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1 Abstract1

Are residential water meters accurate enough? Most likely not, but in order to estimate the2

accuracy for a specific make and model of water meter, adequate testing is required. To perform3

these tests, it is also important to procure an adequate sample size that is representative of the4

population, without being too costly. To that end, on Water Systems Optimization’s (WSO)5

behalf, we aspire to review their bootstrapping analysis and determine the minimum sample6

size that should be acquired. We also analyze the statistics of water-meter performance under7

different flow rates.8

2 Introduction9

The water meter’s functionality is to measure the quantity of water being used in order to10

properly track how much money is owed for water services. Without precise measurement11

it is inevitable that there will be unaccounted mistakes regarding utility revenue generation,12

appropriate customer billing and water-demand management. According to the water audit for13

the City of Philadelphia, PA for the year of 2006, customer meters inaccuracy was estimated14

at 105.8 million gallons, costing the utility more than USD 0.5 million in revenue [1].15

Even the slightest error in performance for a single water meter can add up drastically, bit-16

by-bit over time. As such, evaluating the performance of water meters is crucial for ensuring17

the resident is not being overcharged or undercharged. WSO could use the information of18

water meters to also improve upon relevant policies (such as replacing water meters by their19

model and make). Residents could also be able to know the efficiency of the money they spent,20

help manage their budget, make the right decision of water company and so on. Studying the21

performance of water meters is therefore important to determine who is losing money, and by22

how much, due to imperfect water-meter performance.23

Since there are different models and makes of water meters, we have decided it is necessary24

to detect the differences among the different meters in order to help guide future decisions25

Kushmakar: Section 2, 3.1, 3.2, 3.4, 3.6.5, 4.4, 4.6.3 and Section 5-6
Kevin: Section 3.3, 4.3 and Section 5
Laoyi: Section 3.6.4, 4.6.2 and Section 5
Wenjuan: Section 1-2, 3.1, 3.5, 3.6.1-3.6.3, 4.1, 4.2, 4.5, 4.6.1, 4.6.4, 4.7 and Section 5
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regarding meter selection. In order to detect the differences, sample size determination used to26

detect the differences is then the next step. However, the main objectives proposed by WSO27

include:28

• Reviewing the bootstrapping analysis they have already completed to ensure that it is29

statistically rigorous.30

• Evaluating additional strategies to pick sample sizes to detect differences in performance31

between sub-populations of meters.32

We will focus on these two topics in the project and also study the performance of water meters33

under different flow rates to get more insight into their performance.34

3 Methods35

3.1 Data36

In the data set WSO provided, there are 12 different parameters which are group, agency,37

region, meterID, size, make, model, age, throughout, low, med and high. Of the 12 different38

parameters in the data set we decided to focus entirely on the water-meter type (make) and39

how accurately each meter was able to gauge water usage at different flow rates (low, med and40

high denoting the ratios of measured to true flow rates, so that a unit value implies perfect41

accuracy). One fact neglected by people is that water-meters do not always measure water42

flowing with a consistent rate. According to the 2016 RUE study, about 12% of water usage is43

from a ‘low’ flow rate, 34% from a ‘medium’ flow rate and the remaining 54% of water usage44

is from a ‘high’ flow rate. These percentages of the volume of water at certain flow rates were45

used to calculate a new column labeled wgtAve for each water-meter in the data set by formula46

wgtAve=low*0.12+med*0.34+high*0.54. For this data set, there are 16 different makes. To47

ease the usage of the data set later, define wgt_A, wgt_C, wgt_F …to be the wgtAve values for48

the corresponding make A, C, F …which all 12 have larger sample size compared with make B,49

D, E, and M.50
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3.2 Bootstrapping51

WSO having done some bootstrapping analysis with the provided data set, and one of our main52

focuses will be recreating their bootstrapping analysis in Python code and then determining53

if it is statistically rigorous. Bootstrapping is a re-sampling technique where a large number54

of samples of smaller sizes are repeatedly drawn from a data set with replacement. With55

bootstrapping, we can generate a much larger usable data set from a smaller data set in order56

to perform more confident analysis than would be possible with just the original data set.57

Figure 1 shows the basics of bootstrap algorithm, where X = (x1, x2, ..., xn) is the data set,58

X∗1,X∗2, ...,X∗B are the bootstrap samples, and bootstrap replicates s(X∗1), s(X∗2), ..., s(X∗B)59

are obtained by calculating the values of the statistic s(X) on each bootstrap sample. In

