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Abstract

For my master’s project, I analyzed the paper “Pressure determinations for incompressible
fluids and magnetofluids” by Brian T. Kress and David C. Montgomery. Taking the divergence
of the equation of motion for Newtonian fluids with a constant density yields a Poisson equation.
When we assume the fluid to obey no-slip boundary conditions, ambiguities arise when solving the
Poisson equation for pressure P . The no-slip boundary condition allows us to use the equation
of motion to assume both Dirichlet and Neumann boundary conditions, which results in over-
determination. When this problem has occurred, it has often been solved well enough for the
application; however, when considering simple solenoidal velocity fields that vanish at the walls
and that imply explicit solutions for the pressure, solving for P gives two different solutions that
are non-trivially different at the initial moment, leading to different pressure gradients by the
walls. This paper suggests replacing the no-slip boundary condition, where the disappearance of
the tangential velocity at the walls is replaced with a wall friction term.

1 Introduction
An open question exists in the field of hydrodynamics concerning pressure determination. Taking
the divergence of the equation of motion for a uniform density, Newtonian fluid results in a Poisson
equation for the pressure. In order to solve this equation, we must use boundary conditions. In
their paper “Pressure determinations for incompressible fluids and magnetofluids” [3], Brian T Kress
and David C Montgomery analyze a stream function that produces a 2-D, solenoidal velocity field,
the normal and tangential components of which disappear at the wall. This allows the pressure to
obey both Neumann and Dirichlet boundary conditions. However, the pressure determined by each
condition varies non-trivially near the wall at the initial instant.

The goal of this paper is to discuss this problem at length. Section 2 of this paper provides a
background for the topics discussed. Section 3 presents a stream function that is used to determine
pressures using both Neumann and Dirichlet conditions and shows the differences at t = 0. Finally,
Section 4 contains a possible modification to the no-slip condition where a wall friction term is added.

2 Background

2.1 Chandrasekhar-Reid Functions
The stream function that the velocity fields are obtained from is related to the Chandrasekhar-Reid
functions [1]. These functions are notable in that the normal component of the velocity and its
derivative, related to the tangential component, disappear at the walls, allowing the functions to
obey four boundary conditions. Chandrasekhar presents a proof that they form an orthogonal set
and believes the set is complete, the proof of which is given by Erling Dahlberg[2]. The following
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characteristic value problem
d4y

dx4
= α4y

with 4 boundary conditions y = 0, dydx = 0 at x = ± 1
2 is considered. The standard forms of the solutions

that form a set of orthogonal functions whose normal and tangential components disappear at the walls
are

Cm(x) =
cosh(λmx)

cosh( 1
2λm)

− cos(λmx)

cos( 1
2λm)

,

Sm(x) =
sinh(µmx)

sinh( 1
2µm)

− sin(µmx)

sin( 1
2µm)

,

where α→ λm and α→ µm are the roots of the characteristic equations

tanh
1

2
λ+ tan

1

2
λ = 0,

tanh
1

2
µ− tan

1

2
µ = 0.

2.2 Derivation of the Poisson Equation
The continuity equation for fluid dynamics states that the rate at which mass enters a system is equal
to the rate mass leaves the system plus the accumulation of mass in the system. Assuming no external
source or sink of mass, this can be written as

∂ρ

∂t
+∇ · (ρv) = 0,

where ρ is the density of the fluid and v is the velocity. For incompressible fluids, the density carried
by each fluid parcel is constant. This simplifies the equation to ∇ · v = 0.

In deriving the Poisson equation, we start with the equation of motion, M, for the fluid,

∂v
∂t

+ v · ∇v =
j×B
ρc

−∇P + ν∇2v,

where v = (vx, vy) is the velocity vector, P is the pressure, ν is the kinematic viscosity, B is the
magnetic field, j = c∇×B

4π is the electric current density, and ρ is the mass density. The paper focuses
on the Navier-Stokes case for simplicity, so the magnetic terms can be dropped. The equation of
motion can be written in vector form for its x and y components:

Mx =
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −∂P
∂x

+ ν

(
∂2vx
∂x2

+
∂2vx
∂y2

)
,

My =
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= −∂P
∂y

+ ν

(
∂2vy
∂x2

+
∂2vy
∂y2

)
.

To derive the Poisson equation, we must take the divergence of the equation of motion, ∇ ·M =
∂
∂xMx + ∂

∂yMy.

