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ABSTRACT 
 Light speed has come to be known as the cosmic speed limit on natural phenomena in 
their local space-time. But this is the business of special relativity. General relativity, on the 
other hand, provides a broader picture within which superluminal speeds, properly defined are 
not only possible but seem to have been a reality since the inception of the universe. According 
to cosmology, parts of the universe may be receding from us at FTL (faster than light) speeds, 
which would put them completely beyond the cosmic horizon and, therefore, completely isolated 
from us. Objects in those isolated regions of the universe e.g., galaxies may be nearly at rest with 
respect to their local environment as well as the cosmic microwave background radiation, but 
their respective environments are receding from one another at speeds exceeding that of light. 

 Alcubierre has proposed a means by which we may be able to mimic the inherent 
expansion mechanism of the universe. This proposed metric describes the curvature of space-
time surrounding a region of flat space housing a starship that is at rest with respect to its local 
environment. In effect the starship would be “propelled” in much the same way as a person 
standing on a conveyer belt inside an airport terminal would without having to take a single step 
(putting aside how they arrived on that belt). The advantages to this kind of scenario are great as 
we shall see later, because motion that is due to the expansion and contraction of space-time 
itself is inherently immune to the “penalties” imposed by special relativity on objects traveling in 
space. Alcubierre has shown that a starship equipped with such a drive would be in free fall even 
when it accelerates relative to observers outside the effects of the warp apparatus; the 
environment of such a vessel would be travelling along a geodesic and any measured 
acceleration of the vessel would be due to the environment itself accelerating. Of course, there 
would be significant tidal forces at the edges of the vessel’s local environment. And those tidal 
forces would be proportional to the amount of curvature, which would in turn be proportional to 
how well-defined those edges would be. We keep in mind that space-time is referred to as a four-
dimensional mathematical structure that, in fact, vibrates, contracts, expands and can be warped 
by mass and energy. Thus, the idea behind warp drive is a purely local expansion of the space-
time “behind” the ship and an opposite contraction of the space-time in the direction in which the 
ship is meant to travel (in front of the ship), which is reminiscent of the science fiction space-



time distortion associated with “warp drive”. In fact, it was the word warp in the title “warp 
drive” from science fiction that induced this investigation of the possibility of FTL travel by 
warping space-time.  

 

INTRODUCTION 

 The postulates of relativity theory tell us that movement through space is no longer 
independent of movement through time. We, therefore, conclude that space and time are no 
longer independent but are intertwined in such a way that movement through time, the rate at 
which “clocks” tick, depends on the manner of movement through space, that is it depends on 
velocity. Thus, space and time are no longer separate entities that could be treated independently; 
space in itself is no longer absolute, and neither is time. To quote Minkowski, “Henceforth space 
by itself, and time by itself, are doomed to fade away into mere shadows, and only a union of the 
two will preserve an independent reality” (Minkowski, 1908). And to quote his former student 
Albert Einstein, “The distinction between past, present and future is only a stubbornly persistent 
illusion”. 
 
It is with this kind of understanding that we embark on this brief journey to examine a warp drive 
concept proposed by theoretical physicist Miguel Alcubierre (Alcubbiere,1994) while working at 
the Physics and Astronomy Department of Cardiff University in Wales, Great Britain.   
 
What is most attractive about the idea of FTL (Faster than Light) speed is that it would allow a 
starship to travel at arbitrarily high speeds, free of the limitations imposed by special relativity on 
motions in local space-time, which brings us immediately to the following clarification regarding 
variation of mass with velocity: 
m(u) = !!
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#
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,             (1-1) 

where 𝑚& is the rest mass as measured by observers at rest with respect to the mass, u is the 
absolute speed and c is the speed of light. Please note that c ≈ 3× 10'm/s but it is often treated as 
c = 1. Clearly, as u approaches c, the observed mass m grows without bound. Thus, the mass of 
the starship, however small to begin with, would be an unbounded function of its speed. It is this 
limitation that makes it impractical to aim for speeds comparable to the speed of light in a local 
space-time. 

 Of course, light (electromagnetic radiation) has no rest mass, which is why it can, and 
indeed must, travel at speed c; also, c is dictated by Maxwell’s equations. 

 

Definition of force and Relativistic Kinetic Energy 

In this section we present reasons for avoiding challenging the speed of light in its own domain, 
local space-time, and why resorting to a radically different approach, manipulating space-time 



itself, is a much more practical alternative, despite the as-yet unsolved obstacles. Consider the 
following special-relativistic equation for the force 

F = m()
(*
	+ 𝑢 (!

(*
,               (2-1) 

where m is relativistic mass and is given by equation (1-1)                                                       

Equation (2-1) implies that F is a function of several quantities which are: 

a. the mass m of the starship,  
b. acceleration  ()

(*
,  

c. speed u and 
d.  �̇� = (!

(*
. 

All of these are increasing in magnitude, without bound. Another issue associated with any 
attempt to travel at a relativistic speed is time dilation, which would “delay” all clocks in the 
frame of the travelling astronauts allowing them, in reality and for all intents and purposes, to 
travel into the future that is, slower than do people relatively at rest.1 See equation 2-2 
(Weinberg) 

𝑑𝑡+ = 𝑑𝑡√1	 − 𝑣,           (2-2) 

So what would it take to travel at the speed of light? 

Tackling kinetic energy in the context of special relativity provides the following insight; that the 
total energy E of a particle, its momentum p = m(v)v and its rest-mass energy 𝐸& =	𝑚&𝑐, ≤ 𝐸 
must satisfy 

𝐸, 	− 	𝐸&, = 𝑝,𝑐, = 𝐸&,
-#

.#$-#
.            (2-3) 

Clearly, if an object can move at speed v = c with 0 < 𝐸 = 	𝐸& 31 − 𝑣, 𝑐,⁄⁄ 	< 	∞, then the 
following equivalent statements must hold: 

(𝐸& = 0 and 𝑚& = 0)     ó    (v = c).2            (2-4) 

The above discussion demonstrates that in special relativity, c is an unattainable upper bound on 
the speed 𝑣 = 31 − 𝐸&, 𝐸,⁄ 𝑐 < 𝑐 of massive objects moving through space-time, and that 
electromagnetic radiation, being massless, must indeed move at the speed of light; and even if, 

 
1 Time dilation can also be the result of a gravitational difference between two 
locations, a fact that is accounted for in satellite design since satellites operate in an 
environment where gravity is decreased, so they travel into the future faster. 
 



somehow, we could convert a mass into light it could not possibly travel faster than c and a trip 
to Alpha Centaury would still take well over four years in one direction. 

