Analysis Prelim Summer 2018
PhD Program in Applied Mathematics
University of Colorado Denver
Asking for the solutions of 6 out of the following 7 problems.

1. Decide if functions $f_{n}(x)=e^{-\left|x-\frac{1}{n}\right| n^{2}}$ (a) converge on $\mathbb{R}$ pointwise, (b) converge on $\mathbb{R}$ uniformly.
Solution. For any $x \in \mathbb{R}$, we have $\lim _{n \rightarrow \infty}\left|x-\frac{1}{n}\right|=x$, thus $\lim _{n \rightarrow \infty}\left|x-\frac{1}{n}\right| n^{2}=\infty$ if $x \neq 0$; for $x=0$, we have $\lim _{n \rightarrow \infty}\left|x-\frac{1}{n}\right| n^{2}=\lim _{n \rightarrow \infty} \frac{1}{n} n^{2}=\infty$ also. Thus, in any case, $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} e^{-\left|x-\frac{1}{n}\right| n^{2}}=0$ for all $x$, and $f_{n} \rightarrow 0$ pointwise. Convergence is not uniform on $\mathbb{R}$, because $\sup _{x \in \mathbb{R}}\left|f_{n}(x)-0\right| \geq f_{n}\left(\frac{1}{n}\right)=1 \nrightarrow 0$.
2. Decide if the function $f(x, y)=\frac{\sin x y}{x^{2}+y^{2}}$ can be continously extended to all of $\mathbb{R}^{2}$.

Solution. The function $f(x, y)$ is continuous except at the point $(0,0)$, where it is not defined, thus the answer will be positive if and only if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists, then we can define $f(0,0)$ as its value. If this limit exists, then it equals to the limit along any line, $\lim _{\substack{(x, y) \rightarrow(0,0) \\(x, y)=t(a, b)}} f(x, y)$ for any $(a, b) \neq(0,0)$. But

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\(x, y)=t(0,1)}} f(x, y)=\lim _{y \rightarrow 0} f(0, y)=0
$$

while

$$
\lim _{\substack{x, y) \rightarrow(0,0) \\(x, y)=t(1,1)}} f(x, y)=\lim _{t \rightarrow 0} f(t, t)=\lim _{t \rightarrow 0} \frac{\sin t^{2}}{t^{2}+t^{2}}=\frac{1}{2} \neq 0
$$

Thus, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist, and continuous extension of $f$ on all of $\mathbb{R}^{2}$ is not possible.

3 . Let $(X, d)$ be a metric space.
(a) Prove that $d$ is a continuous real-valued function on the product metric space ( $X \times$ $\left.X, d_{X \times X}\right)$ where $d_{X \times X}$ is a natural product metric induced by $d$.
(b) Give an example of $(X, d)$ and complete non-empty subsets $A, B \subset X$ such that there do not exist $a_{0} \in A$ and $b_{0} \in B$ such that

$$
d\left(a_{0}, b_{0}\right)=\inf \{d(a, b): a \in A, b \in B\}
$$

## Solution.

(a) Estimate

$$
\begin{align*}
d\left(x_{1}, y_{1}\right)-d\left(x_{2}, y_{2}\right) & =d\left(x_{1}, y_{1}\right)-d\left(x_{2}, y_{1}\right)+d\left(x_{2}, y_{1}\right)-d\left(x_{2}, y_{2}\right) \\
& \leq d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right) \tag{1}
\end{align*}
$$

because

$$
\begin{aligned}
d\left(x_{2}, y_{1}\right) & \leq d\left(x_{2}, x_{1}\right)+d\left(x_{1}, y_{1}\right) \\
d\left(x_{2}, y_{1}\right)-d\left(x_{1}, y_{1}\right) & \leq d\left(x_{2}, x_{1}\right)
\end{aligned}
$$

and, exchanging the roles of $x$ and $y$ and using symmetry of metric,

$$
d\left(x_{2}, y_{1}\right)-d\left(x_{2}, y_{2}\right) \leq d\left(y_{1}, y_{2}\right) .
$$

Swapping $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in (1), we have also

$$
d\left(x_{2}, y_{2}\right)-d\left(x_{1}, y_{1}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right),
$$

thus

$$
\begin{aligned}
\left|d\left(x_{1}, y_{1}\right)-d\left(x_{2}, y_{2}\right)\right| & \leq d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right) \\
& =d_{X \times X}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

