Applied Analysis Preliminary Examination—January 2016

Name:

- Turn in problems 1 to 4 , and exactly two out of problems 5,6,7. Only 6 solutions will be graded. Each problem is worth 20 points.
- Be sure to show all your relevant work. Rewrite your solutions, if necessary, so they are neat and easy to read.
- Only write on one side of each sheet.
- Start a new sheet of paper for every problem, copy the entire problem statement, and write your name and the problem number on every sheet. Number the pages within each problem.
- Justify your solutions.
- If you use a theorem from Rudin or class, state it. If you are unsure if a statement must be proved or may merely be stated, ask your friendly proctor.

1	2	3	4	5	6	7	\sum

Section 1: Complete ALL four of the following questions.

1. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be bounded nonnegative sequences. Prove that

$$
\limsup _{n \rightarrow \infty} a_{n} b_{n} \leq\left(\limsup _{n \rightarrow \infty} a_{n}\right)\left(\limsup _{n \rightarrow \infty} b_{n}\right) .
$$

Solution 1.. We use the definition that lim sup of a sequence is the supremum of all subsequence limits. Since the sequences here are bounded, we do not need to consider subsequences with infinite limits, so let $\left(a_{n_{k}} b_{n_{k}}\right)$ be a convergent subsequence of $\left(a_{n} b_{n}\right)$. Since (a_{n}) is bounded, there exists a convergent subsequence $\left(a_{n_{k_{l}}}\right)$. Since $\left(b_{n_{k_{l}}}\right)$ is bounded, we can select from it further a convergent subsequence $\left(b_{n_{k_{l_{m}}}}\right)$. Since the limit of a subsequence is the same as the limit of the sequence it was selected from, we have

$$
\lim _{k \rightarrow \infty} a_{n_{k}} b_{n_{k}}=\lim _{m \rightarrow \infty} a_{n_{k_{l_{m}}}} b_{n_{k_{l_{m}}}}=\lim _{m \rightarrow \infty} a_{n_{k_{l m}}} \lim _{m \rightarrow \infty} b_{n_{k_{l_{m}}}} \leq\left(\limsup _{n \rightarrow \infty} a_{n}\right)\left(\limsup _{n \rightarrow \infty} b_{n}\right)
$$

Because ($a_{n_{k}} b_{n_{k}}$) was an arbitrary convergent subsequence of ($a_{n} b_{n}$), it follows that

$$
\limsup _{n \rightarrow \infty} a_{n} b_{n}=\sup \left\{\lim _{k \rightarrow \infty} a_{n_{k}} b_{n_{k}} \mid\left(a_{n_{k}} b_{n_{k}}\right) \text { converges }\right\} \leq\left(\limsup _{n \rightarrow \infty} a_{n}\right)\left(\limsup _{n \rightarrow \infty} b_{n}\right)
$$

Solution 2. We use the equivalent definition

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} s_{n}, \quad s_{n}=\sup \left\{x_{n}, x_{n+1}, \ldots\right\}
$$

Define the sets

$$
A_{n}=\left\{a_{n}, a_{n+1}, \ldots\right\}, \quad B_{n}=\left\{b_{n}, b_{n+1}, \ldots\right\}, \quad C_{n}=\left\{a_{n} b_{n}, a_{n+1} b_{n+1}, \ldots\right\}
$$

By the definition of lim sup, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\sup A_{n}\right), \quad \limsup _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(\sup B_{n}\right), \quad \limsup _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty}\left(\sup C_{n}\right) . \tag{1}
\end{equation*}
$$

Fix n. We will estimate $\sup C_{n}$ terms of $\sup A_{n}$ and $\sup B_{n}$. Because $\sup A_{n}$ is an upper bound on A_{n}, we have

$$
\forall k \geq n: 0 \leq a_{k} \leq \sup A_{n}
$$

and similarly

$$
\forall k \geq n: 0 \leq b_{k} \leq \sup B_{n}
$$

Consequently,

$$
\forall k \geq n: 0 \leq a_{k} b_{k} \leq\left(\sup A_{n}\right)\left(\sup B_{n}\right)
$$

