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Abstract: 
  
Numerical solution of Burgers equation is a 
natural first step towards developing 
methods for the computation of complex 
flows. It also has become customary to test 
new approaches in computational fluid 
dynamics by implementing them for Burgers 
equation. Burgers equation is also a simple 
model for understanding various 
complex physical flows. 
 
In this project, I've studied the modified 
cubic B-spline differential quadrature 
method (MCB-DQM) that the above authors 
used to solve the two-dimensional nonlinear 
coupled viscous Burgers equation. In MCB-
DQM, the modified cubic B-spline is the 
basis function, and the spatial derivatives of 
a function are approximated using the 
weighted sum of the functional values the 
certain discrete points. In DQM, the 
weighting coefficients may be determined 
using several kinds of test functions such as 
spline function, sinc function, Lagrange 
interpolation polynomials etc. Then the 
coupled Burgers equation is reduced into a 
system of ordinary differential equations. An 
optimal and fourth-order strongly 
stable Runge–Kutta scheme is used for 
solving the ODE. Comparing the result 
from MCB-DQM and the exact or other 
numerical solutions in two examples, the 
efficiency and reliability of the method for 
solving this kind of two dimensional 
nonlinear PDE is obtained. 
 



Chapter 1: 

Introduction and basic definitions 

We consider the well known two dimensional unsteady coupled viscous Burgers equation of the 

form 

∂u

∂t
 + u 

∂u

∂x
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𝑅𝑒
(
∂2𝑢

∂𝑥2
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∂𝑦2
)                                                                                        (1.1)  
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∂𝑦2
)                                                                                       (1.2)  

 

With initial conditions: 

u(x, y, 0) = ψ1(x, y) ;         (x, y) ∈ Ω      and     v(x, y, 0) = ψ2(x, y) ;         (x, y) ∈ Ω    (1.3)                                     

and Dirichlet boundary conditions: 

u(x, y, t) = ξ(x, y, t) ;        and     v(x, y, t) =  ζ(x, y, t) ;  (x, y) ∈ ∂Ω , t > 0                     (1.4)  

 

 

where the computational domain is Ω = {(x, y): a ≤ x ≤ b, c ≤ x ≤ d} and ∂Ω is its boundary, 

 u(x, y, t) and v(x, y, t) are the velocity components to be determined, ψ1, ψ2, ξ and ζ are known 

functions. The unsteady term is 
∂u 

∂t
 and etc. The nonlinear convection term is u 

∂u

∂x
 and etc. The 

diffusion term is  

 
1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+ 

∂2𝑢

∂𝑦2
) and etc. Re is the Reynolds number.  

Many problems can be modelled by the Burgers equation [1]. For example, the Burgers equation 

can be considered as an approach to the Navier-Stokes equations [2, 3] since both contain 

nonlinear terms of the type: unknown functions multiplied by a first derivative and both contain 

higher-order terms multiplied by a small parameter. The Burgers equation is one of the very few 

nonlinear partial differential equation which can be solved exactly. The study of the general 

properties of the Burgers equation has motivated considerable attention due to its applications 

in field as diverse as number theory, gas dynamics, heat conduction, elasticity, etc. Analytic 

solution of two dimensional coupled Burgers equations was first given by Fletcher [4] using the 

Hopf-Cole transformation. Numerical solution of the coupled Burgers equations is solved by 

many researchers. In recent years, researchers [5–9] proposed variant of differential quadrature 

method for the numerical solution of one and two dimensional linear and nonlinear differential 

equations. Korkmaz and Dag [10, 11] proposed cubic B-spline and sinc differential quadrature 

methods. Arora and Singh [12] proposed modified cubic B-spline differential quadrature method 



(MCB-DQM) and applied on one dimensional Burgers equation to check its efficiency and 

accuracy.  

Definitions 

Definition: Spline 

The theory of spline functions is a very attractive field of approximation theory. Usually, a spline 

is a piecewise polynomial function defined in region D, such that there exists a decomposition of 

D into sub regions in each of which the function is a polynomial of some degree k. 

The term "spline" is used to refer to a wide class of functions that are used in applications requiring data 

interpolation and/or smoothing. A function S(x) is a spline of degree k on [a, b] if 

 • S ∈ 𝐶𝑘−1 [a, b]. 

 • a = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = b 

 and 

• S(x)={

𝑆0(𝑥),          𝑡0  <  x < 𝑡1  

𝑆1(𝑥),          𝑡1  <  x < 𝑡2 
… . .

