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Asking for the solutions of 6 out of the following 7 problems.

1. Decide if functions fn (x) = e−|x−
1
n |n2

(a) converge on R pointwise, (b) converge on R uni-
formly.

Solution. For any x ∈ R, we have limn→∞
∣∣x− 1

n

∣∣ = x, thus limn→∞
∣∣x− 1

n

∣∣n2 = ∞ if
x 6= 0; for x = 0, we have limn→∞

∣∣x− 1
n

∣∣n2 = limn→∞
1
nn

2 = ∞ also. Thus, in any case,

limn→∞ fn (x) = limn→∞ e−|x−
1
n |n2

= 0 for all x, and fn → 0 pointwise. Convergence is not
uniform on R, because supx∈R |fn (x)− 0| ≥ fn

(
1
n

)
= 1 6→ 0.

2. Decide if the function f (x, y) = sinxy
x2+y2

can be continously extended to all of R2.

Solution. The function f (x, y) is continuous except at the point (0, 0), where it is not
defined, thus the answer will be positive if and only if lim(x,y)→(0,0) f (x, y) exists, then we
can define f (0, 0) as its value. If this limit exists, then it equals to the limit along any line,
lim(x,y)→(0,0)

(x,y)=t(a,b)

f (x, y) for any (a, b) 6= (0, 0). But

lim
(x,y)→(0,0)
(x,y)=t(0,1)

f (x, y) = lim
y→0

f (0, y) = 0

while

lim
(x,y)→(0,0)
(x,y)=t(1,1)

f (x, y) = lim
t→0

f (t, t) = lim
t→0

sin t2

t2 + t2
=

1

2
6= 0.

Thus, lim(x,y)→(0,0) f (x, y) does not exist, and continuous extension of f on all of R2 is not
possible.

3. Let (X, d) be a metric space.

(a) Prove that d is a continuous real-valued function on the product metric space (X ×
X, dX×X) where dX×X is a natural product metric induced by d.

(b) Give an example of (X, d) and complete non-empty subsets A,B ⊂ X such that there
do not exist a0 ∈ A and b0 ∈ B such that

d(a0, b0) = inf{d(a, b) : a ∈ A, b ∈ B}

Solution.

(a) Estimate

d (x1, y1)− d (x2, y2) = d (x1, y1)− d (x2, y1) + d (x2, y1)− d (x2, y2)

≤ d (x1, x2) + d (y1, y2) (1)
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because

d (x2, y1) ≤ d (x2, x1) + d (x1, y1)

d (x2, y1)− d (x1, y1) ≤ d (x2, x1)

and, exchanging the roles of x and y and using symmetry of metric,

d (x2, y1)− d (x2, y2) ≤ d (y1, y2) .

Swapping (x1, y1) and (x2, y2) in (1), we have also

d (x2, y2)− d (x1, y1) ≤ d (x1, x2) + d (y1, y2) ,

thus

|d (x1, y1)− d (x2, y2)| ≤ d (x1, x2) + d (y1, y2)

= dX×X ((x1, x2) , (y1, y2)) .

(b) Consider X = R2 equipped with the euclidean metric

d ((s, t) , (u, v)) =

√
|s− u|2 + |t− v|2.

Define A = {(s, 0) ∈ C} and B =
{(

s, 1s
)
∈ C

}
, where C = {(s, t) : s ≥ 1}. The set C

is closed, thus complete subset of R2, and its subsets A and B are also closed and thus
complete, because they are inverse images under continuous mappings of closed sets,

A = f−1 ({0}) , f : (s, t) 7→ t

and
B = g−1 ({1}) g : (s, t) = st.

We have

inf{d(a, b) : a ∈ A, b ∈ B} ≤ d

(
(s, 0) ,

(
s,

1

s

))
=

1

s

for all s ≥ 1, thus
inf{d(a, b) : a ∈ A, b ∈ B} = 0.

But A ∩B = ∅, so there do not exist a0 ∈ A and b0 ∈ B such that

d(a0, b0) = 0

which would require a0 = b0.

4. We say that two metrics d1 and d2 defined on the same space X are equivalent if there exists
real numbers c1 > 0 and c2 > 0 such that for every x, y ∈ X,

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y).

(a) Prove that if d1 and d2 are equivalent metrics, then a sequence (xn) ⊂ X converges to x
in (X, d2) if and only if (xn) ⊂ X converges to x in (X, d1).
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(b) Let C([0, 1]) denote the space of all continuous real-valued functions on [0, 1]. For any
f, g ∈ C([0, 1]), let dI denote the integral metric defined by

dI(f, g) =

∫ 1

0
|f(x)− g(x)| dx,

and dS denote the supremum metric defined by

dS(f, g) = sup
x∈[0,1]

|f(x)− g(x)| .

Prove that the metrics dI and dS are not equivalent.

Solution.

(a) Suppose xn → x in (X, d1), or equivalently, d1 (xn, x)→ 0. Then

0 ≤ d2 (xn, x) ≤ c2d1 (xn, x)→ 0

so d2 (xn, x)→ 0 by the squeeze theorem. Suppose that xn → x in (X, d2), then

0 ≤ d1 (xn, x) ≤ 1

c1
d2 (xn, x)→ 0

and so d1 (xn, x)→ 0 by the squeeze theorem.

(b) Choose f (x) = 0 for all x and, for n ≥ 2, fn (x) piecewise linear given by the values

fn (0) = 0, fn

(
1

n

)
= 1, fn

(
2

n

)
= 0, fn (1) = 0.

