
MATH 5070 PRELIMINARY EXAM FOR SUMMER 2017

SOLUTIONS

(1) Let (X, d) be a metric space, K ⊂ X be nonempty, and let K ′ denote the set of limit points of K.

Define the closure of K as K := K ∪K ′. Prove that K is both (1) closed, and (2) if F is closed and

K ⊂ F , then K ⊂ F . In other words, prove that K is the smallest closed set containing K.

Proof. We prove K is closed by showing K
c

is open. Consider any x ∈ Kc
, then x is neither in K

nor a limit point of K, so there exists a neighborhood around x that does not intersect K. This

implies that K
c

is open, which proves (1).

If F is closed then F contains all of its limit points, so if K ⊂ F , then by definition K ′ ⊂ F ,

which implies K ⊂ F . �
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(2) Let (X, d) be a metric space and (xn)n∈N be a sequence in X. Prove that if there exists x ∈ X such

that for every subsequence (xnk
)k∈N there exists a subsequence (xnkj

)j∈N such that xnkj
→ x, then

xn → x.

Proof. Suppose that every subsequence (xnk
)k∈N has a subsequence (xnkj

)j∈N such that xnkj
→ x,

but assume to the contrary that xn 6→ x. Then, there exists an ε > 0 such that for every N ∈ N

there exists n > N such that d(xn, x) ≥ ε. Choose such an ε and construct a subsequence (xnk
)k∈N

such that d(xnk
, x) ≥ ε inductively as follows. For k = 1, let n1 be the first index of the sequence

such that d(xn1
, x) ≥ ε. For k = 2, let n2 > n1 be an index such that d(xn2

, x) ≥ ε. Having chosen

the first k terms in the subsequence, choose nk+1 such that nk+1 > nk and d(xnk+1
, x) ≥ ε. By

construction, any subsequence (xnkj
)j∈N of (xnk

)k∈N will also have the property that d(xnkj
, x) ≥ ε,

which contradicts the hypothesis. �
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(3) Let (X, dX) and (Y, dY ) be metric spaces, K ⊂ X nonempty and open, and f : K → Y . Let K

denote the closure of K (see problem 1 for definition). Suppose Y is complete and f is uniformly

continuous.

(a) (15 points) Prove that there exists a unique uniformly continuous function f : K → Y such

that f(x) = f(x) for every x ∈ K. We call f the extension of f to K.

(b) (5 points) Give (1) an example showing the necessity of the condition that Y is complete, and

(2) an example showing that even if Y is complete but f is only continuous, then there may

not be an extension of f to K that is continuous.

Part (a)

Proof. Consider any x ∈ K, then there exists (xn) ⊂ K such that xn → x, which implies (xn)

is Cauchy. Since f is uniformly continuous, (f(xn)) is Cauchy by a standard result. Since Y is

complete, (f(xn)) converges to some number that we define to be f(x).

This way of defining f is both well-defined and unique since if xn → x and zn → x, then we

can define (un) so that every even term defines the subsequence given by (xn) and every odd term

defines the subsequence given by (zn), which is Cauchy by construction (this is easily proven by

an ε/2 argument). Since (un) is Cauchy with convergent subsequences, it converges by a standard

result, and the uniqueness of limits immediately gives f(zn)→ f(x).

We now show that f is uniformly continuous on K.

Let ε > 0.

Since f is uniformly continuous on K, there exists δ > 0 such that dY (f(x), f(z)) < ε/3 for any

x, z ∈ K with dX(x, z) < δ. Choose such a δ.

Let x, z ∈ K such that dX(x, z) < δ/3, and choose (xn) ⊂ K and (zn) ⊂ K such that xn → x

and zn → z. This implies that f(xn) → f(x) and f(zn) → f(z). There exists N1, N2, N3, and

N4 such that n ≥ N1, n ≥ N2, n ≥ N3, and n ≥ N4 implies dX(x, xn) < δ/3, dX(z, zn) < δ/3,

dY (f(x), f(xn)) < ε/3, and dY (f(zn), f(z)) < ε/3, respectively. Choose n ≥ max {N1, N2, N3, N4}.

For such an n, by repeated use of the triangle inequality,

dX(xn, zn) ≤ dX(xn, x) + dX(x, z) + dX(z, zn) < δ/3 + δ/3 + δ/3 = δ,

which implies that

dY (f(xn), f(zn)) < ε/3.

Therefore, by repeated use of the triangle inequality,

dY (f(x), f(z)) ≤ dY (f(x), f(xn)) + dY (f(xn), f(zn)) + dY (f(zn), f(z)) < ε.

�
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Part (b)

Two examples are required.

For the first example showing the necessity of Y being complete, suppose Y = (0, 1), X = R, and

consider K = (0, 1) ⊂ X with f(x) = x. There is no way to define f(0) and f(1) since any sequence

(xn) ⊂ K that converges to either 0 or 1 is Cauchy, but not convergent, in Y .

For the second example, take Y = R, X = R, K = (0, 1] ⊂ X, and f(x) = 1/x, which is easily

seen to not have any continuous extension at x = 0 since the limit of f(x) as x approaches 0 within

K is +∞.
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(4) Let (X, dX) and (Y, dY ) be metric spaces, X compact, and f : X → Y satisfies two conditions

(i) For each compact set K ⊂ X, f(K) is compact.