Thus, $\left(\sup A_{n}\right)\left(\sup B_{n}\right)$ is an upper bound on C_{n}. Because $\sup C_{n}$ is the least upper bound on C_{n}, we conclude that

$$
\sup C_{n} \leq\left(\sup A_{n}\right)\left(\sup B_{n}\right)
$$

Now taking the limit as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} \sup C_{n} \leq \lim _{n \rightarrow \infty}\left(\sup A_{n}\right)\left(\sup B_{n}\right)=\left(\lim _{n \rightarrow \infty} \sup A_{n}\right)\left(\lim _{n \rightarrow \infty} \sup B_{n}\right),
$$

where all limits exists because they are limits of monotone sequences. Thus, using (1), we conclude that

$$
\limsup _{n \rightarrow \infty} a_{n} b_{n} \leq\left(\limsup _{n \rightarrow \infty} a_{n}\right)\left(\limsup _{n \rightarrow \infty} b_{n}\right)
$$

as desired. Note: Justifications required for full credit, such as using that $a_{k}, b_{k} \geq 0$, that limits exists and why, supremum is an upper bound, and the least upper bound, in appropriate places.
Solution 3. We use the equivalent definition that for a bounded sequence $x_{n}, \lim _{\sup }^{n \rightarrow \infty}{ } x_{n}$ is the smallest number x with the property

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \forall n>N: x_{n}<x+\varepsilon . \tag{2}
\end{equation*}
$$

The sequences $\left(a_{n}\right),\left(b_{n}\right)$ are bounded, so $a=\limsup _{n \rightarrow \infty} a_{n}$ and $b=\limsup _{n \rightarrow \infty} b_{n}$ are real (that is, finite). Let $\varepsilon>0$. Then there exists $\varepsilon^{\prime}>0$ such that $\left(a+\varepsilon^{\prime}\right)\left(b+\varepsilon^{\prime}\right)<a b+\varepsilon$ (from the continuity of multiplication, $\lim _{\varepsilon^{\prime} \rightarrow 0}\left(a+\varepsilon^{\prime}\right)\left(b+\varepsilon^{\prime}\right)=a b$). From (2),

$$
\begin{aligned}
& \exists N_{a} \forall n>N_{a}: a_{n}<a+\varepsilon^{\prime} \\
& \exists N_{b} \forall n>N_{b}: b_{n}<b+\varepsilon^{\prime}
\end{aligned}
$$

Then for all $n>N=\max \left\{N_{a}, N_{b}\right\}$, we have

$$
a_{n} b_{n}<\left(a+\varepsilon^{\prime}\right)\left(b+\varepsilon^{\prime}\right)<a b+\varepsilon
$$

(using $a_{n} \geq 0, b_{n} \geq 0$). Since $\varepsilon>0$ was arbitrary, $\lim \sup _{n \rightarrow \infty} a_{n} b_{n} \leq a b$.
2. Suppose that (M, d) is a compact metric space. Prove that for every $\varepsilon>0$, there exists a finite set $A \subset M$ such that the distance of every point in M to A is less than ε.
Solution. The balls $B_{\varepsilon}(x)=\{y \in M \mid d(x, y)<\varepsilon\}, x \in M$, are open because every ball in a metric space is open and they cover M, because $d(x, x)=0$, so $x \in B_{\varepsilon}(x)$, hence $\{x\} \subset B_{\varepsilon}(x)$, and

$$
M=\bigcup_{x \in M}\{x\} \subset \bigcup_{x \in M} B_{\varepsilon}(x)
$$

That is, $\left\{B_{\varepsilon}(x)\right\}_{x \in M}$ is an open cover of M. By the definition of compact metric space, there exists a finite subcover $B_{\varepsilon}\left(x_{i}\right), i=1, \ldots, n$,

$$
M \subset \bigcup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)
$$

Every point $x \in M$ is in at least one of the balls $B_{\varepsilon}\left(x_{i}\right)$, then $d\left(x, x_{i}\right)<\varepsilon$. Thus, $A=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is the desired set.
3. Let f and g be continuous maps of a metric space $\left(X, d_{X}\right)$ into a metric space $\left(Y, d_{Y}\right)$. Let $h: X \rightarrow \mathbb{R}$ be defined by $h(x)=d_{Y}(f(x), g(x))$. Prove h is continuous and that the set $\{x \in X: f(x)=g(x)\}$ is closed.
Solution. First note that by the generalized triangle inequality (or just repeating the triangle inequality) that for any $x, z \in X$,

$$
\begin{aligned}
d_{Y}(f(x), g(x)) & \leq d_{Y}(f(x), f(z))+d_{Y}(f(z), g(z))+d_{Y}(g(z), g(x)) \\
\Rightarrow d_{Y}(f(x), g(x))-d_{Y}(f(z), g(z)) & \leq d_{Y}(f(x), f(z))+d_{Y}(g(x), g(z)) .
\end{aligned}
$$

