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Toward Satellite Coverage Optimization for the Contiguous
United States

Group Member Participation

¢ Diego Lopez Fleming: Wrote intro and methods. Code analysis. Wrote angularEarthCoord,
arcCrossing, arcCoverage functions, arcLonglnterval, deg2rad function. Wrote code calling
these functions.

¢ Kirsten Soules: Wrote Project Proposal Tables, edited & assembled Project Proposal (updated
table portion). Code analysis. Ran meetings and took meeting minutes, assigned tasks as
necessary. Wrote the following functions: timeSinceStart, convertDateToSecSinceStart,
daytimeFunction, callingDaytime, daytimeArcCrossings, daySwath, callDaySwath,
dayCoverageConcat, ratioDaySwath. Wrote code calling these functions. Modified multiple
other functions and function calls to accommodate time. Edited & encapsulated ground
tracking visualization function from last semester's code to work with this semester's code.
Wrote the following functions for graphs: groundtrackingViz, dayGroundtrackingViz,
locationOfDaytimeCrossings, zoomedInlocationOfDaytimeCrossings, coverageRatioViz. Made
additional graphs (not in the final notebook) to validate accuracy of functions. Edited choice of
variables description and wrote justification for choices. Wrote and generated graphs for
Appendices B & C.

» Marisa Bowens: wrote abstract for project proposal, math analysis (defining Kepler elements,
Keplerian equations, swath equation, key contiguous U.S. data points organized into
documents for review as well as assisted with catching group up on key equations we would
use in the project) wrote function to set Keplerian elements of a satellite as well as the
following functions: c3d2, merge_intervals_order_helper, merge_intervals, sumarc. Final
Project Abstract, Captioned all graphs and conclusion. Wrote Appendix A.

¢ Shiro Criszia: Code analysis. Helped Diego edit Introduction portion of final proposal. Made
diagrams and wrote captions for all diagrams that were uploaded to Google Colab. Chose end
points of arc. Included Required Files section. Wrote table with different combinations of
variables and the description that goes with it, as well as uploaded all graphs for this section.
Checked for grammatical and spelling errors.

Required Files
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Linked below are images of graphs that we use throughout the notebook. All images are stored in
the sp2020 / Ball / Final Notebook Images folder in Google Drive.

Diagrams
Result Graphs
Appendix B
Appendix C

Abstract

Ball Aerospace is using the CIRiS (Compact Infrared Radiometer in Space) technology to examine
evapotranspiration on the Earth's surface and provide full coverage of the Earth within a 24-hour
period by tracking Earth's surface temperatures. This data will help scientists and decision makers
evaluate drought conditions and climate models. This project will estimate satellite coverage of the
contiguous United States and optimize the global coverage that was explored in previous projects.
This project could lead to better visualization and optimization of more finite areas of the globe,
such as the coastal regions, to more accurately depict extreme weather patterns.

Introduction

Keplerian elements will be used to define this problem. These elements consist of orbital inclination,
semi-major axis, the argument of periapsis, longitude of the ascending node, and true anomaly.
These variables will be used in Kepler's Equation, an equation that relates the geometric properties
of the orbit of a body subject to a central force. In this case, Ball satellites are the bodies subject to
the central force of the Earth. The satellite optimization parameters will be encapsulated in
functions.

Ball is focused on optimizing daytime satellite coverage. The optimization of satellite coverage is
important because Ball's satellites are equipped with CIRiS (Compact Infrared Radiometer in
Space). One capability of CIRiS that is of particular interest is tracking evapotranspiration levels of
the Earth. Evapotranspiration is a scientific variable that combines evaporation from the Earth’s
surface and the transpiration of water vapor from Earth’s plants. Our goal is to achieve complete
satellite coverage of the contiguous U.S. in one day using as few satellites as possible. If Ball
Aerospace’s satellites can provide complete coverage of the United States, then valuable data on
the evapotranspiration levels of the U.S. could be used in commercial and scientific fields. Achieving
complete coverage with fewer satellites would also benefit Ball Aerospace in saving satellite
resources.
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This project is also a continuation of Ball sponsored projects from previous semesters. The project
in Fall 2019 projected the swath onto the Earth to evaluate coverage (ground tracking), focusing on
equatorial coverage. The project in Spring 2020 incorporated the ground tracking code from the
prior semester and added additional constraints that the coverage needed to be obtained during
daylight hours. This project expands on both of the previous semesters and focuses on
encapsulating calculations into functions as well as limiting the coverage to the continental United
States. The final papers from Fall 2019 and Spring 2020 can be found at the CU Denver Math Clinic
website: https://clas.ucdenver.edu/math-clinic/projects-table.

Several assumptions about Ball Aerospace’s satellites will be made during calculations. They will be
in sun-synchronous orbit, meaning they cross the equator at the same local time on Earth every day,
but it is important to note that the precession correction has not been applied yet. The satellite’s
orbits will also be in a near-polar orbit where the angle between the poles and the orbit is
approximately 8 degrees. Each satellite is equipped with two CIRiS instruments that each provide a
15-degree field of view, for a total of 30 degrees. Field of view is the angle at which the instrument
can observe the Earth at any instant in time. Using these assumptions, along with tools like Kepler's
equation, we hope to optimize the number of satellites that it takes to achieve full coverage of the
contiguous United States.

Methods

In the research paper "A Study into Satellite Coverage and Orbital Equations," the Keplerian elements
involved in an ECEF (Earth centered Earth fixed) orbit are explained extensively and briefly
discussed below. There are six parameters that are necessary to describe the motion of one
celestial body in relation to another for a two-body problem. In our case, these parameters are
important for calculating satellite coverage on Earth. A brief overview of these elements is listed
below:

1. Semimajor axis (a)- half of the length of the line segment that runs through the center and
both foci, with ends at the widest points of the perimeter.

2. Eccentricity (e)- parameter that determines the amount by which its orbit around another body
deviates from a perfect circle (0 being perfectly circular and 1 being a parabolic escape orbit).

3. Inclination (i)- measurement of the satellite orbit’s tilt around from the Earth's equatorial
plane.

4. Longitude of ascending node (€2)- the angle between the reference direction and the upward

crossing of the orbit on the reference plane.

Argument of Periapsis (w)- the angle between the ascending node and the periapsis, and is

measured in the direction of the satellite’s motion.

<
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6. True Anomaly (v)- the position of the orbiting body along the trajectory, measured from
periapsis.

The objective of the Spring 2020 project was to set up a fully functional simulation of equatorial
coverage given the input orbital parameters above and to increase the flexibility of this simulation
with regard to time. Our goal is to set up a fully functional simulation of the coverage of the
contiguous U.S. while continuing to refine the time variable. We decided our approach would be to
encapsulate last semester’s code into functions, making it easier to use, and use an arc to estimate
the boundary of the contiguous U.S. that the satellites are crossing over. Reviewing the code from
last semester’s project, we identified a few aspects of the code that would be helpful to our project
goals. We then made a code outline to discuss what functions would be necessary and what they
should be able to accomplish. Taking useful cells from last semester’s project, we encapsulated
some code cells into functions, such as the conversion of 3D Cartesian coordinates to spherical
Earth coordinates. Some functions, such as the calculation of swath and the creation of the 3D
satellite coordinates, were preserved. Prof. Fournier then provided assistance by writing a function
that creates an arc given two coordinate points, as well as parameters that associate the arc with
the longitudinal and latitudinal coordinates of the satellites. One of these parameters was the
angular displacement to the endpoints of the arc. When there is a sign change in this parameter, we
know that our satellite has crossed the latitude of our arc. Knowing the before and after longitudinal
and latitudinal coordinates of the satellites, an interpolated line was used to find the exact crossing
of the satellite over the arc latitude. The coverage of the arc was then computed using the
mathematical coverage calculations done by the prior semester’s group. Another goal of ours was
to use Python packages to help with finding the coordinates of satellites in the daytime. We utilized
the Ephem package (https:/pypi.org/project/ephem/) to give us information as to whether satellite
ground tracking corresponded to daytime on Earth by calculating the angle of the sun above the

horizon from the point of reference (the point of reference being the ground tracking of the
satellite). It's preferable that we only find coverage during the daytime because we are gathering
information on evapotranspiration, which relies in part on the ground temperature. We also found a
use for the Ephem package in setting the orbital parameters of our satellites. Another important

