MATH 5070 PRELIMINARY EXAM FOR SUMMER 2017 SOLUTIONS

(1) Let (X, d) be a metric space, $K \subset X$ be nonempty, and let K^{\prime} denote the set of limit points of K. Define the closure of K as $\bar{K}:=K \cup K^{\prime}$. Prove that \bar{K} is both (1) closed, and (2) if F is closed and $K \subset F$, then $\bar{K} \subset F$. In other words, prove that \bar{K} is the smallest closed set containing K.

Proof. We prove \bar{K} is closed by showing \bar{K}^{c} is open. Consider any $x \in \bar{K}^{c}$, then x is neither in K nor a limit point of K, so there exists a neighborhood around x that does not intersect K. This implies that \bar{K}^{c} is open, which proves (1).

If F is closed then F contains all of its limit points, so if $K \subset F$, then by definition $K^{\prime} \subset F$, which implies $\bar{K} \subset F$.
(2) Let (X, d) be a metric space and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Prove that if there exists $x \in X$ such that for every subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ there exists a subsequence $\left(x_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ such that $x_{n_{k_{j}}} \rightarrow x$, then $x_{n} \rightarrow x$.

Proof. Suppose that every subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ has a subsequence $\left(x_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ such that $x_{n_{k_{j}}} \rightarrow x$, but assume to the contrary that $x_{n} \nrightarrow x$. Then, there exists an $\epsilon>0$ such that for every $N \in \mathbb{N}$ there exists $n>N$ such that $d\left(x_{n}, x\right) \geq \epsilon$. Choose such an ϵ and construct a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $d\left(x_{n_{k}}, x\right) \geq \epsilon$ inductively as follows. For $k=1$, let n_{1} be the first index of the sequence such that $d\left(x_{n_{1}}, x\right) \geq \epsilon$. For $k=2$, let $n_{2}>n_{1}$ be an index such that $d\left(x_{n_{2}}, x\right) \geq \epsilon$. Having chosen the first k terms in the subsequence, choose n_{k+1} such that $n_{k+1}>n_{k}$ and $d\left(x_{n_{k+1}}, x\right) \geq \epsilon$. By construction, any subsequence $\left(x_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ of $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ will also have the property that $d\left(x_{n_{k_{j}}}, x\right) \geq \epsilon$, which contradicts the hypothesis.
(3) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, $K \subset X$ nonempty and open, and $f: K \rightarrow Y$. Let \bar{K} denote the closure of K (see problem 1 for definition). Suppose Y is complete and f is uniformly continuous.
(a) (15 points) Prove that there exists a unique uniformly continuous function $\bar{f}: \bar{K} \rightarrow Y$ such that $\bar{f}(x)=f(x)$ for every $x \in K$. We call \bar{f} the extension of f to \bar{K}.
(b) (5 points) Give (1) an example showing the necessity of the condition that Y is complete, and (2) an example showing that even if Y is complete but f is only continuous, then there may not be an extension of f to \bar{K} that is continuous.

Part (a)

Proof. Consider any $x \in \bar{K}$, then there exists $\left(x_{n}\right) \subset K$ such that $x_{n} \rightarrow x$, which implies $\left(x_{n}\right)$ is Cauchy. Since f is uniformly continuous, $\left(f\left(x_{n}\right)\right)$ is Cauchy by a standard result. Since Y is complete, $\left(f\left(x_{n}\right)\right)$ converges to some number that we define to be $\bar{f}(x)$.

This way of defining \bar{f} is both well-defined and unique since if $x_{n} \rightarrow x$ and $z_{n} \rightarrow x$, then we can define $\left(u_{n}\right)$ so that every even term defines the subsequence given by $\left(x_{n}\right)$ and every odd term defines the subsequence given by $\left(z_{n}\right)$, which is Cauchy by construction (this is easily proven by an $\epsilon / 2$ argument). Since (u_{n}) is Cauchy with convergent subsequences, it converges by a standard result, and the uniqueness of limits immediately gives $f\left(z_{n}\right) \rightarrow \bar{f}(x)$.

We now show that \bar{f} is uniformly continuous on \bar{K}.
Let $\epsilon>0$.
Since f is uniformly continuous on K, there exists $\delta>0$ such that $d_{Y}(f(x), f(z))<\epsilon / 3$ for any $x, z \in K$ with $d_{X}(x, z)<\delta$. Choose such a δ.