By changing the roles of x and z, we see that

$$
\left|d_{Y}(f(x), g(x))-d_{Y}(f(z), g(z))\right| \leq d_{Y}(f(x), f(z))+d_{Y}(g(x), g(z)) .
$$

Consider any $x \in X$. Let $\epsilon>0$. Since f and g are continuous on X, there exist $\delta_{1}>0$ and $\delta_{2}>0$ such that for all $z \in X$ with $d_{X}(x, z)<\delta_{1}, d_{Y}(f(x), f(z))<\epsilon / 2$ and for all $z \in X$ with $d_{X}(x, z)<\delta_{2}, d_{Y}(g(x), g(z))<\epsilon / 2$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
For any $z \in X$ with $d_{X}(x, z)<\delta$, we then have
$|h(x)-h(z)|=\left|d_{Y}(f(x), g(x))-d_{Y}(f(z), g(z))\right| \leq d_{Y}(f(x), f(z))+d_{Y}(g(x), g(z))<\epsilon / 2+\epsilon / 2=\epsilon$.
Thus, h is continuous.
Since h is continuous, a standard theorem states that the inverse image of a closed set is closed. Thus, $h^{-1}(\{0\})=\{x \in X: h(x)=0\}=\{x \in X: f(x)=g(x)\}$ is a closed set.
4. Let $(\mathcal{C}([a, b]), d)$ denote the metric space of continuous functions on $[a, b]$, where $a<b$ are real numbers, and $d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)|$. Let $\left(f_{n}\right) \subset \mathcal{C}([a, b])$ be a uniformly equicontinuous sequence of functions that converge pointwise to f on $[a, b]$. Prove that f is continuous on $[a, b]$.
Solution. Let $\epsilon>0$. Since the sequence $\left(f_{n}\right)$ is uniformly equicontinuous, there exists $\delta>0$ such that for all $x, y \in[a, b]$ with $|x-y|<\delta$, we have $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon / 3$ for all n. Let $x, y \in[a, b]$ with $|x-y|<\delta$. Since $f_{n}(x) \rightarrow f(x)$ and $f_{n}(y) \rightarrow f(y)$, there exists N_{1} and N_{2} such that for all $n>N_{1},\left|f_{n}(x)-f(x)\right|<\epsilon / 3$ and for all $n>N_{2},\left|f_{n}(y)-f(y)\right|<\epsilon / 3$. Choose $n=\max \left\{N_{1}, N_{2}\right\}+1$, then by repeated application of the triangle inequality,

$$
|f(x)-f(y)|<\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right|<\epsilon
$$

Another solution. Since $\left(f_{n}\right)$ converge pointwise, they are pointwise bounded. Since the interval $[a, b]$ is compact, and $\left(f_{n}\right)$ are pointwise bounded and uniformly equicontinuous, there exists a uniformly convergent subsequence $\left(f_{n_{k}}\right)$. Since uniform convergence implies pointwise convergence, $\left(f_{n_{k}}\right)$ and $\left(f_{n}\right)$ converge pointwise to the same limit, thus $f_{n_{k}}$ converges uniformly to f. Since the the limit of uniformly convergence sequence of continuous functions is continuous, f is continuous.

Section 2: Complete exactly TWO of the following three questions. If you submit three problems, only the first two will be graded.
5. Prove that there exists exactly one $x \in[1,+\infty)$ such that $x=1+\sin \frac{x}{2}$, using the contraction theorem (also known as the Banach contraction principle). Verify all assumptions of the theorem.
Solution. The problem is of the form $x=f(x)$ with $f(x)=1+\sin \frac{x}{2}$. To apply the contraction theorem, we need to verify that with a suitable choice of S, (i) $f: S \rightarrow S$ (ii) f is a contraction (iii) S is complete. We cannot choose $S=[1, \infty)$ because it is not true that $f:[1, \infty) \rightarrow[1, \infty)$; for example, $3 \pi \in[1, \infty)$ but $f(\pi)=1+\sin \frac{3 \pi}{2}=1-1=0 \notin[1, \infty)$. So choose $S=\mathbb{R}$, then (i) is satisfied. To show (ii) that f is a contraction, because f is differentiable, for any $x, y \in \mathbb{R}$

$$
f(x)-f(y)=f^{\prime}(\xi)(x-y)
$$

for some ξ between x and y by the mean value theorem. Now $f^{\prime}(x)=\frac{1}{2} \cos \frac{x}{2}$, thus $\left|f^{\prime}(\xi)\right| \leq \frac{1}{2}$, which gives