Packages

from IPython.display import HTML, display
display(HTML("<style>.container { width:95% !important; }</style>"))
from scipy.optimize import fsolve

import matplotlib

import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

import ephem #https://pypi.org/project/ephem/

import datetime

Ffram Aataot+ima imnard +ima
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gmatplotlib inline

# %matplotlib inline needed for jupyter notebook, displays plot in result of code ce

from IPython.display import Javascript
# used to show all graphs in one cell without internal scroll bar

v Function Definitions

~ Creating 3D Orbit Coordinates

Professor Fournier wrote this function. This function creates the 3D Cartesian coordinates for
satellites using Keplerian elements. There are six Keplerian elements necessary to describe the
motion of one celestial body in relation to another.

e This function accepts time, orbital inclination, semi-major and minor axis, longitude of the
ascending node, eccentricity, argument of perigee, and angular momentum.
¢ This function outputs 3D orbit coordinates of the satellites.

Celestial body

Reference
direction

Longitude of ascending node

Plan
e of refe,.ence
Inclination

£3

Ascending node

e The variables shown on the picture were explained on the cell above this, under "Methods"
section.

Source for Keplerian elements picture: https://en.wikipedia.org/wiki/Orbital_elements

# Eq. 25, https://en.wikipedia.org/wiki/Kepler orbit#Properties of trajectory equatior

Hoaea Ao - Caa S A - -
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# NOTe eq. <4 1mplles a unique & ror all T ana v < e < 1.

## keep in mind capital omega for seasonal changes
def sat3D(t, i, o, Q,

a, b, H, E) # create 3D orbit coordinates (q[0],q[1],9[2])

o = [np.cos(Q), # longitude of the ascending node

np.sin(Q)] # ... converted to its cosine and sine
s = np.sin(i) # sine of inclination angle, radians
j= 0
1 =t[]:] # shift time between plane rotation and E ***3j assignec
1 = 2*np.pi*1/24/3600 # convert 1 to orbital plane normal-vector azimuth (rac
v = np.array([np.cos(l)*s, # unit normal vector of orbital plane

np.sin(l)*s,
np.array([np.cos(i)]*len(l))]).transpose()

A = np.cross([0, 0, 1], v) # vector orthogonal to v and to reference North Pole
A = np.diag(np.sum(A*A, # normalize A
axis=1)**-,5)@A
W = np.cross(v, \) # unit vector orthogonal to A and to v
E=E - o + np.pi/2 # eq. 39 implies E = 0 when 0 < e << 1
X = a*np.cos(E) # eq. 20, x-coordinate list (shifted to ellipse center;
y = b*np.sin(E) # eq. 21, y-coordinate list

orbit3D = (np.diag(x)@\ + np.diag(y)@u)@np.array([[o[0], -o[1l], O],
[o[1], o[O0], O],
[ 0, 0, 111)
return orbit3D

~ Swath Width Function

This function gives the swath width that the satellite detects across its ground track using the
mathematical equation for the calculation of swath.

 This function accepts the variable thetaSat (angle of the camera) and / (altitude of satellites).
¢ This function outputs a numeric value of swath.

def swath coverage(thetaSat, h):
swath = (2 * h * np.tan( ( (np.pi / 180) / 2 ) * thetaSat))
return swath

This function takes in an angle in degrees and outputs that angle in radians.

def deg2rad(degrees):
radians = degrees * np.pi / 180
return radians

~ Global Variables
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# ***Anomaly; Prof. FOURNIER WROTE

# Eq. 25, https://en.wikipedia.org/wiki/Kepler orbit#Properties of trajectory equatior
# Note eq. 24 implies a unique E for all t and 0 < e < 1.

t2E = lambda e, t : fsolve(lambda E : E - e*np.sin(E) - t, t/(1 - e))

# number of days we want to simulate

num days = 1

# number of satellites we wish to simulate -- << 13

satellites = 9
# altitude in meters

h = 525000
# eccentricity
e = .01

# np.sin takes radians ==> 84°

inclination = deg2rad(84)

# mean earth radius, m https://en.wikipedia.org/wiki/Earth radius

# can be changed to 6378.1343e3 --> This value will convert to exactly
# 40,075 km when evaluating coverage. The mean Earth radius will yield
# a maximum of 40,035 km

o
I

6371.0088e3
= 6.67430e-11 # gravitational constant, m3/(kg s2) https://en.wikipe

@
I

m = [le3, 5.9722e24]

I

masses of satellite, Earth, kg https://en.wikipedia.

N = 350 # nu. plot points

o = G*sum(m) # gravitational parameter, eq. 1, m3/s2
a=(R+h)/(1 - e) # eq. 35, R + minimum altitude solved for semi-major :
p = a*(l - ex*e) # eqs. 13--14, r(6=mn/2), 0 being the true anomaly

b = a*(1l - e*e)**.5 # eq. 15, semi-minor axis

H = (a*p)**.5 # eq. 26, specific relative angular-momentum magnitude
P = 2*np.pi*a**1.5/0**.5 # eq. 43, orbital period for an elliptic orbit, s

# orbital period

opd = (24*60%*60) / P # roughly 16 orbits in one day -- exactly for a perioc
orbits = (num_days)*opd # number of orbits we will simulate

thetaSat = 30

swath = swath_coverage(thetaSat, h) # swath based on calculation of altitude

halfswath = swath/2

sun_day = -6 #Angle of sun is 6 degrees below horizon (civil sunrise,
hours2seconds = 60 * 60 # number of seconds in 1 hour

HOURS = 14 # Sets the number of hours past 00:00:00 UTC
satellite_start = datetime.datetime(2020, 3, 19, HOURS, 0) # sets starting time to ':
float_sat_start = float(satellite_start.timestamp()) # turns datetime start tir
# Use equinox for satellite start date, as the equinox ensures both northern and

# southern hemispheres get same amount of sunlight. Hence this is a good model for

# an average amount of sunlight over the year.

# Equinox is on 3/19/2020

# https://en.wikipedia.org/wiki/Equinox#:~:text=This%20occurs%20twice%20each¥20year,i
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#sec_to_hrs = 3600
seconds= 240
radm = (np.pi/180)*(1/seconds)

#this is a global variable that returns values iI
# seconds and radm for sunrise/sunset lines in gre
#longitude moves 1 degree every 240 second and 1 c

arc_latitude = deg2rad(39.7392) # Latitude of Denver: 39.7392°, approx 0.69 radian
# Latitude of Denver is a rough approximation for the latitude of the geographic cente
# Future semesters may wish to use the latitude of the geographic center: (39.8283° N,
# https://en.wikipedia.org/wiki/Geographic_center of the contiguous United States

Global_longitude = 111320
rad = 57.2958
m2r = (1/Global_longitude) * (1/rad)

#1°longitude = cos(latitude) *111.32 km
# 1 rad = 57.2958°

#arc_latitude is assigned for yl and y2 to keep the arc level across the US
# (x1)= longitude of Madawaska, Maine

yl = arc_latitude

x1 = deg2rad(-68.3217)## long

# (x2)= longitude of Blaine, Washington
y2 = arc_latitude
x2 = deg2rad(-122.7471)## long

# Arc west of Mississippi: Wickliffe, Kentucky (36.966600°N 89.086822°W)
# https://en.wikipedia.org/wiki/Wickliffe, Kentucky

#yl arc_latitude
#x1 = deg2rad(-89.086822) ## longitude of Wickliffe, Kentucky

Converting 3d Cartesian Coordinates to Spherical Longitude and Latitude
Coordinates

This function takes an array of satellite 3D Cartesian coordinates and returns the variables phi and
psi of the 3D spherical coordinates. Phi and psi represent longitude and latitude, respectively.