Let $x, z \in \bar{K}$ such that $d_{X}(x, z)<\delta / 3$, and choose $\left(x_{n}\right) \subset K$ and $\left(z_{n}\right) \subset K$ such that $x_{n} \rightarrow x$ and $z_{n} \rightarrow z$. This implies that $f\left(x_{n}\right) \rightarrow \bar{f}(x)$ and $f\left(z_{n}\right) \rightarrow \bar{f}(z)$. There exists N_{1}, N_{2}, N_{3}, and N_{4} such that $n \geq N_{1}, n \geq N_{2}, n \geq N_{3}$, and $n \geq N_{4}$ implies $d_{X}\left(x, x_{n}\right)<\delta / 3, d_{X}\left(z, z_{n}\right)<\delta / 3$, $d_{Y}\left(\bar{f}(x), f\left(x_{n}\right)\right)<\epsilon / 3$, and $d_{Y}\left(f\left(z_{n}\right), \bar{f}(z)\right)<\epsilon / 3$, respectively. Choose $n \geq \max \left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$. For such an n, by repeated use of the triangle inequality,

$$
d_{X}\left(x_{n}, z_{n}\right) \leq d_{X}\left(x_{n}, x\right)+d_{X}(x, z)+d_{X}\left(z, z_{n}\right)<\delta / 3+\delta / 3+\delta / 3=\delta
$$

which implies that

$$
d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right)<\epsilon / 3
$$

Therefore, by repeated use of the triangle inequality,

$$
d_{Y}(\bar{f}(x), \bar{f}(z)) \leq d_{Y}\left(\bar{f}(x), f\left(x_{n}\right)\right)+d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right)+d_{Y}\left(f\left(z_{n}\right), \bar{f}(z)\right)<\epsilon
$$

Part (b)

Two examples are required.
For the first example showing the necessity of Y being complete, suppose $Y=(0,1), X=\mathbb{R}$, and consider $K=(0,1) \subset X$ with $f(x)=x$. There is no way to define $f(0)$ and $f(1)$ since any sequence $\left(x_{n}\right) \subset K$ that converges to either 0 or 1 is Cauchy, but not convergent, in Y.

For the second example, take $Y=\mathbb{R}, X=\mathbb{R}, K=(0,1] \subset X$, and $f(x)=1 / x$, which is easily seen to not have any continuous extension at $x=0$ since the limit of $f(x)$ as x approaches 0 within K is $+\infty$.
(4) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, X compact, and $f: X \rightarrow Y$ satisfies two conditions
(i) For each compact set $K \subset X, f(K)$ is compact.
(ii) For every nested decreasing sequence of compact sets $\left(K_{n}\right) \subset X$,

$$
f\left(\cap K_{n}\right)=\cap f\left(K_{n}\right)
$$

Prove that f is continuous.
Proof. We prove by contradiction.
Assume that f is not continuous.
Then, there exists an $x \in X$ and $\epsilon>0$ such that for each $n \in \mathbb{N}$, there exists $x_{n} \in B_{1 / n}(x)$ such that $f\left(x_{n}\right) \notin B_{\epsilon}(f(x))$.

For each $n \in \mathbb{N}$, let $K_{n}=\bar{B}_{1 / n}(x)$ denote the closure of the ball $B_{1 / n}(x)$. Since closed subsets of a compact space are compact by a standard result, K_{n} is compact for each $n \in \mathbb{N}$. By construction, $\left(K_{n}\right)$ is a nested sequence of compact sets and $\cap K_{n}=\{x\}$.

By assumption (i), $f\left(K_{n}\right)$ is compact for each $n \in \mathbb{N}$ and $\left(f\left(K_{n}\right)\right)$ is a nested decreasing sequence of compact sets in Y by construction. Since $\left(f\left(x_{n}\right)\right) \subset f\left(K_{1}\right)$, there exists a convergent subsequence $\left(f\left(x_{n_{k}}\right)\right)$. By construction, $\left(f\left(x_{n_{k}}\right)\right)_{k \geq N} \subset f\left(K_{N}\right)$ for each $N \in \mathbb{N}$, and since $f\left(K_{N}\right)$ are closed (since they are compact) for each $N \in \mathbb{N}$, the limit of $\left(f\left(x_{n_{k}}\right)\right)$ belongs to $\cap f\left(K_{n}\right)$. By assumption (ii) on $f, \cap f\left(K_{n}\right)=f\left(\cap K_{n}\right)=\{f(x)\}$, which implies $f\left(x_{n_{k}}\right) \rightarrow f(x)$ contradicting how $\left(f\left(x_{n}\right)\right)$ was constructed.
(5) Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is three-times differentiable with continuous third derivative on $[-1,1]$.

