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Asking for the solutions of 6 out of the following 7 problems.

1. Decide if functions f, (z) = e~lo=nn? (a) converge on R pointwise, (b) converge on R uni-
formly.

Solution. For any z € R, we have lim,_ ‘x — %‘ = x, thus lim, ‘x — %‘ n? = oo if
x # 0; for x = 0, we have lim,,_,~ ’1: — %’ n? = lim,_oeo %n2 = o0 also. Thus, in any case,
. . Clp—1|p2 . .

limy, 00 fn () = lim, 0 € le=%1n* — 0 for all x, and f, — 0 pointwise. Convergence is not

uniform on R, because sup,cg | fn (z) =0 > f, (2) =1 4 0.

n

2. Decide if the function f (z,y) = ;Sr;yg can be continously extended to all of R2.

Solution. The function f (z,y) is continuous except at the point (0,0), where it is not
defined, thus the answer will be positive if and only if lim(, ), (0,0) f (z,y) exists, then we
can define f(0,0) as its value. If this limit exists, then it equals to the limit along any line,

lim(m,y)%(0,0) f (xvy) for any (CL7 b) # (070) But

(z,y)=t(a,b)
li ; =li 07 =0
o Jm f(z,y) ylg%)f( Y)
(z,y)=t(0,1)
while 2
. ' . sint 1
o T (@) = Hmf (18) = lim 75 = 5 0,
(w’y):t(lvl)

Thus, lim(, ,)(0,0) f (7,y) does not exist, and continuous extension of f on all of R? is not
possible.

3. Let (X,d) be a metric space.

(a) Prove that d is a continuous real-valued function on the product metric space (X x
X, dxxx) where dx«x is a natural product metric induced by d.

(b) Give an example of (X, d) and complete non-empty subsets A, B C X such that there
do not exist ag € A and by € B such that

d(ap,bp) = inf{d(a,b) : a € A,b € B}
Solution.
(a) Estimate

(z1,91) — d(22,91) + d (22,91) — d (22, y2)
(z1,22) + d (y1,92) (1)

d (37173/1) —d (1’273/2) =



because

(x2,21) +d(x1,11)

(z2,21)

d(z2,y1)

<d
d(z2,y1) —d(z1,11) < d

and, exchanging the roles of x and y and using symmetry of metric,
d(z2,y1) — d(2,y2) < d(y1,92) -
Swapping (z1,y1) and (z2,y2) in (1), we have also
d(z2,y2) —d(z1,51) < d(21,22) + d (y1,92)
thus

|d (21,y1) — d(22,y2)| < d(21,22) + d (Y1, Y2)
=dxxx ((z1,72), (y1,92)) -

(b) Consider X = R? equipped with the euclidean metric

a((s,8), (u,0)) = \/Js — uf + |t — o].

Define A = {(s,0) € C} and B = {(s,1) € C}, where C = {(s,t) : s > 1}. The set C
is closed, thus complete subset of R?, and its subsets A and B are also closed and thus
complete, because they are inverse images under continuous mappings of closed sets,

A=fT1H0), fri(sit) ot

" B=g'"({1}) g:(s1t)=st
We have
inf{d(a,b) : ac A,be B} <d ((3,0), (s, i)) -2

for all s > 1, thus
inf{d(a,b) : a € A,b € B} =0.

But AN B = (), so there do not exist ag € A and by € B such that
d(ag,bo) = 0
which would require ag = by.

4. We say that two metrics d; and do defined on the same space X are equivalent if there exists
real numbers ¢; > 0 and ¢o > 0 such that for every z,y € X,

Cldl(xvy) < dQ(fE,y) < C2dl(x7y)'

(a) Prove that if d; and ds are equivalent metrics, then a sequence (z,,) C X converges to x
in (X,dy) if and only if (x,) C X converges to z in (X, d;).



(b) Let C([0,1]) denote the space of all continuous real-valued functions on [0, 1]. For any
f,g € C([0,1]), let d; denote the integral metric defined by

1
4i(1.9) = [ 15@) = g(o)] da,
and dg denote the supremum metric defined by

ds(f,g) = sup |f(z)—g(z)].
z€0,1]

Prove that the metrics d; and dg are not equivalent.
Solution.
(a) Suppose x, — = in (X, d;), or equivalently, di (xy,z) — 0. Then
0 <dy(zp,x) < cody (xp,x) = 0

so dg (zn,x) — 0 by the squeeze theorem. Suppose that z,, — x in (X, da), then

1
0 <d; (zp,x) < —da (zp,x) =0
c1

and so dj (x,z) — 0 by the squeeze theorem.
(b) Choose f (x) =0 for all x and, for n > 2, f,, (x) piecewise linear given by the values

h@zaﬁ(szgmf}ﬂ,hm:o

n
Then,
i or ) = [ (@) de = = = 00
0 n

while

By part 4a, the metrics d; and dg are not equivalent because f,, — f in d; but not in
dg.