Uses mathematical trigonometric conversions from 3D Cartesian coordinates to spherical
coordinates.

e Accepts variable orbit3d, which is an array of 3D satellite coordinates.
¢ Returns phi and psi of the 3D Cartesian coordinates.

def angularEarthCoord(orbit3D):
phi [0]*satellites
psi = [0]*satellites
# filling previous two arrays

for i in range(0,satellites):
# signed angle between (1,0) and (q[i][:,0],q9[1][:,1]), # x-coordinate for grc
phi[i] = np.arctan2(orbit3D[i][:,1], orbit3D[i][:,0])
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# creating array of zeroes the size of g[i][:,2]
gq = np.zeros(np.size(orbit3D[i][:,2]))
for j in range(0,np.size(orbit3D[i][:,2])):
# gqq is manipulating third array of g, latiture
qq[j] = orbit3D[i][]j,2] / np.sqrt( orbit3D[i][]j,0]**2 + orbit3D[i][],1]*x*:
psi[i] = np.arcsin( qq )
return phi,psi

~ Arc Display Function

This function tests if the ground tracking is in the arc's longitude limits or not.

 This function accepts 2D (long, lat) pairs p, g, and r. The variable r is the longitude and
latitude of the satellite. The variables g and p are the longitudes and latitudes of the endpoints
in the US that create our arc. We chose Blaine, Washington, and Madawaska, Maine to
represent our longitudinal endpoint as they are on the far west and far east coasts of the
contiguous United States. The arc is set at the latitude of Denver, Colorado which is a rough
approximation of the latitude of the geographic center of the contiguous United States.

» This function outputs ¢, e, s, and d. The variable c represents the angular distance from p to q.
The variable e represents the angular distance from p to s. The variable s is a vector that
points to where r would cross the arc if the satellite was traveling directly towards the arc. The
variable d represents the angle of the arc to the ground tracking point. This function was
written by Professor Fournier as a means to visualize the crossing of the arc. Note this
function is used to determine if a crossing of the arc has happened and not the exact location
of that particular crossing. It is also important to note that there are cases in which the ground
tracking point is in the sector, but the satellite crosses the arc outside of the sector. There are
also cases in which the ground tracking point is outside of the sector, but the satellite crosses
the arc inside the sector.

s It Mu

0<d| d>0 d>0
\_/
0s>e PO do e>c>0
O<ex<c

* po and qg are the longitude interval (which is what we defined as our "sector"). In this case, pg
and g will cover the contiguous US.

» dtells us if it is before or after arcLatitude. The arcLatitude is a continuous latitude line that
we selected to intersect the contiguous US.
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¢ This drawing shows 3 different situations that could happen (r;, r;, and r,). The variables r
and r, implies that e is less than zero or above ¢, so the point is outside the desired sector. If e
is in between 0 and ¢, then it is in the sector that we want.

def dispArc(p, gq, r) : # angular displacement of r fi
u = np.zeros((3,3))
x = (P, 4, T¥)

for i in range(3) : # loop over 3 (lon,lat) pairs
u[i,:2] = np.array([np.cos(x[1][0]), np.sin(x[1][0])]

y*np.cos(x[1][1]) # equatorial-plane Cartesian «

uf[i,2] = np.sin(x[i][1]) . becomes unit vector to :

= np.cross(uf[0], u[l]) vector normal to disk D cont

np.sqgrt(np.dot(v, v)) norm of v

normalize v

[N |
1
Q

np.arccos(np.dot(uf[0], u[l])) angular distance from p to «

#
#
#
#
#
.arcsin(np.dot(v, u[2])) # angle from D to u[2]
#
#
#
#
#

|
=]
el

u[2] - v*np.dot(v, u[2]) projection of u[2] onto plar
/= np.sqgrt(np.dot(s, s))

= np.arccos(np.dot(u[0], s))
#print(d, s, e, ¢, u, sep="'\n'")
return d, s, e

v

c

v

c

d =
s

s unit vector to where r woulc
e

angular distance from u[0] t

comment this out when satis
e < ¢ ensures r lies in the

~ Arc Crossing Detection Function

This function checks for a sign change in the angle of the arc to the ground tracking of the satellite.
The angle of the arc to the satellite is given in the return of the dispArc function in the d variable. A
positive d value indicates that the coordinate of the satellite is still before the latitude of the arc. A
negative d value indicates that the satellite coordinate is past the latitude of the arc. This function
then fills longB4Af and latB4Af variable with the coordinates of longitude and latitude before and
after crossing the latitude of the arc. These are in radians. The first element of each variable
corresponds to the coordinate before crossing while the second element corresponds to the
coordinate after crossing. This is done by inputting the corresponding index of the latitudes and
longitudes from the indexPosNeg array into the j values of longCoord and latCoord variables.

 This function accepts dd. dd is a list of the d values for each satellite given by the dispArc
function, longCoord, and latCoord.

e This function returns longB4Af, latB4Af, and t_B4Af. These are the times, latitudes, and
longitudes of the satellites before and after crossing.

#arcCrossing function checks all the d values that come out of the dispArc function
#looking via for loop for a sign change in the d values
def arcCrossing(dd,longCoord,latCoord):
#creating variable that will store the index of the index of the longitude and lat
#indexPosNeg stores the index of the longitude and latitude
https://colab research.google com/drive/1yXcp41JOR-fxAt8dsAmNtKzUMt34e]Cc#printMode=true 10/48
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#as the andgle from the arc to the point of crossing changes sign,signaling an arc
indexPosNeg = ['']*satellites
for i in range(0,satellites):
indexPosNeg[i]=[];
#checking for sign change
#if there is a sign change, the index
#of the latitude before crossing is stored in
#indexPosNeg
for j in range(0,np.size(dd[i])-1):
if( dd[i][j] > 0 and dd[i][j+1] < 0 ) or ( dd[i][j] < O and dd[i][F+1] > (
indexPosNeg[i].append(j)
#creating arrays of 2d vectors latB4Af and longB4Af
#first element of latB4Af is the latitude before crossing of arc
#second element of latB4Af is the latitude after crossing of arc
#first element of longB4Af is the longitude before crossing of arc
#second element of longB4Af is the longitude after crossing of arc

longB4Af = ['']*satellites

latB4Af = ['']*satellites

t_B4Af = ['']*satellites

for i in range(0,satellites):
longB4Af[i] = [];
latB4Af[i] = [];
t_B4Af[i]=[];

for j in range(0,np.size(indexPosNeg[i])-1):