The galaxies were (and are) not traveling faster than c nor as fast as c in their local space-time, 
instead the space-time is expanding. In a similar fashion, it is the space-time itself that is meant 
to “propel” the spaceship; in other words, the space-time gets warped and the starship is riding 
on it.  

Issues with Warp Drive Implementation 

In order to be able to travel to Vega (26 light years away) in about two months, our starship 
would have to travel at 26×12/2 ≈ two hundred times the speed of light on average, which will be 
seen below to require an amount of energy on an astronomical scale, literally. On the other hand, 
the Alcubierre drive presents a solution that directly tackles the nature of space-time itself and is 
seen as a solution, in principle, to the barriers presented by special relativity. The type of energy 
required by the warp drive physics is negative energy or exotic matter which is still unidentified. 
This may be a problem for quantum mechanics, but, however we attempt to classify the nature of 
the problem the mathematics suggests that “exotic” matter may exist. Side effects of the 
Alcubierre drive could devastate an entire planet or even an entire star system. The Alcubierre 
drive would position the ship at the center or of a large, flattened sphere that contains exotic 
matter capable of warping space-time. To see how this mechanism could have devastating 
effects, consider that space is not truly completely empty but contains high-energy particles. 
Such particles would be collected and trapped by the warp bubble encompassing the ship 
(hopefully without interfering with the drive or the bubble) but upon arrival at its destination the 
ship would have somehow to disengage the warp bubble causing the high-energy particles to 
shoot into the void, devastating anything in their path. It is predicted that so-called Hawking’s 
radiation would fry the starship. Hawking’s radiation is in essence black-hole radiation and is a 
result of black-hole evaporation, in which, as the name suggests, black holes evaporate and 
ultimately disappear. However, black-hole radiation has bearing on this discussion because a 
black hole seems to be a better-understood example of the warping of space-time. As Hawking’s 
radiation temperature is inversely proportional to the amount of energy embodied in the warp 
(Hawking, S. W, 1974-03-01), we can expect lethal doses of radiation to be emanating from the 
warp, and such doses would have short wavelength according to the following equation T≈ 
#&#%/∙12∙.#

3
	(Lopresto, 2003) 

The space-time metric in General Relativity 

We can start by considering n-dimensional Cartesian coordinates 

𝑥#, 𝑥,, …, 𝑥4           (3-1) 



(where the superscripts are not exponents). Now suppose we want a measure of the incremental 
distance ds between two points in 3-dimensional space (of course, we can choose n to be higher 
than 3). Then we have 

𝑑𝑠, = (𝑑𝑥#),	+ (𝑑𝑥,), + (𝑑𝑥5),,        (3-2) 

which is nothing more than the Pythagorean Theorem and which can be condensed into the 
following form, 

𝑑𝑠, = 𝛿67 𝑑𝑥6𝑑𝑥7,          (3-4) 

where 𝛿67 is the Kronecker delta and we note that once repeated indices on 2 levels imply 
summation. Outside the context of General Relativity, one would normally use the summation 
symbol ∑. Since μ and ν are summed over 1 to n, we say that the quantity on the right is fully 
contracted and is therefore a scalar (having no indices left), which is to be expected since the 
quantity on the left must be invariant to coordinate choices. 

This same procedure and notation can be generalized to Minkowski space and beyond, as we 
discuss next. The following defines the Minkowski metric 𝜂67: 

𝑑𝑠, = 𝜂67𝑑𝑥6𝑑𝑥7.          (3-5) 

Here μ and ν range from 0 to 3 as in 4-dimensional space and 𝜂67 is a 4×4 matrix with diagonal 
entries −1, 1, 1, 1. Thus, with 𝑥& = 𝑐𝑡, the expanded form of equation (3-5) is 

𝑑𝑠, = −(𝑐𝑑𝑡), +	(𝑑𝑥#),	+ (𝑑𝑥,), + (𝑑𝑥5),.       (3-6) 

Equation (3-6) suggests that space-time has a causal structure; that is when ds2 > 0 the space-
time interval is space-like and communication cannot happen. When ds2 < 0 the interval is time-
like (preventing communication) and when ds2 = 0 the interval is light-like (communication at 
speed c). ds is known as the proper-distance increment that is agreed upon by all observers. This 
interval is usually written in terms of the proper-time increment 𝑑𝜏 and the speed of light c. That 
is, 

𝑑𝑠, = –c2𝑑𝜏,            (3-7) 

but in natural coordinates we set c = 1 for simplicity, which yields 

𝑑𝜏, = (𝑑𝑡), –	(𝑑𝑥#),	– (𝑑𝑥,), – (𝑑𝑥5),.       (3-8) 

The Minkowski metric is applicable only to inertial frames of reference i.e., those moving at 
constant velocities relative to each other in flat space-time; whereas when we consider warp 
drive, then we are in the realm of warped space-time where masses, in following their respective 
geodesics, are no longer moving at constant velocities relative to each other unless the region 



they move through is so small that tidal forces cannot be detected. This brings us to what are 
known as locally inertial frames of reference. 

We know from General Relativity that energy and matter warp space-time, and we assume that a 
warped space-time manifold is smooth (differentiable) unless we are working with black holes. 
However, regardless of how warped a smooth manifold is, if we zoom in enough we can still 
find a region that can be treated as flat space and bring the Minkowski metric to bear. The 
greater the gravitational field, the smaller the appropriate region if we are to avoid tidal forces. 
What this means is that a freely falling observer in such a region will not be able to detect the 
existence of a gravitational field and the physics of such a region can be reduced to that of 
inertial reference frames. This insightful discovery is what is known as the principle of 
equivalence. 