     𝑆𝑛−1(𝑥),          𝑡𝑛−1  <  x < 𝑡𝑛 

              where    𝑆𝑖(𝑥) ∈  𝑃
𝑘   , 𝑖 = 0, 1, … , 𝑛 − 1             (1.5) 

 

Definition: B-Spline  

The B-spline of degree k is denoted by  φ𝑖
𝑘(x), where i ∈ Z, and then we have the following 

properties:   

1. Support (φ𝑖
𝑘 ) = [𝑥𝑖, 𝑥𝑖+𝑘+1].  

2. φ𝑖
𝑘(x)≥ 0,        ∀x∈ R (non-negativity).  

3. ∑ φ𝑖
𝑘(x)∞ 

𝑖=−∞  = 1,     ∀x∈ R (partition of unity).                                                      (1.6) 

   

Alternative approach to drive the B-spline relations: 

We consider equally-spaced knots of a partition π : a = 𝑥0 < 𝑥1  < ... < 𝑥𝑛  on [a, b]. The alternative 

approach for deriving the B-splines is more applicable with respect to the recurrence relation for 

the formulations of B-splines of higher degrees. At first, we recall that the kth forward difference 

f(𝑥0) of a given function f(x) at 𝑥0, which is defined recursively by the following [13], [14]: 

 

∆𝑓(𝑥0 )= f(𝑥1) - f(𝑥0) 



∆𝑘+1𝑓(𝑥0 )= ∆𝑘𝑓(𝑥1 ) - ∆
𝑘𝑓(𝑥0 )                                                          (1.7) 

 

Definition: The function (𝐱 − 𝐭)𝒎+   

 

(x − t)𝑚+   = {
(x − t)𝑚                   x ≥ t     

     0                              x <  t            
                                  (1.8) 

 

It is clear that(x − t)𝑚+ is (m−1) times continuously differentiable with respect to t and x. 

The B-spline of order m is defined as follows: 

  

φ𝑖
𝑚(𝑡) =

1

ℎ𝑚
 ∑ (𝑚+1

𝑗
)𝑚+1

𝑗=0  (−1)𝑚+1−𝑗(𝑥𝑖−2+𝑗 − 𝑡)+
𝑚 =

1

ℎ𝑚
∆𝑚+1 (𝑥𝑖−2 − 𝑡)+

𝑚     (1.9) 

  

Hence, we can obtain the B-spline of various orders by taking various values of m. let m = 1; thus, 

m = 1 → φ𝑖
1(𝑡) = 

1

ℎ
∆  (𝑥𝑖−2 − 𝑡)+

1 = 
1

ℎ
[ (𝑥𝑖−2 − 𝑡)+ − 2(𝑥𝑖−1 − 𝑡)+ + (𝑥𝑖 − 𝑡)+ ] 

φ𝑖
1(𝑡) =

1

ℎ
 {

(𝑥𝑖 − 𝑡) − 2(𝑥𝑖−1 − 𝑡)                           𝑥𝑖−2  <  𝑡 ≤ 𝑥𝑖−1 

           (𝑥𝑖 − 𝑡)                                                       𝑥𝑖−1  <  𝑡 ≤ 𝑥𝑖                  
0                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(1.10) 

By considering different value for m, we can get different degree of B-Spline. 

 

Definition: Differential Quadrature 

Consider the nonlinear first-order partial differential equation  

𝑢𝑡 = g(t, x, u, 𝑢𝑥),                                       −∞  <  𝑥 <∞ ,    0 < 𝑡                       (1.11 )    

with initial condition 

u(0, x) = h(x),                                                                                                               (1.12) 

an equation arising in many mathematical models of physical processes. Let us make the 

assumption such that the function u satisfying equation (1.11) and (1.12) is sufficiently smooth 

to allow us to write the approximate relation  

𝑢𝑥(𝑡, 𝑥𝑖) ≅ ∑ 𝑎𝑖𝑗 𝑢(𝑡,𝑥𝑗)
𝑁
𝑗=1 ,                               i= 1, 2, …., N                                       (1.13) 



 

One method for determining the coefficients 𝑎𝑖𝑗  will be discussed below. Substitution of equation (3) 

into equation (1) yields the set of N ordinary differential equations  

𝑢𝑡 (t, 𝑥𝑖) ≅  g(t, 𝑥𝑖, 𝑢(𝑡, 𝑥𝑖), ∑ 𝑎𝑖𝑗 𝑢(𝑡,𝑥𝑗)
𝑁
𝑗=1 ),                                                    (1.14) 

With initial conditions  

u(0. 𝑥𝑖) = h(𝑥𝑖),    i= 1, 2, …, N                                                                              (1.15) 

Hence, under the assumption that (1.13) is valid, we have succeeded in reducing the task of 

solving equation (1.11) to the task of solving a set of ordinary differential equations with 

prescribed initial values. Considering the differential quadrature technique in practice turns out 

that relativity low order differential quadrature is all that is needed, the total amount of storage 

and time required on the machine is thus quite low. 