Then,

dI (fn, f) =

∫ 1

0
|fn(x)| dx =

1

n
→∞

while
dS (fn, f) = sup

x∈[0,1]
|fn(x)| = 1

By part 4a, the metrics dI and dS are not equivalent because fn → f in dI but not in
dS .

5. Let F be a bounded subset of C([a, b]) with the supremum metric and

A =

{
F (x) =

∫ x

a
f(t) dt : f ∈ F

}
.

Prove that the closure A of A is a compact subset of C([a, b]).

Solution. Since F is bounded, there is M such that for all f ∈ F and all x ∈ [a, b], it holds
that |f (x)| ≤M . Let a sequence {Un} ⊂ A. Then, for every n, there exists Fn ∈ A such that
d (Un, Fn) < 1

n , and Fn (x) =
∫ x
a fn(t) dt : fn ∈ F . For any x ∈ [a, b], it holds that

|Fn (x)| =
∣∣∣∣∫ x

a
fn(t) dt

∣∣∣∣ ≤ (b− a)M,
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thus {Fn} is uniformly bounded. Similarly, for any x, y ∈ [a, b], it holds that

|Fn (x)− Fn (y)| =
∣∣∣∣∫ y

x
fn(t) dt

∣∣∣∣ ≤ |x− y|M,

thus the set {Fn} is equicontinuous. Since [a, b] is compact, by the Arzèla-Ascoli theorem,
there exists a subsequence {Fnk

} that is uniformly convergent, that is, for some F ∈ C([a, b]),
d (Fnk

, F )→ 0 as k →∞. By the triangle inequality,

d (Unk
, F ) ≤ d (Unk

, Fnk
) + d (Fnk

, F )→ 0.

Since the closure of a set is closed, F ∈ A. Thus, any sequence in A has a subsequence
convergent in A, so A is compact.

6. Let (X, d) be a complete metric space, and A ⊂ X, equiped with the distance function d
restricted to A×A, denoted by dA. Prove that the space (A, dA) is complete if and only if A
is closed in (X, d).

Solution. Suppose (A, dA) is complete. Let {xn} ⊂ A converge to x in X.Then {xn} is
Cauchy in A, consequently Cauchy in X. Since X is complete, there exists a limit y, xn → y
in X. Since limit is unique, y = x. Thus A is closed subset of X.

Suppose A is closed in X. Let {xn} ⊂ A be Cauchy (A, dA). Then {xn} is Cauchy (X, d),
and since X is complete, there is a limit x, xn → x in X. Since A is closed, x ∈ A. Since d
and dA coincide on A, xn → x in X and x ∈ A imply xn → x in A.

7. Consider the power series f (x) =
∞∑
n=1

xn

n

(a) (5 points) Decide for which real numbers x the series converges.

(b) (15 points) Decide on which intervals the series converges uniformly.

Solution.

(a) Since limn→∞
(
1
n

)1/n
= 1, the radius of convergence is R = 1

1 . That is, the series
converges absolutely for all −1 < x < 1 and diverges for all x < −1 and x > 1. For

x = 1, the series diverges, because
∞∑
n=1

1
n is the harmonic series, which is known to be

divergent. For x = −1, the series converges, because
∞∑
n=1

(−1)n
n is of the form

∞∑
n=1

(−1)n an

with an = 1
n ↘ 0, which converges by the alternating series theorem.

(b) (5 points) Since power series at 0 converges uniformly on every interval [−a, a], a < R,
the series converges uniformly on all intervals [−a, a], a < 1.

It remains to consider the uniform convergence near the endpoints.

(5 points) Convergence of the series is not uniform on any interval (a, 1), a > 0: If

convergence were uniform, there would exist N such that the partial sum sN (x) =
N∑

n=1

xn

n
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satisfies |f (x)− sN (x)| < 1 for all x ∈ (a, 1). But sN (x) is a polynomial, thus a bounded
function, while

lim
x→1−

f (x) ≥ lim
x→1−

sm (x) =
m∑

n=1

1

n
→∞ as m→∞,

thus f is not bounded on (a, 1), contradiction.

(5 points) Convergence of the series is uniform on the interval [−1, 0]: Since, for a fixed

x ∈ [−1, 0], the sum
∞∑
n=1

xn

n is alternating series with monotonically decreasing absolute

values of its terms, we have

s2k−1 (x) ≤ f (x) ≤ s2k (x) , s2k (x)− s2k−1 (x) ≤ 1

2k

thus

|sm (x)− f (x)| ≤ 1

m

for all m and all x ∈ [−1, 0], which proves uniform convergence on [−1, 0].

In conclusion, convergence of the power series is uniform on all intervals [−1, a), a < 1,
but not on any interval with end point 1.

Coverage and syllabus check by problem number:
1. uniform convergence Rudin ch. 7
2. multivariate continuity ch. 9; version of problem 9.6, standard undergraduate real 2 (or calculus)
3. definition of infimum (ch. 1), definition compactness (ch. 2)
4. straightforward by definition of convergence in metric space (ch. 2)
5. Arzela-Ascoli theorem, sequentially compact (ch. 7, exercise 2.26)
6. complete metric space (ch. 2)
7. power series, radius of convergence, uniform convergence, alternating series. This is a version of
the standard capstone problem of power series, which involves computing the sum of the series by
differentiation or integration and Abel’s theorem.
Note: lim sup and lim inf not covered this time.
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