Since the Minkowski metric offers such limited usefulness, we turn our attention to the general 
metric of General Relativity. This metric is a rank-2 tensor i.e., a bilinear mapping from vector 
pairs to scalars. It describes different features of a smooth manifold related to how we measure 
spatiotemporal displacement under changes in coordinates. In fact, the metric tensor is a 
demonstration of how the spatial and temporal components of space-time are interdependent. 
That is, its derivatives measure and describe geodesics; the metric is the essential subject matter 
of relativity. It is, in fact, a generalization of the Newtonian potential. We know that when 
dealing with weak gravitational fields and the matter causing the space-time curvature not 
moving at relativistic speeds, then the metric tensor can be safely replaced by the Newtonian 
potential allowing us to work with Newton’s gravity theory. Otherwise, the metric embodies 
information about the curvature of the space-time manifold and about how coordinate basis 
vectors change. The Einstein field equations (EFE) enforce how the metric changes in response 
to changes in energy-momentum distribution. In fact, the metric tensor is a demonstration of how 
the spatial and temporal components of space-time are interdependent. 

The proper time 𝜏 in a local inertial coordinate system can be derived from (Weinberg) 

𝑑𝜏, = −𝜂89𝑑𝜉8𝑑𝜉9,          (3-9) 

where 𝜉8 (a = 0, 1, 2, 3) are the coordinates of the inertial i.e., freely falling coordinate system. 
𝜂89 is the Minkowski metric, but not a tensor under general transformations. If we use a 
different coordinate system 𝑥6 	= 𝑥6(ξ) that might be curvilinear or anything else that we please 
then the coordinates 𝜉8 become functions of the 4 𝑥6, leading by the differential chain rule to  

𝑑𝜏, = −𝜂89
:;&

:<'
𝑑𝑥6 :;

(
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𝑑𝑥7,                  (3-10) 

or 

𝑑𝜏, = −𝑔67𝑑𝑥6𝑑𝑥7,                     (3-11) 

where 𝑔67 = 𝜂89
:;&
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            (3-12) 



is the general metric tensor. As a tensor, its components and the basis vectors change in such a 
way that it remains invariant for all observers in all reference frames. This tensor is a 
construction consisting of time and the usual three-dimensional space we are familiar with, and 
can be explicitly calculated according to the formula 

𝑔67 = − :;!

:<'
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.          (3-14) 

 

The Aclubierre Metric 

We start with the EFE 

𝑅67 – R𝑔67/2 + Λ𝑔67 = '=>
.+
𝑇67                     (4-1) 

Each term in (4-1) is a rank-2, 4-dimensional tensor, and we will proceed to define each term 
according to the order in which it appears in (4-1).The first two terms are collectively known as 
the Einstein tensor 

𝐺67  = 𝑅67 – R𝑔67/2,          (4-2) 

where 𝑅67 is the Ricci tensor, which tracks spatiotemporal 4-volume changes in the 
neighborhood of geodesic lines, which becomes handy as the geodesic lines diverge or converge. 
This is why the Ricci tensor represents gravity in the EFE; it tells us how volume changes due to 
the curvature of space-time we are in, but it does not tell us how the shape of a region changes 
(Eigenchris.”Ricci Tensor Geometric Meaning.Youtube.YouTube. October 14 2019.Web). The 
Ricci tensor is obtained from the Riemann tensor by contracting the latter (Parker & Christensen 
1994) 

𝑅67 ≡	𝑅			6?7? .            (4-3a) 

and is also given more explicitly by (4-3b) in terms of the affine connection as (Weinberg) 

𝑅67 = 𝜕7𝛤				?6?  − 𝜕?𝛤				67? + 𝛤				6@? 𝛤				7?@  −𝛤				67? 𝛤				?@@       (4-3b) 

where the affine connection is discussed later on and is given by (4-7). This brings us to the 
Riemann tensor, a rank-4 tensor that can be expressed entirely in terms of (derivatives of) the 
Affine connection and in which all of the curvature of General Relativity is encoded. The 
Christoffel symbols are a means by which changes in the metric tensor are registered. 

𝑅 is the Ricci scalar that compares the surface area of a disc in curved space to the surface of a 
disc with the same perimeter in flat space (Treude, 2011. 130). We can imagine a disc in a plane 
with a given perimeter and a circle with the same perimeter on a sphere. Clearly the surface area 
of the circle on a sphere will be greater than the area of the disc in a plane because the curvature 



allows more area within the same perimeter (Eigenchris,”Geometric Meaning Ricci 
Tensor/Scalar.YouTube,YouTube.October 25 2019.Web), it can be obtained by contracting the 
Ricci tensor 𝑅67 (Weinberg) using the inverse of the metric tensor (the contravariant metric 
tensor) 𝑔67as in (4-4) 

𝑔67𝑅67 = 𝑅.           (4-4) 

Λ is the cosmological constant which Einstein introduced because the prevalent perception at the 
time was that the universe was not changing despite the fact that Newtonian mechanics 
suggested that the galaxies and other forms of matter should have been pulling on each other, 
which should have caused the universe to contract. Thus, the cosmological constant is a term that 
acknowledges and paves the way for the mechanism that balances out the attractive effects of the 
galaxies and allows the universe to remain fixed. The derivation of the EFE suggests that the 
cosmological constant can also be viewed as the constant of integration (Stanford.“Cosmology 
Lecture by Leonard Susskind”.Youtube.Youtube. Jan 28 2013.Web) component of the stress-
energy tensor that is relevant to the Alcubierre drive. The remaining diagonal components, that is 
𝑇##, 𝑇,,, 𝑇55	are the normal stress components while the remaining six entries are sheer stress 
(Misner, Thorne, & Wheeler, 1973)  

The following is a road map of the dependencies of the objects that constitute the EFE. 

