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Name:

• The examination consists of 6 problems.
• Each problem is worth 20 points. Unless specified otherwise, numbered parts of a

problem have equal weight.
• Justify your solutions: cite theorems that you use, provide counter-examples, give

explanations.
• Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.
• Please begin solution to every problem on a new page; write only on one side of
paper; number all pages throughout; and, just in case, write your name on every
page.
• Do not submit scratch paper or multiple alternative solutions. If you do, we will

grade the first solution to its end and we will not attempt to fish for the truth.
• Ask the proctor if you have any questions.

Good luck!
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Examination committee: Jan Mandel, Dmitriy Ostrovskiy, Burt Simon (chair).



(1) Let {xn} be a sequence of real numbers. Prove that lim infn→∞ xn ≤ lim supn→∞ xn.
Hint: You can use the fact that the infimum of a set is less than or equal to the
supremum.

Solution. By definition,

lim inf
n→∞

xn = lim
n→∞

an, an = inf {xn, xn+1, . . .}

lim sup
n→∞

xn = lim
n→∞

bn, bn = sup {xn, xn+1, . . .}

where an, bn ∈ [−∞,∞]. We were not asked to prove the existence of lim infn→∞ xn
and lim supn→∞ xn, so we just state this. As we are allowed to use, an ≤ bn, thus

lim inf
n→∞

xn = lim
n→∞

an ≤ lim
n→∞

bn = lim sup
n→∞

xn

by a standard property of limits (which holds also when one or both of the limits are
infinite).



(2) Let f : R → R be differentiable, and suppose f ′(x) > 0, x ∈ (a, b). Prove that f is
strictly increasing on [a, b].

Solution. Let a ≤ x < y ≤ b. We need to show that f (x) < f (y). Since
f : R → R is differentiable, f is continous on R and thus on [x, y]. The mean value
theorem states that if x < y and f is continous on [x, y] and differentiable on (x, y),

then there exists ξ ∈ (x, y) such that f ′ (ξ) = f(y)−f(x)
y−x . Taking this ξ, we have

f ′ (ξ) > 0 since a ≤ x < ξ < y ≤ b, and thus

f (y)− f (x) = f ′ (ξ)︸ ︷︷ ︸
>0

(y − x)︸ ︷︷ ︸
>0

> 0.

Note: we do not need to assume that f (x) > 0 at x = a or x = b.



(3) Let {fn} be a sequence of real-valued functions on D ⊂ R such that |fn(x)| ≤Mn <
∞ for all n and all x ∈ D.
(a) Prove that if

∑∞
n=1Mn converges, then

∑∞
n=1 fn converges uniformly on D. (This

is the Weierstrass M-test.)
(b) Show that the converse is not true by constructing a counterexample.

Solution. For each x ∈ D, aN =
∑N

n=1 |fn(x)| is a monotonic sequence bounded
below by zero and above by

∑∞
n=1Mn < ∞, and therefore converges by the Mono-

tonic Convergence Theorem (Rudin, Theorem 3.14). Thus,
∑∞

n=1 fn(x) converges
absolutely, and therefore converges (Rudin, Theorem 3.45). Let g(x) =

∑∞
n=1 fn(x).

Choose ε > 0. Since
∑∞

n=1Mn converges, there exists N so that
∑∞

n=N+1Mn < ε.
Then for all x ∈ D,∣∣∣∣∣g(x)−

N∑
n=1

fn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|fn(x)| ≤
∞∑

n=N+1

Mn < ε.

Hence,
∑N

n=1 fn → g as N →∞, uniformly on D.
To show the converse is false, consider fn(x) = (−1)n+1/n. Then Mn = 1/n, so∑∞
n=1Mn diverges. But

∑∞
n=1 fn converges uniformly since for all x ∈ D,

∑N
n=1 fn (x) =∑N

n=1(−1)n+1/n converges as N → ∞ by the alternating series theorem (Rudin,
Theorem 3.43), since cn = (−1)n+1/n is alternating sequence, |cn| is decreasing, and
cn → 0 as n→∞.



(4) Let {xn} be a bounded sequence of real numbers.
(a) Prove that xn → x if and only if every convergent subsequence of {xn} converges

to x.
(b) Find a counterexample to part (a) if the sequence is not bounded.

