PHD PRELIMINARY EXAMINATION IN APPLIED ANALYSIS
JANUARY 25, 2019

Name:

e The examination consists of 6 problems.

e Each problem is worth 20 points. Unless specified otherwise, numbered parts of a
problem have equal weight.

e Justify your solutions: cite theorems that you use, provide counter-examples, give
explanations.

e Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.

e Please begin solution to every problem on a new page; write only on one side of
paper; number all pages throughout; and, just in case, write your name on every
page.

e Do not submit scratch paper or multiple alternative solutions. If you do, we will
grade the first solution to its end and we will not attempt to fish for the truth.

e Ask the proctor if you have any questions.

Good luck!

Total

Examination committee: Jan Mandel, Dmitriy Ostrovskiy, Burt Simon (chair).



(1) Let {z,,} be a sequence of real numbers. Prove that liminf,, . z, < limsup,,_,. -
Hint: You can use the fact that the infimum of a set is less than or equal to the
supremum.

Solution. By definition,

liminfz, = lim a,, a,=inf{z,, x,11,...}

n—oo n—o0
limsupx, = lim b,, b, =sup{z,, Tys1,...}
n—o00 n—o0

where a,,, b, € [—00,00]. We were not asked to prove the existence of liminf, . x,
and lim sup,,_,, Z», S0 we just state this. As we are allowed to use, a,, < b, thus

liminfz, = lim a, < lim b, = limsup x,
n—o0 n—oo n—oo n—oo

by a standard property of limits (which holds also when one or both of the limits are
infinite).



(2) Let f: R — R be differentiable, and suppose f'(z) > 0, € (a,b). Prove that f is
strictly increasing on [a, b].

Solution. Let a < z < y < b. We need to show that f(z) < f(y). Since
f : R — R is differentiable, f is continous on R and thus on [z,y|. The mean value
theorem states that if < y and f is continous on [z,y]| and differentiable on (z,y),

then there exists & € (z,y) such that f'(§) = w Taking this &, we have
f(€) >0since a <x <& <y <b, and thus
fly)—f@)=f(&)@y—z) >0
0 >0
>

Note: we do not need to assume that f(z) >0 at = a or x = b.



(3) Let {f.} be a sequence of real-valued functions on D C R such that |f,(z)| < M, <
oo for all n and all x € D.
(a) Prove thatif Y | M, converges, then > f, converges uniformly on D. (This
is the Weierstrass M-test.)
(b) Show that the converse is not true by constructing a counterexample.

Solution. For each z € D, ay = Y.~ |f.(z)| is a monotonic sequence bounded
below by zero and above by > 7 M, < oo, and therefore converges by the Mono-
tonic Convergence Theorem (Rudin, Theorem 3.14). Thus, > >~ f,(z) converges
absolutely, and therefore converges (Rudin, Theorem 3.45). Let g(z) = > | fu(x).
Choose € > 0. Since >, M, converges, there exists N so that > .. M, < e
Then for all x € D,

9@) =Y fu@)| = | Y L@ < Y @< Y Mo<e
n=1 n=N-+1 n=N-+1 n=N+1

Hence, ij:l fn — g as N — oo, uniformly on D.

To show the converse is false, consider f,(x) = (=1)"™'/n. Then M, = 1/n, so
Yoo M, diverges. But ), f,, converges uniformly since for all z € D, 25:1 fo(x) =
SV (=1)™1/n converges as N — oo by the alternating series theorem (Rudin,
Theorem 3.43), since ¢, = (—1)"™! /n is alternating sequence, |c,| is decreasing, and
¢, — 0 as n — oo.



(4) Let {z,} be a bounded sequence of real numbers.
(a) Prove that z,, — x if and only if every convergent subsequence of {z,} converges
to x.
(b) Find a counterexample to part (a) if the sequence is not bounded.

