Applied Analysis Preliminary Examination—January 2016

Name:

- Turn in problems 1 to 4, and exactly two out of problems 5,6,7. Only 6 solutions will be graded. Each problem is worth 20 points.
- Be sure to show all your relevant work. Rewrite your solutions, if necessary, so they are neat and easy to read.
- Only write on one side of each sheet.
- Start a new sheet of paper for every problem, copy the entire problem statement, and write your name and the problem number on every sheet. Number the pages within each problem.
- Justify your solutions.
- If you use a theorem from Rudin or class, state it. If you are unsure if a statement must be proved or may merely be stated, ask your friendly proctor.

1	2	3	4	5	6	7	\sum

Section 1: Complete ALL four of the following questions.

1. Let (a_n) and (b_n) be bounded nonnegative sequences. Prove that

$$\limsup_{n \to \infty} a_n b_n \le \left(\limsup_{n \to \infty} a_n\right) \left(\limsup_{n \to \infty} b_n\right).$$

Solution 1.. We use the definition that lim sup of a sequence is the supremum of all subsequence limits. Since the sequences here are bounded, we do not need to consider subsequences with infinite limits, so let $(a_{n_k}b_{n_k})$ be a convergent subsequence of (a_nb_n) . Since (a_n) is bounded, there exists a convergent subsequence $(a_{n_{k_l}})$. Since $(b_{n_{k_l}})$ is bounded, we can select from it further a convergent subsequence $(b_{n_{k_{l_m}}})$. Since the limit of a subsequence is the same as the limit of the sequence it was selected from, we have

$$\lim_{k \to \infty} a_{n_k} b_{n_k} = \lim_{m \to \infty} a_{n_{k_{l_m}}} b_{n_{k_{l_m}}} = \lim_{m \to \infty} a_{n_{k_{l_m}}} \lim_{m \to \infty} b_{n_{k_{l_m}}} \le \left(\limsup_{n \to \infty} a_n\right) \left(\limsup_{n \to \infty} b_n\right).$$

Because $(a_{n_k}b_{n_k})$ was an arbitrary convergent subsequence of (a_nb_n) , it follows that

$$\limsup_{n \to \infty} a_n b_n = \sup \left\{ \lim_{k \to \infty} a_{n_k} b_{n_k} | (a_{n_k} b_{n_k}) \text{ converges} \right\} \le \left(\limsup_{n \to \infty} a_n \right) \left(\limsup_{n \to \infty} b_n \right).$$

Solution 2. We use the equivalent definition

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} s_n, \quad s_n = \sup \{x_n, x_{n+1}, \ldots\}.$$

Define the sets

$$A_n = \{a_n, a_{n+1}, \ldots\}, \quad B_n = \{b_n, b_{n+1}, \ldots\}, \quad C_n = \{a_n b_n, a_{n+1} b_{n+1}, \ldots\}.$$

By the definition of lim sup, we have

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} (\sup A_n), \quad \limsup_{n \to \infty} b_n = \lim_{n \to \infty} (\sup B_n), \quad \limsup_{n \to \infty} a_n b_n = \lim_{n \to \infty} (\sup C_n).$$
(1)

Fix n. We will estimate sup C_n terms of sup A_n and sup B_n . Because sup A_n is an upper bound on A_n , we have

$$\forall k \ge n : 0 \le a_k \le \sup A_n$$

and similarly

$$\forall k \ge n : 0 \le b_k \le \sup B_n$$

Consequently,

$$\forall k \ge n : 0 \le a_k b_k \le (\sup A_n) (\sup B_n)$$

Thus, $(\sup A_n) (\sup B_n)$ is an upper bound on C_n . Because $\sup C_n$ is the least upper bound on C_n , we conclude that

$$\sup C_n \le (\sup A_n) (\sup B_n).$$

Now taking the limit as $n \to \infty$, we have

$$\lim_{n \to \infty} \sup C_n \le \lim_{n \to \infty} (\sup A_n) (\sup B_n) = \left(\lim_{n \to \infty} \sup A_n\right) \left(\lim_{n \to \infty} \sup B_n\right),$$

where all limits exists because they are limits of monotone sequences. Thus, using (1), we conclude that

$$\limsup_{n \to \infty} a_n b_n \le \left(\limsup_{n \to \infty} a_n\right) \left(\limsup_{n \to \infty} b_n\right)$$

as desired. Note: Justifications required for full credit, such as using that $a_k, b_k \ge 0$, that limits exists and why, supremum is an upper bound, and the least upper bound, in appropriate places.

