APPLIED ANALYSIS PRELIMINARY EXAM JULY 14, 2017

Name: _____

- Exam consists of 7 problems. Do all 7 problems. All will be graded.
- Each problem is worth 20 points.
- Justify your solutions: cite theorems that you use, provide counter-examples for disproof, give explanations.
- Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.
- Begin solution to every problem on a new page; write only on one side of a sheet; number all pages throughout; just in case, write your name on every page.
- Do not submit scratch paper.
- Ask the proctor if you have any questions.

Good luck!

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 Total

Exam committee: Troy Butler (chair), Jan Mandel , Dmitriy Ostrovskiy

Problems

- (1) Let (X, d) be a metric space, $K \subset X$ be nonempty, and let K' denote the set of limit points of K. Define the closure of K as $\overline{K} := K \cup K'$. Prove that \overline{K} is both (1) closed, and (2) if F is closed and $K \subset F$, then $\overline{K} \subset F$. In other words, prove that \overline{K} is the smallest closed set containing K.
- (2) Let (X, d) be a metric space and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. Prove that if there exists $x \in X$ such that for every subsequence $(x_{n_k})_{k \in \mathbb{N}}$ there exists a subsequence $(x_{n_{k_j}})_{j \in \mathbb{N}}$ such that $x_{n_{k_j}} \to x$, then $x_n \to x$.
- (3) Let (X, d_X) and (Y, d_Y) be metric spaces, $K \subset X$ nonempty and open, and $f : K \to Y$. Let \overline{K} denote the closure of K (see problem 1 for definition). Suppose Y is complete and f is uniformly continuous.
 - (a) (15 points) Prove that there exists a unique uniformly continuous function $\overline{f}: \overline{K} \to Y$ such that $\overline{f}(x) = f(x)$ for every $x \in K$. We call \overline{f} the extension of f to \overline{K} .
 - (b) (5 points) Give (1) an example showing the necessity of the condition that Y is complete, and
 (2) an example showing that even if Y is complete but f is only continuous, then there may not be an extension of f to K that is continuous.
- (4) Let (X, d_X) and (Y, d_Y) be metric spaces, X compact, and $f: X \to Y$ satisfies two conditions
 - (i) For each compact set $K \subset X$, f(K) is compact.
 - (ii) For every nested decreasing sequence of compact sets $(K_n) \subset X$,

$$f(\cap K_n) = \cap f(K_n).$$

Prove that f is continuous.

(5) Suppose $f : [-1,1] \to \mathbb{R}$ is three-times differentiable with continuous third derivative on [-1,1]. Prove that the series

$$\sum_{n=1}^{\infty} \left[n \left(f(1/n) - f(-1/n) \right) - 2f'(0) \right]$$

converges.

- (6) Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \to Y$. Prove that f is uniformly continuous if and only if for every sequences $(x_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$ in X such that $d_X(x_n, z_n) \to 0$ implies $d_Y(f(x_n), f(z_n)) \to 0$.
- (7) Let $f: [0,1] \to \mathbb{R}$ be continuously differentiable with f(0) = 0. Prove that

$$\left[\sup\left\{|f(x)| : 0 \le x \le 1\right\}\right]^2 \le \int_0^1 (f'(x))^2 \, dx.$$