Figure 1: Bootstrap Algorithm [3]
60

this case, we take our dataset X and randomly draw samples with replacement which are61

our bootstrap samples X∗1,X∗2, ...,X∗B, then we get our statistics on each of those bootstrap62

samples which are s(X∗1), s(X∗2), ..., s(X∗B). However, it is necessary to understand that each63

of the B samples has a certain size much less than n. As we increase the size of the sample,64

the sampling distribution of the mean would become more normal. However, it is not ideal to65

choose the sample size very large because it will change the distribution of the original data66

drastically. Finally, we have bootstrap distribution from those statistics of those bootstrap67

samples.68

In the bootstrapping analysis in this report, 95% confidence limits indicate the interval69

where the left bound is the 2.5% quantile and the right bound is the 97.5% quantile of bootstrap70
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samples s(X∗1), s(X∗2), ..., s(X∗B).71

3.3 Jackknife72

The Jackknife is a leave-one-out re-sampling technique that is able to calculate the estimate73

and bias of a parameter. The method works by systematically ignoring only one observation of74

the data and calculating the parameter of interest with the remaining n-1 values. Then, it takes75

an average of collection of estimates. Let (x1, ..., xn) be the dataset, θ be the mean that we76

want to estimate from the data, θ̂ be the estimate of the mean based on the entire dataset, X̂i77

be the estimate of θ obtained by deleting observation xi. Then, the mean of the θ̂i is calculated78

by79

θ̄
1

n

n∑
i=1

θ̂i ,

where θ̄ is the jackknife estimate of the parameter of interest. By doing this method compared80

with more standard direct calculations of the parameter of interests, θ̄ will be an estimate of81

the parameter with less bias. By comparing the jackknife estimate of the parameter of interest82

and the parameter of interest calculated directly over the whole sample, the estimate of the83

bias of the parameter of interest can be directly calculated by84

b̂ias(θ) = (n− 1)(θ̄ − θ̂) .

3.4 Cross Validation85

Cross-Validation is primarily a way of measuring the predictive performance of a statistical86

model. There are several different kinds of cross-validation methods such as: Leave-One-Out87

(LOOCV), K-fold Cross-Validation, and stratified K-fold Cross-Validation. LOOCV is a type88

of cross-validation where only one data point is tested for validation, while all the other data89

are used for training the model. It is stable and nice in the sense that you will be testing all90

the data points individually, but it will take forever if you have a large size of data points.91

K-fold Cross-Validation is a type of cross-validation where your data are divided into k parts92

of some equal size and k − 1 of the parts are used for training the model and 1 for testing.93

We repeat the procedure k times, rotating the designation of the test set. Then, we determine94
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an expected performance based on the results across the iterations. Similarly, stratified k-fold95

cross-validation is almost the same as k-fold cross-validation, but the only difference is that96

in stratified k-fold, we rearrange the data in a way that each fold has a good representation97

of the whole dataset. We will be using k-fold cross-validation because the variance of the98

resulting estimate is reduced as k increases, and we will have reduced bias [13]. We will try99

to fit the approximated sampling distribution of the mean created by WSO with a Weibull100

distribution. Then, we will try to cross-validate the parameters of Weibull distribution with the101

bootstrapping result. Weibull distribution is a continuous probability distribution named after102

Swedish Mathematician Waloddi Weibull. The standard parameterization of the probability103

density function of a Weibull random variable is104

f(x;λ, k) =


k
λ

(
x
λ

)k−1
e−(x/λ)k , x ≥ 0,

0, x < 0,

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. This105

distribution is widely used in reliability engineering and life data analysis due to its versatility.106

Then, we will use Kullback-Leibler (KL) divergence to compare the density functions gen-107

erated from testing and training sets of the bootResult. KL divergence, sometimes also called108

relative entropy, is a measure of how one probability distribution is different from a second [14].109

Since we will be using standard kernel-density estimates for testing the sets and Weibull distri-110

bution for training the sets, we will then compare these two distributions using KL divergence.111

3.5 Decomposition of Total Variance112

3.5.1 ANOVA113

ANOVA is a test which helps find out if there is a significant difference between testing groups.114

