
1. Let (X, d) be a metric space.

(a) Prove or find a counterexample: If (xn) is a Cauchy sequence in (X, d), then (xn)
converges.

(b) Prove that if (xn) and (yn) are both Cauchy sequences in (X, d), then the sequence
(d(xn, yn)) converges.

Solution.

(a) We use the rationals Q, equipped with the stardard metric. We use known facts
about rationals: Q is dense in R, and

√
2 /∈ Q. Since Q is dense in R, there exists

a sequence (xn) ⊂ Q, xn →
√

2 in R. Since (xn) converges in R, (xn) is Cauchy
in R. Since the Q is a subspace of R, the metric is the same, and thus (xn) is
Cauchy in Q. Now if xn → x in Q, then also xn → x in R and by uniqueness of
limit, x =

√
2 /∈ Q, contradiction.

Note: Saying that “the limit is outside of the space” is not sufficient. Limit in
what metric space? Correct solution along those lines needs to involve two spaces
and a uniqueness of limit argument.

(b) We use the inequality

|d (xn, yn)− d (xm, ym)| ≤ d (xn, xm) + d (yn, ym)

to show that (d (xn, yn)) is Cauchy in R: Let ε > 0. Since (xn) is Cauchy in
(X, d), there exists N1 such that for all m,n ≥ N1, d (xn, xm) < ε

2
. Since (yn)

is Cauchy in (X, d), there exists N2 such that for all m,n ≥ N2, d (yn, ym) < ε
2
.

Then,

|d (xn, yn)− d (xm, ym)| ≤ d (xn, xm) + d (yn, ym) <
ε

2
+

ε

2
= ε.

Since R is complete and (d (xn, yn)) is Cauchy, (d (xn, yn)) converges.
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2. Let (an) , (bn) be sequences in R and limn→∞ an = a ∈ R.

(a) Prove that if a > 0, then

lim inf
n→∞

anbn = a lim inf
n→∞

bn.

(b) Provide a counterexample when the statement fails with a = 0 and
lim infn→∞ bn ∈ R.

Solution.

(a) By definition, for any sequence, lim infn→∞ xn is the infimum of subsequential
limits limk→∞ xnk

, and it is known that a subsequence exists such that
limk→∞ xnk

= lim infn→∞ xn.

Denote
b = lim inf

n→∞
bn.

Then there exists subsequence (bnk
) such that limk→∞ bnk

= b. Since limn→∞ an =
a, we have limk→∞ ank

= a, and since a 6= 0, limk→∞ ank
bnk

= ab (regardless if b
is finite or not). Since a > 0,

lim inf
n→∞

anbn ≤ ab.

In the opposite direction, suppose that (ank
bnk

) is any convergent subsequence of
(anbn). Since limn→∞ an, the subsequence (ank

) has the same limit limk→∞ ank
=

a, and since a 6= 0,

lim
k→∞

bnk
= lim

k→∞

ank
bnk

ank

=
limk→∞ ank

bnk

limk→∞ ank

=
limk→∞ ank

bnk

a

thus
lim
k→∞

ank
bnk

= a lim
k→∞

bnk

Since a > 0 and limk→∞ bnk
≥ b,

a lim
k→∞

bnk
≥ ab

Thus,
lim inf
n→∞

anbn ≥ ab.

Note: Since boundedness of (bn) was not assumed, we need to be careful to use
an argument that works also when lim infn→∞ bn =∞ or −∞ as we did here, or
treat those cases separately.

(b) For an = − 1
n
, bn = n for n even and bn = 1 for n odd, we have anbn = −1 for n

even and anbn = − 1
n

for n odd, so

lim inf
n→∞

bn = 1, lim
n→∞

an = 0, lim inf
n→∞

anbn = −1

and
lim inf
n→∞

anbn = −1 6= lim
n→∞

an lim inf
n→∞

bn = 0 · 1 = 0.
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3. Prove that if fn : E → R and (fn) is uniformly convergent on every at most countable
subset of E, then (fn) is uniformly convergent on E.

Solution. First we need to find a function f that (fn) converges to on E. Suppose
(fn) is uniformly convergent on every at most countable subset of E. In particular,
(fn) converges uniformly on any set {x}, which is finite, so the pointwise limit exists
for all x ∈ E, and define function f by

f (x) = lim
n→∞

fn (x) .