#appending before after latitude and longitude points

#the j index of longCoord and latCoord variables are given by the index value

#the second element being appended are the latitude and longitude coordinates

#the index before crossing, again the index of latCoord and longCoord before ¢
longB4Af[i].append([longCoord[i][indexPosNeg[i][]]],longCoord[i][indexPos!
latB4Af[i].append([latCoord[i][indexPosNeg[i][]j]],latCoord[i][indexPosNeg|
t_B4Af[i].append([t[i][indexPosNeg[i][j]],t[i][indexPosNeg[i][j]+1]])

return longB4Af, latB4Af, t_B4Af

~ Arc Coverage Function

This function returns the longitude points at which the satellites cross the arc as well as the
coverage of each satellite as it crosses over the arc. The longitude points of the crossing of the arc
are calculated with an interpolated line. The swath intervals are calculated by adding and
subtracting swath width from the longitudinal points of crossing. Since the projection along the
track to the arc is 8-dependent, in general, the projection is not perpendicular to the arc. The outputs
are in radians.

e This function accepts longB4Af, latB4Af, and halfSwath. longB4Af and latB4Af are lists of 2d
vectors where the first element is the coordinate before crossing and the second element is
the coordinate after crossing.
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¢ This function returns the interLine variable (longitudinal coordinate of each satellite crossing)

m = tan (6)
tan~1(m) = 6
halfswath
coverage

halfswath
sin (6)

sin(6) =

coverage =

half swath

arc latitude ) )

coverage

interpolated line

¢ "The swath approaches the equator at an angle, so we incorporate this thought when
calculating the swath projection. To do this, we first take two points straddling the equator and
interpolate a line crossing the equator. The swath is imposed onto the equator its center at a
point on the interpolated line crossing the equator. The line that intersects the equator at angle
theta allows us to impose the additional measurement across the equator. From this, we can
construct a triangle on both sides that give us the two endpoints of the swath coverage.” - Fall
2019 Math Clinic Ball Final Write Up

Sources: A Study into Satellite Coverage and Orbital Equations

(Wo, Po)
= Yo+ (9 — @0) (W1 — o)

v P1—@Po
¥ =%
™0, -0

@ —
- 1 0
V)] @ = @ +my(P— o)

(W1, P1)

We are trying to find the linear interpolation using this method, shown in the picture. Which will give
us interSlope.
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"If the two known points are given by the coordinates (g, o) and (@1, y) the linear interpolant is
the straight line between these points." - Linear Interpolation (listed in Sources).

e @ - phi (latitude)
* - psi (longitude)
* interSlope is my,

Sources: Linear Interpolation

def arcCoverage(longB4Af,latB4Af,halfSwath,t_B4Af,yl):

#creating array to hold the slope at which the satellite

#crosses the arc stored in interSlope

#this is calculated by dividing latitude difference over longitude distance

interSlope = ['']*satellites
interLine = ['']*satellites
interLat = ['']*satellites
inter t = ['']*satellites
for i in range(0,satellites):
intersSlope[i] = [];
interLine[i] = [];
interLat[i] = [];
inter t[i] = [];
for j in range(0,len(latB4Af[i])-1):
m = ((latB4Af[i][j][1]-1atB4Af[i][j][0])/(longB4Af[i][j]1[1]-longB4Af[i][7’

interSlope[i].append(m)
interLine[i].append((longB4Af[i][J][0]+((longB4Af[i][Jj][1l]-longB4Af[i][]]
interLat[i].append( arc_latitude )

for j in range(0,len(latB4Af[i])-1):
inter t[i].append((t_B4Af[i][J][0]+((t_BAAf[i][FI[L1]-t _B4A£[i][J][0]) / (I

swathWidth= ['']*satellites;
for i in range(0,satellites):
swathWidth[i]=[];
for j in range(0,np.size(interSlope[i])-1):
#calculating the width of the swaths of each satellites path crossing the arc
swathWidth[i].append(m2r*(halfSwath/np.sin(np.arctan(interSlope[i][]]))))
#creating variable that will hold the swath intervals of every satellite crossing of :
swathInterval = ['']*satellites;
for i in range(0, satellites):
swathInterval[i]=[];
for j in range(0,len(interLine[i])-1)
#adding and subtracting swath width to the longitude coordinate of the crossir
#in order to create interval
swathInterval[i].append([interLine[i][]j]+swathWidth[i][j],interLine[i][]j]-

return swathInterval, interLine, interLat, inter t
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~ Arc Interval Function

This function sorts through the interLine variable (longitudinal crossings of arc latitude) and checks
if the interLine value falls between the longitudes of interest. The outputs are in radians for the
variables that do not deal with time. The timeCrossings is in seconds.

 This function accepts interLine, x1, and x2. The variable interLine is an array of longitudinal
crossings of the arc, and x1 and x2 represent the longitudes of interest for our arc.

¢ This function returns the variable arcCrossings. arcCrossings are the longitudinal crossings of
the arc latitude that fall between x1 and x2.

# x1 must be greater value in radians

# x2 must be lesser value in radians

def arcLongInterval(interLine, x1, x2, inter_t, swathInterval):
#creating variable for the longitudinal crossings of arc
#that fall between x1 and x2

arcCrossings = ['']*satellites
latCrossings = ['']*satellites
timeCrossings = ['']*satellites
swathInArc= ['']*satellites
for i in range(0,satellites):
arcCrossings[i] = [];
latCrossings[i] = [];
timeCrossings[i] = [];
swathInArc[i]= [];
for j in range(0,np.size(interLine[i])-1):

if (interLine[i][Jj] < x1 and interLine[i][]j] > x2):
# appending values that fall in our interval
arcCrossings[i].append(interLine[i][]j])
latCrossings[i].append(arc_latitude)
timeCrossings[i].append(inter_t[i][]])
swathInArc[i].append(swathInterval[i][]j])
return arcCrossings, latCrossings, timeCrossings, swathInArc

~ Time to Date & Time

This function takes in the time array (¢) in seconds and outputs an array of date & time in seconds
since the epoch (01-01-1970 00:00:00).

def timeSinceStart(t):

dtInSec = []
for i in range(0, satellites):

columnArray = []

for j in range(0, len(t[i])):

addTime = satellite_start.timestamp() + t[i][]]
#adds time at satellite i and index j to the start time
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columnArray.append(addTime)
dtInSec.append(columnArray)
return dtInSec

#appends sum to array for one satellite
#appends array for one satellite to list of arre

This function converts an input of date & time in seconds since the epoch into time in hours since
the first satellite started.

def convertDateToSecSinceStart(timeInput):
timeResult = (timeInput - float_sat_start) / hours2seconds
return timeResult

~ Daytime

This function determines whether the crossing of equator/arc happens during the daytime and
returns only the daytime coordinates.

Daytime is determined by the angle of the sun. If the sun is more than 6 degrees below the horizon
from the longitude/latitude pair, it is twilight. (Civil definition of twilight).
https://www.timeanddate.com/astronomy/different-types-twilight.html

(Astronomical definition: If the sun is more than 18 degrees below the horizon from the
longitude/latitude pair, it is twilight.)
Uses vernal equinox in 2020 for satellite start date (assigned as a global variable), as the equinox

ensures both northern and southern hemispheres get the same amount of sunlight. Hence this is a
good model for an average amount of sunlight over the year.

Utilizes Ephem package (https://pypi.org/project/ephem/) to calculate the angle of the sun.
Accepts time in UTC based off of a pre-determined date, adds time t calculated by t2q function to
determine the time of crossing in UTC ("absolute time").

Accepts inputs phi (latitude), psi (longitude), time, and altitude of satellite Returns coordinates of
equatorial/arc coverage during the daytime.