Solution. Suppose z,, — = and z,, — y # x. Let e = |x — y|. Since x # y, we
have € > 0. There exists N; such tha that n > N implies |z, — 2| < €¢/2 and N, such
that n; > Ny implies |x,, — y| < €/2. Choose N = max {Ny, No}. Then the reverse
triangle inequality yields

|0, — x| 2 |o = y| = |20, =yl > €/2

which is a contradiction.

Conversely, suppose every convergent subsequence converges to x. If x,, does not
converge to x then there exists € > 0 such that for all N, there exists an n(N) >
N with |z, — x| > e. Construct a strictly increasing sequence of integer numbers
according to the following recursive rule: n; = 1, n;1; = n(n;). By construction, all
elements of the subsequence {z,,} satisty |z,, — x| > €. Since {z,} is bounded, so is
{zy,}. By the Bolzano-Weierstrass Theorem, there must be a convergent subsequence
of {z,,}, but that convergent subsequence cannot converge to x since every element
differs from x by at least €. This contradicts the original assumption.

If {x,} is not bounded then the assertion in part (a) is false. For example, let
xp, = 0if n is odd and z,, = n if n is even. Every convergent subsequence converges
to 0, but the sequence itself does not converge.



(5) Let (X,d) be a metric space, and let A C X. Define A (the boundary of A) to be
the set of all points in X for which every neighborhood contains at least one point
in A and at least one point in A°. Prove that 0A = AN Ac.

Solution. Let x € JA. For all x € X either x € A or x € A°. Suppose = € A and

therefore z € A. Because every neighborhood of  contains at least one point from
A¢ and x ¢ A°, x must be a limit point of A° and thus z € A¢. Because € A and
r € Ac, x € AN Ac. If x € A° it means that © € A¢. Because every neighborhood
of z contains at least one point from A and = ¢ A, x must be a limit point of A and
thus © € A. Because z € A and x € A¢, x € AN Ae.
Let x € AN A¢ and suppose € A. Then z € A¢\ A° (because x ¢ A°) and therefore
is a limit point of A¢, which means that every neighborhood of x contains a point
from A¢ and also from A (x itself). If x € A° then + € A\ A and therefore is a
limit point of A, which means that every neighborhood of z contains a point from
A¢ (z € A°) and also from A.



(6) Let f: R — R be Riemann integrable on every interval [0,¢], t < oo and define

t
I:tliglo/o f(z)dz

if the limit exists. We say that f is absolutely integrable on [0, co0) if

t
tlr)rrolo/o |f(z)|dx < oo.

(a) Find an example of a continuous function f where [ exists, but f is not absolutely
integrable on [0, 00).

(b) Find an example of a continuous function f that is absolutely integrable on
[0, 00), but is not bounded.

(c) Prove that if f is absolutely integrable on [0, 00) then I exists.

Solution.
(a) Define f(x) = 325, For & € [nm, (n+ )],
| sin(z)| | sin(x)|
ntm S |f(z)| < T D
50 9 (n+1)m )
it r /m F@)lde < 7=z

It follows that f(z) is not absolutely integrable on [0, 00), since > oo —23— = oo.

(n+2)7
On the other hand, if ¢, = [; f(z)dz then {c,} converges by the alternating series
theorem. So, if ¢ € (nm, (n + 1)) then |¢, — [y f(z)da| <

ﬁ. It follows that
fo x)dx converges.

(b) Define f(x) as follows

n(l—n’lz—n|), r€[n—=n+- =23,...
P (R A (R R
0, otherwise

f(n) = n means that f(z) is not bounded, but [ |f(z)|dz = [; f(z)dz is mono-

tonically increasing function bounded from above by > 7, n12 and therefore it has

limit at ¢ — oo. Note: f(z) is zero everywhere except near integer points, n, where
it looks like an isosceles triangle with height n and base 2/n3.

(¢) Choose € > 0 and t* large enough so that [2°|f(z)|dz < e. Let I, = [ f(x)dx.
For any t* < n < m, we have |I,, — I,| < [7"|f( )|da:' < €. Since € was arbltrary,
{I,,} is a Cauchy sequence. Let I = limI,. Since f x)dr — 0, [} f(x)dr also
converges to I.