$$
|f(x)-f(y)| \leq \frac{1}{2}|x-y|
$$

To show (iii) just note that \mathbb{R} is complete. So, from the Banach contraction principle, there is a unique $x^{*} \in \mathbb{R}$ such that $x^{*}=1+\sin \frac{x^{*}}{2}$. It remains to show that $x \in[1,+\infty)$. (Draw a picture, then it is clear, but we need to actually prove this). Consider the function $g(x)=x-f(x)$. We have

$$
g(1)=1-f(1)=1-\left(1-\sin \frac{1}{2}\right)=-\sin \frac{1}{2}<0
$$

because $\frac{1}{2} \in(0, \pi)$, and

$$
g(3)=3-\left(1+\sin \frac{3}{2}\right)=2-\sin \frac{3}{2}>0,
$$

because $|\sin x| \leq 1$. Since $g(x)=x-f(x)$ is continuous, by the intermediate value theorem, there exists a solution of $x-f(x)=0$ in (1,3); because the solution of $x-f(x)=0$ is unique, $x^{*} \in(1,3) \subset[1, \infty)$.
6. Let $\left(g_{k}\right)$ be a sequence of real-valued functions defined on $S \subset \mathbb{R}$. If $\sum_{k=1}^{\infty} g_{k}$ converges uniformly on S to real-valued function g, prove that $g_{k} \rightarrow 0$ uniformly on S as $k \rightarrow \infty$.
Solution. Let $\varepsilon>0$. Since $\sum_{k=1}^{\infty} g_{k}$ converges uniformly on S, then it satisfies the Cauchy criterion uniformly. Thus, there exists K such that for all $n, m>K$, with $n \geq m$,

$$
\left|\sum_{k=m}^{n} g_{k}(x)\right|<\epsilon \forall x \in S
$$

Choosing $n=m>K$ above shows that for all $n>K$,

$$
\left|g_{n}(x)\right|<\epsilon \forall x \in S
$$

Another solution. Uniform convergence of $\sum_{k=1}^{\infty} g_{k}=g$ means that the partial sums $s_{n}=\sum_{k=1}^{n} g_{k} \rightarrow g$ uniformly. Then $g_{n}=s_{n}-s_{n-1} \rightarrow g-g=0$ uniformly.
7. Prove the following theorem.

Suppose $\left(f_{n}\right)$ is a sequence of real-valued continuous functions on the interval $[a, b], a<b$, and the derivatives f_{n}^{\prime} are continuous on $[a, b]$. If
(a) the sequence of derivatives $\left(f_{n}^{\prime}\right)$ converges uniformly on $[a, b]$ to $g:[a, b] \rightarrow \mathbb{R}$, and
(b) there exists a point $x_{0} \in[a, b]$ such that $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ exists,
then the functions f_{n} converge uniformly to a differentiable function f on $[a, b]$ such that $f^{\prime}=g$ on $[a, b]$.
Solution. Since the functions f_{n} are continuously differentiable on $[a, b]$, the Fundamental Theorem of Calculus implies that for any $x \in[a, b]$, we have

$$
f_{n}(x)=f_{n}\left(x_{0}\right)+\int_{x_{0}}^{x} f_{n}^{\prime}(s) d s
$$

Define $f(x)$ for any $x \in[a, b]$ by

$$
f(x)=f\left(x_{0}\right)+\int_{x_{0}}^{x} g(s) d s
$$

Since $f_{n}^{\prime} \rightarrow g$ uniformly on $[a, b]$ and the f_{n}^{\prime} are continuous on $[a, b]$ for all n, and uniform limit of a sequence of continuous functions is continuous, it follows that g is continuous on $[a, b]$. Then, by the Fundamental Theorem of Calculus, f is continuously differentiable on $[a, b]$ and $f^{\prime}=g$ on $[a, b]$.
It remains to show that $f_{n} \rightarrow f$ uniformly on $[a, b]$. Let $x \in[a, b]$. Since $f_{n}^{\prime} \rightarrow g$ uniformly, we have from the linearity of the integral and standard inequalities,

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\left|f_{n}\left(x_{0}\right)+\int_{x_{0}}^{x} f_{n}^{\prime}(s) d s-f\left(x_{0}\right)-\int_{x_{0}}^{x} g(s) d s\right| \\
& \leq\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|+\int_{x_{0}}^{x}\left|f_{n}^{\prime}(s)-g(s)\right| d s \\
& \leq\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|+(b-a) \sup _{s \in[a, b]}\left|f_{n}^{\prime}(s)-g(s)\right| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since the right hand side is independent of x, the conclusion follows.