Prove that the series

$$
\sum_{n=1}^{\infty}\left[n(f(1 / n)-f(-1 / n))-2 f^{\prime}(0)\right]
$$

converges.
Proof. By Taylor's theorem, for each $n \in \mathbb{N}$, there exists $\xi_{n}^{(1)} \in(0,1 / n)$ such that

$$
f(1 / n)=f(0)+f^{\prime}(0) \frac{1}{n}+f^{\prime \prime}(0) \frac{1}{2 n^{2}}+f^{\prime \prime \prime}\left(\xi_{n}^{(1)}\right) \frac{1}{6 n^{3}}
$$

and there exists $\xi_{n}^{(2)} \in(-1 / n, 0)$ such that

$$
f(-1 / n)=f(0)-f^{\prime}(0) \frac{1}{n}+f^{\prime \prime}(0) \frac{1}{2 n^{2}}-f^{\prime \prime \prime}\left(\xi_{n}^{(2)}\right) \frac{1}{6 n^{3}} .
$$

Then, we have that for each $n \in \mathbb{N}$, we see that

$$
\left[n(f(1 / n)-f(-1 / n))-2 f^{\prime}(0)\right]=\frac{1}{6 n^{2}}\left[f^{\prime \prime \prime}\left(\xi_{n}^{(1)}\right)+f^{\prime \prime \prime}\left(\xi_{n}^{(2)}\right)\right]
$$

Then, since the third derivative is continuous on $[-1,1]$, it is bounded in magnitude on $[-1,1]$ by some $M \geq 0$, so that

$$
\frac{1}{6 n^{2}}\left|f^{\prime \prime \prime}\left(\xi_{n}^{(1)}\right)+f^{\prime \prime \prime}\left(\xi_{n}^{(2)}\right)\right| \leq \frac{M}{3 n^{2}}
$$

Since

$$
\sum_{n=1}^{\infty} \frac{M}{3 n^{2}}
$$

converges by the integral test, we have that the series converges (in fact converges absolutely).
(6) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$. Prove that f is uniformly continuous if and only if for every sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ in X such that $d_{X}\left(x_{n}, z_{n}\right) \rightarrow 0$ implies $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \rightarrow 0$.

Proof. First assume that f is uniformly continuous. Let $\epsilon>0$. There exits $\delta>0$ such that $d_{X}(x, z)<\delta$ implies $d_{Y}(f(x), f(z))<\epsilon$. Choose such a $\delta>0$. Consider any sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ in X such that $d_{X}\left(x_{n}, z_{n}\right) \rightarrow 0$. Then, there exists N such that $n \geq N$ implies $d_{X}\left(x_{n}, z_{n}\right)<\delta$, which implies that $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right)<\epsilon$. Thus, $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \rightarrow 0$.

Now assume that f is not uniformly continuous. Then, there exists $\epsilon>0$ such that for every $\delta>0$ there exists $x, z \in X$ with $d_{X}(x, z)<\delta$ and $d_{Y}(f(x), f(y)) \geq \epsilon$. Choose such an ϵ, and for each $n \in \mathbb{N}$ let $\delta_{n}=1 / n$, and choose $x_{n}, z_{n} \in X$ such that $d_{X}\left(x_{n}, z_{n}\right)<\delta_{n}$ and $d_{Y}\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \epsilon$. By construction, $d_{X}\left(x_{n}, z_{n}\right) \rightarrow 0$ but $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \nrightarrow 0$.
(7) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuously differentiable with $f(0)=0$. Prove that

$$
[\sup \{|f(x)|: 0 \leq x \leq 1\}]^{2} \leq \int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x
$$

Proof. By the Fundamental Theorem of Calculus (and the fact that $f(0)=0$), for each $x \in[0,1]$,

$$
f(x)=\int_{0}^{x} f^{\prime}(s) d s \Rightarrow|f(x)| \leq \int_{0}^{x}\left|f^{\prime}(s)\right| d s
$$

By the standard Cauchy-Schwartz (or just Schwartz) inequality

$$
\begin{aligned}
\int_{0}^{x}\left|f^{\prime}(s)\right| d s & \leq\left(\int_{0}^{x}\left|f^{\prime}(s)\right|^{2} d s\right)^{1 / 2}\left(\int_{0}^{x} 1^{2} d s\right)^{1 / 2} \\
& \leq\left(\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

Thus, for each $x \in[0,1]$,

$$
|f(x)| \leq\left(\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2}
$$

Since the inequality holds for all $x \in[0,1]$,

$$
\sup \{|f(x)|: 0 \leq x \leq 1\} \leq\left(\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2}
$$

Squaring both sides completes the proof.