𝑔67 → 𝛤968  → 𝑅			96A8  → {𝑅89  → 𝑅 } →	 {𝐺67 = 8𝜋𝑇67}. 

As we can see, the metric tensor 𝑔67 is the ingredient of the affine connection 𝛤968  which is the 
ingredient of the Riemann tensor, while the Riemann tensor yields the Ricci tensor which in turn 
yields the Ricci scalar. Both the Ricci tensor and the Ricci scalar are explicit terms in the EFE 
which when solved (if possible) in response to a given stress-energy tensor 𝑇67, yields 𝑔67. That 
is, solving the EFE would yield 𝑔67 that describes the geometry of the space-time dictated by 
𝑇67. 

Suppose now that we want to consider a particle in free fall (the only forces acting upon it are 
gravitational forces) then according to the principle of equivalence discussed earlier, the particle 
is in a freely falling coordinate system 𝜉8 following a straight-line path through space-time that 
is given by (Weinberg) 

(#;,

(B#
 = 0,           (4-4) 

where 𝜏 is the proper time as given by (3-9). And suppose we want to relate this coordinate 
system to another coordinate system 𝑥6, then (4-4) becomes (Weinberg) 
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 ) = 0.                  (4-5) 



By multiplying (4-5) by  :<
-
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  and using the differentiation product rule 
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it can be shown that (4-5) yields (Weinberg) 
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 + 𝛤67?
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 = 0          (4-6a) 

that is the equation of motion; this in fact is the geodesic equation where 𝛤67?  
is the affine connection defined by (Weinberg) 
 

𝛤67? 	= :<
-

:C&
 :#C&

:<':<)
.          (4-7a) 

 
Equation (4-6a) represents four coupled equations that must be solved for simultaneously, and 
the solution to (4-6a) is 𝑥?(𝜏) = 𝑥&(𝜏), 𝑥#(𝜏), 𝑥,(𝜏), 𝑥5(𝜏) which is the path of the particle in an 
arbitrary coordinate system. 
And while at it let us write the affine connection explicitly 
  
𝛤67?  = #

,
𝑔?a(𝜕6𝑔87+ 	𝜕7𝑔86 – 𝜕8𝑔67),        (4-7b) 

 
And please note that (4-7b) is derived using the covariant derivative and is premised on the 
metric compatibility given by 𝐷a𝑔67 =0 where 𝐷a is the covariant derivative. This is where the 
Riemann tensor comes to the rescue and is given next in two versions (Weinberg) 
 
𝑅			@67
D = 𝜕6𝛤7@

D − 𝜕7𝛤6@
D + 𝛤6?

D𝛤7@? − 𝛤7?
D𝛤6@?        (4-8a) 

 
𝑅?67к: = 𝑔?@𝑅			67к@    
 
 The Riemann tensor is proportional to the second covariant derivative (and we emphasize 
the word second) of the separation vector between geodesics, which means that the Riemann 
tensor keeps track of the acceleration in the deviation of geodesics thus revealing the presence of 
curvature and its extent. 
  
 
 
Alcubierre introduces a simple metric motivated by the expansion of the universe; this metric is 
meant to show how to use an expansion of space-time to move a spaceship away from a location 
(defined by a planet or a star for instance) and how to use a contraction of space-time to 
approach a destination at an arbitrary speed where the enormous FTL travel is due to the 
expansion of space-time. This is what is known as the Alcubierre Metric which, in the context of 
General Relativity, allows a warp bubble to form in a previously flat region of space-time and 



travel at superluminal speeds, effectively. We note here that the Alcubierre metric is a solution to 
EFE because (a) it describes a pseudo-Riemannian manifold with a signature (–, +,+,+) that 
renders it a Lorentz manifold, (b) it is consistent with the restrictions of GR and with the 
relativistic effects and (c) the outcome of this metric is a stress-energy tensor that meets the 
boundary conditions ---deferring to below a consideration if it is physically permissible. In other 
words, one would guess a trial metric with enough unknown parameters and then calculate the 
Christoffel symbols (the connections) from this trial metric. The Christoffel symbols are used to 
calculate the components of the Riemann curvature tensor which can be reduced to the Ricci 
tensor which can still be reduced the curvature scalar. Now we have all the ingredients for the 
Einstein tensor, which allows us to write the EFE for that particular trial metric and finding the 
unknown parameters by matching boundary conditions. The Acubierre metric is also 
asymptotically Minkowski as required.  

Alcubierre used Einstein’s field equations to calculate the stress energy tensor when in a 
traditional approach to system of partial differential equations, one would start with a known 
stress energy tensor source 𝑇67, and try to solve the equations; but this direction would be 
exceedingly difficult for a general 𝑇67. However, following the designer approach, we can start 
with the kind of geometry that we want for our purposes; in other words we start with a metric 
that describes the geometry we want, which would allow us to calculate the Ricci tensor 𝑅67 and 
Ricci scalar R leading us to the right-hand side of the equations, the stress energy tensor. The 
designer approach is far easier than the alternative, but it usually produces nonphysical or 
nonsensical results. 

The Alcubierre metric would create a bubble, the interior of which is the inertial reference frame 
for any object inhabiting it. A great advantage to this design is that since the starship is not 
moving within this bubble, nor is it required to, but is catching a ride as it is being carried along 
as the local space-time itself moves, conventional relativistic effects such as time dilation would 
not apply. It is in this sense that the rules of space-time and the laws of relativity would not be 
violated. As it turns out, even though Alcubierre implemented the designer method by choosing 
the required geometry, he modeled the idea on the early expansion of the universe and the 
emerging stress-energy tensor is also consistent with what cosmology tells us about the 
mechanism responsible for the accelerating expansion of the universe; that is negative energy or 
the dark energy that accounts for 69% (Ade, Aghanim, Alves, et al of the total, 2013, Carroll, 
2007) energy. In this sense, the Alcubiere metric is indeed a solution to the EFE for some 𝑇67 
that must be examined next. 

