.

Suppose (fn) is a sequence of real-valued continuous functions on the interval [a, b], a < b,
and the derivatives f ′n are continuous on [a, b]. If

(a) the sequence of derivatives (f ′n) converges uniformly on [a, b] to g : [a, b]→ R, and

(b) there exists a point x0 ∈ [a, b] such that limn→∞ fn(x0) exists,

then the functions fn converge uniformly to a differentiable function f on [a, b] such that
f ′ = g on [a, b].

Solution. Since the functions fn are continuously differentiable on [a, b], the Fundamental
Theorem of Calculus implies that for any x ∈ [a, b], we have

fn(x) = fn(x0) +

∫ x

x0

f ′n(s) ds.

Define f (x) for any x ∈ [a, b] by

f(x) = f(x0) +

∫ x

x0

g(s) ds.

Since f ′n → g uniformly on [a, b] and the f ′n are continuous on [a, b] for all n, and uniform
limit of a sequence of continuous functions is continuous, it follows that g is continuous on
[a, b]. Then, by the Fundamental Theorem of Calculus, f is continuously differentiable on
[a, b] and f ′ = g on [a, b].

It remains to show that fn → f uniformly on [a, b]. Let x ∈ [a, b]. Since f ′n → g uniformly,
we have from the linearity of the integral and standard inequalities,

|fn(x)− f(x)| =
∣∣∣∣fn(x0) +

∫ x

x0

f ′n(s) ds− f(x0)−
∫ x

x0

g(s) ds

∣∣∣∣
≤ |fn(x0)− f(x0)|+

∫ x

x0

∣∣f ′n(s)− g(s)
∣∣ ds

≤ |fn(x0)− f(x0)|+ (b− a) sup
s∈[a,b]

∣∣f ′n(s)− g(s)
∣∣→ 0 as n→∞.

Since the right hand side is independent of x, the conclusion follows.
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