(b) Consider $X=\mathbb{R}^{2}$ equipped with the euclidean metric

$$
d((s, t),(u, v))=\sqrt{|s-u|^{2}+|t-v|^{2}} .
$$

Define $A=\{(s, 0) \in C\}$ and $B=\left\{\left(s, \frac{1}{s}\right) \in C\right\}$, where $C=\{(s, t): s \geq 1\}$. The set $C$ is closed, thus complete subset of $\mathbb{R}^{2}$, and its subsets $A$ and $B$ are also closed and thus complete, because they are inverse images under continuous mappings of closed sets,

$$
A=f^{-1}(\{0\}), \quad f:(s, t) \mapsto t
$$

and

$$
B=g^{-1}(\{1\}) \quad g:(s, t)=s t .
$$

We have

$$
\inf \{d(a, b): a \in A, b \in B\} \leq d\left((s, 0),\left(s, \frac{1}{s}\right)\right)=\frac{1}{s}
$$

for all $s \geq 1$, thus

$$
\inf \{d(a, b): a \in A, b \in B\}=0
$$

But $A \cap B=\emptyset$, so there do not exist $a_{0} \in A$ and $b_{0} \in B$ such that

$$
d\left(a_{0}, b_{0}\right)=0
$$

which would require $a_{0}=b_{0}$.
4. We say that two metrics $d_{1}$ and $d_{2}$ defined on the same space $X$ are equivalent if there exists real numbers $c_{1}>0$ and $c_{2}>0$ such that for every $x, y \in X$,

$$
c_{1} d_{1}(x, y) \leq d_{2}(x, y) \leq c_{2} d_{1}(x, y)
$$

(a) Prove that if $d_{1}$ and $d_{2}$ are equivalent metrics, then a sequence $\left(x_{n}\right) \subset X$ converges to $x$ in $\left(X, d_{2}\right)$ if and only if $\left(x_{n}\right) \subset X$ converges to $x$ in $\left(X, d_{1}\right)$.
(b) Let $C([0,1])$ denote the space of all continuous real-valued functions on $[0,1]$. For any $f, g \in C([0,1])$, let $d_{I}$ denote the integral metric defined by

$$
d_{I}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

and $d_{S}$ denote the supremum metric defined by

$$
d_{S}(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)| .
$$

Prove that the metrics $d_{I}$ and $d_{S}$ are not equivalent.

## Solution.

(a) Suppose $x_{n} \rightarrow x$ in $\left(X, d_{1}\right)$, or equivalently, $d_{1}\left(x_{n}, x\right) \rightarrow 0$. Then

$$
0 \leq d_{2}\left(x_{n}, x\right) \leq c_{2} d_{1}\left(x_{n}, x\right) \rightarrow 0
$$

so $d_{2}\left(x_{n}, x\right) \rightarrow 0$ by the squeeze theorem. Suppose that $x_{n} \rightarrow x$ in $\left(X, d_{2}\right)$, then

$$
0 \leq d_{1}\left(x_{n}, x\right) \leq \frac{1}{c_{1}} d_{2}\left(x_{n}, x\right) \rightarrow 0
$$

and so $d_{1}\left(x_{n}, x\right) \rightarrow 0$ by the squeeze theorem.
(b) Choose $f(x)=0$ for all $x$ and, for $n \geq 2, f_{n}(x)$ piecewise linear given by the values

$$
f_{n}(0)=0, \quad f_{n}\left(\frac{1}{n}\right)=1, \quad f_{n}\left(\frac{2}{n}\right)=0, \quad f_{n}(1)=0 .
$$

Then,

$$
d_{I}\left(f_{n}, f\right)=\int_{0}^{1}\left|f_{n}(x)\right| d x=\frac{1}{n} \rightarrow \infty
$$

while

$$
d_{S}\left(f_{n}, f\right)=\sup _{x \in[0,1]}\left|f_{n}(x)\right|=1
$$

By part 4a, the metrics $d_{I}$ and $d_{S}$ are not equivalent because $f_{n} \rightarrow f$ in $d_{I}$ but not in $d_{S}$.
5. Let $\mathcal{F}$ be a bounded subset of $C([a, b])$ with the supremum metric and

$$
A=\left\{F(x)=\int_{a}^{x} f(t) d t: f \in \mathcal{F}\right\} .
$$

Prove that the closure $\bar{A}$ of $A$ is a compact subset of $C([a, b])$.
Solution. Since $\mathcal{F}$ is bounded, there is $M$ such that for all $f \in \mathcal{F}$ and all $x \in[a, b]$, it holds that $|f(x)| \leq M$. Let a sequence $\left\{U_{n}\right\} \subset \bar{A}$. Then, for every $n$, there exists $F_{n} \in A$ such that $d\left(U_{n}, F_{n}\right)<\frac{1}{n}$, and $F_{n}(x)=\int_{a}^{x} f_{n}(t) d t: f_{n} \in \mathcal{F}$. For any $x \in[a, b]$, it holds that

$$
\left|F_{n}(x)\right|=\left|\int_{a}^{x} f_{n}(t) d t\right| \leq(b-a) M,
$$

thus $\left\{F_{n}\right\}$ is uniformly bounded. Similarly, for any $x, y \in[a, b]$, it holds that

$$
\left|F_{n}(x)-F_{n}(y)\right|=\left|\int_{x}^{y} f_{n}(t) d t\right| \leq|x-y| M
$$

thus the set $\left\{F_{n}\right\}$ is equicontinuous. Since $[a, b]$ is compact, by the Arzèla-Ascoli theorem, there exists a subsequence $\left\{F_{n_{k}}\right\}$ that is uniformly convergent, that is, for some $F \in C([a, b])$, $d\left(F_{n_{k}}, F\right) \rightarrow 0$ as $k \rightarrow \infty$. By the triangle inequality,

$$
d\left(U_{n_{k}}, F\right) \leq d\left(U_{n_{k}}, F_{n_{k}}\right)+d\left(F_{n_{k}}, F\right) \rightarrow 0
$$