We will use ANOVA to test if there is a significant difference of the performance of water115

meters among different make groups. Since bootstrapping analysis returns a confidence interval116

for the performance of the whole population, so we would like to know “Is this confidence117

interval representative for all the water meters?” Thus, to know whether the confidence interval118

is representative or not, we would like to test the performance of each subgroup with different119
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makes. The tool to test the differences among subgroups is one-way ANOVA due to the single120

factor make we are interested in. If there is a significant difference, applying bootstrapping121

analysis to each subgroup to generate its confidence interval would be preferable.122

3.5.2 Internal & External Variances123

To study the performance of water meters with different makes, we decompose the total variance124

into internal variance and external variance. By analyzing these two variances, we can get more125

insight of the performance of water meters among different make groups.126

Let I =
J∑

j=1

Ij be the total number of data and yi,j be the ith datum out of Ij data in the127

jth out of J categories e.g., make. Then the mean of category j is mj =
1

Ij

Ij∑
i=1

yij and the mean128

over all categories is129

m =
1

I

J∑
j=1

Ij∑
i=1

yij =
J∑

j=1

Ij
I
mj .

The variance of category j is130

s2j =
1

Ij − 1

Ij∑
i=1

(yij −mj)
2 ,

and the total variance can be decomposed as131

s2 =
1

I − 1

J∑
j=1

Ij∑
i=1

(yij −m)2 =
J∑

j=1

(
Ij − 1

I − 1
s2j +

Ij
I − 1

(mj −m)2
)

, (3.1)

where the 1st and 2nd summand terms represent the internal and external variance of category132

j. ∗133

3.6 Sample-size determination134

In this section, we will use α as type-I error, β as type-II error, δ (> 0) as the smallest difference135

in means that people regard as being important to be able to detect.136

∗Proof of (3.1) can be found in the Appendix
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3.6.1 Power-based sample-size determination - Formula I137

We will be connecting sample-size determination with the power of hypothesis testing. Assume138

there are two independent populations, X and Y , µ1 and µ2 being the means of X and Y139

respectively. In this background, the null hypothesis and alternative hypothesis are:140

H0 : µ1 − µ2 = 0 , H1 : µ1 − µ2 = δ .

For this hypothesis testing, we chooseX−Y as the statistic whereX and Y are sample means of141

X and Y . According to the Central Limit Theorem, as sample sizes get larger the distribution142

of X − Y will approach a normal distribution.143

The power (1−β) of a hypothesis testing is the probability of making the correct decision if144

the alternative hypothesis is true [5]. It can be shown that the power is positively correlated with145

δ and sample size, and negatively correlated with the standard deviation (σ) and significance146

level (α). The following formula specifically describes the relations of these several factors †,147

Z1−β =
δ√

σ2
1

n1
+

σ2
2

rn1

− Z1−α/2 .

where σ1, σ2 are the standard deviations of the populations X and Y , n1 is the size of the148

smaller sample, r is the ratio of larger sample to smaller sample. After some simple operations,149

we can get our first formula of sample size:150

n1 =
rσ2

1 + σ2
2

r
·
(Z1−β + Z1−α/2)

2

δ2
. (3.2)

3.6.2 Power-based sample-size determination - Formula II151

In [7] and [11], the authors summarized the method of sample-size determination based on152

power for most commonly used α and β values:153

n = f(α, β) · 2σ
2

δ2
(3.3)

†Zr is the value which makes P (X < Zr) = r where X follows standard normal distribution.
7



where f(α, β) is a value calculated from α and β, σ is the standard deviation of two populations154

(with the same standard deviation). Table 1 lists the f(α, β) for most commonly used α and β155

values,

β
α 0.05 0.1 0.2 0.5

0.05 13.0 10.5 7.9 3.8
0.01 17.8 14.9 11.7 6.6

Table 1: f(α, β) Table
156

3.6.3 Precision-based sample-size determination - Formula III157

Suppose you want to be able to estimate your unknown parameter (µ1−µ2 here) with a certain158

degree of precision. What you are essentially saying is that you want your confidence interval159

to be a certain width [11]. Since 1− α confidence interval of µ1 − µ2 is160

X̄1 − X̄2 − Z1−α/2 ·

√
σ2
1

n1

+
σ2
2

n2

, X̄1 − X̄2 + Z1−α/2 ·

√
σ2
1

n1

+
σ2
2

n2


The corresponding width is161

Z1−α/2 ·

√
σ2
1

n1

+
σ2
2

n2

where σ1, σ2 are the standard deviations of populations X and Y , and n1, n2 are the sample162

sizes of these two populations.163

If we apply the same notation used above, treat n1 be the size of the smaller sample and r be164

the ratio of larger sample to smaller sample, we have165

Z1−α/2 ·

√
σ2
1

n1

+
σ2
2

rn1

If we want the width less than value v, set166

Z1−α/2 ·

√
σ2
1

n1

+
σ2
2

rn1

= v
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Solve for n1, the smallest sample size would be167

n1 =
rσ2

1 + σ2
2

r
·
Z2

1−α/2

v2
(3.4)