(ii) For every nested decreasing sequence of compact sets (Kn) ⊂ X,

f(∩Kn) = ∩f(Kn).

Prove that f is continuous.

Proof. We prove by contradiction.

Assume that f is not continuous.

Then, there exists an x ∈ X and ε > 0 such that for each n ∈ N, there exists xn ∈ B1/n(x) such

that f(xn) /∈ Bε(f(x)).

For each n ∈ N, let Kn = B1/n(x) denote the closure of the ball B1/n(x). Since closed subsets of

a compact space are compact by a standard result, Kn is compact for each n ∈ N. By construction,

(Kn) is a nested sequence of compact sets and ∩Kn = {x}.

By assumption (i), f(Kn) is compact for each n ∈ N and (f(Kn)) is a nested decreasing sequence

of compact sets in Y by construction. Since (f(xn)) ⊂ f(K1), there exists a convergent subsequence

(f(xnk
)). By construction, (f(xnk

))k≥N ⊂ f(KN ) for each N ∈ N, and since f(KN ) are closed

(since they are compact) for each N ∈ N, the limit of (f(xnk
)) belongs to ∩f(Kn). By assumption

(ii) on f , ∩f(Kn) = f(∩Kn) = {f(x)}, which implies f(xnk
)→ f(x) contradicting how (f(xn)) was

constructed. �
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(5) Suppose f : [−1, 1] → R is three-times differentiable with continuous third derivative on [−1, 1].

Prove that the series
∞∑
n=1

[
n
(
f(1/n)− f(−1/n)

)
− 2f ′(0)

]
converges.

Proof. By Taylor’s theorem, for each n ∈ N, there exists ξ
(1)
n ∈ (0, 1/n) such that

f(1/n) = f(0) + f ′(0)
1

n
+ f ′′(0)

1

2n2
+ f ′′′(ξ(1)n )

1

6n3
,

and there exists ξ
(2)
n ∈ (−1/n, 0) such that

f(−1/n) = f(0)− f ′(0)
1

n
+ f ′′(0)

1

2n2
− f ′′′(ξ(2)n )

1

6n3
.

Then, we have that for each n ∈ N, we see that[
n
(
f(1/n)− f(−1/n)

)
− 2f ′(0)

]
=

1

6n2

[
f ′′′(ξ(1)n ) + f ′′′(ξ(2)n )

]
.

Then, since the third derivative is continuous on [−1, 1], it is bounded in magnitude on [−1, 1] by

some M ≥ 0, so that
1

6n2

∣∣∣f ′′′(ξ(1)n ) + f ′′′(ξ(2)n )
∣∣∣ ≤ M

3n2
.

Since
∞∑
n=1

M

3n2

converges by the integral test, we have that the series converges (in fact converges absolutely). �



MATH 5070 PRELIMINARY EXAM FOR SUMMER 2017 SOLUTIONS 7

(6) Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . Prove that f is uniformly continuous

if and only if for every sequences (xn)n∈N and (zn)n∈N in X such that dX(xn, zn) → 0 implies

dY (f(xn), f(zn))→ 0.

Proof. First assume that f is uniformly continuous. Let ε > 0. There exits δ > 0 such that

dX(x, z) < δ implies dY (f(x), f(z)) < ε. Choose such a δ > 0. Consider any sequences (xn)n∈N

and (zn)n∈N in X such that dX(xn, zn) → 0. Then, there exists N such that n ≥ N implies

dX(xn, zn) < δ, which implies that dY (f(xn), f(zn)) < ε. Thus, dY (f(xn), f(zn))→ 0.

Now assume that f is not uniformly continuous. Then, there exists ε > 0 such that for every

δ > 0 there exists x, z ∈ X with dX(x, z) < δ and dY (f(x), f(y)) ≥ ε. Choose such an ε, and for each

n ∈ N let δn = 1/n, and choose xn, zn ∈ X such that dX(xn, zn) < δn and dY (f(xn), f(yn)) ≥ ε. By

construction, dX(xn, zn)→ 0 but dY (f(xn), f(zn)) 6→ 0. �
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(7) Let f : [0, 1]→ R be continuously differentiable with f(0) = 0. Prove that

[sup {|f(x)| : 0 ≤ x ≤ 1}]2 ≤
∫ 1

0

(f ′(x))2 dx.

Proof. By the Fundamental Theorem of Calculus (and the fact that f(0) = 0), for each x ∈ [0, 1],

f(x) =

∫ x

0

f ′(s) ds⇒ |f(x)| ≤
∫ x

0

|f ′(s)| ds.

By the standard Cauchy-Schwartz (or just Schwartz) inequality∫ x

0

|f ′(s)| ds ≤
(∫ x

0

|f ′(s)|2 ds
)1/2(∫ x

0

12 ds

)1/2

≤
(∫ 1

0

|f ′(x)|2 dx
)1/2

.

Thus, for each x ∈ [0, 1],

|f(x)| ≤
(∫ 1

0

|f ′(x)|2 dx
)1/2

.

Since the inequality holds for all x ∈ [0, 1],

sup {|f(x)| : 0 ≤ x ≤ 1} ≤
(∫ 1

0

|f ′(x)|2 dx
)1/2

.

Squaring both sides completes the proof. �


