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Abstract

For my master’s project, I analyzed the paper “On Boundary Conditions for Incompressible
Navier-Stokes Problems”, written by Dietmar Rempfer. Using the stream function that Kress
and Montgomery suggested to Rempfer, I calculated the velocity field. We use the velocity
field to derive the right-hand side of the Poisson equation for pressure, including alternative
Neumann or Dirichlet boundary conditions. We confirmed the parameter values in the
stream function that imply initial conditions that satisfy no-slip conditions at the boundary.
Also, we checked the compatibility requirements for the Poisson equation source term with
the Neumann boundary condition. Last, we derived the expressions for the pressure field
solution from the Neumann and Dirichlet boundary conditions that contain the parameters
of the stream function, and compare the answers with Rempfer after inputting the values of
the parameters Rempfer picked.

1 Introduction

In Rempfer’s paper, “On Boundary Conditions for Incompressible Navier-Stokes Problems”
(2], Rempfer chose the stream function with the parameters that allow velocity field to
satisfy no-slip boundary conditions at the boundary and used the stream function to find
the pressure field. However, Rempfer only showed the expressions of the pressure field after
inputting the values of the parameters of the stream function. The goal of this paper is
to derive the pressure field from the Neumann and Dirichlet boundary conditions with the
symbolic parameters of the stream function in both expressions. Section 2 provides some
background knowledge on this article’s topic. Section 3 illustrates the derivation of Neumann
and Dirichlet boundary conditions. Section 4 shows the expressions of the pressure with
Neumann and Dirichlet boundary conditions. Section 5 demonstrates the requirement of the
compatibility condition for the Poisson equation with Neumann boundary condition. We
compare the pressure fields expressions with Rempfer in section 6. Finally, we talk about
the possible improvements for this project.



2 Background

The incompressible Navier-Stokes equation is given by

ou 1
a+u~Vu——Vp+§

V-u=0.

Vu

where V - u = 0 represents the incompressible flows, u is the velocity vector and p is the
pressure divided by the constant density of the fluid. From Alexa Desautels and Dietmar
Rempfer [2] [6], we get the Poisson equation by taking the divergence of the imcompressible
Navier-Stokes equation

Vip=-V-(u-Vu)

V-u=0. (1)

The stream function is defined for incompressible (e.g. divergence-free flows) in two di-
mensions or in three dimensions with axisymmetry. The stream function is related to the
Chandrasekhar-Reid function and velocity fields can be obtained from it [2]. In Rempfer,
they considered the case of two-dimensional flow in a channel with line boundary at y = —1
and y = 1, periodic in z with domain 0 < x < 4.

U(x,y) = cos(ga:) ( cos(Ay) + Ay cosh(%y)) (2)

is the stream function he provided to construct the initial condition. A and A, are the
parameters that allow the velocity field to satisfy the no-slip boundary conditions at the
boundary (e.g., u= 0 at the boundary). The term cosh(5y) adds a potential flow velocity
component and the velocity has two properties. One is the velocity potential to satisfy the
Poisson equation, the other is the velocity has two boundary conditions that both the normal
and tangential velocity components disappear at the boundary.

Now in order to solve for p in (1), boundary conditions are necessary. In the following
section, the Neumann and Dirichlet Boundary conditions are derived.

3 Derivation of the Neumann and Dirichlet Boundary
Conditions

The initial time velocity field, Uy = V x (0,0, V) is defined by the stream function (2) above,

uo(z,y) cos(5x)(5Aysinh(Fy) — Asin(\y))
vo(z,y) 7 sin(Fx)(cos(Ay) + Ay cosh(Fy))
Substituting Uy into (1) and letting f(x,y) = =V - (Uy - VU), we get
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Substituting in ug(x,y) and vy(z,y), the right hand side of the Poisson equation [9]
2

f($7y> - g

5 (COSQ(gQIf) ( cos(Ay) + A, cosh(gy)) (4)\2 cos(Ay) — A, cosh(%y))

) (4)
— sin (2 )(2)\ sin(Ay) — A, s1nh( )) )

and the problem becomes
Vip=flr,y)  V(z.y) eRx(-1,1)
p(z,y) =plz+4,y).
The incompressible flow differential equation is

ou B 1,
E‘i‘(U V) ——Vp+§Vu

V-u=0.

A solid, stationary boundary (e.g., m = 0 at the boundary) with no-slip boundary conditions
for the velocity. To check what drives the flow, consider the domain-total specific kinetic

energy
// (z,y,t xy,)dxdy‘
—1

Taking the derivative with expect to ¢ on both side we have

E 4 1 4 rl 1
_t) = / / M cu(z,y, t)dedy = / / (=Vp —u-Vu+ —V?u) - u drdy.
0 J-1 ot 0 J-1 Re

Using the identity (u-V)u = 3V(u-u) —u x (V x u), we have

// p——Vu u)+ux(qu)+R—V2)udxdy.

Using the idetities V - (pu) = (Vp) -u+p(V-u) , V-u =0, (u x (V xu))-u =0, and
(V) -u=V-((Vu)-u) — ||Vu||p

= /0 /_1 =V - (pu) - %V (u(u-u)) + é(v (V) - u) — ||[Vul|p2) dedy.

Apply Gauss Divergence theorem we have

dE(t) 3 1 1 B
7——/8Q(pu)-77d0—/695u(u-u) nda+§ ((VU)'U)'ndU—g/ﬂHVUHF? dA.



Since we have the no-slip boundary condition at the boundary which means © = 0 on the
boundary (0€) , then the first 3 integrals are equal to 0 (integral of 0 is 0 on the boundary
(092)). And the last integral is negative because the norm is nonnegative inside the integral.
We have %}Et) = —a Jo [IVul|p2 dA < 0 for Re < co. Therefore, the domain-total specific
kinetic energy is decresing as time is increasing. The differential equation at the boundary
is

1
Re
We could get the Neumann boundary condition from (6) by projecting incompressible flow

differential equation on the boundary normal,  and plugging in u(x,y,t = 0) = Uy(z, y),

Vp = —Vu. (6)

8pNeu 1 2
=n-—VU,. 7
on 1 Re 0 (™)

We could get Dirichlet boundary condition by projecting (6) on the boundary-tangential
coordinate 7 and plugging in u(z,y,t = 0) = Up(x,y),
Ippir I
=7 —VUp. 8
or Re 0 ®)
where 7 is a unit vector tangential to the boundary, and we could obtain the Dirichlet
boundary condition after integrating the equation (8) along the boundary.
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Figure 1: Boundary Condition

We will use Fig. 1 to calculate both of the boundary conditions. First Substituting Uy
in (6) [10] we obtain

A(m24+422) cos(Fx) sin(Ay)

1 e
— V2, = i . (9)
Re —m(m2+422) sin(5 z) cos(\y)
8Re



For the Neumann condition, we have

N =1 éVZUO = (0,1) - éVQUO _ ol Wgz(%x) cos(\y)
No= o VU = (0,-1) 2 V2T = Gl w)ggle(%x) cosw)
Hence,
g_]y)( 1) = NHa) = —m(n? + 4)\28)121611(%@ cos(\)
g_z(% D = N () = m(m? + 4)\2)83161}@95) cos()\).

For the Dirichlet condition [11], we have

—A(7* 4+ 4X?) sin(5 ) sin(\)

v 1
D, = o —V2Uy(&,y)dE = for y = —1
/0 Te 7oV Uo(&y)dé ST or y
Y 1
D, = D, + / Tn - = V2Us(z,m)dn =0 for z = 4
-1 Re
v 1 —\(m? + 4X\?) sin(Zx) sin(\)
D. =D i v 2 = 2 fory =1
w n +/4 Tw Rev U0<€7y)d§ 27Re ory
Y 1
D, = D,, +/ 7o - =—V2Uy(x,n)dn = 0 for x = 0.
1 Re
Hence,
—\(7? + 42%)/ sin(Zx) sin(\
1) = D*(x) = ) sy

—A(7* + 4X?) sin(5 ) sin(\) .

pla,~1) = D~ (x) =

2mRe

The Poisson equations have the domain (z,y) € R x (—1,1) with Neumann and Dirichlet

boundary conditions becoming
v2pNeu = f(J:, y)
pNeu(xuy) :pNeu(x+47 y) (11)

apNeu +
+1) =N
o, £1) = N (2)

In section 4, we will solve for pne. and ppjr.

v2pDir = f(xa y)
pDir(xa Z/) = pDir(x + 47 y) (12)
poie(z, £1) = DF(2).



4 Pressure Determinations with Neumann and Dirich-
let Boundary Conditions

Since pnew and pp; are both periodic in x, we use univariate Fourier series in x to solve both
of the Poisson problems. We have

ple,y) = paly)e™™ (13)

nez
and since 0 < z < 4,
2nm  nmw
/\n = T = a5
4 2
and
Pi(y) — A2pu(y) = fuly) nel (14)

where f,(y) = if; f(x,y)e"® dz are the Fourier coefficients of f(z,y).
Since the equations (14) are second order nonhomogeneous differential equations, then

Pn(y) = haly) + au(y) ne’ (15)

where hy,(y) are homogeneous solutions and ¢, (y) are particular solutions. For homogeneous
equation, we have

R (y) — A2ha(y) = 0.

Therefore, the homogeneous solutions are

hn(y) = an sinh(A\,y) + by, cosh(\,y) n € Z/{0}
ho(y) = apy + bo n =

For nonhomogeneous solutions, we have

an(y) = un(y) cosh(Any) + v, (y) sinh(A,y).

To get u,(y) and v,(y), we assume u, (y)cosh(\,y) + v/, (y)sinh(\,y) = 0, (Variation of
parameters [8]) and now we have

{u; (y) cosh(Any) + v/, (y) sinh (X, y) = 0 (16)

An(uy, (y) sinh(A,y) + vy, (y) cosh(Any)) = ¢, (y) = ful(y).

Hence, the solutions for (16) are

(1of00) = [ 2l ()

Therefore, the (15) becomes

paly) = 2 /y (sinh (%(y - w)))fn(w)dw + ay, sinh(%y

nm J_4

)+ by cosh(%y). (17)
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To get a, and b,, we need to use the boundary conditions. For Neumann boundary condi-
tions, we have

0
8—§(x, +1) = N*(2).
Hence,
Po(E1) = Ny (18)
where N = 1 fo N*(z)e 2" dx are the Fourier coefficients of N* (). Taking the derivative

of (17) and using (18) now we have

<(n

a
(bn ) Neu

)Neu) _csch() sinh (%) sinh(%") (Nf[ — fjl cosh(% (1 — w))fn(w)dw) + Nn_)
onm cosh() (N — [, cosh(" (1 — w)) f (w)dw) — N—)

Therefore, using (17) with Neumann condition [12] we get,

(1) = 7 [ (siob (5 0= ) ) )i

csch(%F) sinh(%F)

nmw 2nm

(v _/ cosh (" (1 — w)) fu(w)du) cosh("o (y + 1)) — Ny cosh( "5 (y — 1))).

-1
For Dirichlet boundary condition, we have
p(z,£1) = D*(2).

Hence,
pa(£1) = Dy, (20)

where D = %f; D*(x)e™2"" dx are the Fourier coefficients of N*(z). We use (17) and (20)
and get

((an)Dir) _ csch(%) sinh(%F) cosh (%) (D — —f  sinh (% (1 — w))fn(w)dw) — D;)
(b ) Die 2 sinh(%) ( (D) — L f L sinh(Z (1 — w)) fo(w)dw) + D*)

Therefore, using (17) with Dirichlet condition [12] we get,

()., = 7 [ (sinh (5t =) gt + CSCh(%zsinh(%)
' 1)
<(Df{ — % » smh(n2 (1 —w))fo(w )dw) smh( 5 (y +1))— D, smh( 5 (y _ 1)))

We use Fourier series method to find all the Fourier coefficients f,(y), D and NE. Let’s use
D# as an example, f,(y) and NX. have the similar steps. From (10),
—A(7* + 4X?) sin(5 ) sin(\)

27Re ‘

D*(z) =



From Euler’s formula, we have

Then we have

AT

inxz (72 +42?)sin(Zx) sin(A)  —A(72 +4X2)sin(A) eF — e T
DEe™2" = DE(2) = : = :
2 Die™s (=) 27Re 27Re 2i

neL

We could see that all Fourier coefficients except Df and D*, are equal to zero. Therefore
the Fourier coefficients [13] for D*(x) are

Dt — iA(7? + 4X?) sin()\)
" 4mRe
Similarly, the Fourier coefficients for N*(z) and f(z,y) are
Nt :im(ﬂ + 4X?) cos(N)
" 16Re

fnly) = i ((50 n+ 52 W) (cos(/\y) + Ay COSh(%y)) (4)\2 cos(Ay) — m2A, cosh(%y))

101, jn|-

ndy |

7T
16

. N
— (50771 — 552%) <2)\ sin(A\y) — wA, 51nh(§y)> )
Tables 1 and 2 [14] are all the cases for (p,(y))New and (pn(y))Dir-

Table 1: All cases of (p,(¥))Neu

n (Pn(Y))Neu

0 7{—; <AA< — Ax(m(y + 1) sinh(r) 4 cosh(my) — cosh(r))
—2(y + 1) sinh(Z) cos(A) — 4 cosh(Zy) cos(Ay) + 4 cosh(Z) (cos(A) + Ay + 1) sin()\)))

+cos(2A) + 2\ (y + 1) sin(2)) — cos(2)\y))

+i(4\2+72) csch(%) cos(\) cosh(Zy)

+1 8Re
+2 ( 2A2 + s (7?(37?2 — 4X?) cosh(Zy)) cos(Ay)
B (4X2+72) cschQ(g) cosh(my) (37r cos(A)+2A coth(%) sin(/\))
csch?(Z)+sech?(T)
+8m?Asinh(5y) sm(Ay)) — 4)\2>
other 0




Table 2: All cases of (p,(y))pir

n (Pn(y))Dir

0 ’lr—; (A,\ (A)\(COSh(ﬂ') — cosh(wy)) + 4 cosh(7%) cos(A) — 4 cosh(Fy) cos(/\y))

+cos(2)\) — 008(2)\9))

+£iA(4\2+72) sech(F) sin()) cosh(Zy)

+1 47Re

+2 | <7r2A,\ (A)\(COSh(ﬂ') — cosh(my)) + gz (372 — 4X?) cosh(r) cosh(5y) cos(Ay)
+ cosh(7y) (4% — 37%) cosh(5) cos(A) — 8w Asinh(Z) sin(\))
+87 A cosh(m) sinh(5y) sin(Ay))) + 4\?(cosh(ry) — cosh(ﬂ)))

other 0

Using Table 1,2 and (13) we have,

2
Ppir(z,y) = 71LG (A)\(COSh(T(')A)\ +4 cosh(g) cos(N)) + cos(2)\)>
+ cos(mz) <(4)‘2 — m2A3) sinh®(ry) B (m2A3 — 4)2?) sinh(r) sinh(7y) N (2 A2 — 4)\?) cosh?(7y)
16 16 16
B (w2 A3 — 4)?) cosh(r) cosh(ry) N 23 XAy sinh(Zy) sin(\y)
16 402 4 972
3! ’ sech(m)

o T T _o_seehlm) 2 N2 A2 42
+ (4)\2 o 4 VA cosh(2y) cos(Ay) 320402 + 972) ((4)\ +977) (7 A5 — 4X7)

(cosh(my) — cosh(m(y + 2))) + 87 (3m% — 4A?) COSh(g)A)\ cos(\) cosh(ry)