This Alcubierre metric describes a foliation of space-like hypersurfaces and is given generically 
by: 

𝑑𝑠,= – (a, – 𝛽F𝛽F)𝑑𝑡, + 2𝛽F𝑑𝑥F𝑑𝑡 + 𝛾FG𝑑𝑥F𝑑𝑥G,        (4-12) 



where: a is the lapse function that gives the interval of proper time between nearby 
hypersurfaces; 𝛽F is the shift 3-vector that lies in the direction of motion of the starship; and 𝛾FG 
is a positive-definite 3-dimensional metric tensor on each of the hyperspaces that form the 
foliation, thus 𝛾FG is a Cartesian metric. 

Then let a = 1, and it should be noted that a, – 𝛽F𝛽F ≥ 0,	𝛽< = –𝑣H(t)f(rs(t)), 𝛽I=	𝛽J = 0, and 
𝛾FG 	= 𝛿FG, where 

𝑣H = (<.
(*

,           (4-13) 

and xs(t) is an arbitrary function of time that describes the trajectory of the starship. We note that 
this trajectory is a geodesic since world-lines of particles subject to gravity only are geodesics. 
Also, 

𝑟H(t) = [(x – 𝑥H)2 + y2 + z2)]1/2,        (4-14) 

and 

f(r) = KLMNO@(Q	R	S)U	$	KLMNO@(Q	–	S)U
, KLMN(@S)

,        (4-15) 

is a spherically symmetric form function with 𝜎 and R are arbitrary parameters and r = rs. We 
note the following. 

• The lower limit on R is greater than the size of the spaceship since R is the “radius” of the 
warp bubble. 

• f(𝑟) is a top-hat function in the limit as 𝜎 → ∞. 
• Also, f(r) is spherically symmetric because r = 3𝑥, + 𝑦, + 𝑧, and 𝑟 → ∞ for σ > 0 

implies that f(r) → 0, which implies that 𝑑𝑠, is asymptotically Minkowski. So, by 
construction, f(r) → 0 outside the warp bubble. 

• 𝜎 is inversely proportional to the thickness of the wall of the warp bubble. The larger is 
this parameter the thinner is the wall of the bubble, and (as we will see) the higher is the 
energy density. 

• lim
@	→X

𝑓(𝑟) = 1 for  –R ≤ r ≤ R, lim
@	→X

𝑓(𝑟) = 0 otherwise. Thus, f(r) has the value f =1 
inside the warp bubble and f = 0 outside the bubble. 

Notice that 

𝛾FG𝑑𝑥F𝑑𝑥G= dx2 + dy2 + dz2   (since 𝛾FG 	= 𝛿FG),                         (4-16a) 

2𝛽F𝑑𝑥F𝑑𝑡 = 2𝛽<dxdt  (since	𝛽I = 𝛽J = 0),                                   (4-16b) 

and so 

–(a, – 𝛽F𝛽F)dt2 = –[1 – (–𝑣H(t)f(𝑟H))2]dt2 = –𝑑𝑡, + 𝑣H,f(𝑟H)2𝑑𝑡,                                   (4-16c) 



and when we substitute (4-16) into (4-12) we get 

ds2 = –dt2 +	𝑣H,f(𝑟H)2𝑑𝑡, – 2𝑣Hf(𝑟H)dxdt +	𝑑𝑥, + 𝑑𝑦, + 𝑑𝑧,,                           (4-17) 

which is factored into the Alcubierre metric tensor given by 

ds2 = –dt2 + (𝑑𝑥	–	𝑣H𝑓(𝑟H)𝑑𝑡), + 𝑑𝑦, + 𝑑𝑧,.                               (4-18) 

Now, naturally, we should be interested in how much the space-time is being stretched or 
compressed and, more importantly, what is the value as measured by the Eulerian observers that 
are in free-fall. That is, observers whose four-velocity is orthogonal to the spatial hypersurfaces 
and who are following geodesic paths. For this purpose we resort to the extrinsic-curvature 
tensor as it is well known from differential geometry that the trace of the extrinsic curvature 
tensor provides a measure of the extent to which the space-time is warped. Alcubierre explains 
that the 3-geometry of the hypersurfaces is flat and that the information about the curvature of 
space-time is contained in the extrinsic-curvature tensor which is the rate of change of the unit 
normal to the hypersurfaces. This tensor is given by  

𝐾FG =
#
,8
b𝐷F𝛽G + 𝐷G𝛽F −	

:2/0
:*
c         (4-19a) 

which is the extrinsic curvature tensor given in terms of the shift function and the 3-metric 

Keeping in mind that 𝛾FG 	= 𝛿FG= 𝑔FG implies :2/0
:*
	= 0, which yields 

 𝐾FF = 𝜕F𝛽F,                   (4-19b) 

where the summation is over all spatial coordinates, but since 𝛽I = 𝛽J = 0 we are left with  

𝛽< = –𝑣H(t)f(𝑟H(t)), 

which implies 

𝜕<𝛽< = 𝜕<(– 𝑣H(t)f(𝑟H(t))). 

Now we carry out the derivative with respect to x and get the following result that is known as 
the expansion of the volume elements which is the Alcubierre warp bubble: 

𝜃 = –a𝐾FF 

with a = 1, and finally we have, with 𝑣H= (<1(*)
(*  

𝜃 = – 𝑣H
<	–	<.
Q.

(Y
(Q.

.         (4-20a) 

And assuming that the starting point 𝑥	 = 	0, then 4-20a becomes 



𝜃 =  𝑣H
	<.
Q.

(Y
(Q.

           (4-20b)  

In what follows we present a derivation of the extrinsic curvature tensor, also known as the 
second fundamental form, by Misner, Thorne and Wheeler (MTW) as it is outlined in their book 
Gravitation (1973). 