3.6.4 Cohen’s D-based sample-size determination - Formula IV168

Cohen’s d is a quantitative measure of the difference between two means. The formula is169

d =
X̄1 − X̄2√

(n1−1)·s21+(n2−1)·s22
n1+n2−2

,

where n1 and n2 are the total sizes of two populations, and s21 and s22 are the sample variances170

of the two populations. The denominator of d is defined to be the pooled standard deviation171

[12]. Cohen’s d is used to determine whether the effect-size value is small, medium or large172

between the two groups. Applying Cohend’s d, the formula for determining the sample size for173

each group is174

n =
(Z1−α/2 + Z1−β)

2

d2
, (3.5)

where d is Cohen’s d mentioned above.175

3.6.5 Yamane Taro sample-size determination - Formula V176

This method for sample-size calculation in this subsection was formulated by the statistician177

Taro Yamane in 1967 to determine the sample size from a given population. Following is the178

mathematical formula for the Taro Yamane’s method:179

n =
N

1 +Ne2
, (3.6)

where n signifies the sample size, N signifies the known population, and e signifies the margin180

error. Margin of error tells us how many percentage points your results will differ from the181

real population value. Margin of error here is based on 95% confidence level and the use of182

the level of maximum variability (P = 0.5) in the calculation which generally produce a more183

conservative sample size, that is, a larger one [16]. Thus, we will use the standard margin of184

errors that Taro’s formulation suggested: 3%, 5%, 7% and 10% to determine the sample sizes185
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for different makes.186

4 Results187

4.1 Data188

By using values_counts() command, we can get sample sizes for each make from Figure 2.

Figure 2: Sample size by make
189

4.2 Bootstrapping Result190

The following Figure 3 and 4 recreate the results using Python.

Figure 3: Approximated Mean distribution using Python. Red dashed curve indicates the 2.5%
qunantile of bootstrapping means; green dashed curve indicates the 97.5% quantile of bootstrapping
means; blue dashed curve indicates the mean of boostrapping means; solid blue curve is the Kernel-
Density Estimation of bootstrapping means.

191
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Figure 4: Confidence Limits using Python. Blue vertical bars indicate 2.5% quantile to 97.5% quantile
confidence limits using bootstrapping means with the corresponding sample size on the x-axis; blue
dashed line indicates the mean of boostrapping means.

4.3 Jackknife Result192

Figure 5-8 show the results of applying Jackknife method.193

Figure 5: Apply jackknife method to the wso dataset to plot Weibull distribution parameter ‘shape’
and ‘scale’ for each sample in the dataset.

Figure 6: Scatter plot of all the Weibull distribution parameters.
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Figure 7: Scatter plot of all the Weibull distribution parameters without the outlier.

Figure 8: Kernel-Density Estimate plot of the Jackknife Weibull parameters.

4.4 Cross Validation Result194

The following Figure 9 and 10 display how Weibull distribution is fitted with bootResult.

Figure 9: Fitted Weibull distribution on bootResult and (orange curve) with the kernel density esti-
mates of bootstrapping result (green curve).

195
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Figure 10: 10-fold cross-validation on the bootResult using kernel-density estimate curve for testing
one fold of the data and training nine folds of the data using 2-parameters Weibull distribution.

4.5 Decomposition of Total Variance result196

4.5.1 ANOVA result197

To understand the data, boxplot of wgtAve categorized by make is revealed from Figure 11.198

The test results related to ANOVA are shown in Figure 12-13.

Figure 11: Boxplot of wgtAve by make
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Figure 12: ANOVA Result

Figure 13: Assumption Check for ANOVA

4.5.2 Internal & External Variances result199

To show the relation of internal, external variances with respect to different makes, Figure 14200

shows the plots of Ij−1

I−1

s2j
s2

and Ij
I−1

(mj−m)2

s2
with an abscissa label for each make.