Since uniformly convergent sequence of functions implies pointwise convergence with
the same limit, and limit is unique, f is the only possible uniform limit of (fn) on E.
Now, suppose that on the contrary (fn) does not converge uniformly to f on E. Then,

¬ (∀ε > 0∃N∀n ≥ N∀x ∈ E : |fn (x)− f (x)| < ε) ,

which is equivalent to

∃ε > 0∀N∃n ≥ N∃x ∈ E : |fn (x)− f (x)| ≥ ε.

So, taking such ε and N = 1, 2, . . . in turn, for each N , there exist nN and xN such
that

xN ∈ E, nN ≥ N, |fnN
(xN)− f (xN)| ≥ ε > 0,

which contradicts to uniform convergence of fn to f on the set {xN : N ∈ N}.
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4. Assume that an ∈ R for all n, and
∞∑
n=1

an
nx converges for x = x0 ∈ R. Show that then

the series converges for all x > x0. (Be careful that there is no assumption on the
signs of the an.)

Solution. Since there is no assumption on the signs of the an, this problem is
about non-absolute convergence, and criteria such as the comparison test, which gives
absolute convergence, will not be useful. The following threorem was used to prove

the convergence of the alternating series: If the partial sums of
∞∑
n=1

bn are bounded and

an ↘ 0, then
∞∑
n=1

anbn converges. So, for x > x0, write

∞∑
n=1

an
nx

=
∞∑
n=1

an
nx0

1

nx−x0

Since the series
∞∑
n=1

an
nx0

converges by assumption, it has bounded partial sums, and

since x > x0,
1

nx−x0
↘ 0. Thus,

∞∑
n=1

an
nx converges.
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5. Let
∑

n≥0 un be a convergent series with real nonnegative terms, un ≥ 0. For all n ∈ N,
we define vn = supp≥n up. Does it follow that the series

∑
n≥0 vn converge?

Solution. No. Counterexample:∑
n≥0

un = 1 +
1

4
+ 0 +

1

9
+ 0 + 0 +

1

16
+ 0 + 0 + 0 + · · · =

∑
n≥0

1

(n + 1)2
<∞

since the partial sums are nondecreasing, and the partial sums of
∑

n≥0
1

(n+1)2
are a

subsequence of the partial sums of
∑

n≥0 un. But∑
n≥0

vn = 1 +
1

4
+

1

4︸ ︷︷ ︸
1
2

+
1

9
+

1

9
+

1

9︸ ︷︷ ︸
1
3

+
1

16
+

1

16
+

1

16
+

1

16︸ ︷︷ ︸
1
4

+ · · · =
∑
n≥0

1

n + 1
=∞.

We have used that
∑∞

n=1
1
nx <∞ iff x > 1.
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6. Suppose that A ⊂ [0, 1] is a countable set with only a single limit point x0 ∈ (0, 1).
Define f : [0, 1]→ R by

f (x) =

{
1 if x ∈ A

0 otherwise

Using the definition of Riemann integral, find if the Riemann integral
1∫
0

f (x) dx exists,

and find its value if it does.

Solution. Let ε > 0. Construct a partition P as follows. Since x0 ∈ (0, 1), there
exist a0, b0 such that 0 ≤ a0 < x0 < b0 ≤ 1 and b0 − a0 < ε

2
. There are only finitely

many points of A outside of the interval [a0, b0] since if there were infinitely many,
they would have a limit point by Weierstrass theorem, which would be outside of the
interval (a0, b0) and thus distinct from x0. Denote A \ [a0, b0] = {x1, . . . , xn} . Around
each of the points xk construct and interval (ak, bk) 3 xk such that bk − ak < ε

2n
and

bk − ak <
|xk−xj |

2
for all k, j = 1, . . . , n so that the intervals do not overlap. Define

partition P by the points a0, b0, . . . , an, bn. Then, L (P, f) = 0 since each interval
contains a point not in A, and

U (P, f) = (b0 − a0) + (b1 − a1) + · · ·+ (bn − an)

<
ε

2
+ n

ε

2n
= ε.

Thus, f ∈ R [0, 1] and
1∫
0

f (x) dx = 0.

Note: The problem is asking to use the definition of Riemann integral. Thus,
a solution invoking the theorem that bounded function whose set of discontinuities
is countable is Riemann integrable is not sufficient.
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