Solution 3. We use the equivalent definition that for a bounded sequence x_n , $\limsup_{n\to\infty} x_n$ is the smallest number x with the property

$$\forall \varepsilon > 0 \exists N \forall n > N : x_n < x + \varepsilon.$$
⁽²⁾

The sequences (a_n) , (b_n) are bounded, so $a = \limsup_{n \to \infty} a_n$ and $b = \limsup_{n \to \infty} b_n$ are real (that is, finite). Let $\varepsilon > 0$. Then there exists $\varepsilon' > 0$ such that $(a + \varepsilon') (b + \varepsilon') < ab + \varepsilon$ (from the continuity of multiplication, $\lim_{\varepsilon' \to 0} (a + \varepsilon') (b + \varepsilon') = ab$). From (2),

$$\exists N_a \forall n > N_a : a_n < a + \varepsilon' \\ \exists N_b \forall n > N_b : b_n < b + \varepsilon' \end{cases}$$

Then for all $n > N = \max\{N_a, N_b\}$, we have

$$a_n b_n < (a + \varepsilon') (b + \varepsilon') < ab + \varepsilon$$

(using $a_n \ge 0, b_n \ge 0$). Since $\varepsilon > 0$ was arbitrary, $\limsup_{n \to \infty} a_n b_n \le ab$.

2. Suppose that (M, d) is a compact metric space. Prove that for every $\varepsilon > 0$, there exists a finite set $A \subset M$ such that the distance of every point in M to A is less than ε .

Solution. The balls $B_{\varepsilon}(x) = \{y \in M | d(x, y) < \varepsilon\}, x \in M$, are open because every ball in a metric space is open and they cover M, because d(x, x) = 0, so $x \in B_{\varepsilon}(x)$, hence $\{x\} \subset B_{\varepsilon}(x)$, and

$$M = \bigcup_{x \in M} \left\{ x \right\} \subset \bigcup_{x \in M} B_{\varepsilon} \left(x \right).$$

That is, $\{B_{\varepsilon}(x)\}_{x \in M}$ is an open cover of M. By the definition of compact metric space, there exists a finite subcover $B_{\varepsilon}(x_i)$, i = 1, ..., n,

$$M \subset \bigcup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$$

Every point $x \in M$ is in at least one of the balls $B_{\varepsilon}(x_i)$, then $d(x, x_i) < \varepsilon$. Thus, $A = \{x_1, \ldots, x_n\}$ is the desired set.

3. Let f and g be continuous maps of a metric space (X, d_X) into a metric space (Y, d_Y) . Let $h : X \to \mathbb{R}$ be defined by $h(x) = d_Y(f(x), g(x))$. Prove h is continuous and that the set $\{x \in X : f(x) = g(x)\}$ is closed.

Solution. First note that by the generalized triangle inequality (or just repeating the triangle inequality) that for any $x, z \in X$,

$$d_Y(f(x), g(x)) \le d_Y(f(x), f(z)) + d_Y(f(z), g(z)) + d_Y(g(z), g(x))$$

$$\Rightarrow d_Y(f(x), g(x)) - d_Y(f(z), g(z)) \le d_Y(f(x), f(z)) + d_Y(g(x), g(z)).$$

By changing the roles of x and z, we see that

$$|d_Y(f(x), g(x)) - d_Y(f(z), g(z))| \le d_Y(f(x), f(z)) + d_Y(g(x), g(z)).$$

Consider any $x \in X$. Let $\epsilon > 0$. Since f and g are continuous on X, there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that for all $z \in X$ with $d_X(x, z) < \delta_1$, $d_Y(f(x), f(z)) < \epsilon/2$ and for all $z \in X$ with $d_X(x, z) < \delta_2$, $d_Y(g(x), g(z)) < \epsilon/2$. Let $\delta = \min\{\delta_1, \delta_2\}$.