Source for the backbone of function: https://stackoverflow.com/questions/43299500/pandas-
convert-datetime-timestamp-to-whether-its-day-or-night

def daytimeFunction(longCoord, latCoord, dt):

earthCoordinates = [longCoord, latCoord, dt]
sun = ephem.Sun()

location = ephem.Observer() #sets the location of the observation point
location.lon = ephem.degrees(longCoord) #Pulls latitude coordinate, changes from 1
location.lat = ephem.degrees(latCoord) #Pulls longitude coordinate, changes from
location.elevation = h #sets the elevation of the observation point to the altif

#takes in time in seconds, will be supplied by time array
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datetimeInSec = datetime.datetime.utcfromtimestamp(dt)
#changes the datetime object to a format read by ephem (YYYY/MM/DD HH:MM:SS)
location.date = datetime.datetime.strftime(datetimeInSec, "%Y/%m/%d %H:3¥M:%S")
sun.compute (location) #Determines location of sun at the observation point
altitudeOfSun = sun.alt #Calculates altitude of sun with respect to the observatic
#if below a certain point, it is nighttime
#Note that ephem presents angles in radians
sunDegrees = (altitudeOfSun*180/np.pi) #Transforms angle of sun in radians intc
if (sunDegrees >= sun_day):
daytimeCoordinates = earthCoordinates
return daytimeCoordinates

+ Helper Function to call Daytime function

Daytime function accepts & returns a single set of points; the helper function accepts and returns
arrays of points.

def callingDaytime(longCoord, latCoord, dtInSec):
filledArray = []

for i in range(0, satellites):
columnArray = []
for j in range(0, len(longCoord[i])):
#call daytimeFunction (input to daytimeFunction is current ordered pair set)
daytimeCoords = daytimeFunction(longCoord[i][j],latCoord[i][]j], dtInSec[i][]])
if not daytimeCoords: # don't append 'None' values to array
continue
columnArray.append (daytimeCoords)
filledArray.append(columnArray) #append returned values from daytimeFunction ont

return filledArray #return array of daytime ordered pairs

v Returns result of helper function with time in hours

This function accepts an ordered triplet of longitude, latitude, and date & time values and returns the
same triplet, but with time changed to hours since the first satellite started.

def daytimeArcCrossings(longitude, latitude, dateTimeInSeconds):
# assigns result of calling callingDaytime (returns array of ordered triples)
daytimeCrossings = callingDaytime(longitude,latitude, dateTimeInSeconds)

for i in range(0, satellites):
for j in range(0, len(daytimeCrossings[i])):
# assigns the time in hours since first satellite start to the third value in t}
daytimeCrossings[i][j][2] = convertDateToSecSinceStart(daytimeCrossings[i][]][2’
return daytimeCrossings # returns altered daytimeCrossings array
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v Daytime Swath

This function works the same as Daytime function, but only returns swath. Two separate functions
are needed because swath intervals are initiated later in the code than arc crossing points, so the
Daytime function will not work if swath intervals are taken as an argument.

This function determines whether the crossing of equator/arc happens during daytime and returns
only the swath interval around each daytime arc crossing point.

Daytime is determined by the angle of the sun. If the sun is more than 6 degrees below the horizon
from the longitude/latitude pair, it is twilight. (Civil definition of twilight)
https://www.timeanddate.com/astronomy/different-types-twilight.html

Utilizes Ephem package to calculate the angle of the sun. Accepts time in UTC based off of a pre-
determined date, adds time t calculated by t2q function to determine the time of crossing in UTC
("absolute time").

¢ Accepts inputs latitude, longitude, date & time, and swath interval
¢ Returns swath interval if satellite crossed the arc at that point during the day

Source for the backbone of function: https://stackoverflow.com/questions/43299500/pandas-
convert-datetime-timestamp-to-whether-its-day-or-night

def daySwath(long_point, lat_point, dt_point, swathInterval_point):

earthCoordinates = [long_point, lat_point, dt_point, swathInterval_point]
sun = ephem.Sun()

location = ephem.Observer/()
location.lon = ephem.degrees(long point) #Pulls latitude coordinate, changes from
location.lat = ephem.degrees(lat_point) #Pulls longitude coordinate, changes fror
location.elevation = h #sets the elevation of the observation point to the altitt

#sets the location of the observation point

##takes in time in seconds, will be supplied by time array
datetimeInSec = datetime.datetime.utcfromtimestamp(dt_point)
# #changes the datetime object to a format read by ephem (YYYY/MM/DD HH:MM:SS)
location.date = datetime.datetime.strftime(datetimeInSec, "%Y/%m/%d %H:%M:%S")
sun.compute(location) #Determine location of sun at the observation point
altitudeOfSun = sun.alt #Calculates altitude of sun with respect to the observatior
#if below a certain point, it is nighttime
#Note that ephem presents angles in radians
sunDegrees = (altitudeOfSun*180/np.pi) #Transforms angle of sun in radians intc
if (sunDegrees >= sun_day):
# If the angle of the sun is greater than the angle for nighttime
# Assign the swath Interval to the variable daytimeSwath
daytimeSwath = earthCoordinates[3]
return daytimeSwath
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~ Helper Function to call Day Swath

Daytime function accepts a single set of points and returns a single swath interval; the helper
function accepts arrays of points and returns an array of swath intervals.

def callDaySwath(long_array, lat_array, dt_array, swath_array):
filledArray = []

#increment through pairs
for i in range(0, satellites):
columnArray = []
for j in range(0, len(long_array[i])):
#call daySwath (input is current pair set)
daytimeCoords = daySwath(long_array[i][]j],lat_array[i][]j], dt_array[i][]j], swatl
if not daytimeCoords: # don't append 'None' values to array
continue
columnArray.append(daytimeCoords)
#append returned values from daySwath onto array
filledArray.append(columnArray)
#return array of daytime pairs
return filledArray

~ Functions for Swath Coverage of the Arc

~ Converting 3D array to 2D Array

This function was necessary as our swathlnArc was a multidimensional array, which contained an
array of satellites as well as an array of order pairs of longitudes (radians) associated with each
satellite. In order to perform the calculation of arc coverage, the array of satellites was not needed
only the pairs of longitudes thus they were appended to a new array. An example of
Global_swathlInArc prior to and after the function is provided in Appendix A. The longitudinal orders
are retained just at a new index.

# converting 3d array to 2d array (Original array was a list of arrays that contained
#pairs of longitude points associated with each satellite. Now contains only pairs of
def c3d2(input_array):

empty=[]

for i in range(0, len(input_array)):

for j in range(0, len(input_array[i])):
empty.append(input_array[i][]])
return empty

~ Helper Function to Call Merge Interval Function
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This function takes the array of pairs of longitudes (radians) and ensures that they are all ordered
from smallest to largest in all cases, i.e. (3,1) converts to (1,3) and (-1, -4) converts to (-4, -1). An
example of Global_swathInArc prior to and after the function is provided in Appendix A. This was to
anciira that anir "lawar" limit ie nat Araatar than Aanir "iinnar limit "

#Function makes sure longitude intervals are ordered from smallest to largest in all «
def merge_intervals_order_helper (input_array):
for i in range(0, len(input_array)):
if input_array[i][0]>input_array[i][1]:
temp=input_array[i][0]
input_array[i][0]=input_array[i][1]
input_array[i][1l]=temp
return input_array

v Merged Intervals of Longitudinal Coverage Function

This function takes the sorted array of ordered pairs of longitudes and finds the unions for the entire
set of points. And creates a new array which contains ordered pairs of the unions, i.e. ((1,3), (3,6))
convert to (1,6). It also outputs those ordered pairs that lay outside the union, i.e. (8,9).