Solution. Suppose xn → x and xni
→ y 6= x. Let ε = |x − y|. Since x 6= y, we

have ε > 0. There exists N1 such tha that n > N implies |xn− x| < ε/2 and N2 such
that ni > N2 implies |xni

− y| < ε/2. Choose N = max {N1, N2}. Then the reverse
triangle inequality yields

|xni
− x| ≥ |x− y| − |xni

− y| ≥ ε/2

which is a contradiction.
Conversely, suppose every convergent subsequence converges to x. If xn does not

converge to x then there exists ε > 0 such that for all N , there exists an n(N) >
N with |xn − x| > ε. Construct a strictly increasing sequence of integer numbers
according to the following recursive rule: n1 = 1, ni+1 = n(ni). By construction, all
elements of the subsequence {xni

} satisfy |xni
− x| > ε. Since {xn} is bounded, so is

{xni
}. By the Bolzano-Weierstrass Theorem, there must be a convergent subsequence

of {xni
}, but that convergent subsequence cannot converge to x since every element

differs from x by at least ε. This contradicts the original assumption.
If {xn} is not bounded then the assertion in part (a) is false. For example, let

xn = 0 if n is odd and xn = n if n is even. Every convergent subsequence converges
to 0, but the sequence itself does not converge.



(5) Let (X, d) be a metric space, and let A ⊂ X. Define ∂A (the boundary of A) to be
the set of all points in X for which every neighborhood contains at least one point
in A and at least one point in Ac. Prove that ∂A = Ā ∩ Āc.

Solution. Let x ∈ ∂A. For all x ∈ X either x ∈ A or x ∈ Ac. Suppose x ∈ A and
therefore x ∈ Ā. Because every neighborhood of x contains at least one point from
Ac and x /∈ Ac, x must be a limit point of Ac and thus x ∈ Āc. Because x ∈ Ā and
x ∈ Āc, x ∈ Ā ∩ Āc. If x ∈ Ac it means that x ∈ Āc. Because every neighborhood
of x contains at least one point from A and x /∈ A, x must be a limit point of A and
thus x ∈ Ā. Because x ∈ Ā and x ∈ Āc, x ∈ Ā ∩ Āc.
Let x ∈ Ā∩ Āc and suppose x ∈ A. Then x ∈ Āc \Ac (because x /∈ Ac) and therefore
is a limit point of Ac, which means that every neighborhood of x contains a point
from Ac and also from A (x itself). If x ∈ Ac then x ∈ Ā \ A and therefore is a
limit point of A, which means that every neighborhood of x contains a point from
Ac (x ∈ Ac) and also from A.



(6) Let f : R→ R be Riemann integrable on every interval [0, t], t <∞ and define

I = lim
t→∞

∫ t

0

f(x)dx

if the limit exists. We say that f is absolutely integrable on [0,∞) if

lim
t→∞

∫ t

0

|f(x)|dx <∞.

(a) Find an example of a continuous function f where I exists, but f is not absolutely
integrable on [0,∞).

(b) Find an example of a continuous function f that is absolutely integrable on
[0,∞), but is not bounded.

(c) Prove that if f is absolutely integrable on [0,∞) then I exists.

Solution.
(a) Define f(x) = sin(x)

(x+1)
. For x ∈ [nπ, (n+ 1)π],

| sin(x)|
(n+ 2)π

< |f(x)| < | sin(x)|
(n+ 1)π

,

so
2

(n+ 2)π
<

∫ (n+1)π

nπ

|f(x)|dx < 2

(n+ 1)π
.

It follows that f(x) is not absolutely integrable on [0,∞), since
∑∞

n=0
2

(n+2)π
= ∞.

On the other hand, if cn =
∫ nπ
0
f(x)dx then {cn} converges by the alternating series

theorem. So, if t ∈ (nπ, (n + 1)π) then |cn −
∫ t
0
f(x)dx| < 2

(n+1)π
. It follows that∫ t

0
f(x)dx converges.

(b) Define f(x) as follows

f(x) =

{
n(1− n3|x− n|), x ∈

[
n− 1

n3 , n+ 1
n3

]
, n = 2, 3, ...

0, otherwise

f(n) = n means that f(x) is not bounded, but
∫ t
0
|f(x)|dx =

∫ t
0
f(x)dx is mono-

tonically increasing function bounded from above by
∑∞

n=2
1
n2 and therefore it has

limit at t → ∞. Note: f(x) is zero everywhere except near integer points, n, where
it looks like an isosceles triangle with height n and base 2/n3.

(c) Choose ε > 0 and t∗ large enough so that
∫∞
t∗
|f(x)|dx < ε. Let In =

∫ n
0
f(x)dx.

For any t∗ < n < m, we have |Im − In| ≤
∫ m
n
|f(x)|dx < ε. Since ε was arbitrary,

{In} is a Cauchy sequence. Let I = lim In. Since
∫ t
btc f(x)dx → 0,

∫ t
0
f(x)dx also

converges to I.