∂

∂x
Mx =

∂

∂x

∂vx
∂t

+
∂vx
∂x

∂vx
∂x

+ vy
∂2vx
∂y2

+
∂vy
∂x

∂vx
∂y

+ vy
∂2vx
∂x∂y

= −∂
2P

∂x2
+ ν

(
∂3vx
∂x3

+
∂3vx
∂y2∂x

)
,

∂

∂y
My =

∂

∂y

∂vy
∂t

+
∂vx
∂y

∂vy
∂x

+ vx
∂2vy
∂x∂y

+
∂vy
∂y

∂vy
∂y

+ vy
∂2vy
∂y

= −∂
2P

∂x2
+ ν

(
∂3vy
∂y3

+
∂3vy
∂x2∂y

)
.
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We now add the equations. After some algebraic manipulation, the right hand side is

∂

∂x
Mx +

∂

∂y
My =

∂

∂t

(
∂vx
∂x

+
∂vy
∂y

)
+

(
∂vx
∂x

)2

+ 2
∂vx
∂y

∂vy
∂x

+ vx
∂

∂x

(
∂vx
∂x

+
∂vy
∂y

)
+

(
∂vy
∂y

)2

+ vy
∂

∂y

(
∂vx
∂x

+
∂vy
∂y

)
,

while the left hand side is

∂

∂x
Mx +

∂

∂y
My = −

(
∂2P

∂x2
+
∂2P

∂y2

)
+ ν

[
∂2

∂x2

(
∂vx
∂x

+
∂vy
∂y

)
+

∂2

∂y2

(
∂vx
∂x

+
∂vy
∂y

)]
.

Now rewrite each side and equate them:

∂

∂t
(∇ · v) +∇ · (v · ∇v) = −∇2P + ν∇2 (∇ · v) .

We can now use the fact that for incompressible flows, ∇·v = 0, and we are left with∇·(v·∇v) = −∇2P
or

∇2P = −∇ · (v · ∇v).

Now we must solve the equation for P . To do this, we must use boundary conditions.

3 Pressure Determinations with No-Slip Boundary Conditions
We will now consider the case where the fluid obeys the no-slip condition i.e., the fluid has zero velocity
relative to the boundary around the boundary. In this case, the left hand side of the equation of motion
becomes zero, leaving the equation

∇P = ν∇2v

Knowing the normal component of ∇P is sufficient to solve for P using Neumann boundary condi-
tions, but it is also possible to solve for P using Dirichlet boundary conditions with knowledge of the
tangential component of ∇P , using expressions like

P (x, y)− P (a, b) =

∫
boundary from (a, b) to (x, y)

∇′P · (dx′, dy′).

Now a stream function is considered that produces 2-D solenoidal velocity fields,

ψ(x, y) = Ckλ cos(kx)[cos(λy) +Akλ cosh(ky)].

The term Akλ cosh(ky) adds a potential flow velocity component to the stream function. There are
two things to note about this. The first is that potential flow forces the velocity potential to satisfy
Laplace’s equation, the solutions of which will be used later. The second is that it allows us to force
v to obey two boundary conditions as both the normal and tangential velocity components disappear
at the boundary.

The 2-D velocity field, v = ∇ψ× êz, is in the xy-plane and has a wavenumber k in the x-direction.
It is periodic in x. The values for λ and Akλ can be numerically solved in order to ensure that all
spatial derivatives exist and the normal and tangential velocity components disappear when placed at
the walls at y = ±a. Additionally, we can find values for λ and Akλ that allow the term ∇ · (v · ∇v)
to be written as products of eikx and eλx and their inverses. Finally, Ckλ is a normalizing constant.
Now we must find an inhomogeneous solution for P and add it to a solution of Laplace’s equation.
The inhomogeneous solution for P is the same for all boundary conditions while the solution for P
for Laplace’s equation can only satisfy either the normal component or the tangential component and
must cancel the inhomogeneous solution at the boundary.
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Figure 1: 2-D velocity field for k = π
2 , λ = 2.6424, Akλ = 0.3499 from y = −1 to y = 1
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Now a specific function is chosen with values k = π
2 , λ = 2.6424, Akλ = 0.3499 with the wall at

y = ±1. Figure 1 is the chosen velocity field.
We now want to solve the Poisson equation

∇2P = −∇ · (v · ∇v) ≡ b(x) for x ∈ Ω = [−2, 2]× [−1, 1],

using Neumann boundary conditions

n̂ · ∇P = n̂ · ν∇2v on ∂Ω = {[x,−2]} ∪ · · · ,

or Dirichlet boundary conditions that can be determined by tangential gradients and formulas like

P (x,−1)− P (−2,−1) = ν

∫ x

−2
∇′2v(x′) · (dx′, 0).

The problem can be split up into two subproblems. The first subproblem is the non-homogeneous
Poisson equation

∇2P = b,

that can be solved using homogeneous boundary conditions, arbitrarily Dirichlet,

P (x,±1) = 0,

P (±2, y) = 0,

to be canceled in subproblem 2. The choice of Neumann or Dirichlet boundary conditions does not
play a role in this term of the solution.

The second subproblem is the homogeneous Laplace equation. Here a choice must be made to
solve the problem using Neumann or Dirichlet boundary conditions, including the original prescribed
conditions and conditions canceling boundary values from subproblem one. The homogeneous Laplace
equation is

∇2P = 0,

with non-homogeneous boundary conditions e.g., Dirichlet:

P (x,−1) = f1, P (x, 1) = f2,

P (−2, y) = f3, P (2, y) = f4.

Subproblem two can be solved by separation of variables. The homogeneous Laplace equation must
be split into four sub-subproblems, each having only one non-homogeneous boundary condition. For
example, f1 leads to a general solution [6]

P1(x, y) = −
∞∑
n=0

[
csch 2π(n+ 1)

∫ 2

0

f1(x′) sin
(n+ 1)πx′

2
dx′
]

sinh
π(n+ 1)(x− 4)

2
sin

(n+ 1)πy

2
.