Figure 14: Internal & external Variances
201

4.5.3 Bootstrapping for each group202

Instead of applying bootstrapping method on the whole data set to generate 95% confidence203

limits, Figure 15 shows 95% confidence limits for each make.204
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Figure 15: Confidence intervals for each group

4.6 Sample-size determination result205

4.6.1 Formula I206

The quantity of δ is highly dependent on the problem. Based on the type of problem, the207

sponsor can decide the smallest difference in performance of water meters that they regard as208

being important to be detected. Figure 16 demonstrates the relation between sample size and209

factors mentioned above.

Figure 16: Sample Size using Formula I
210

4.6.2 Formula IV211

Figures 17-19 show results using Formula IV.212
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Figure 17: Sample size determine using Cohen’s d

Figure 18: Cohen’s d values among subgroups

Figure 19: Cohen’s d sample sizes among subgroups

16



4.6.3 Formula V213

Figures 20-21 represent the sample-size determination using Yamane Taro’s Formula for each214

makes with different levels of margin of errors and for the whole population without considering215

the make types.

Figure 20: Sample sizes needed for different margin of errors (3%, 5%, 7%, and 10%) for 12 different
makes.

216

Figure 21: Sample sizes needed for different margin of errors (3%, 5%, 7%, and 10%) for the whole
population where N = 4408.

4.6.4 Test sample size formulas217

Functions comparison(i,j,Size,delta,replace) and comparison_percent(i,j,Size,218

delta,n_trial,replace) are defined in the notebook to test sample-size determination for-219

mulas mentioned above. Here we will take Formula 1 as an example and apply it to two220

populations both following Weibull distribution.221

222
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Figure 22: Formula I is applied to Weibull data

Figure 23: Verification of Formula I when using Weibull data

Then we test Formula I on our dataset. comp_percent_make(i,j,Size,delta,n_trial=1000)223

is defined similarly to comparison_percent(i,j,Size,delta,n_trial,replace). The only224

difference is that comp_percent_make is defined to test make i and make j.

Figure 24: Verification of Formula I when using WSO data with size=91
225

4.7 Explore flow rate result226

Boxplot categorized by make under different flow rates is shown in Figure 25,‡227

‡I did the Weibull fit for each make under 3 flow rates, but I do not think it is interpretable. So I choose not
to put it here. But you can find it in the notebook

18



Figure 25: Boxplot categorized by make under different flow rates

5 Discussion228

In Figure 2, makes D, E, B, and M have comparatively smaller sample sizes. Hence, when229

we perform the hypothesis testing we would like to exclude the make with small sample sizes230

because very small sample sizes are not representative and ideal for data analysis.231

Figures 3 and 4 are the plots similar to the plots our sponsor have already generated but232

using Python.233

Figure 5 shows the shape and scale parameter values over each iteration of the jackknife234

calculation for the Weibull parameter. The sharp spike indicates that one of the water meters235

is a potential outlier. The outlier water meter is index 1334, make I and has a low flow rate236

accuracy of 2.06 causing the noticeable spike in the plots.237

Figure 6 is a scatter plot of the Weibull distribution parameters (shape vs scale), removing238

the aforementioned outlier we see in figure 7 that there is a positive linear relationship between239

shape and scale.240

Figure 8 is a kernel density estimate plot of the parameters of the Weibull distribution shape241

and scale calculated from a jackknife calculation from the weighted average of the entire data242

set. While, the majority of the points sit clustered together, there are some points tapering243

behind implying that as shape decreases so would scale. The Y axis ’scale’ has less variability244

then the X axis ’shape. Because the data set is quite large, there isn’t much unexpected245

variability.However, any unusual observations from the jackknife calculation is interesting since246

it is only a point calculated from the original data set with just one datum removed. Using this247

method with smaller sample sizes might be able to visualize more unusual observations since248
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the weight of each point removed from the jackknife calculation would be more noticeable.249

Figure 9 is plot of the fitted Weibull-distribution of the bootResult with the kernel density250

estimate (kde) of the bootResult. This figure indicates that fitting a Weibull distribution251

through the data would give us some information about the data and help us test with the kde252

distribution. This leads us to use k-fold cross-validation of the bootResult comparing kde and253

Weibull distributions.254

Figure 10 is the 10-fold cross-validation plots with the KL-divergence values for each folds.255

We are comparing the kde and Weibull distributions using KL-divergence in each training256

and testing sets of the data. Eight out of the 10-fold results looks almost identical with KL-257

divergence value of lower than 20. But, two of the 10-fold results look totally off and have258