Let 𝒏 be a normal 4-vector standing at the point p on the hypersurface Σ, transport it parallel to 
itself to the point p + dp where we have another vector that is normal to the surface Σ. We keep 
in mind that d𝒏 which is the change in the normal vector 𝒏 is nothing more than a change in the 
direction of 𝒏; the magnitude of 𝒏 is kept a constant as we are interested only in the manner in 
which the direction of 𝒏 changes as a measure of the curvature of the surface Σ as observed in 
the higher dimensional ambient space. The limiting concept of the vector-valued displacement 
d𝒏 can be regarded is lying in Σ and is therefore perpendicular to 𝒏. We also know that dp lies in 
Σ; thus, depending linearly on d𝒑, d𝒏 can be represented in the form 

d𝒏 = –𝑲(dp).               (eq 21.59 MTW) 

Here, the linear operator K is the extrinsic curvature tensor and is defined to be positive if the 
tips of the two unit normal vectors located at the points p and p + dp are closer together than their 
tails are; it is reminiscent of a concave surface in 3D. Next, we replace d𝒑 with a special tangent 
vector, the basis vector 𝒆F, 𝑑𝒑 = 𝒆F𝑑𝑥F, where 𝒆F ∙ 𝒏 = 0, which yields 

∇F𝒏 = 	−𝑲(𝒆F) = −𝐾F
G𝒆G                                                                                       (eq 21.60 MTW) 

where 𝐾F
G are the components of the linear operator 𝑲. The scalar product of (21.60) with the 

basis vector 𝒆! reveals the symmetry of the extrinsic curvature tensor. After we carry out the 
covariant derivative of 𝒆F ∙ 𝒏 = 0 that yields 

𝒏 ∙ ∇F𝒆! + 𝒆! ∙ ∇𝒏 = 0 or equivalently  −𝒆! ∙ ∇𝒏 = 𝒏 ∙ ∇F𝒆! 

we get from 21.60 MTW 

𝐾F! =	 𝐾F
G𝑔G! = 𝐾F

G(𝒆G ∙ 𝒆!) = −𝒆! ∙ ∇𝒏 = 𝒏 ∙ ∇F𝒆!                                                     

which, with the covariant derivative of the basis vector 𝒆! given by ∇F𝒆! = 𝛤!F
6 𝒆6, becomes 

𝐾F! = 𝒏 ∙ 𝒆&𝛤!F&  = 𝒏 ∙ 𝒆&𝛤F!&  = 𝒏 ∙ 𝛁!𝒆F = 𝐾!F.                                               (eq 21.61 MTW) 

Thus 𝐾F! = 𝐾!F. This knowledge of 𝐾FG reveals information regarding the metric that is intrinsic 
to the embedded space by revealing how the vectors  𝒏, 𝒆#,	𝒆,, 𝒆5 change under parallel 
transport. Thus, one arrives, following Israel (1966) at the equations of Gauss and Weingarten: 

∇F𝑒G = 𝐾FG
𝒏
𝒏∙𝒏
	+ 	𝛤GF[𝑒[                                                                                           (eq 21.62 MTW) 



𝒏 ∙ 𝒏 = 𝜖(𝒏) = n 1, 𝒏	𝑖𝑠	𝑝𝑎𝑐𝑒𝑙𝑖𝑘𝑒−1, 𝒏	𝑖𝑠	𝑡𝑖𝑚𝑒𝑙𝑖𝑘𝑒s(Israel, 1966) 

The covariant derivative of a vector 𝑨	in the direction of the i-th coordinate in Σ has for its h-th 
covariant component 

𝐴[ᴵF = 𝑒[·	∇F𝑨 = :]2
:</

 − 𝐴!𝛤![F.                                                                            (eq 21.57 MTW) 

Here, “the notation of the vertical stroke notation distinguishes this covariant derivative from the 
21.62 MTW tells us how each basis vector in Σ changes, and since we also know the covariant 
derivative of a vector 𝑨 in Σ as given in 21.54 MTW, we can rewrite 21.54 MTW as 21.63 MTW 
by carrying out the covariant derivative of 𝑨 as follows 

∇F𝑨 = ∇F(𝐴G𝑒F) 	= 𝑒G∇F𝐴G + 𝐴G∇F𝑒G. 

From 21.62 MTW we have 

 ∇F𝑨 = 𝑒G∇F𝐴G + 𝐴G(𝑘FG
𝒏
𝒏∙𝒏
	+ 	𝛤GF[𝑒[) which, after rearranging terms, becomes 

∇F𝑨 = 𝑒G∇F𝐴G +	𝐴G𝛤GF[𝑒[ +	𝐴G𝑘FG
𝒏
𝒏∙𝒏

  in which the first two terms are collectively (as in the 

context of 21.57 MTW) 𝑨ᴵF
G . Here 𝑨ᴵF

G  is the covariant derivative in Σ and not in the 4-geometry. 

And the last equation becomes the following 21.63 MTW:  

∇F𝑨 =
:]0

:</
 𝒆G + 𝐾FG𝐴G

𝒏
𝒏∙𝒏

                                                                                    (eq 21.63 MTW) 

Equations 21.62 and 21.63 reveal that the parallel transport we are talking about here is with 
respect to the ambient or embedding space, the 4-geometry. And when we compare the covariant 
derivative of 𝒏 as an intrinsic operation 

(𝑑𝒏)F = w:4/
:<3

	− 	𝛤F1@𝑛@y 𝑑𝑥1 = 𝑁𝛤F1&𝑑𝑥1                                                                (eq 21.65 MTW) 

 with the change in 𝒏 as measured by the extrinsic curvature tensor 

(𝑑𝒏)F = −𝐾F1𝑑𝑥1                                                                                                   (eq 21.66 MTW) 

𝐾F1 = −𝑁𝛤F1&                                

where 𝒏 = (𝑛&, 𝑛#, 𝑛,, 𝑛5) = (−𝑁, 0, 0, 0) implying :4/
:<3

 = 0 and thus we have 

𝐾F1 = −𝑁𝛤F1& =
$^
,
{𝑔&&𝛤&F1 + 𝑔&_𝛤_F1| where we carried out the raising operation 

𝑔&&𝛤&F1= 𝛤F1&  and 𝑔&_𝛤_F1 = 𝛤F1& hence the #
,
 in front of the previous equation. 