This code was taken from an example on stack overflow:

https://stackoverflow.com/questions/49071081/merging-overlapping-intervals-in-python/49076157

#merges intervals of longitudes to calculate swath overlap between satellites
def merge intervals(intervals):

intervals=merge_intervals_order_ helper(intervals)

sorted_intervals = sorted(intervals, key=lambda x: x[0])

interval_index = 0

for i in sorted_intervals:

#modified from original stack overflow

if i[0] > sorted intervals[interval_index][1]:
interval_index += 1
sorted_intervals[interval_index]

I
-

else:
sorted_intervals[interval_index] = [sorted_intervals[interval_index][0],1

return sorted intervals[:interval_index+1]

¥ Summation of Distance Covered by Satellites

The function takes the array of merged intervals and calculates the distance between each ordered
pair in a for loop and outputs the total distance in radians covered by all the satellites. Note that the
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distance calculated ignores the sphericity of the Earth.

#summation of merged arc intervals
def sumarc(interval_array):
sum=0
for i in range(0, len(interval_array)):
sum+=abs (interval_array[i][0]-interval_array[i][1])
return sum

v Concatenation of Swath Interval Array

This function takes an input array of swath intervals and returns the first i + 1 swath intervals from
the input array to index i of the returned array.

def dayCoverageConcat(input_array):
array of inputs = []
coverage_ratio_array = []

for i in range(0, len(input_array)):
# append the first (i+l) intervals to the coverage ratio array
coverage_ratio_array.append(merge_intervals(input_array[:i+1]))
return coverage ratio_array

v Ratio of Coverage of the Arc

This function takes as input the concatenated array and returns an array of ratios for each input.

def ratioDaySwath(concat_array):
totarc = abs(x1-x2) # assigns the absolute value of the endpoints of the arc (lenc
return_array=| ]
for i in range(0, len(concat_array)):
# takes the sum of the coverage of the index i of the concatenated array
# and divides by the total length of the arc to determine coverage with i crossinc
sat_cov = (sumarc(concat_array[i]) / totarc)
return_array.append(sat_cov)
return return_array

~ Graphing

~ Ground Tracking Visualization

This figure shows the ground tracking generated as (longitude, latitude) points in radians by each
satellite mapped on a flat representation of the Earth. Here the solid black line at approximately
0.69 radians represents the latitude of the arc through Denver, Colorado which is a rough
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approximation of the latitude of the geographic center of the contiguous United States. Thus points
on either side of the line represent the satellite crossing over the arc.

Source for the backbone of this code: Spring 2020 Ball Aerospace final Jupyter Notebook

Source for changing colormap to assign colors for satellites:
https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

def groundtrackingViz(longCoord, latCoord, satellites):
arcLine = [arc_latitude, arc_latitude]

f = plt.fiqgure(figsize=(10,8))
ax = f.add_subplot(1l,1,1)

colors = cm.viridis(np.linspace(0, 1, satellites)) # sets colormap to a value equa:
for i in range(0,satellites):

title = "sat" + str(i+l)

# plots logitude values with respect to latitude values

plt.plot(longCoord[i], latCoord[i],'.', label=title, c=colors[i])
plt.plot([-np.pi,np.pi], arcLine,'-',label = "Arc Latitude", c='k") # plots
#plt.axis([x2, x1, 0.5, 1.0]) #plt.axis([min_x, max x, min_y, max y]) sets mir
plt.title('Ground Tracking Projection For ' + str(i+l) + ' satellites in 24 hours')
plt.legend(loc="'lower right')
plt.xlabel('Longitude of Earth in radians (-m to +m)')
plt.ylabel('Latitude of Earth in radians (-m/2 to +m/2)")
txt=" This figure shows the ground tracking generated as (longitude, latitude) point
plt.figtext(.5, .001, txt, ha='center')

return

~ Daytime Ground Tracking Visualization

This figure shows the ground tracking generated as (longitude, latitude) points in radians by each
satellite mapped on a flat representation of the Earth during daytime hours. Here the solid black line
at approximately 0.69 radians represents the latitude of the arc through Denver, Colorado which is a
rough approximation of the latitude of the geographic center of the contiguous United States. Thus
points on either side of the line represent the satellite crossing over the arc. Note the date chosen
was an equinox to ensure equal amounts of sunlight on the northern and southern hemispheres.

Source for the backbone of this code: Spring 2020 Ball Aerospace final Jupyter Notebook

Source for code to prevent repeated labels in legend:
https://stackoverflow.com/questions/19385639/duplicate-items-in-legend-in-matplotlib

def dayGroundtrackingViz(coordinates, satellites):
arcLine = [arc_latitude, arc_latitude]
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f = plt.figure(figsize=(10,8))
ax = f.add subplot(1l,1,1)

colors = cm.viridis(np.linspace(0, 1, satellites))
for i in range(0,satellites):
for j in range(0, len(coordinates[i])):
title = "sat" + str(i+l) if j == 0 else
# plots longitude values with respect to latitude values
plt.plot(coordinates[i][Jj][0], coordinates[i][J][1l],'."', label = title, c=colors
plt.plot([-np.pi,np.pi], arcLine,'-', label = "Arc Latitude", c='k") #plots tl
#plt.axis([x2, x1, 0.5, 1]) #plt.axis([min_x, max_x, min_y, max_y]) sets min/r
plt.title('Daytime Ground Tracking Projection For ' + str(i+l) + ' satellites in 24
plt.legend(loc='lower right')
plt.xlabel('Longitude of Earth in radians (-m to +m)"')
plt.ylabel('Latitude of Earth in radians (-m/2 to +m/2)")
txt=" This figure shows the ground tracking generated as (longitude, latitude) point
plt.figtext(.5, .00000001, txt, ha='center')
return

_nolegend_"

Location of Daytime Arc Crossing Visualization

This figure shows the arc longitude at which each satellite crosses the arc during daytime as related
to the time since the first satellite was launched. The orange line represents sunrise and the blue
represents sunset. The distance between the black dashed horizontal lines represents the length of
the arc.

Source for the backbone of this code and the sunrise/sunset lines: Spring 2020 Ball Aerospace final
Jupyter Notebook

def locationOfDaytimeCrossings(coordinates_time, satellites):

1 i = 0 #Initial longitude location

t_i = HOURS*hours2seconds  #Time that the satellites start in hours, transformed tc
psi r = (1_i + ((np.pi/2)-(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial
psi_s = (1_i + ((3*np.pi/2)+(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial

f = plt.fiqgure(figsize=(10,8))
ax = f.add_subplot(1l,1,1)
for i in range(0,satellites):
plt.plot(t[i]/3600, (psi_r-t[i]*radm)%(2*np.pi), '.', label="sunrise" if i == 0 el

plt.plot(t[i]/3600, (psi_s-t[i]*radm)%(2*np.pi), '.', label="sunset" if i == 0 el

colors = cm.viridis(np.linspace(0, 1, satellites))
k=0
for i in range(0,satellites):
for j in range(0, len(coordinates_time[i])):
title = "sat" + str(i+l) if j == 0 else "_nolegend "
# plots time values with respect to longitude values (from 0 to 2*pi)
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plt.plot(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), ' Titie = sat T STr(iTi) 1L J == U else _nolegena_

k+=k # plots swath coverage of arc

plt.errorbar(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)),

# plots time with respect to longitude (from 0 to 2*pi)

eastern_boundary
western_boundary

(x1 % (2*np.pi)
(X2 % (2*np.pi))

plt.plot(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), 'o

titlel="Boundary of Arc Longitudes" k f= k
#https://matplotlib.org/3.1.0/gallery/subplots axes and figures/axhspan demo.html#st plt.xl%m([o, 247) ) ) ) )
plt.axhline(y=eastern boundary, linestyle='--', color='black', label=titlel) plt.ylim([x2%(2*np.pi), x1%(2*np.pi)]) # graph is bounded by arc endpoint longitude

plt.xlabel('Time since Satellite 1 started in hours')

plt.ylabel('Arc Longitude in radians (0 to 2m) \n Bounded by Arc Endpoints')