 

Definition: Diagonally dominant 

In mathematics, a square matrix is said to be diagonally dominant if for every row of the matrix, 

the magnitude of the diagonal entry in a row is larger than or equal to the sum of the magnitudes 

of all the other (non-diagonal) entries in that row. More precisely, the matrix A is diagonally 

dominant if for all i, 

 

|𝑎𝑖𝑖|≥∑ |𝑎𝑖𝑗|𝑗≠𝑖                                                                                    (1.16) 

where 𝑎𝑖𝑗 denotes the entry in the ith row and jth column.  

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Method: 

 

 

 Modified Cubic Spline Differential Quadrature Method: 

In 1972, Bellman et al.[19] introduced differential quadrature method (DQM). This method 

approximates the spatial derivatives of a function using the weighted sum of the functional values 

at the certain discrete points. The weighting coefficients in DQM are determined using several 

kinds of test functions such as spline function, sinc function, etc.  This section revisits the MCB-

DQM [12, 16] in order to complete our problem in two-space dimension. It is assumed that M 

and N grid points: a = 𝑥1 < 𝑥2,. . . .. < 𝑥𝑀 = b and c = 𝑦1 < 𝑦2,. . . .. < 𝑦𝑁= d are uniformly distributed 

with spatial step size ∆x = 𝑥𝑖+1−𝑥𝑖  and ∆y = 𝑦𝑖+1−𝑦𝑖  in x and y directions, respectively. The first 

and second order spatial partial derivatives of u(x, y, t)with respect to x (keeping 𝑦𝑗 as fixed) and 

with respect to y (keeping 𝑥𝑖  as fixed), approximated at 𝑥𝑖  and 𝑦𝑗, respectively, are defined as: 

 

∂u(𝑥𝑖,𝑦𝑗,t)

∂x
 = ∑ 𝑤𝑖𝑘

(1)𝑀
𝑘=1  u(𝑥𝑘, 𝑦𝑗 , t),   i =1, 2, ….., M,  j=1, ..., N                      (2.1) 

∂2u(𝑥𝑖,𝑦𝑗,t)

∂𝑥2
 = ∑ 𝑤𝑖𝑘

(2)𝑀
𝑘=1  u(𝑥𝑘, 𝑦𝑗 , t),   i =1, 2, ….., M,  j=1, ..., N                      (2.2) 

∂u(𝑥𝑖,𝑦𝑗,t)

∂y
 = ∑   𝑤𝑗𝑘

(1)̅̅ ̅̅ ̅̅𝑁
𝑘=1  u(𝑥𝑖, 𝑦𝑘, t),   i =1, 2, ….., M, j=1, ..., N                        (2.3) 

∂2u(𝑥𝑖,𝑦𝑗,t)

∂𝑦2
 = ∑   𝑤𝑗𝑘

(2)̅̅ ̅̅ ̅̅𝑁
𝑘=1  u(𝑥𝑖, 𝑦𝑘, t),   i =1, 2, ….., M,   j=1, ..., N                       (2.4) 

Likely, we approximate the first and second order spatial partial derivatives of v(x, y, t) with 

respect to x and with respect to y. 

 

Here 𝑤𝑖𝑗
(𝑟)
 and   𝑤𝑖𝑗

(𝑟)̅̅ ̅̅ ̅̅
, r = 1,2 are the weighting coefficients of the rth order spatial partial 

derivatives with respect to x and y. The cubic B-spline basis functions [9] at the knots are defined 

as: 

 



φ
𝑚
(𝑥) =

1

 (△ 𝑥)
3
 

{
 
 

 
 

   (𝑥 − 𝑥𝑚−2)
3                                                             𝑥𝑚−2  <  𝑡 ≤ 𝑥𝑚−1 

  (𝑥 − 𝑥𝑚−2)
3 − 4(𝑥 − 𝑥𝑚−1)

