Applied Analysis Preliminary Examination—January 2016
Name:

e Turn in problems 1 to 4, and exactly two out of problems 5,6,7. Only 6 solutions will be
graded. Each problem is worth 20 points.

e Be sure to show all your relevant work. Rewrite your solutions, if necessary, so they are neat
and easy to read.

e Only write on one side of each sheet.

e Start a new sheet of paper for every problem, copy the entire problem statement, and write
your name and the problem number on every sheet. Number the pages within each problem.

e Justify your solutions.

e If you use a theorem from Rudin or class, state it. If you are unsure if a statement must be
proved or may merely be stated, ask your friendly proctor.
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Section 1: Complete ALL four of the following questions.

1. Let (ay) and (b,) be bounded nonnegative sequences. Prove that

lim sup a, b, < (lim sup an> <lim sup bn) .

n—o0 n—oo n—o0

Solution 1.. We use the definition that lim sup of a sequence is the supremum of all
subsequence limits. Since the sequences here are bounded, we do not need to consider subse-
quences with infinite limits, so let (ay, by, ) be a convergent subsequence of (a,by,). Since (ay,)

is bounded, there exists a convergent subsequence (ankl>. Since (bnkl) is bounded, we can

select from it further a convergent subsequence bnkl . Since the limit of a subsequence is
the same as the limit of the sequence it was selected from, we have

lim ay, b,, = lim a,, b, = lim a,  lim b, < |limsupa, limsupb, | .
k—o00 m—00 Im lm m—00 lm m—o0 Im n—00 n—00

Because (an, by, ) was an arbitrary convergent subsequence of (a,by), it follows that
lim sup a, b, = sup { lim ap, b, | (an,bn,) converges} < <lim sup an> (hm sup bn> .
n—00 k—ro0 n—00 n—00

Solution 2. We use the equivalent definition

limsupz, = lim s,, s, =sup{@n, Tnt1,...}.
n—o0 n—00

Define the sets

An = {an,an_,_l,...}, Bn = {bn,bn+1,...}, Cn = {anbn,an+1bn+1,...}.
By the definition of lim sup, we have

limsupa, = lim (supA4,), limsupb, = lim (supB,), limsupa,b, = lim (supC,).
n—00 n—00 n—o0o n—00 n—00 n—00
(1)

Fix n. We will estimate sup C,, terms of sup A,, and sup B,,. Because sup A,, is an upper
bound on A,,, we have
Vk>n:0<a <supA,

and similarly
Vk>n:0<b, <supB,

Consequently,
VEk>mn:0 <agby < (sup Ay,) (sup By) .

Thus, (sup A,) (sup B,,) is an upper bound on C,,. Because sup C), is the least upper bound
on C,,, we conclude that
sup Cp, < (sup Ay,) (sup B) .



Now taking the limit as n — oo, we have

lim supC, < nhﬁnolo (sup 4,,) (sup By,) = (TLILH;O sup An> (TLILH;O sup Bn) ,

n—oo

where all limits exists because they are limits of monotone sequences. Thus, using (1), we
conclude that

lim sup a, b, < (lim sup an) (lim sup bn>

n—o0 n—oo n—o0

as desired. Note: Justifications required for full credit, such as using that ay, b, > 0, that
limits exists and why, supremum is an upper bound, and the least upper bound, in appropriate
places.

Solution 3. We use the equivalent definition that for a bounded sequence x,,, limsup,,_, ., =n
is the smallest number x with the property

Ve > 03INVn > Nz, <z +e€. (2)

The sequences (a,), (b,) are bounded, so a = limsup,,_, .. a, and b = limsup,,_, ., b, are real
(that is, finite). Let € > 0. Then there exists ¢’ > 0 such that (a +¢') (b+¢€') < ab+ ¢ (from
the continuity of multiplication, lim. g (a +¢’) (b+¢’) = ab). From (2),

AN, Vn > N, :a, < a+ ¢
ANYn > Ny : b, < b+ ¢

Then for all n > N = max {NN,, Ny}, we have
anbp < (a+¢€') (b+¢€') <ab+e
(using a, > 0, b, > 0). Since £ > 0 was arbitrary, limsup,,_, ., a,b, < ab.