KL-divergence values almost close to 700. It is probably because these two folds most likely259

had the most values of mean accuracy not well distributed in the training set which blew off260

the Weibull distribution. This tells us that we will have to look for any influential points in the261

data which is probably not giving a good Weibull fit on two folds.262

Figure 11 returns the boxplot catergorized by make. Boxplot displays the five-number263

summary of a set of data. The five-number summary is the “minimum”, first quartile (Q1),264

median, third quartile (Q3), and “maximum”. It shows that the medians of different makes are265

all close to 1. From the length of IQR (interquartile range), there are lots of variations among266

make B, E and I by eyeball test.267

Figure 12 is the result from one-way ANOVA test for different sub-groups categoried by268

make. Here we only display 10 decimal places of the statistic and p-velue. Since the p-value269

is small, we need to reject the null hypothesis. That is, there is a significant difference among270

different makes. By checking the assumptions for one-way ANOVA (shown below), it turns out271

no assumption is satisfied. So we would need to find alternative way to test differences among272

different makes.273

Figure 13 returns the result of the Levene test and the Shapiro-Wilk test where the Levene274

test is to check the homogeneity of variances and the Shapiro-Wilk test is to check the normality275

of residuals. From Figure 13, we can see that the data here satisfy neither the Levene test nor276

the Shapiro-Wilk test. This also implies that the result from one-way ANOVA is not trustable.277

The statistic from ANOVA is the ratio of MST (variance between treatment) and MSE (variance278
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within treatment) [15], due to the fact that the assumptions of ANOVA are not satisfied, we279

would like to explore another way of decomposing the total variance to know if there is a280

significant difference of the mean performance among all makes.281

The left plot in Figure 14 shows that the plot of external ratios and internal ratios among282

different makes. Since the external ratios are so close to 0 from the left plot, we then make283

semilogy plot on the right to display more information of the tiny changes of external variances284

which are not reflected from the left plot. From Figure 14, it can be seen that external variances285

are comparatively small among different makes, while the majority of variability concentrates286

within each sub-population. This demonstrates that there is no much significant difference287

among different makes in regard to their mean values, if not their internal variability.288

Figure 15 shows the 95% confidence limits for each make. This also shows that there is a289

probability of 5% or less that the true mean value of each make will lie outside of the above290

confidence limits. Instead of returning the confidence limit for all the water meters, Figure 15291

returns more information of the variability among different makes. As we can see from Figure 15,292

make I is the sub-population with the largest variability among all the makes.293

As we can see from Figure 16294

• Sample size will increase as we decrease the significance level. This is reasonable, we295

always need to generate more samples if we want to make smaller type-I error.296

• Sample size will increase as we increase the power level which is also reasonable.297

• Sample size will increase as we decease the δ level. Student A thinks 0.03 means different,298

student B think 0.01 is different, then more samples will be needed to test a difference of299

0.01 than a difference of 0.03.300

In Figure 17, the left plot shows that when setting β = 20%, under the same α value,301

the sample size needed using Formula IV is negatively related to Cohen’s d; under the same302

Cohen’s d value, as we increase α value, sample size needed using Formula IV is decreasing.303

The right plot shows that when setting α = 5%, under the same β value, the sample size needed304

is negatively related to Cohen’s d; under the same Cohen’s d value, the sample size needed is305

negatively related to β.306
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Figure 18 displays the Cohen’s d values for each pair of makes. Figure 19 shows the sample307

size needed for each pair of makes using Formula IV.308

In Figure 20, we have the sample sizes for different margin of errors for different makes.309

Using the Yamane’s formula, we computed the samples sizes for different margin of errors for310

the 12 different makes where four out of sixteen makes were excluded because those four makes311

had data sizes of less than 10. Now, we can see in the Figure 20 that as margin of error312

increases, the number of sample size needed for specific makes decreases. If we accept 10%313

margin of error for all the makes, the sample sizes needed for each make is lower than 100.314

However, if we accept 7% margin of error for all the makes, the sample sizes needed for each315

make is lower than or equal 180. If we accept 5% margin of error for all the makes, the sample316

sizes needed for each make is lower than or equal to 317. Moreover, if we accept 3% margin of317

error for the all the makes, the sample sizes needed for each make is lower than or equal to 641.318

In Figure 21, we can see that at 3% margin of error, with our population (N = 4408), we319

will need sample size of approximately 900 to predict the true mean of the population. For 5%320

margin of error with our population (N = 4408), we will need sample size of approximately321