3                                        𝑥𝑚−1  <  𝑡 ≤ 𝑥𝑚   

(𝑥𝑚+2 − 𝑥)
3 − 4(𝑥𝑚+1 − 𝑥)

3                                          𝑥𝑚−1  <  𝑡 ≤ 𝑥𝑚
         (𝑥𝑚+2 − 𝑥)

3                                                                             𝑥𝑚+1  <  𝑡 ≤ 𝑥𝑚+2
0                                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                                                                                                                        (2.5) 

Note that ϕ and φ  are distinct functions. The cubic B-Spline basis functions are modified in such 

way that the resulting matrix system of equations is diagonally dominant. The modified cubic B-

Spline basis functions at the knots are modified as followed [17]:  

ϕ1(𝑥)= φ1(𝑥) + 2φ0(𝑥)  

ϕ2(𝑥)= φ2(𝑥) − φ0(𝑥)  

ϕ𝑚(𝑥)= φ𝑚 (x)      m = 3, 4, …, N-2 

ϕ𝑁−1(𝑥)= φ𝑁−1 (x) - φ𝑁+1 (x) 

ϕ𝑁 (x)= φ𝑁 + 2φ𝑁+1 (x)                                                                                                                   (2.6) 

Where {ϕ1,ϕ2, ….., ϕ𝑁} forms a basis over the domain  Ω = {(x, y): a ≤ x ≤ b; c ≤ y ≤ d}.  

 

In Equation (2.1), substituting the values of ϕ𝑚(x), m = 1,2, ..., N, we get a system of linear 

equations: 

 

ϕ𝑚
′ (𝑥𝑖) = ∑ 𝑤𝑖𝑘

(1)
ϕ𝑚(𝑥𝑘)

𝑀
𝑘=1 ,     i=1, 2, ..., M                                                                      (2.7) 

 

 

TABLE I. Coefficients of the cubic B-spline 𝛗𝒎 and its derivatives at the node 𝒙𝒎. 

 𝑥𝑚−2 𝑥𝑚−1 𝑥𝑚 𝑥𝑚+1 𝑥𝑚+2 

φ𝑚(𝑥) 0 1 4 1 0 

φ𝑚
′ 0 3/h 0 -3/h 0 

φ𝑚
′′ 0 6/ℎ2 -12/ℎ2 6/ℎ2 0 

 

With the help of Equation (2.5), (2.6) and table I, Equation (2.7) reduces into a tridiagonal system 

of equations: 

A𝑊(1)[i] =  R[i],  for i = 1,2,...,M,                                                                         (2.8) 



Where  the weighting coefficient vector corresponding to 𝑥𝑖  is 𝑊(1)[i]= [𝑤𝑖1
(1)
, 𝑤𝑖2

(1)
, … , 𝑤𝑖𝑁

(1)
 ] and 

R[i] = [𝜙1,𝑖
′ , 𝜙2,𝑖

′ , … , 𝜙𝑁−1,𝑖
′ , 𝜙𝑁,𝑖

′ ] where we define 𝜙𝑠,𝑖 = 𝜙𝑠 (𝑥𝑖), 𝑠 = 1,2, … ,𝑁 𝑎𝑛𝑑 

 𝑖 = 1, 2, … ,𝑀 . Then the coefficient matrix A has the form  

 

 

A   = 

[
 
 
 
 
 
 
             𝜙1,1 𝜙1,1
               𝜙2,1 𝜙2,2

   0             0
      𝜙2,3            0                       

  0
…   0

      
𝜙3,2  𝜙3,3             
⋱ ⋱

𝜙3,4 0

⋱

        
                         𝜙𝑁−1,𝑁−2 𝜙𝑁−1,𝑁−1      𝜙𝑁−1,𝑁

𝜙𝑁,𝑁−1    𝜙𝑁,𝑁
]
 
 
 
 
 
 

                                     (2.9) 

 

  

 

The coefficient matrix A is invertible. Using the Thomas algorithm, the tridiagonal system of linear 

equations (2.12) is solved for each i, which gives the weighting coefficients 𝑤𝑖𝑘
(1)

 of the first order 

partial derivative. Similarly, the weighting coefficients 𝑤𝑖𝑗
(2)

, 1 ≤i, j ≤ N are determined. Weighting 

coefficients 𝑤𝑖𝑗
(2)

,  1 ≤i, j ≤ N, can be computed as: [9] 

 

 

𝑤𝑖𝑗
(𝑟)