For any $z \in X$ with $d_X(x, z) < \delta$, we then have

$$|h(x) - h(z)| = |d_Y(f(x), g(x)) - d_Y(f(z), g(z))| \le d_Y(f(x), f(z)) + d_Y(g(x), g(z)) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Thus, h is continuous.

Since h is continuous, a standard theorem states that the inverse image of a closed set is closed. Thus, $h^{-1}(\{0\}) = \{x \in X : h(x) = 0\} = \{x \in X : f(x) = g(x)\}$ is a closed set.

4. Let $(\mathcal{C}([a,b]), d)$ denote the metric space of continuous functions on [a,b], where a < b are real numbers, and $d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$. Let $(f_n) \subset \mathcal{C}([a,b])$ be a uniformly equicontinuous sequence of functions that converge pointwise to f on [a,b]. Prove that f is continuous on [a,b].

Solution. Let $\epsilon > 0$. Since the sequence (f_n) is uniformly equicontinuous, there exists $\delta > 0$ such that for all $x, y \in [a, b]$ with $|x - y| < \delta$, we have $|f_n(x) - f_n(y)| < \epsilon/3$ for all n. Let $x, y \in [a, b]$ with $|x - y| < \delta$. Since $f_n(x) \to f(x)$ and $f_n(y) \to f(y)$, there exists N_1 and N_2 such that for all $n > N_1$, $|f_n(x) - f(x)| < \epsilon/3$ and for all $n > N_2$, $|f_n(y) - f(y)| < \epsilon/3$. Choose $n = \max\{N_1, N_2\} + 1$, then by repeated application of the triangle inequality,

$$|f(x) - f(y)| < |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \epsilon.$$

Another solution. Since (f_n) converge pointwise, they are pointwise bounded. Since the interval [a, b] is compact, and (f_n) are pointwise bounded and uniformly equicontinuous, there exists a uniformly convergent subsequence (f_{n_k}) . Since uniform convergence implies pointwise convergence, (f_{n_k}) and (f_n) converge pointwise to the same limit, thus f_{n_k} converges uniformly to f. Since the the limit of uniformly convergence sequence of continuous functions is continuous, f is continuous.

Section 2: Complete exactly TWO of the following three questions. If you submit three problems, only the first two will be graded.

5. Prove that there exists exactly one $x \in [1, +\infty)$ such that $x = 1 + \sin \frac{x}{2}$, using the contraction theorem (also known as the Banach contraction principle). Verify all assumptions of the theorem.

Solution. The problem is of the form x = f(x) with $f(x) = 1 + \sin \frac{x}{2}$. To apply the contraction theorem, we need to verify that with a suitable choice of S, (i) $f: S \to S$ (ii) f is a contraction (iii) S is complete. We cannot choose $S = [1, \infty)$ because it is not true that $f: [1, \infty) \to [1, \infty)$; for example, $3\pi \in [1, \infty)$ but $f(\pi) = 1 + \sin \frac{3\pi}{2} = 1 - 1 = 0 \notin [1, \infty)$. So choose $S = \mathbb{R}$, then (i) is satisfied. To show (ii) that f is a contraction, because f is differentiable, for any $x, y \in \mathbb{R}$

$$f(x) - f(y) = f'(\xi)(x - y)$$

for some ξ between x and y by the mean value theorem. Now $f'(x) = \frac{1}{2} \cos \frac{x}{2}$, thus $|f'(\xi)| \le \frac{1}{2}$, which gives