247) ax.set_title('Location of Daytime Arc Crossings for ' + str(i+l) + ' Satellites\n Bc
ax.legend(loc='lower right')

txt=" This figure shows the longitude (bounded by arc) at which each satellite cros
plt.figtext(.5, .0000001, txt, ha='center')

plt.axhline(y=western_boundary, linestyle='--', color='black')
plt.xlim([O,
plt.ylim([0, 2*np.pi])

plt.xlabel('Time since Satellite 1 started in hours')
plt.ylabel('Arc Longitude in radians (0 to 2m)"')

ax.set_title('Location of Daytime Arc Crossings for ' + str(i+l) + ' Satellites') return

ax.legend(loc='lower right')

txt=" This figure shows the arc longitude at which each satellite crosses the arc di . ) .

plt.figtext(.5, .0000001, txt, ha='center') ~ Visualization for Coverage Ratio

return
This figure shows the arc longitude at which each satellite crosses the arc during daytime as related
to the time since the first satellite was launched. The right axis shows the accumulated coverage of

. Location of Daytime Arc Crossing Visualization, Bounded by Arc Endpoint the arc by the swath intervals (as a percentage) over the 24 hour period. The black error bars show
Longitudes the swath coverage at each crossing point.

This is the same code as the function locationOfDaytimeCrossings, but the graph is bounded by the The purple dashed line in the upper right corner represents full coverage of the arc by the swath

endpoint longitudes of the arc to better show the coverage of the arc. intervals.

This figure shows the arc longitude at which each satellite crosses the arc during daytime as related Source for the backbone of this code: Spring 2020 Ball Aerospace final Jupyter Notebook

to the time since the first satellite was launched. The black error bars show the swath coverage at

each crossing point. The orange line represents sunrise and the blue represents sunset. def coverageRatioViz(coordinates_time, satellites, ratio_array):
f = plt.figure(figsize=(10,8))
Source for the backbone of this code as well as the sunrise/sunset lines: Spring 2020 Ball axl = f.add subplot(1,1,1)
Aerospace final Jupyter Notebook k=0
colors = cm.viridis(np.linspace(0, 1, satellites))
X _array = []
def zoomedInlocationOfDaytimeCrossings(coordinates_time, satellites): for i in range(0,satellites):
1.i=0 #Initial longitude location #title = "sat" + str(i+l) + "-orbit"
t_i = HOURS*hours2seconds #Time that the satellites start in hours, transformed tc for j in range(0, len(coordinates_time[i])):
psir = (1_i + ((np.pi/2)-(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial s xX_array.append(coordinates_time[i][j][2])
psi_s = (1_i + ((3*np.pi/2)+(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial ¢ #only prints the first entry for each satellite in the legend
title = "sat" + str(i+l) if j == 0 else "_nolegend_ "
f = plt.fiqgure(figsize=(10,8)) #Sets size of figure # plots swath coverage of arc
ax = f.add subplot(1l,1,1) plt.errorbar(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)),
for i in range(0,satellites): #Iterates through satellites # plots time values with respect to longitude (from 0 to 2*pi)
plt.plot(t[i]/3600, (psi_r-t[i]*radm)%(2*np.pi),'."', label="sunrise" if i == 0 els plt.plot(coordinates_time[i][Jj][2], (coordinates_time[i][]j][0] % (2*np.pi)), 'o
plt.plot(t[i]/3600, (psi_s-t[i]*radm)%(2*np.pi),'."', label="sunset" if i == 0 else¢ k +=k
colors = cm.viridis(np.linspace(0, 1, satellites)) X_array.sort()
k=0 axl.legend(loc= 'lower right')
for i in range(0,satellites): plt.xlabel('Time since Satellite 1 started in hours')
for j in range(0, len(coordinates_time[i])): plt.ylabel('Arc Longitude in radians (0 to 2m) \n Bounded by Arc Endpoints')
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axs = axl.twlinx()

titlel = "Cumulative Coverage of All Satellites"

title2 = "Full Arc Coverage during Daytime (righthand y-axis)"

title3 = "Cumulative coverage" longCoord, latCoord = angularEarthCoord(Global_orbit3D)

# r is an array of the long and lat Coordinates of the satellites, r will be used in f
# plots the ratio of coverage for each successive swath interval r = ['']*satellites
for i in range(0, satellites):
r[i]=[]
for j in range(0, np.size(latCoord[i])-1):
r(i].append([longCoord[i][]],latCoord[i][]]])

ax2.plot(x_array, ratio_array, color='blue', label = title3)
ax2.yaxis.label.set_color('blue')

ax2.hlines(y=(1), xmin=10, xmax=24, color='purple', linestyles='--', 1lw=2, label =t:
ax2.legend(loc="upper right')

plt.ylim((0, 1.2)) #creating variable to hold values of s, d
plt.ylabel('Cumulative Arc coverage in percentage')

axl.set_title('Daytime Coverage of Arc Crossings within 24 hours with ' + str(i+l) -
ax2.spines[ 'right'].set_color('blue')

txt=" This figure shows the arc longitude at which each satellite crosses the arc di

ss = ['']*satellites

dd = ['']*satellites

# running a for loop in order to call dispArc function
for i in range(0,satellites):

plt.figtext(.5,.0000001, txt, ha='center') 55[%]=[]
return dd[i]=[]
for j in range(0, np.size(latCoord[i])-1):

d, s, e = dispArc([x1,yl1],[x2,y1]1,r[i]1[]])
. . # appending d values to dd
~ Results & Discussion # appending s values to ss
dd[i].append(d)
ss[i].append(s)
. #arcLength = c
¥ Main
# Function calls assigned to variables
Contains some global variables and function calls. Global_longB4Af, Global_ latB4Af, Global_t_ B4Af = arcCrossing(dd,longCoord,latCoord)
Global_swathInterval, Global_interLine, Global_interLat, Global_inter_ t = arcCoverage|
Global_arcCrossings, Global_ latCrossings, Global_ timeCrossings, Global_ swathInArc = a1

## calling code Global_ratio_array = ratioDaySwath(dayCoverageConcat(c3d2(callDaySwath(Global_arcCros

Global_orbit3D = [0]*satellites # Creating empty lists for the x,y, Global_SortedSwath = c3d2(callDaySwath(Global_arcCrossings, Global_latCrossings, time¢

t = [0]*satellites Global_SortedswathDiff = [ggq[1l]-ggq[0] for ggg in Global_SortedSwath]

E = [0]*satellites

# Q, the longitude of the ascending node will rotate by one degree every day. # Plots

# This ensures that the orbital plane passes through the same time on each groundtrackingViz(longCoord, latCoord, satellites)

# day at each latitude. dayGroundtrackingViz(callingDaytime (longCoord, latCoord, timeSinceStart(t)), satellite
locationOfDaytimeCrossings(daytimeArcCrossings(Global_ arcCrossings, Global_ latCrossinc

Q = (np.pi/4) - 0.25 zoomedInlocationOfDaytimeCrossings (daytimeArcCrossings(Global_arcCrossings, Global_lat

o =0 coverageRatioViz(daytimeArcCrossings(Global arcCrossings, Global latCrossings, timeSir