With the help of 21.44 MTW below 

𝑔&& 𝑔&!

𝑔1& 𝑔1!
=

−1
𝑁,

𝑁!

𝑁,

𝑁1

𝑁, 𝑔1! −
𝑁1𝑁!

𝑁,

 

𝐾F1 = $^
,
{𝑔&&𝛤&F1 + 𝑔&_𝛤_F1| = #

,^
{𝛤&F1 + 𝑁_𝛤_F1| 

𝛤F1& = 𝑔&&𝛤&F1 + 𝑔&G𝛤GF1                 𝛤bga = 𝑔67𝛤6bg  eq 8.24c MTW 

𝐾FG =
1
2a b𝜕𝑖b𝑗 + 𝜕𝑗b𝑖–2𝛤FG

1b𝑘 −	
:A/0
:*
c  

Then we recognize that 𝐷G𝑉F =
:`/
:<0

	− 	𝑉1𝛤1FG is the covariant derivative of 𝑉F, which justifies 
writing the last expression for 𝐾F1 as follows 

𝐷G𝑉F =
:`/
:<0

	− 	𝑉1𝛤1FG                          (Covariant derivative in embedded manifold) 

𝛾&' = 𝛿&' 

𝑘FG = #
,a w𝐷Fb𝑗 +	𝐷Gb𝑖 −	

:A/0
:*
y 

which implies 

𝐾F1 = #
,^
w:^/
:<3

	+ 	:^3
:</

	− 	:2/3
:*
y                                                                               (eq 21.67 MTW) 

The above was the calculation by Misner Thorne and Wheeler. 

We note the following revelations from equation (4-20): 

• 𝜃 is directly proportional to the speed vs, thus the faster the spaceship travels, the greater 
is the stretching function (something to be expected). Also, 𝜃 represents the amount of 
energy embedded in the warp. As an example, if we shrink the mass of the sun down 
32km in radius it becomes a black hole and as a result, the space-time around its limb will 
be warped so much that light traveling near the sun’s surface can be deflected 180°. In 
other words, 𝜃 measures how much energy is invested by showing us the extent to which 
space-time is bent. 

• Also, as mentioned earlier, the top-hat function f(𝑟H(t))	is zero outside the warp bubble 
and is 1 inside it for large	𝜎, which means that 	(Y(Q)

(Q.
 vanishes inside as well as outside the 

warp bubble and has enormous magnitude near the bubble boundary. 
• Also, the absolute increase of 𝜎 means a faster approach of the shape function to the top-

hat condition. 



Figure  depicts 𝜃 as a function of �𝑥 − 𝑥H, 3𝑦, + 𝑧,� for different 𝜎. Since 𝜃 is given in terms of 
the trace of the extrinsic curvature tensor, we recall that the entries of the extrinsic tensor are the 
projections of the second partial derivatives of the position vector r onto the normal line n to the 
hypersurface Σ (Guggenheimer, 1977, Chapter 10). The position vector has its origin at the 
observer’s location. The trace of K is the mean average curvature as measured in the ambient 
embedding space The position vector r is referenced to the location of the observer that is in free 
fall. The trace of K is the mean average curvature as measure in the ambient embedding space. 
Also, 𝜃 is a measure of the energy density that constitutes the shell, so to speak, of the warp 
bubble. 
 
 

 

The vanishing of 𝜃 is good news, since we don’t want the crew, the ship nor anyone or anything 
outside the warp bubble to be warped in any way. And let us see what happens when we 
substitute the following quantities, dy = dz = 0 and x = 𝑥H(t) and 𝑣H = (<.

(*
 in (4-12), keeping in 

mind that inside the warp bubble f(rs) = 1. 

	– 𝑑𝜏,= ds2 = –dt2 + (𝑑𝑥H –  (<1
(*

dt)2 + 0 + 0 = – dt2, 

or simply         

𝑑𝜏,=  dt2.              (4-21) 

Figure 2: Warp Field Mechanics 101. Dr. White 



Equation (4-21) confirms that, as mentioned earlier, the proper time inside and outside the 
bubble will be the same. Thus there are no time dilation and no twin-paradox issues to be 
concerned with (again, neglecting the question of entering and exiting the bubble). 

Figure 3 demonstrates the manner in which space-time is expanded behind the spaceship and 
compressed in front of it. The net effect is similar to surfing a wave because the ship is not 
travelling in space but rather it is riding a space-time wave and is traveling at the speed of the 
warp wave. 

 

 

When Alcubierre’s metric is modeled, there are a number of fascinating phenomena that are 
worth noting. As indicated in Figure 3, the space-time is flat everywhere except within a certain 

Figure 3: Image: Harold G. “Sonny” White 



region with a defined radius, which renders the distortion highly localized. In addition, the time-
dilation issue spoken of earlier is not an issue, because the time within the flat region inside the 
distortion is the same as that of an outside observer. However the region itself moves along a 
time-like curve, resembling geodesics. Also, the coordinate acceleration is a function of time but 
the proper acceleration along the path of the center of the distortion is zero. 
 Now we come to the weak energy conditions that Alcubierre declares are violated by his 
metric. 
 The weak energy condition (WEC) is stated as follows: 
𝑇67𝑉6𝑉7 ≥ 0           (4-22) 
in which Vμ is the 4-velocity of the Eulerian observers and 𝑇67 is the stress–energy tensor. The 
interpretation of the WEC is that the local energy density should be non-negative (Curiel, 2014). 
The calculations will be simplified using an orthonormal reference frame. We use the EFE to get 
the Einstein tensor: 
𝐺67 = 𝑅67 – (1/2)𝑔67R = 8π𝑇67,        (4-23) 
which gives us the following more explicit expression for the WEC, 
𝑇67𝑉6𝑉7 = #