The four solutions can be combined to form P (x, y) = P1(x, y) + P2(x, y) + P3(x, y) + P4(x, y). Now
solve the Poisson equation with homogeneous Dirichlet boundary conditions. The general solution is
[7]

P (x, y) =

∞∑
m,n=0

cmn sin
(m+ 1)πx

4
sin

(n+ 1)πy

2

where

cmn =− 1
(m+1)2π2

8 + (n+1)2π2

2

·∫ 2

0

∫ 4

0

b(x) sin
(m+ 1)πx

4
sin

(n+ 1)πy

2
dxdy
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Figure 2: Difference in pressure gradients ∇PN − ∇PD = 0.0508622π cosh(πy) sin(πx)̂ı −
0.0508622π sinh(πy) cos(πx)̂

Finally, add the solutions to the two subproblems together.
P is indeterminate up to an additive constant so the resulting ∇P from both cases are consid-

ered instead. To do this, Kress and Montgomery rewrite the momentum and Poisson equations in
dimensionless units and replace the kinematic viscosity with the reciprocal of the Reynold’s number

Re = 1
ν

(
〈v2〉
k2+λ2

) 1
2

. Here, 〈·〉 is the mean over a space containing one wavelength 2π/k in x from
y = −a to y = a.

In an article by Dietmar Rempfer [4], solutions are explicitly written. The Neumann pressure is

PN = −0.692376− 0.61685 cos(2λy)− 0.863371 cos(2λy) cosh(
πy

2
)− 0.0755258 cosh(πy)

+ 3.30663 sin(
πx

2
) sinh(

πy

2
) + cos(πx)[−1.6701 + 0.0124142 cos(λy) cosh(

πy

2
)

+ 0.0489026 cosh(πy) + 0.491091 sin(λy) sinh(
πy

2
)]

and the Dirichlet pressure is

PD = −0.692376− 0.61685 cos(2λy)− 0.863371 cos(2λy) cosh(
πy

2
)− 0.0755258 cosh(πy)

+ 3.30663 sin(
πx

2
) sinh(

πy

2
) + cos(πx)[−1.6701 + 0.0124142 cos(λy) cosh(

πy

2
)

+ 0.0997648 cosh(πy) + 0.491091 sin(λy) sinh(
πy

2
)].
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Figure 3: Normalized mean square pressure gradient difference

The resulting difference in pressure gradients is

∇PN −∇PD = 0.0508622π cosh(πy) sin(πx)̂ı− 0.0508622π sinh(πy) cos(πx)̂.

Figure 2 shows the difference in gradients between PN , the pressure determined by the Neumann
boundary conditions, and PD, the pressure determined by the Dirichlet boundary conditions with
Re = 2293 and Ckλ = 5000.

A fractional measure of the different pressure gradients, (∇PD−∇PN )2

〈(∇PN )2〉 , is plotted in Figure 3. What’s
notable from the contour plot is the the scalar ratio disappears near the center and approaches a
maximum at the wall. Additionally, the x component almost entirely disappears where the difference
is largest. This is because the x component of (∇PN −∇PD)2 is

[0.0508622π cosh(πy) sin(πx)]2 = 0.0025870 cosh2(2ky) cos2(2kx)

= 0.0025870
1 + cosh(4ky)

2

1 + cos(4kx)

2
= 0.0006467[1 + cosh(4ky)− cos(4kx)− cosh(4ky) cos(4kx)].

Here, cosh(4ky)− cos(4kx) dominates the equation in a region where ky & 1.

4 Possible Modification
We now look at the “Navier” boundary condition. Unlike the no-slip conditions considered earlier,
there is some slip at the wall. The slip velocity can be written as ∆V = Lsγ̇ where ∆V is the slip
velocity, Ls is a constant with the dimensions of length, and γ̇ is the rate of shear at the wall.
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An alternative that has worked in a different context [5], but has not been explored for this problem,
is to replace the disappearance of the velocity at the wall with a wall friction term of the form − v

τ(x) .
Here, τ(x) disappears in the interior of the fluid and attains large positive values near the wall. This
terms allows the tangential component of the velocity to approach small values near the wall without
making it vanish entirely. Thus v no longer satisfies the Dirichlet boundary condition and the pressure
must be determined solely by Neumann boundary conditions.

Montgomery and Kress note that the velocity field considered does not lead to one which obeys the
Navier boundary condition in positive time, as Ls will no longer be a constant but will vary sinusoidally
with x. However, this paper is only concerned with initial conditions. Montgomery and Kress argue
that the velocity field obtained from the considered stream function should be acceptable from the
point of view of the Navier-Stokes or magnetohydrodynamic descriptions as it is thought to have all
the relevant properties. In particular, the family of functions with the same x-periodicity is orthogonal
and believed to be complete. In conclusion, the existence of velocity fields that are solenoidal and
vanish at the walls which lead to equal Neumann and Dirichlet pressures is undetermined.
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