5. Let F be a bounded subset of C([a,b]) with the supremum metric and
A:{F(x):/ F(t)dt - fe]—“}.

Prove that the closure A of A is a compact subset of C([a, b]).

Solution. Since F is bounded, there is M such that for all f € F and all = € [a, b], it holds
that | f (z)| < M. Let a sequence {U, } C A. Then, for every n, there exists F,, € A such that
d(Un, Fy) < L, and F, (z) = [T fo(t)dt : f, € F. For any x € [a,b], it holds that

[ Fn ()] =

/j Ful®) dt‘ <(b—a)M,

3



thus {F,} is uniformly bounded. Similarly, for any x,y € [a, b], it holds that

[P (2) = Fo (y)] =

[ e dt\ < le -yl M,

thus the set {F,} is equicontinuous. Since [a,b] is compact, by the Arzela-Ascoli theorem,
there exists a subsequence {F),, } that is uniformly convergent, that is, for some F' € C([a, b)),
d(Fy,,F)— 0 as k — co. By the triangle inequality,

d(Un,, F) <d(Up,, Fpn,)+d(Fy,, F)—0.

Since the closure of a set is closed, ' € A. Thus, any sequence in A has a subsequence
convergent in A, so A is compact.

. Let (X,d) be a complete metric space, and A C X, equiped with the distance function d
restricted to A x A, denoted by d4. Prove that the space (A,d4) is complete if and only if A
is closed in (X, d).

Solution. Suppose (A,d4) is complete. Let {z,} C A converge to = in X.Then {z,} is
Cauchy in A, consequently Cauchy in X. Since X is complete, there exists a limit y, z, — y
in X. Since limit is unique, y = x. Thus A is closed subset of X.

Suppose A is closed in X. Let {x,} C A be Cauchy (A,d4). Then {z,} is Cauchy (X,d),
and since X is complete, there is a limit =, x,, — x in X. Since A is closed, x € A. Since d
and d4 coincide on A, x, = x in X and x € A imply z, — x in A.

o0
. Consider the power series f (z) = > -
n=1

(a) (5 points) Decide for which real numbers = the series converges.

(b) (15 points) Decide on which intervals the series converges uniformly.
Solution.

(a) Since lim,, (%)1/ "= 1, the radius of convergence is R = 1- That is, the series

converges absolutely for all —1 < x < 1 and diverges for all x < —1 and = > 1. For

o0
x = 1, the series diverges, because »_ % is the harmonic series, which is known to be
n=1

00 n 00
divergent. For x = —1, the series converges, because % is of the form Y (—1)"a,
n=1 n=1
with a,, = % N 0, which converges by the alternating series theorem.

(b) (5 points) Since power series at 0 converges uniformly on every interval [—a,al, a < R,
the series converges uniformly on all intervals [—a,a], a < 1.
It remains to consider the uniform convergence near the endpoints.

I

z"
n

—

(5 points) Convergence of the series is not uniform on any interval (a,1), a >

M=o

convergence were uniform, there would exist NV such that the partial sum sy () =
1

n



N Otk W

satisfies |f () — sy (z)| < 1forallz € (a,1). But sy () is a polynomial, thus a bounded
function, while

1 > i = — = —
Jip 1@ 2 Jip s (@) =2 = o0 asm = o

n=1
thus f is not bounded on (a, 1), contradiction.

(5 points) Convergence of the series is uniform on the interval [—1,0]: Since, for a fixed
o0
x € [—1,0], the sum ) % is alternating series with monotonically decreasing absolute

n=1
values of its terms, we have

sop—1(x) < f(x) < sop (x), sak () — sak—1 (z) < i
thus
1

m - < —
o )~ F (@) <
for all m and all z € [—1, 0], which proves uniform convergence on [—1,0].

In conclusion, convergence of the power series is uniform on all intervals [—1,a), a < 1,
but not on any interval with end point 1.

Coverage and syllabus check by problem number:

uniform convergence Rudin ch. 7

multivariate continuity ch. 9; version of problem 9.6, standard undergraduate real 2 (or calculus)
definition of infimum (ch. 1), definition compactness (ch. 2)

straightforward by definition of convergence in metric space (ch. 2)

Arzela-Ascoli theorem, sequentially compact (ch. 7, exercise 2.26)

complete metric space (ch. 2)

. power series, radius of convergence, uniform convergence, alternating series. This is a version of

the standard capstone problem of power series, which involves computing the sum of the series by
differentiation or integration and Abel’s theorem.
Note: limsup and lim inf not covered this time.



