PHD PRELIMINARY EXAMINATION IN APPLIED ANALYSIS JANUARY 25, 2019

Name: \qquad

- The examination consists of 6 problems.
- Each problem is worth 20 points. Unless specified otherwise, numbered parts of a problem have equal weight.
- Justify your solutions: cite theorems that you use, provide counter-examples, give explanations.
- Write legibly using a dark pencil or pen. Rewrite your solution if it gets too messy.
- Please begin solution to every problem on a new page; write only on one side of paper; number all pages throughout; and, just in case, write your name on every page.
- Do not submit scratch paper or multiple alternative solutions. If you do, we will grade the first solution to its end and we will not attempt to fish for the truth.
- Ask the proctor if you have any questions.

Good luck!

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad

Total \qquad

Examination committee: Jan Mandel, Dmitriy Ostrovskiy, Burt Simon (chair).
(1) Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Prove that $\liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n}$. Hint: You can use the fact that the infimum of a set is less than or equal to the supremum.

Solution. By definition,

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} a_{n}, \quad a_{n}=\inf \left\{x_{n}, x_{n+1}, \ldots\right\} \\
& \limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} b_{n}, \quad b_{n}=\sup \left\{x_{n}, x_{n+1}, \ldots\right\}
\end{aligned}
$$

where $a_{n}, b_{n} \in[-\infty, \infty]$. We were not asked to prove the existence of $\lim _{\inf }^{n \rightarrow \infty}$ x_{n} and $\lim \sup _{n \rightarrow \infty} x_{n}$, so we just state this. As we are allowed to use, $a_{n} \leq b_{n}$, thus

$$
\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}=\limsup _{n \rightarrow \infty} x_{n}
$$

by a standard property of limits (which holds also when one or both of the limits are infinite).
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, and suppose $f^{\prime}(x)>0, x \in(a, b)$. Prove that f is strictly increasing on $[a, b]$.

Solution. Let $a \leq x<y \leq b$. We need to show that $f(x)<f(y)$. Since $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, f is continous on \mathbb{R} and thus on $[x, y]$. The mean value theorem states that if $x<y$ and f is continous on $[x, y]$ and differentiable on (x, y), then there exists $\xi \in(x, y)$ such that $f^{\prime}(\xi)=\frac{f(y)-f(x)}{y-x}$. Taking this ξ, we have $f^{\prime}(\xi)>0$ since $a \leq x<\xi<y \leq b$, and thus

$$
f(y)-f(x)=\underbrace{f^{\prime}(\xi)}_{>0} \underbrace{(y-x)}_{>0}>0 .
$$

Note: we do not need to assume that $f(x)>0$ at $x=a$ or $x=b$.
(3) Let $\left\{f_{n}\right\}$ be a sequence of real-valued functions on $D \subset \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq M_{n}<$ ∞ for all n and all $x \in D$.
(a) Prove that if $\sum_{n=1}^{\infty} M_{n}$ converges, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on D. (This is the Weierstrass M-test.)
(b) Show that the converse is not true by constructing a counterexample.

Solution. For each $x \in D, a_{N}=\sum_{n=1}^{N}\left|f_{n}(x)\right|$ is a monotonic sequence bounded below by zero and above by $\sum_{n=1}^{\infty} M_{n}<\infty$, and therefore converges by the Monotonic Convergence Theorem (Rudin, Theorem 3.14). Thus, $\sum_{n=1}^{\infty} f_{n}(x)$ converges absolutely, and therefore converges (Rudin, Theorem 3.45). Let $g(x)=\sum_{n=1}^{\infty} f_{n}(x)$. Choose $\epsilon>0$. Since $\sum_{n=1}^{\infty} M_{n}$ converges, there exists N so that $\sum_{n=N+1}^{\infty} M_{n}<\epsilon$. Then for all $x \in D$,

$$
\left|g(x)-\sum_{n=1}^{N} f_{n}(x)\right|=\left|\sum_{n=N+1}^{\infty} f_{n}(x)\right| \leq \sum_{n=N+1}^{\infty}\left|f_{n}(x)\right| \leq \sum_{n=N+1}^{\infty} M_{n}<\epsilon
$$