 = r(𝑤𝑖𝑗
(1)
𝑤𝑖𝑖
(𝑟−1)

 - 
𝑤𝑖𝑗
(𝑟−1)

 

𝑥𝑖−𝑥𝑗
), , for i ≠ j and i = 1,2,3,...,N; r = 2,3,...,N −1                 (2.10) 

 

𝑤𝑖𝑖
(𝑟)
= −∑ 𝑤𝑖𝑗

(𝑟)𝑁
𝑗=1,   i ≠ j ,    for i=j                                                                                             (2.11) 

where 𝑤𝑖𝑗
(𝑟−1)

 and 𝑤𝑖𝑗
(𝑟)

 are the weighting coefficients of the (r−1)th and rth order partial 

derivatives with respect to x. In the similar way, the weighting coefficients 𝑤𝑗𝑘
(1)̅̅ ̅̅ ̅̅

of the first order 

partial derivatives with respect to y and weighting coefficients 𝑤𝑖𝑗
(2)̅̅ ̅̅ ̅̅

,1 ≤i,j ≤ N for the second 

derivatives can be computed. 

 



Chapter 3 

MCB-DQM for two – dimensional coupled Burger equation  

On substituting the approximated values of spatial derivatives computed by MCB-DQM, Equation 

(1.1) can be written as: 

 

∂u(𝑥𝑖,𝑦𝑗,t)

∂t
 = -u(𝑥𝑖, 𝑦𝑗 , 𝑡) ∑ 𝑤𝑖𝑘

(1)𝑀
𝑘=1  u(𝑥𝑘, 𝑦𝑗 , 𝑡)-v(𝑥𝑖, 𝑦𝑗 , 𝑡) ∑ 𝑤𝑗𝑘

(1)̅̅ ̅̅ ̅̅𝑁
𝑘=1  u(𝑥𝑖, 𝑦𝑘 , 𝑡) 

+
1

𝑅𝑒
 [∑ 𝑤𝑖𝑘

(2)𝑀
𝑘=1  u(𝑥𝑘, 𝑦𝑗 , 𝑡)- ∑ 𝑤𝑗𝑘

(2)̅̅ ̅̅ ̅̅𝑁
𝑘=1  u(𝑥𝑖 , 𝑦𝑘, 𝑡)] 

, (𝑥𝑖, 𝑦𝑗 , 𝑡)∈ R, t > 0,   i = 1, 2, ..., M,  j = 1, 2, ..., N.                                                       (3.1) 

 

In a similar way,  

∂v(𝑥𝑖,𝑦𝑗,t)

∂t
 = -u(𝑥𝑖, 𝑦𝑗 , 𝑡) ∑ 𝑤𝑖𝑘

(1)𝑀
𝑘=1  v(𝑥𝑘, 𝑦𝑗 , 𝑡)-v(𝑥𝑖, 𝑦𝑗 , 𝑡) ∑ 𝑤𝑗𝑘

(1)̅̅ ̅̅ ̅̅𝑁
𝑘=1  v(𝑥𝑖, 𝑦𝑘 , 𝑡) 

+
1

𝑅𝑒
 [∑ 𝑤𝑖𝑘

(2)𝑀
𝑘=1  v(𝑥𝑘, 𝑦𝑗 , 𝑡)- ∑ 𝑤𝑗𝑘

(2)̅̅ ̅̅ ̅̅𝑁
𝑘=1  v(𝑥𝑖, 𝑦𝑘, 𝑡)] 

, (𝑥𝑖, 𝑦𝑗 , 𝑡)∈ R, t > 0,   i = 1, 2, ..., M,  j = 1, 2, ..., N.                                                           (3.2) 

 

Reducing Equation (3.1) and Equation (3.2) into a system of ordinary differential equations: 

du(𝑥𝑖,𝑦𝑗,t)

dt
 = 𝐹𝑖,𝑗(u(𝑥1, 𝑦1, t), u(𝑥2, 𝑦2, t), … . ,u(𝑥𝑀, 𝑦𝑁, t)), i = 1, 2, ..., M  and   j = 1, 2, ..., N.       (3.3) 

dv(𝑥𝑖,𝑦𝑗,t)

dt
 = 𝐹𝑖,𝑗(v(𝑥1, 𝑦1, t), v(𝑥2, 𝑦2, t), … . , v(𝑥𝑀, 𝑦𝑁, t)), , i = 1, 2, ..., M  and   j = 1, 2, ..., N.       (3.4) 

Equation (3.3) and (3.4) together with initial conditions (1.3) and Dirichlet boundary conditions 

(1.4) are solved by a five-stage and fourth order strong stability-preserving Runge-Kutta method 

(SSP-RK54 schemes). SSP Runge-Kutta schemes tend to have a kind of excellent properties such 

as large regions of absolute stability and low storage. [20, 21] 

 

 

 

 

 



 

Chapter IV. 