Since the closure of a set is closed, $F \in \bar{A}$. Thus, any sequence in $\bar{A}$ has a subsequence convergent in $\bar{A}$, so $\bar{A}$ is compact.
6. Let $(X, d)$ be a complete metric space, and $A \subset X$, equiped with the distance function $d$ restricted to $A \times A$, denoted by $d_{A}$. Prove that the space $\left(A, d_{A}\right)$ is complete if and only if $A$ is closed in $(X, d)$.
Solution. Suppose $\left(A, d_{A}\right)$ is complete. Let $\left\{x_{n}\right\} \subset A$ converge to $x$ in $X$.Then $\left\{x_{n}\right\}$ is Cauchy in $A$, consequently Cauchy in $X$. Since $X$ is complete, there exists a limit $y, x_{n} \rightarrow y$ in $X$. Since limit is unique, $y=x$. Thus $A$ is closed subset of $X$.

Suppose $A$ is closed in $X$. Let $\left\{x_{n}\right\} \subset A$ be Cauchy $\left(A, d_{A}\right)$. Then $\left\{x_{n}\right\}$ is Cauchy $(X, d)$, and since $X$ is complete, there is a limit $x, x_{n} \rightarrow x$ in $X$. Since $A$ is closed, $x \in A$. Since $d$ and $d_{A}$ coincide on $A, x_{n} \rightarrow x$ in $X$ and $x \in A$ imply $x_{n} \rightarrow x$ in $A$.
7. Consider the power series $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(a) (5 points) Decide for which real numbers $x$ the series converges.
(b) (15 points) Decide on which intervals the series converges uniformly.

Solution.
(a) Since $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / n}=1$, the radius of convergence is $R=\frac{1}{1}$. That is, the series converges absolutely for all $-1<x<1$ and diverges for all $x<-1$ and $x>1$. For $x=1$, the series diverges, because $\sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series, which is known to be divergent. For $x=-1$, the series converges, because $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is of the form $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ with $a_{n}=\frac{1}{n} \searrow 0$, which converges by the alternating series theorem.
(b) (5 points) Since power series at 0 converges uniformly on every interval $[-a, a], a<R$, the series converges uniformly on all intervals $[-a, a], a<1$.
It remains to consider the uniform convergence near the endpoints.
( 5 points) Convergence of the series is not uniform on any interval $(a, 1), a>0$ : If convergence were uniform, there would exist $N$ such that the partial sum $s_{N}(x)=\sum_{n=1}^{N} \frac{x^{n}}{n}$
satisfies $\left|f(x)-s_{N}(x)\right|<1$ for all $x \in(a, 1)$. But $s_{N}(x)$ is a polynomial, thus a bounded function, while

$$
\lim _{x \rightarrow 1_{-}} f(x) \geq \lim _{x \rightarrow 1_{-}} s_{m}(x)=\sum_{n=1}^{m} \frac{1}{n} \rightarrow \infty \text { as } m \rightarrow \infty
$$

thus $f$ is not bounded on $(a, 1)$, contradiction.
(5 points) Convergence of the series is uniform on the interval $[-1,0]$ : Since, for a fixed $x \in[-1,0]$, the sum $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ is alternating series with monotonically decreasing absolute values of its terms, we have

$$
s_{2 k-1}(x) \leq f(x) \leq s_{2 k}(x), s_{2 k}(x)-s_{2 k-1}(x) \leq \frac{1}{2 k}
$$

thus

$$
\left|s_{m}(x)-f(x)\right| \leq \frac{1}{m}
$$

for all $m$ and all $x \in[-1,0]$, which proves uniform convergence on $[-1,0]$.
In conclusion, convergence of the power series is uniform on all intervals $[-1, a), a<1$, but not on any interval with end point 1 .

## Coverage and syllabus check by problem number:

1. uniform convergence Rudin ch. 7
2. multivariate continuity ch. 9 ; version of problem 9.6 , standard undergraduate real 2 (or calculus)
3. definition of infimum (ch. 1), definition compactness (ch. 2)
4. straightforward by definition of convergence in metric space (ch. 2)
5. Arzela-Ascoli theorem, sequentially compact (ch. 7, exercise 2.26)
6. complete metric space (ch. 2)
7. power series, radius of convergence, uniform convergence, alternating series. This is a version of the standard capstone problem of power series, which involves computing the sum of the series by differentiation or integration and Abel's theorem.
Note: limsup and liminf not covered this time.