Hence, $\sum_{n=1}^{N} f_{n} \rightarrow g$ as $N \rightarrow \infty$, uniformly on D.
To show the converse is false, consider $f_{n}(x)=(-1)^{n+1} / n$. Then $M_{n}=1 / n$, so $\sum_{n=1}^{\infty} M_{n}$ diverges. But $\sum_{n=1}^{\infty} f_{n}$ converges uniformly since for all $x \in D, \sum_{n=1}^{N} f_{n}(x)=$ $\sum_{n=1}^{N}(-1)^{n+1} / n$ converges as $N \rightarrow \infty$ by the alternating series theorem (Rudin, Theorem 3.43), since $c_{n}=(-1)^{n+1} / n$ is alternating sequence, $\left|c_{n}\right|$ is decreasing, and $c_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(4) Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers.
(a) Prove that $x_{n} \rightarrow x$ if and only if every convergent subsequence of $\left\{x_{n}\right\}$ converges to x.
(b) Find a counterexample to part (a) if the sequence is not bounded.

Solution. Suppose $x_{n} \rightarrow x$ and $x_{n_{i}} \rightarrow y \neq x$. Let $\epsilon=|x-y|$. Since $x \neq y$, we have $\epsilon>0$. There exists N_{1} such tha that $n>N$ implies $\left|x_{n}-x\right|<\epsilon / 2$ and N_{2} such that $n_{i}>N_{2}$ implies $\left|x_{n_{i}}-y\right|<\epsilon / 2$. Choose $N=\max \left\{N_{1}, N_{2}\right\}$. Then the reverse triangle inequality yields

$$
\left|x_{n_{i}}-x\right| \geq|x-y|-\left|x_{n_{i}}-y\right| \geq \epsilon / 2
$$

which is a contradiction.
Conversely, suppose every convergent subsequence converges to x. If x_{n} does not converge to x then there exists $\epsilon>0$ such that for all N, there exists an $n(N)>$ N with $\left|x_{n}-x\right|>\epsilon$. Construct a strictly increasing sequence of integer numbers according to the following recursive rule: $n_{1}=1, n_{i+1}=n\left(n_{i}\right)$. By construction, all elements of the subsequence $\left\{x_{n_{i}}\right\}$ satisfy $\left|x_{n_{i}}-x\right|>\epsilon$. Since $\left\{x_{n}\right\}$ is bounded, so is $\left\{x_{n_{i}}\right\}$. By the Bolzano-Weierstrass Theorem, there must be a convergent subsequence of $\left\{x_{n_{i}}\right\}$, but that convergent subsequence cannot converge to x since every element differs from x by at least ϵ. This contradicts the original assumption.

If $\left\{x_{n}\right\}$ is not bounded then the assertion in part (a) is false. For example, let $x_{n}=0$ if n is odd and $x_{n}=n$ if n is even. Every convergent subsequence converges to 0 , but the sequence itself does not converge.
(5) Let (X, d) be a metric space, and let $A \subset X$. Define ∂A (the boundary of A) to be the set of all points in X for which every neighborhood contains at least one point in A and at least one point in A^{c}. Prove that $\partial A=\bar{A} \cap \bar{A}^{c}$.

