1. Let (X, d) be a metric space.
(a) Prove or find a counterexample: If $\left(x_{n}\right)$ is a Cauchy sequence in (X, d), then $\left(x_{n}\right)$ converges.
(b) Prove that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are both Cauchy sequences in (X, d), then the sequence $\left(d\left(x_{n}, y_{n}\right)\right)$ converges.

Solution.

(a) We use the rationals \mathbb{Q}, equipped with the stardard metric. We use known facts about rationals: \mathbb{Q} is dense in \mathbb{R}, and $\sqrt{2} \notin \mathbb{Q}$. Since \mathbb{Q} is dense in \mathbb{R}, there exists a sequence $\left(x_{n}\right) \subset \mathbb{Q}, x_{n} \rightarrow \sqrt{2}$ in \mathbb{R}. Since $\left(x_{n}\right)$ converges in $\mathbb{R},\left(x_{n}\right)$ is Cauchy in \mathbb{R}. Since the \mathbb{Q} is a subspace of \mathbb{R}, the metric is the same, and thus $\left(x_{n}\right)$ is Cauchy in \mathbb{Q}. Now if $x_{n} \rightarrow x$ in \mathbb{Q}, then also $x_{n} \rightarrow x$ in \mathbb{R} and by uniqueness of limit, $x=\sqrt{2} \notin \mathbb{Q}$, contradiction.
Note: Saying that "the limit is outside of the space" is not sufficient. Limit in what metric space? Correct solution along those lines needs to involve two spaces and a uniqueness of limit argument.
(b) We use the inequality

$$
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)
$$

to show that $\left(d\left(x_{n}, y_{n}\right)\right)$ is Cauchy in \mathbb{R} : Let $\varepsilon>0$. Since $\left(x_{n}\right)$ is Cauchy in (X, d), there exists N_{1} such that for all $m, n \geq N_{1}, d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2}$. Since $\left(y_{n}\right)$ is Cauchy in (X, d), there exists N_{2} such that for all $m, n \geq N_{2}, d\left(y_{n}, y_{m}\right)<\frac{\varepsilon}{2}$. Then,

$$
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Since \mathbb{R} is complete and $\left(d\left(x_{n}, y_{n}\right)\right)$ is Cauchy, $\left(d\left(x_{n}, y_{n}\right)\right)$ converges.
2. Let $\left(a_{n}\right),\left(b_{n}\right)$ be sequences in \mathbb{R} and $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$.
(a) Prove that if $a>0$, then

$$
\liminf _{n \rightarrow \infty} a_{n} b_{n}=a \liminf _{n \rightarrow \infty} b_{n} .
$$

(b) Provide a counterexample when the statement fails with $a=0$ and $\liminf _{n \rightarrow \infty} b_{n} \in \mathbb{R}$.

Solution.

(a) By definition, for any sequence, $\lim _{\inf _{n \rightarrow \infty} x_{n}}$ is the infimum of subsequential limits $\lim _{k \rightarrow \infty} x_{n_{k}}$, and it is known that a subsequence exists such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\liminf _{n \rightarrow \infty} x_{n}$.
Denote

$$
b=\liminf _{n \rightarrow \infty} b_{n} .
$$

Then there exists subsequence $\left(b_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty} b_{n_{k}}=b$. Since $\lim _{n \rightarrow \infty} a_{n}=$ a, we have $\lim _{k \rightarrow \infty} a_{n_{k}}=a$, and since $a \neq 0, \lim _{k \rightarrow \infty} a_{n_{k}} b_{n_{k}}=a b$ (regardless if b is finite or not). Since $a>0$,

$$
\liminf _{n \rightarrow \infty} a_{n} b_{n} \leq a b .
$$

In the opposite direction, suppose that $\left(a_{n_{k}} b_{n_{k}}\right)$ is any convergent subsequence of $\left(a_{n} b_{n}\right)$. Since $\lim _{n \rightarrow \infty} a_{n}$, the subsequence $\left(a_{n_{k}}\right)$ has the same limit $\lim _{k \rightarrow \infty} a_{n_{k}}=$ a, and since $a \neq 0$,