. Suppose that (M,d) is a compact metric space. Prove that for every ¢ > 0, there exists a
finite set A C M such that the distance of every point in M to A is less than e.

Solution. The balls B, (z) = {y € M|d(z,y) <e}, x € M, are open because every ball
in a metric space is open and they cover M, because d(z,x) = 0, so x € B.(x), hence

{z} C B:(x), and
M= UzGM {z} UzeM Be ().

That is, { Bz ()} ¢/ is an open cover of M. By the definition of compact metric space, there
exists a finite subcover B (z;),i=1,...,n,

Mc|J_ Be(w).

Every point z € M is in at least one of the balls B; (z;), then d(z,z;) < e. Thus, A =
{z1,...,2,} is the desired set.



3. Let f and g be continuous maps of a metric space (X,dx) into a metric space (Y,dy). Let
h : X — R be defined by h(z) = dy(f(x),g(z)). Prove h is continuous and that the set
{r e X : f(z) =g(x)} is closed.

Solution. First note that by the generalized triangle inequality (or just repeating the triangle
inequality) that for any z,z € X,

dy (f(z),9(x)) < dy(f(2), f(2)) + dy (f(2),9(2)) + dv (9(2), 9(x))
= dy (f(x),9(x)) — dy(f(2),9(2)) < dy(f(2), f(2)) + dy (9(x), 9(2))-

By changing the roles of x and z, we see that
|dy (f(z), 9(x)) — dy (f(2),9(2))| < dy (f(2), f(2)) + dy (9(x), 9(2))-

Consider any = € X. Let € > 0. Since f and g are continuous on X, there exist 4; > 0 and
d2 > 0 such that for all z € X with dx(z,2) < 61, dy(f(z), f(2)) < €/2 and for all z € X
with dx (z,2) < 62, dy(g9(z),9(2)) < €/2. Let 6 = min{dy, da}.

For any z € X with dx(z,2) < §, we then have

() = h(2)| = |dy (f(x), g(2)) — dy (f(2),9(2))| < dy (f(2), [(2))+dy(9(z),9(2)) < €/2+€/2 =€

Thus, A is continuous.

Since h is continuous, a standard theorem states that the inverse image of a closed set is
closed. Thus, h~1({0}) ={z € X : h(z) =0} = {z € X : f(z) = g(x)} is a closed set.

4. Let (C([a,b]),d) denote the metric space of continuous functions on [a,b], where a < b are
real numbers, and d(f,g) = supgcpey |f(2) —g(z)|. Let (fn) C C([a,b]) be a uniformly
equicontinuous sequence of functions that converge pointwise to f on [a,b]. Prove that f is
continuous on [a, b].

Solution. Let € > 0. Since the sequence (f,) is uniformly equicontinuous, there exists § > 0
such that for all z,y € [a,b] with |z —y| < 0, we have |f,(x) — fn(y)] < €/3 for all n. Let
x,y € [a,b] with |z —y| < J. Since f,(z) — f(z) and f,(y) — f(y), there exists N7 and
Ny such that for all n > Ny, |fn(z) — f(2)] < €/3 and for all n > Na, |fn(y) — f(y)] < €/3.
Choose n = max{Nj, Na} + 1, then by repeated application of the triangle inequality,

[f (@) = F)| < |f(2) = fal@)| + [falz) = fu() + | fuly) — F(Y)] <€

Another solution. Since (f,) converge pointwise, they are pointwise bounded. Since the
interval [a,b] is compact, and (f,) are pointwise bounded and uniformly equicontinuous,
there exists a uniformly convergent subsequence (fy, ). Since uniform convergence implies
pointwise convergence, ( fy, ) and (f,) converge pointwise to the same limit, thus f,, converges
uniformly to f. Since the the limit of uniformly convergence sequence of continuous functions
is continuous, f is continuous.

