- 1. Let (X, d) be a metric space.
 - (a) Prove or find a counterexample: If (x_n) is a Cauchy sequence in (X, d), then (x_n) converges.
 - (b) Prove that if (x_n) and (y_n) are both Cauchy sequences in (X, d), then the sequence $(d(x_n, y_n))$ converges.
- 2. Let (a_n) , (b_n) be sequences in \mathbb{R} and suppose $\lim_{n\to\infty} a_n = a \in \mathbb{R}$.
 - (a) Prove that if a > 0, then

$$\liminf_{n \to \infty} a_n b_n = a \liminf_{n \to \infty} b_n.$$

Hint: There is no assumption that $\liminf_{n\to\infty} b_n$ is finite. You can do the finite and infinite cases separately, or try to do them together. Hint: You must clearly indicate where the assumption $a \neq 0$ is used in the proof.

- (b) Provide a counterexample when the statement fails with a = 0 and $\liminf_{n \to \infty} b_n \in \mathbb{R}$.
- 3. Prove that $f_n : E \to \mathbb{R}$ and (f_n) is uniformly convergent on every finite or countable subset of E, then (f_n) is uniformly convergent on E.
- 4. Assume that $a_n \in \mathbb{R}$ for all n, and $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ converges for $x = x_0 \in \mathbb{R}$. Show that then the series converges for all $x > x_0$. (Be careful: there is **no assumption** on the signs of the a_n .)
- 5. Let $\sum_{n\geq 0} u_n$ be a convergent series with real nonnegative terms, $u_n \geq 0$. For all $n \in \mathbb{N}$, we define $v_n = \sup_{p\geq n} u_p$. Does it follow that the series $\sum_{n\geq 0} v_n$ converges?
- 6. Suppose that $A \subset [0,1]$ is a countable set with only a single limit point $x_0 \in (0,1)$. Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

Using the definition of Riemann integral, find if the Riemann integral $\int_{0}^{1} f(x) dx$ exists, and find its value if it does.