$$
\lim _{k \rightarrow \infty} b_{n_{k}}=\lim _{k \rightarrow \infty} \frac{a_{n_{k}} b_{n_{k}}}{a_{n_{k}}}=\frac{\lim _{k \rightarrow \infty} a_{n_{k}} b_{n_{k}}}{\lim _{k \rightarrow \infty} a_{n_{k}}}=\frac{\lim _{k \rightarrow \infty} a_{n_{k}} b_{n_{k}}}{a}
$$

thus

$$
\lim _{k \rightarrow \infty} a_{n_{k}} b_{n_{k}}=a \lim _{k \rightarrow \infty} b_{n_{k}}
$$

Since $a>0$ and $\lim _{k \rightarrow \infty} b_{n_{k}} \geq b$,

$$
a \lim _{k \rightarrow \infty} b_{n_{k}} \geq a b
$$

Thus,

$$
\liminf _{n \rightarrow \infty} a_{n} b_{n} \geq a b .
$$

Note: Since boundedness of $\left(b_{n}\right)$ was not assumed, we need to be careful to use an argument that works also when $\liminf _{n \rightarrow \infty} b_{n}=\infty$ or $-\infty$ as we did here, or treat those cases separately.
(b) For $a_{n}=-\frac{1}{n}, b_{n}=n$ for n even and $b_{n}=1$ for n odd, we have $a_{n} b_{n}=-1$ for n even and $a_{n} b_{n}=-\frac{1}{n}$ for n odd, so

$$
\liminf _{n \rightarrow \infty} b_{n}=1, \quad \lim _{n \rightarrow \infty} a_{n}=0, \quad \liminf _{n \rightarrow \infty} a_{n} b_{n}=-1
$$

and

$$
\liminf _{n \rightarrow \infty} a_{n} b_{n}=-1 \neq \lim _{n \rightarrow \infty} a_{n} \liminf _{n \rightarrow \infty} b_{n}=0 \cdot 1=0
$$

3. Prove that if $f_{n}: E \rightarrow \mathbb{R}$ and $\left(f_{n}\right)$ is uniformly convergent on every at most countable subset of E, then $\left(f_{n}\right)$ is uniformly convergent on E.
Solution. First we need to find a function f that $\left(f_{n}\right)$ converges to on E. Suppose $\left(f_{n}\right)$ is uniformly convergent on every at most countable subset of E. In particular, $\left(f_{n}\right)$ converges uniformly on any set $\{x\}$, which is finite, so the pointwise limit exists for all $x \in E$, and define function f by

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

Since uniformly convergent sequence of functions implies pointwise convergence with the same limit, and limit is unique, f is the only possible uniform limit of $\left(f_{n}\right)$ on E. Now, suppose that on the contrary $\left(f_{n}\right)$ does not converge uniformly to f on E. Then,

$$
\neg\left(\forall \varepsilon>0 \exists N \forall n \geq N \forall x \in E:\left|f_{n}(x)-f(x)\right|<\varepsilon\right),
$$

which is equivalent to

$$
\exists \varepsilon>0 \forall N \exists n \geq N \exists x \in E:\left|f_{n}(x)-f(x)\right| \geq \varepsilon
$$

So, taking such ε and $N=1,2, \ldots$ in turn, for each N, there exist n_{N} and x_{N} such that

$$
x_{N} \in E, \quad n_{N} \geq N, \quad\left|f_{n_{N}}\left(x_{N}\right)-f\left(x_{N}\right)\right| \geq \varepsilon>0
$$

which contradicts to uniform convergence of f_{n} to f on the set $\left\{x_{N}: N \in \mathbb{N}\right\}$.
4. Assume that $a_{n} \in \mathbb{R}$ for all n, and $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x}}$ converges for $x=x_{0} \in \mathbb{R}$. Show that then the series converges for all $x>x_{0}$. (Be careful that there is no assumption on the signs of the a_{n}.)
Solution. Since there is no assumption on the signs of the a_{n}, this problem is about non-absolute convergence, and criteria such as the comparison test, which gives absolute convergence, will not be useful. The following threorem was used to prove the convergence of the alternating series: If the partial sums of $\sum_{n=1}^{\infty} b_{n}$ are bounded and $a_{n} \searrow 0$, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges. So, for $x>x_{0}$, write