 Computational Result 

 

We provide MCB-DQM numerical solutions for two dimensional coupled Burgers equation given 

in the introduction part by considering one problem. The accuracy and consistency of the scheme 

is measured in terms of error norms 𝐿2 and 𝐿∞, restricted to the points on the grid, defined as: 

𝐿2 =∥ 𝑢exact  − 𝑢computed  ∥2 = √∑ ∑ |𝑢𝑖,𝑗𝑒𝑥𝑎𝑐𝑡
 − 𝑢𝑖,𝑗𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

 |2𝑁
𝑗=1

𝑀
𝑖=1  

𝐿∞ =∥ 𝑢exact  − 𝑢computed  ∥∞=𝑚𝑎𝑥𝑖,𝑗|𝑢𝑖,𝑗𝑒𝑥𝑎𝑐𝑡
 − 𝑢𝑖,𝑗𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑

 |                       (4.1) 

We represent 𝑢exact  and 𝑢computed  as the exact (or other authors” computed) and computed 

solutions respectively. Numerical solutions to Equation (1.1) and (1.2) are tested for the following 

problem. 

Problem: 

The analytical solutions of Equation (1.1) and (1.2) can be generated as:[4] 

u(x, y, t) = 
3

4
 - 

1

4[1+exp ((−4𝑥+4𝑦−𝑡)𝑅𝑒/32)]
 

v(x, y, t) = 
3

4
 + 

1

4[1+exp ((−4𝑥+4𝑦−𝑡)𝑅𝑒/32)]
                                                   (4.2) 

 

The computational domain can be considered by the square domain Ω = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 

1}, and the initial and boundary conditions for u(x, y, t) and v(x, y, t) are taken from the analytical 

solutions (4.2). For the test problem I, we have taken a grid size 20×20 with time step ∆t = 0.0001 

and Re = 100. Computed and exact values of u are shown in Tables II along with the results given 

by Srivastava et al. [18, 15] and Bahadir [1] at some typical grid point. The results show that the 

proposed scheme produces more accurate results than Bahadir, but of unknown efficiency. [1] 

Tables IV and V show the errors 𝐿2  and 𝐿∞ ,and also the rate of convergence of u and v 

components, respectively, at Re = 100, t = 1.0 for ∆t = 0.0001. 

It can be observed from tables IV and V, that MCB-DQM performs better than Srivastava et al.[15] 

and gives more than quadratic rate of convergence. Fig. 1 shows the computed MCB-DQM 

solutions of u and v for Re = 100 at t =0.5 and Fig. 2 shows analytical solutions of u and v 

respectively. 



 

 

 

 

 

FIG. 1. Numerical solution for u (left) and v (right) components at t = 0.5 with ∆t = 0.0001, Re = 

100 and grid size 20×20 for the test problem 1. 



 

 

 

FIG. 2. Exact solution for u (left) and v (right) components at t = 0.5 with ∆t = 0.0001, Re = 100 

and 20×20 grid for the test problem I. 

 

 

 

 

 

 

 



V. Conclusion: 

 

A modified cubic B-spline differential quadrature method is studied for the numerical solution of 

two dimensional nonlinear coupled viscous Burgers equations. 

In the first chapter, some basic definitions and methods are given. In the second chapter the 

procedure of Modified Cubic Spline Differential Quadrature Method is discussed. Numerical 

study shows that MCB-DQM results are in good agreement with the exact solutions. Comparing 

the error norms obtained by this scheme and exponential finite difference scheme provided by 

Srivastava [15], this method error is better than those obtained by exponential finite difference 

scheme. Further, it can also be noticed that the rate of convergence of the described scheme is 

more than quadratic. Also in order to comparing the stability between MCB – DQM and 

Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme [15], 

Srivastava [15] used implicit first order in time stability that is not that stable than this project 

stability that is SSP-Runge Kutta scheme. Obtained results show that MCB-DQM is a promising 

numerical scheme for solving the higher dimensional nonlinear physical problems governed by 

partial differential equations. 
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