Solution. Let $x \in \partial A$. For all $x \in X$ either $x \in A$ or $x \in A^{c}$. Suppose $x \in A$ and therefore $x \in \bar{A}$. Because every neighborhood of x contains at least one point from A^{c} and $x \notin A^{c}, x$ must be a limit point of A^{c} and thus $x \in \bar{A}^{c}$. Because $x \in \bar{A}$ and $x \in \bar{A}^{c}, x \in \bar{A} \cap \bar{A}^{c}$. If $x \in A^{c}$ it means that $x \in \bar{A}^{c}$. Because every neighborhood of x contains at least one point from A and $x \notin A, x$ must be a limit point of A and thus $x \in \bar{A}$. Because $x \in \bar{A}$ and $x \in \bar{A}^{c}, x \in \bar{A} \cap \bar{A}^{c}$.
Let $x \in \bar{A} \cap \bar{A}^{c}$ and suppose $x \in A$. Then $x \in \bar{A}^{c} \backslash A^{c}$ (because $x \notin A^{c}$) and therefore is a limit point of A^{c}, which means that every neighborhood of x contains a point from A^{c} and also from A (x itself). If $x \in A^{c}$ then $x \in \bar{A} \backslash A$ and therefore is a limit point of A, which means that every neighborhood of x contains a point from $A^{c}\left(x \in A^{c}\right)$ and also from A.
(6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Riemann integrable on every interval $[0, t], t<\infty$ and define

$$
I=\lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x
$$

if the limit exists. We say that f is absolutely integrable on $[0, \infty)$ if

$$
\lim _{t \rightarrow \infty} \int_{0}^{t}|f(x)| d x<\infty
$$

(a) Find an example of a continuous function f where I exists, but f is not absolutely integrable on $[0, \infty)$.
(b) Find an example of a continuous function f that is absolutely integrable on $[0, \infty)$, but is not bounded.
(c) Prove that if f is absolutely integrable on $[0, \infty)$ then I exists.

Solution.

(a) Define $f(x)=\frac{\sin (x)}{(x+1)}$. For $x \in[n \pi,(n+1) \pi]$,

$$
\frac{|\sin (x)|}{(n+2) \pi}<|f(x)|<\frac{|\sin (x)|}{(n+1) \pi}
$$

so

$$
\frac{2}{(n+2) \pi}<\int_{n \pi}^{(n+1) \pi}|f(x)| d x<\frac{2}{(n+1) \pi}
$$

It follows that $f(x)$ is not absolutely integrable on $[0, \infty)$, since $\sum_{n=0}^{\infty} \frac{2}{(n+2) \pi}=\infty$. On the other hand, if $c_{n}=\int_{0}^{n \pi} f(x) d x$ then $\left\{c_{n}\right\}$ converges by the alternating series theorem. So, if $t \in(n \pi,(n+1) \pi)$ then $\left|c_{n}-\int_{0}^{t} f(x) d x\right|<\frac{2}{(n+1) \pi}$. It follows that $\int_{0}^{t} f(x) d x$ converges.
(b) Define $f(x)$ as follows

$$
f(x)= \begin{cases}n\left(1-n^{3}|x-n|\right), & x \in\left[n-\frac{1}{n^{3}}, n+\frac{1}{n^{3}}\right], n=2,3, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

$f(n)=n$ means that $f(x)$ is not bounded, but $\int_{0}^{t}|f(x)| d x=\int_{0}^{t} f(x) d x$ is monotonically increasing function bounded from above by $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ and therefore it has limit at $t \rightarrow \infty$. Note: $f(x)$ is zero everywhere except near integer points, n, where it looks like an isosceles triangle with height n and base $2 / n^{3}$.
(c) Choose $\epsilon>0$ and t^{*} large enough so that $\int_{t^{*}}^{\infty}|f(x)| d x<\epsilon$. Let $I_{n}=\int_{0}^{n} f(x) d x$. For any $t^{*}<n<m$, we have $\left|I_{m}-I_{n}\right| \leq \int_{n}^{m}|f(x)| d x<\epsilon$. Since ϵ was arbitrary, $\left\{I_{n}\right\}$ is a Cauchy sequence. Let $I=\lim I_{n}$. Since $\int_{\lfloor t\rfloor}^{t} f(x) d x \rightarrow 0, \int_{0}^{t} f(x) d x$ also converges to I.