$$|f(x) - f(y)| \le \frac{1}{2} |x - y|.$$

To show (iii) just note that \mathbb{R} is complete. So, from the Banach contraction principle, there is a unique $x^* \in \mathbb{R}$ such that $x^* = 1 + \sin \frac{x^*}{2}$. It remains to show that $x \in [1, +\infty)$. (Draw a picture, then it is clear, but we need to actually prove this). Consider the function g(x) = x - f(x). We have

$$g(1) = 1 - f(1) = 1 - \left(1 - \sin\frac{1}{2}\right) = -\sin\frac{1}{2} < 0,$$

because $\frac{1}{2} \in (0, \pi)$, and

$$g(3) = 3 - \left(1 + \sin\frac{3}{2}\right) = 2 - \sin\frac{3}{2} > 0,$$

because $|\sin x| \le 1$. Since g(x) = x - f(x) is continuous, by the intermediate value theorem, there exists a solution of x - f(x) = 0 in (1, 3); because the solution of x - f(x) = 0 is unique, $x^* \in (1, 3) \subset [1, \infty)$.

6. Let (g_k) be a sequence of real-valued functions defined on $S \subset \mathbb{R}$. If $\sum_{k=1}^{\infty} g_k$ converges uniformly on S to real-valued function g, prove that $g_k \to 0$ uniformly on S as $k \to \infty$.

Solution. Let $\varepsilon > 0$. Since $\sum_{k=1}^{\infty} g_k$ converges uniformly on S, then it satisfies the Cauchy criterion uniformly. Thus, there exists K such that for all n, m > K, with $n \ge m$,

$$\left|\sum_{k=m}^{n} g_k(x)\right| < \epsilon \ \forall x \in S.$$

Choosing n = m > K above shows that for all n > K,

$$|g_n(x)| < \epsilon \ \forall x \in S.$$

Another solution. Uniform convergence of $\sum_{k=1}^{\infty} g_k = g$ means that the partial sums $s_n = \sum_{k=1}^{n} g_k \to g$ uniformly. Then $g_n = s_n - s_{n-1} \to g - g = 0$ uniformly.

7. Prove the following theorem.

Suppose (f_n) is a sequence of real-valued continuous functions on the interval [a, b], a < b, and the derivatives f'_n are continuous on [a, b]. If

- (a) the sequence of derivatives (f'_n) converges uniformly on [a, b] to $g: [a, b] \to \mathbb{R}$, and
- (b) there exists a point $x_0 \in [a, b]$ such that $\lim_{n \to \infty} f_n(x_0)$ exists,

then the functions f_n converge uniformly to a differentiable function f on [a, b] such that f' = g on [a, b].

Solution. Since the functions f_n are continuously differentiable on [a, b], the Fundamental Theorem of Calculus implies that for any $x \in [a, b]$, we have

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(s) \, ds.$$

Define f(x) for any $x \in [a, b]$ by

$$f(x) = f(x_0) + \int_{x_0}^x g(s) \, ds.$$

Since $f'_n \to g$ uniformly on [a, b] and the f'_n are continuous on [a, b] for all n, and uniform limit of a sequence of continuous functions is continuous, it follows that g is continuous on [a, b]. Then, by the Fundamental Theorem of Calculus, f is continuously differentiable on [a, b] and f' = g on [a, b].

It remains to show that $f_n \to f$ uniformly on [a, b]. Let $x \in [a, b]$. Since $f'_n \to g$ uniformly, we have from the linearity of the integral and standard inequalities,

$$|f_n(x) - f(x)| = \left| f_n(x_0) + \int_{x_0}^x f'_n(s) \, ds - f(x_0) - \int_{x_0}^x g(s) \, ds \right|$$

$$\leq |f_n(x_0) - f(x_0)| + \int_{x_0}^x \left| f'_n(s) - g(s) \right| \, ds$$

$$\leq |f_n(x_0) - f(x_0)| + (b - a) \sup_{s \in [a, b]} \left| f'_n(s) - g(s) \right| \to 0 \text{ as } n \to \infty.$$

Since the right hand side is independent of x, the conclusion follows.