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x_{0}}} \frac{1}{n^{x-x_{0}}}
$$

Since the series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x_{0}}}$ converges by assumption, it has bounded partial sums, and since $x>x_{0}, \frac{1}{n^{x-x_{0}}} \searrow 0$. Thus, $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x}}$ converges.
5. Let $\sum_{n \geq 0} u_{n}$ be a convergent series with real nonnegative terms, $u_{n} \geq 0$. For all $n \in \mathbb{N}$, we define $v_{n}=\sup _{p \geq n} u_{p}$. Does it follow that the series $\sum_{n \geq 0} v_{n}$ converge?
Solution. No. Counterexample:

$$
\sum_{n \geq 0} u_{n}=1+\frac{1}{4}+0+\frac{1}{9}+0+0+\frac{1}{16}+0+0+0+\cdots=\sum_{n \geq 0} \frac{1}{(n+1)^{2}}<\infty
$$

since the partial sums are nondecreasing, and the partial sums of $\sum_{n \geq 0} \frac{1}{(n+1)^{2}}$ are a subsequence of the partial sums of $\sum_{n \geq 0} u_{n}$. But

$$
\sum_{n \geq 0} v_{n}=1+\underbrace{\frac{1}{4}+\frac{1}{4}}_{\frac{1}{2}}+\underbrace{\frac{1}{9}+\frac{1}{9}+\frac{1}{9}}_{\frac{1}{3}}+\underbrace{\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}}_{\frac{1}{4}}+\cdots=\sum_{n \geq 0} \frac{1}{n+1}=\infty
$$

We have used that $\sum_{n=1}^{\infty} \frac{1}{n^{x}}<\infty$ iff $x>1$.
6. Suppose that $A \subset[0,1]$ is a countable set with only a single limit point $x_{0} \in(0,1)$. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{c}
1 \text { if } x \in A \\
0 \text { otherwise }
\end{array}\right.
$$

Using the definition of Riemann integral, find if the Riemann integral $\int_{0}^{1} f(x) d x$ exists, and find its value if it does.
Solution. Let $\varepsilon>0$. Construct a partition P as follows. Since $x_{0} \in(0,1)$, there exist a_{0}, b_{0} such that $0 \leq a_{0}<x_{0}<b_{0} \leq 1$ and $b_{0}-a_{0}<\frac{\varepsilon}{2}$. There are only finitely many points of A outside of the interval $\left[a_{0}, b_{0}\right]$ since if there were infinitely many, they would have a limit point by Weierstrass theorem, which would be outside of the interval $\left(a_{0}, b_{0}\right)$ and thus distinct from x_{0}. Denote $A \backslash\left[a_{0}, b_{0}\right]=\left\{x_{1}, \ldots, x_{n}\right\}$. Around each of the points x_{k} construct and interval $\left(a_{k}, b_{k}\right) \ni x_{k}$ such that $b_{k}-a_{k}<\frac{\varepsilon}{2 n}$ and $b_{k}-a_{k}<\frac{\left|x_{k}-x_{j}\right|}{2}$ for all $k, j=1, \ldots, n$ so that the intervals do not overlap. Define partition P by the points $a_{0}, b_{0}, \ldots, a_{n}, b_{n}$. Then, $L(P, f)=0$ since each interval contains a point not in A, and

$$
\begin{aligned}
U(P, f) & =\left(b_{0}-a_{0}\right)+\left(b_{1}-a_{1}\right)+\cdots+\left(b_{n}-a_{n}\right) \\
& <\frac{\varepsilon}{2}+n \frac{\varepsilon}{2 n}=\varepsilon .
\end{aligned}
$$

Thus, $f \in \mathcal{R}[0,1]$ and $\int_{0}^{1} f(x) d x=0$.
Note: The problem is asking to use the definition of Riemann integral. Thus, a solution invoking the theorem that bounded function whose set of discontinuities is countable is Riemann integrable is not sufficient.