Section 2: Complete exactly TWO of the following three questions. If you submit three
problems, only the first two will be graded.



5. Prove that there exists exactly one = € [1, 4-00) such that = 1+sin 7, using the contraction
theorem (also known as the Banach contraction principle). Verify all assumptions of the
theorem.

Solution. The problem is of the form x = f(r) with f(z) = 1 +sin5. To apply the
contraction theorem, we need to verify that with a suitable choice of S, (i) f: S — S (ii) f
is a contraction (iii) S is complete. We cannot choose S = [1,00) because it is not true that
f:[1,00) = [1,00); for example, 3m € [1,00) but f(r) = 1+sin3f =1—-1=0 ¢ [1,00).
So choose S = R, then (i) is satisfied. To show (ii) that f is a contraction, because f is
differentiable, for any x,y € R

f@) = fly) = f(&)(x —y)

for some & between x and y by the mean value theorem. Now f'(z) = % cos 3, thus | f/(§)] < %,
which gives
1
F@) = F)l < 5 le =yl
To show (iii) just note that R is complete. So, from the Banach contraction principle, there is a
unique z* € R such that z* = 14sin % It remains to show that = € [1, +00). (Draw a picture,

then it is clear, but we need to actually prove this). Consider the function g (z) = = — f(z).
We have

gl)=1—-f(1)=1- <1—sin;> :—sin%<0,

because 3 € (0,7), and
g(3)=3-— (1—|—Sin§> :2—sing > 0,

because [sinz| < 1. Since g (z) = x — f(x) is continuous, by the intermediate value theorem,
there exists a solution of z — f(z) = 0 in (1, 3); because the solution of x — f(z) = 0 is unique,
z* € (1,3) C [1,00).

6. Let (gx) be a sequence of real-valued functions defined on S C R. If "7, gi converges
uniformly on S to real-valued function g, prove that gr — 0 uniformly on S as k — co.

Solution. Let ¢ > 0. Since > ;- g5 converges uniformly on S, then it satisfies the Cauchy
criterion uniformly. Thus, there exists K such that for all n,m > K, with n > m,

n

> gk(x)

k=m

<eVrelb.

Choosing n = m > K above shows that for all n > K,
lgn(z)| < e Vx € S.

Another solution. Uniform convergence of ) 7, grx = ¢ means that the partial sums
Sn = Y p_1 9k — ¢ uniformly. Then g, = s, — sp—1 — g — g = 0 uniformly.



7. Prove the following theorem.

Suppose (f,) is a sequence of real-valued continuous functions on the interval [a,b], a < b,
and the derivatives f are continuous on [a, b]. If

(a) the sequence of derivatives (f},) converges uniformly on [a,b] to g : [a,b] — R, and

(b) there exists a point zg € [a, b] such that lim,_,~ fn(zo) exists,

then the functions f,, converge uniformly to a differentiable function f on [a,b] such that
[ =g ona,b].

Solution. Since the functions f,, are continuously differentiable on [a,b], the Fundamental
Theorem of Calculus implies that for any z € [a, b], we have

fnl(x) = falwo) + /m f!(s)ds.

Define f (z) for any z € [a, b] by

T

@) = flao) + [ g(s)ds.
Zo

Since f;, — g uniformly on [a,b] and the f, are continuous on [a,b] for all n, and uniform
limit of a sequence of continuous functions is continuous, it follows that ¢ is continuous on
[a,b]. Then, by the Fundamental Theorem of Calculus, f is continuously differentiable on
[a,b] and f' = g on [a,b].

It remains to show that f, — f uniformly on [a,b]. Let x € [a,b]. Since f, — g uniformly,
we have from the linearity of the integral and standard inequalities,

[fn(z) = f2)| =

fula) + | fals) ds = fan) — [ g(s)ds

x0

< aleo) = fao) + [ |12l) — 9(5)] ds

< | fa(zo) = f(wo)| + (b—a) sup |fn(s)—g(s)| = 0 as n — oo.

s€la,b

Since the right hand side is independent of x, the conclusion follows.