2 A2 cosh 2A h(Z® A
+ 647° A sinh(5) Ay sin(A) cosh(ﬂ?J))) -TAS (my) _ m*Axcos <42 y) cos(Ay)

A(4X? + 7?) sech(%) sin(A) sin(5 ) cosh(5y) N 72 (sin?(\y) — cos?(\y))
2mRe 16




PNeu(xy y) =
cos(nz) <(4>\2 — m2A3)sinh®(ry) (%A% — 4A?) sinh(r) sinh(my) N (n2 A3 — 4)?) cosh?(my)

16 16 16
B (w2 A3 — 42?) cosh(m) cosh(my) N 213\ A sinh(5y) sin(Ay)
16 42 4 972
37t w2 T 1
— — —)A h(= A —_
e gome — )Aeoshigy) cosOw) + Teans o

( — 12(4\2 + 97?) Ay cos(\) cosh (7 (y + %))

+ A\ (2)\ sin(A) ((4A* + 972) sinh(r (y + %)) + (40? — 7r?) sinh(7(y + %)))

+ 7(2002 — 372) cos(\) cosh(m(y + g))) + cosh(n(y + 1)) ((4)\2 +9n2)(n2A2 — 4)02)

+ m A\ (7 sech(g) cos(A) (372(2 + cosh(m)) — 4X*(2 + 5 cosh()))

—2) csch(g) sin(\) (4)\2 cosh(m) + 2 (817 cosh(w))))) ))

72 A2 cosh(my)  m*Axcosh(Zy)cos(\y) w2 9
- 6 - 1 + 6 ( cosh(m)Ax

+2A) cos(N)(2 cosh(g) —m(y+1) sinh(g))

+ (g + 1) (4 sin(/\)(cosh(g)A,\ + cos(A)) — msinh(r)A2) + cos(2)\)>

B (4X% + 72) csch(5) cos(X) sin(3z) cosh(Zy) B 72 cos(2)y)
4Re 16 '

(23)
In order to have an initial condition that is both divergence-free and that satisfies no-slip conditions
at the boundary, we need to find the relationship between A and A). In the next section, we will
show how to find A, Ay and compatibility requirements for pney.

5 Compatibility

In order to have no-slip condition at the boundary, we need to have velocity field equal to zero at
the boundary.( y = £1), so we have (3) equal to zero at y = £1:

cos(Z2VZ Ay sinh(Z) — Asin(\
(3a)(5 A sinh(3) o e

5 sin(§x)(cos(\) + Ay cosh(F))
Then we have
{A)\ = —cos(A) sech(F)

2Asin(A) = A msinh(%).

There are infinitely many solutions for Ay and A\. Rempfer chose Ay = 0.349911 and )\ = 2.64244
the smallest |A| case. They give the initial condition that is both divergence-free and that satisfies
our no-slip conditions at the boundary.

10



Now we will find the arbitrary constant, first we note that

foly) = po(v).

Next integrating both sides from —1 to y, we get

/_ folw)dw = ph(y) — ph(~1) = Bh(y) — Ny = ph(y). (24)

Integrating both sides from —1 to y again, we get

/_yl /_Zl fo(w)dwdz = /j(y —w) fo(w)dw = po(y) — po(—1).

We could see that po(—1) is an arbitrary constant. In our case, we pick po(—1) = 0, so we have

Y

po(y) = / (v — w) folw)dw.

-1

Plugging y = 1 in (24) we get

1
N = ph(1) = /_1 folw)dw + Ny

1
N — Ny :/1 fo(w)dw.

Next we will find the requirement for the compatibility condition. The Poisson problem with
Neumann boundary conditions has a solution if and only if the following compatibility condition
holds [4] [5],

0
/Q Fla,y)dA = /a Dty

We could show the equality by using Gauss-Green (divergence) theorem [7],

auss _ 8
/f(w,y)dA—/V-Vp(fr,y)dA G / Vp(w,y)-nda—/ (f?p(fv,y)dff-
Q Q 0 a0 on

From Fig. 1, we get

1

1
Vp(z,y) - fjdoa = /1 Vp(4,y) - (1,0)dy (at = = 4) +/ Vp(0,y) - (—=1,0)dy (at z = 0)

o0 -1

4 4
+/0 Vp(z,1)-(0,1)dz (at y = 1) —I—/O Vp(z,—1)-(0,—-1)dx (at y = —1).
Since p(0,y) = p(4,y), we have
1 1
| vty @ody+ [ Ip0.9) - (-1,0dy =0,
~1 ~1