370 to predict the true mean of the population. For 7% margin of error with our population322

(N = 4408), we will need sample size of approximately 200 to predict the true mean of the323

population. For 10% margin of error with our population (N = 4408), we will need sample size324

of approximately 100 to predict the true mean of the population. If we accept the sampling325

error (margin of error) that is higher or equal to 10%, we get sample size of less than 100326

from which we can say something about the whole population. However, if we want to choose327

sampling error (margin of error) lower or equal to 3%, we will need a sample size of 1000 or328

more to say something about the whole population.329

comparison(i,j,Size,delta,replace) is defined in the notebook to get the conclusion if330

the means of populations i and j are different by delta when Size samples are generated from331

these two populations with Boolean replace ( replace is either True or False). Returning332

True indicates that the means of two populations are different by delta proposed in the above333

function. comparison_percent(i,j,Size,delta, n_trial, replace) returns the percent-334

age when running above function n_trial times. In Figure 22, two Weibull populations are335

generated, and Formula I is applied to data to get the sample size being 500. The top plot in336
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Figure 23, it shows that 617/1000 times we are able to detect a difference 0.03 using the sample337

size from the above step. As we can see, the result is a little conservative since 0.617 < 0.80.338

However, it shows from the middle plot that 899/1000 times we are able to detect a difference339

0.02 using the same sample size. This shows that the probability of detecting a difference δ1340

can be improved by using sample size of detecting a larger difference δ2 (> δ1). For the bottom341

plot, 3/1000 times we get the conclusion that the means of these two populations are different342

by 0.06. This can be explained since the means are only different by 0.05 in fact.343

By setting δ = 0.03, β = 20%, α = 0.05, r = 1, the corresponding sample size using344

Formula 3.2 is 91. Take this sample size 91 as an example to detect the difference of two groups345

with different make names. If there is no significant difference more than 0.03 between two346

groups, using 91 samples from two groups is not enough to detect the difference since there347

is no significant difference in fact. The above statement can also be verified in Figure 24.348

Function comp_percent_make in Figure 24 returns the ratio of numbers of accepting the null349

hypothesis and the number of trials (1000 here). For the top plot in Figure 24, if make J and350

C are different by 0.03, we should have a power of 80% to detect it. Since 5/1000 (this varies351

caused by randomness) times we accept they are different by 0.03, our conclusion is that there352

is no significant difference between make J and C when δ = 0.03. Similarly for the lower plot353

in Figure 24, if make H and I are different by 0.03, we should have a power of 80% to detect it.354

Since 980/1000 (this varies caused by randomness) times we think they are different by 0.03,355

our conclusion is that there is significant difference (at least 0.03) between make H and make I.356

Besides the topics our sponsor proposed, we are also interested in studying the performance357

of water-meters under different flow rates. Comparing the three sub-boxplots in Figure 25, we358

can see that the average performance of makes under median and high flow rates are all close359

to 1. There is a large variability of the performances for different makes under low flow rate.360

And there are more outliers in low flow rate than in median and high flow rates.361

To detect if there is a significant difference of the performance for each make under different362

flow rates, we apply the similar idea mentioned in Section 3.5.2. Under low flow rate, there is363

a lot of variability among all the makes. And the external variances are also higher under low364

flow rate than median- and high- flow rates.365
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6 Conclusions & Future Work366

We recreated the plots from bootstrapping analysis and used 10-fold cross-validation to check367

the bootstrapping analysis that WSO did. We also detected the differences among different368

makes. We also proposed five different ways for sample size determination. For future work, we369

can probably use different mathematical techniques such as marginal error to create a model to370

determine the number of sample sizes needed to represent the population. That can also control371

the type I and type II error for better control of the sample size determination in hypothesis372

testing.373

Appendix374

Proof of equation (3.1)375

Proof.

s2 =
1

I − 1

J∑
j=1

Ij∑
i=1

(yij −m)2

=
J∑
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2 +

2
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1
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
=

J∑
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2

I − 1
(mj −m)

Ij∑
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(yij −mj) +
Ij

I − 1
(mj −m)2


=

J∑
j=1

(
Ij − 1

I − 1
s2j +

Ij
I − 1

(mj −m)2
)

.

The cross term in the second to last step vanishes because
Ij∑
i=1

(yij −mj) = 0 by the definition376

of mj.377
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