'=
𝐺**,          (4-24) 

where 𝑉6 is required to be a timelike 4-vector (Visser, Matt, Barceló, & Carlos ,2000) in this 
case 𝐺**is given with a generic form function f by 

𝐺** = –	-.
#

a
�b:Y
:I
c
,
	+ 	b:Y

:J
c
,
�,                 (4-25a) 

and when we insert the form function (4.15) as the argument of (4-25a) we get 

𝐺**  = – -.
#

a
 I
#R	J#

Q.#
b(Y
(Q.
c
,
.  (Francisco, Lobo, & Matt, 2004)          

   (4-25b) 
From (4.24) and (4.25b) we have: 
 

 𝑇67𝑉6𝑉7 =	𝑇&& =	– -.#

5,=
	I

#R	J#

Q.#
b(Y
(Q.
c
,
 ≤ 0,      (4-27) 

 
(4-27) suggests that the energy density of the warp field is toroidal and is symmetric about the x-
axis; also, on the x-axis where y = z = 0, the energy density is exactly zero. It is noteworthy that 
the amount of energy and the kind of energy required for the establishment of a warp bubble 
does not depend on the mass of the starship. Also, (4-27) states that the energy is negative; the 
Eulerian observers measure negative energy because the warp bubble is an expansion of space-
time or negative curvature and not the kind of positive curvature that is caused by a planet or 
star. It is to be noted that, aside from xs(t), the Alcubierre metric is time-independent because it 
does not describe the evolution of the warp bubble or the manner in which the exotic matter is 
deployed around the ship; it actually presents this arrangement of exotic matter as something that 
has always existed. Alcubierre mentions in a long interview (Event Horizon.”Can We Travel 
Faster Than Light? With Dr. Miguel Alcubierre”.Youtube.youtube June 6 2019.Web) that there is 
no known way to assemble or disassemble the warp bubble, which would be required for 
controlling when the ship travels and when it should stop. 
 



 Harold White (White, 2011) and his NASA team have proposed (White, 2011, 5) an 
updated concept of the Alcubbiere drive that is far more energy efficient and requires positive 
energy . on a far less than an astronomical scale; the amount of energy wend down from being 
the mass of the universe to the mass of Jupiter. Figure 4 is a plot of the energy density 
requirements as a function of �𝑥 − 𝑥H, 3𝑦, + 𝑧,� for different values of the thickness 𝜎 of the 
wall of the warp bubble.  

 
 
Please note also that G and c in EFE have been suppressed by choosing G = c = 1 as is the 
convention. Also, there is a directional symmetry issue resulting from the symmetry of the 
energy density about the x-axis. That is, the choice of positive x-direction would seem arbitrary 
and the starship would not “know” whether –x or +x was the direction of choice, but (4-18) 
implies the +x direction. To reconcile (4-27) with (4-18) we note that 𝑣H= (<1(*)

(*
 is a change in 

displacement over time in a specific direction of 𝑥b. In other words, 𝑣H has a direction. 
Equation (4-27) is an apparent direct “violation” of the WEC. To address this point, let us 

recall that the left-hand-side of the EFE is a universal law of the space-time geometry while the 
right-hand-side, the stress-energy tensor, is not universal but depends on the particular local 
matter and energy distribution and is evaluated for validity upon “the variety of energy 
conditions in use in the relativity community driven largely by reverse engineering based on the 
technical requirements of how much you have to assume to easily prove the result you want” 
(Capozziello, Lobo, & Mimoso, 2018). The point is that the non-negativity condition on the 
stress-energy tensor as an input hypothesis has precluded the emergence of “weird” physics. 
Theoretical physics has established that there might be “negative energy” out there in the 
universe. For example, “on 10 April 2017, physicist Peter Engels and his team created negative 
effective mass by reducing the temperature of rubidium atoms to near absolute zero” 
(Cselyuszka, Sečujski, Crnojević-Bengin, 2015) 

 

Figure 4: Warp Field Mechanics 101. Dr. White 



We note that the energy conditions represent criteria designed to rule out unphysical or “weird” 
solutions of the EFE; roughly speaking, “they crudely describe properties common to all (or 
almost all) states of matter and all non-gravitational fields that are well-established in physics 
while being sufficiently strong to rule out many unphysical "solutions" of the Einstein field 
equation” (Curiel, 2014). 

CONCLUSION 

 Now that we have outlined the above energy condition let us remind ourselves that those 
conditions have not been shown to be universally true (Farnes, 2018, Visser, Barceló, 2000), 
which brings me to the question: If the Alcubierre metric were not a violation of any energy 
conditions, what would we conclude about its implementation and what would be the 
implications regarding the status of negative energy? The Casimir effect is supposed to be a 
demonstration that negative energy does exist. It can be argued that there is not really a chunk of 
negative energy residing between two conductive plates when they are brought very close to 
each other; the proximity of the plates eliminates certain harmonics or particles whose 
wavelengths are not compatible with the harmonics of the plate separation. Therefore I do not 
believe that the Casimir effect proves the existence of negative energy.  

 Also, the positive energy theorem asserts in its “standard form, broadly speaking, that the 
gravitational energy of an isolated system is nonnegative, and can be zero only when the system 
has no gravitating objects” (Schoen, Yau, 1981).  

 The point is, the manner in which we talk about energy should not be left at the mercy of 
rhetoric. The mathematics does not deny that space-time could be warped and manipulated to 
produce superluminal speeds. The mathematics simply says that in order to achieve superluminal 
speeds using the Alcubierre metric, we would need negative energy. Cosmology tells us that the 
universe is expanding at an accelerating rate, which (Wiltshire, David, 2007) seems to be an 
observational fact, and that dark energy is what seems to be responsible  (Ishak, Richardson, 
Garred, Whittington, Nwankwo; Sussman, 2008)for the expansion of the universe. Then, based 
on the positive energy theorem we may conclude that the negative energy requirement is not a 
physical possibility for closed systems and that whatever is causing the universe to expand is still 
a mystery. 
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