Hence A A
Vo) - doa = [ Vpla1)- (0,1)dz+ [ (e, ~1) - 0, ~1)ds
0 0

) /4 d
= —p(z,l)dz — —p(x,—1)dzx.
| sevta iz = [ a1

11
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Therefore,

/0 ' /_ 11 F(z,y)dyda = /0 ' N*(z) — N~ (z)da

1
[ Haiy = N @) =N (@)
So we have the requirement

1
/ fo(w)dw = Ny — Ny =0.
-1

6 Results

After plugging in Ay = 0.349911 and A\ = 2.64244, the pressure field with Neumann boundary
conditions

Prew = —0.6168503c0s(2\y) — 1.670097cos(mx) — 0.07552573cosh(my)

- 0.8633708005(/\y)cosh(gy) + 0.04890236cos(mx)cosh(my) + 3.60531cosh(gy) Sin(gx)

+ 0.01241453005()\y)cos(m:)cosh(gy) + 0.4910906c0s(mz) sin(Ay) sinh(gy) —0.692376
(PNeu)Rempfer = 0.0489026 cos(mx) cosh(my) — 1.6701 cos(mz) — 0.0755258 cosh(my)
— 0.863371 cos(2\y) cosh(gy) — 0.61685 cos(2\y) + 3.30663 sin(%x) sinh(gy)

+0.0124142 cos(\y) cos(rz) cosh(gy) +0.491091 cos(nz) sin(\y) sinh(gy) — 0.692376.

Pressure field with Dirichlet boundary conditions
Ppiy = 0.09976452 cos(mx) cosh(my) — 1.670097 cos(mz) — 0.07552573 cosh(my)

— 0.8633708 cos(\y) cosh(gy) — 0.6168503 cos(2\y) + 3.032685 cosh(gy) sin( gg;)

+ 0.01241453 cos(Ay) cos(mx) cosh(gy) + 0.4910906 cos(mx) sin(Ay) sinh(gy) — 0.692376
(Ppir)Rempfer = 0.0997648 cos(mx) cosh(my) — 1.6701 cos(mx) — 0.0755258 cosh(my)

— 0.863371 cos(\y) cosh(gy) — 0.61685 cos(2\y) + 3.30663 sin(gx) sinh(gy)
+0.0124142 cos(\y) cos(7z) cosh(gy) +0.491091 cos(mz) sin(\y) sinh(gy) — 0.692376.
We could see that all coefficients are similar. The red term in (Peu)Rempfer i @ typo mistake that

Rempfer made in his paper. The difference between our pressure field and Remfer’s is the blue
term. So

PRempfer =P+ 5])

jus

where 0, = asin(5z)(sinh(5y) — cosh(Fy)) and a is the constant coefficient. And we have
V25, = 0.

Therefore,
v2PRempfer = VQP = f(xa y)

We know that Pp; is an even function for y and 8?)% is an odd function for y. Since §, and %—(Z’

are neither, so Prempfer’s pressure field expressions do not satisfy both of the boundary condtions.

12



7 Possible Improvements

Brian T. Kress and David C. Montgomery produced a stream function to obtain a 2-D solenoidal
velocity field with the normal and tangential components that disappear at the boundary [3]. The
stream function is

U(z,y) = Cky cos(kx) ( cos(Ay) + Ay cosh(k:y)).

In our case, Cxy = 1 and k = % I could produce different stream functions by switching these

two variables and get better expressions for both pressure fields from the Neumann and Dirichlet
boundary conditions.

I got all of my results from MATLAB. The expression for both pressure fields are lengthy
and it is difficult to input values of parameters of steam function and compare the results with
Rempfer’s pressure field expressions due to MATLAB’s restrictions. Using different methods or
program language to obtain shorter expressions of pressure field will help us compare the results
in an easier and more meaningful manner.
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