#spacer=.1021569 #value used in Spring 2020

spacer = 1 / satellites

for i in range(0,satellites): # Creating individual times lists for each of tt
t[i]= np.linspace((i*(spacer*P)), ((orbits*P)+(i*(spacer*P))), 4*N) #***in linspac
E[i] = t2E(e, H*t[0]/a/b)
Global_orbit3D[i] = sat3D(t[i], inclination, w, @, a, b, H, E[i])

# displays all graphs without scroll bar
#https://stackoverflow.com/questions/55546869/google-colaboratory-is-there-any-way-to-

displav(Javascriot('''gooale.colab.outpbut.setIframeHeicht(0. true. {maxHeicht: 5000})
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Ground Tracking Projection For 9 satellites in 24 hours
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This figure shows the ground tracking generated as (longitude, latitude) points in radians by each satellite
mapped on a flat representation of the Earth. Here the solid black line represents the latitude of the arc.
Thus points on either side of the line represent the satellite crossing over the arc.
Daytime Ground Tracking Projection For 9 satellites in 24 hours
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This figure shows the ground trackingnggelnlf:rglgd aas olr?gE u e??aﬁ:i&‘ﬁe‘{‘glninu in radians by each satellite
mapped on a flat representation of the Earth during daytime hours. Here the solid black line represents the
latitude of the arc. Thus points on either side of the line represent the satellite crossing over the arc. Note the
date chosen was an equinox to ensure egual amounts of sunlight on the northern and southern hemisphere.

Location of Daytime Arc Crossings for 9 Satellites
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This figure shows the arc longitude at which each satellite crosses the arc during daytime as related to
the time since the first satellite was launched. The orange line represents sunrise and the blue sunset.
The distance between the black dashed horizontal lines represents the length of the arc.
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sat2
sat3
satd [
sats
sath
sat7

+ sats

* sat9

24 | Global_ratio_array
.04791394792106863,
.09602351701016776,
.1440362485777575,
.1919501964988261,
.24005976558792572,
.28782797014170736,
.335741918062776,
.3838514871518751,
.4316196917056567,
.47953363962672535,
.5276432087158249,
.5289443609045849,
.5768583088256535,
.6249678779147531,
.6262690301035125,
.6741829780245812,
.7222925471136803,
.7235936993024398,
.7715076472235084,
.8196172163126075,
.8209183685013675,
.8688323164224361,
.9169418855115352,
.9648558334326038,
.0126931051673647]
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This figure shows the longitude (bounded by arc) at which each satellite crosses the arc during daytime as related
to the time since the first satellite was launched. The error bars show the swath coverage at each crossing point.

Daytime Coverage of Arc Crossings within 24 hours with 9 Satellites
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Our graphs display that 9 satellites have full coverage of the contiguous United States within 24

hemisphere than on the day of the equinox, this full-coverage case holds for a minimum of half the

~ Total Percentage of Swath Coverage Over Arc year.

Total percentage swath coverage over arc with 5-9 satellites (note that satellites are equidistant): The prior cell shows that the total percentage of swath coverage over the arc is approximately 88%
Generated with the last value from Global_ratio_array, which sums up the total coverage from all for 8 satellites, but jumps up to 101% for 9 satellites. Since the function does not test for overlap,
daytime swath intervals over the arc. any values greater than 100% lose accuracy. We chose to merge intervals together, but recommend
« 5satellites: 0.641035857722568 that prior semesters calculate the gaps & overlap in the coverage. The additional 1% could be due to
swath intervals that start within the bounds of the arc but have sections outside of the arc as well.
* 6 satellites: 0.6812359836317422 In future semesters, it would be beneficial to determine the amount of coverage versus the amount
e 7 satellites: 0.8137610859271983 of overlap and determine the most optimal amount of satellites. Because while 9 satellites may
« 8 satellites: 0.8860558939558417 offer full coverage, 88% may be acceptable for Ball Aerospace and have a significant impact on

budget or other restrictions.
e 9 satellites: 1.0126931051673647

The code this semester has been encapsulated into functions. Encapsulation helps with

Note that the global ratio array does not calculate the amount of overlap, so itis not a good maintainability, it makes it much easier to read and understand with minimum time investment.

. ) %
quantification for coverage over 100%. Future semesters will be able to take key functions from our code that they would like to use

https://colab research.google com/drive/1yXcp41JOR-fxAt8dsAmNtKzUMt34eJCc#printMode=true 29/48 https://colab research.google com/drive/1yXcp41JOR-fxAt8dsAmNtKzUMt34e]Cc#printMode=true 30/48



1/11/2021 Ball_Aerospace_Ultimate_Jupyter_Notebook_AF.ipynb - Colaboratory 1/11/2021 Ball_Aerospace_Ultimate_Jupyter_Notebook_AF.ipynb - Colaboratory
without having to recode it themselves. Encapsulation also reduces the complexity of the code and Here is the graph for the first simulation with 9 satellites, Q is % — 0.25, inclination is 83°, altitude
inconsistencies in variable names. is 525 km:

This simulation gave about 98% arc coverage due to fewer arc crossings during the daytime. There
are 24 crossings with 83° inclination and 25 crossings with 84° inclination.
~ Choice of Variables

The table below shows that changes in the longitude of the ascending node (£2), inclination (i), and
altitude (h) affect total coverage of the arc during the daytime. The yellow highlighted column
includes the variables used in the notebook prior to this point.

Satellite # | 9 9 9 9 9
Q /4- w4 n/4-025 | n/4- /4
0.25 0.25 0.25

Inclination | 84 83 84 84 84
Height 525000 | 525000 | 600000 | 400000 | 525000
Total 101.2% | 98.5% | 100.04% | 81.35% | 96.13%
Coverage

Highlighted is current

The longitude of the ascending node (€2) was chosen to be £ — 0.25 so that the first satellite
crosses the arc during daylight at approximately the time the satellites appear in the sky. This
ensures the maximum number of arc crossings during an uninterrupted daytime period. When € is
changed to % (the 5th column), total coverage is 5% lower due to fewer satellite crossings during
the day.

The inclination was chosen to be 84° to maximize coverage in the satellite's near-polar orbit. Polar
orbits are around 90°, so we tested various inclinations around that point and found that 84°
provided the most coverage. When the inclination is changed to 83° (the 2nd column), the amount
of coverage decreases by several percent.

The altitude was chosen to be 525km to give approximately a 96 minute orbit (15 revolutions in 24
hours) while providing full coverage with 9 satellites. The altitude was restricted by the CIRiS
instruments on the satellites which require an altitude between 400km to 600km. At the minimum
altitude for the satellite, there is far less arc coverage at each crossing point, so even though there
are more daytime crossings, there is less arc coverage. At the maximum altitude for the satellite,
there is more arc coverage at each crossing point, but there is less coverage due to the longer
period.

v Inclination (i = 83°)
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Location of Daytime Arc Crossings for 9 Satellites

This figure shows the longitude (bounded by arc) at which each satellite crosses the arc during daytime as related
to the time since the first satellite was launched. The error bars show the swath coverage at each crossing point.
Tested with inclination of 83, height of 525 km, 0 = (m/4)-0.25.

Daytime Coverage of Arc Crossings within 24 hours with 9 Satellites
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T Satellite 1 started in h
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since the first satellite was launched. The right axis shows the accumulated coverage of the arc by the swath

Bounded by Arc Longitudes intervals (as a percentage) over the 24 hour period. The error bars show the swath coverage at each crossing point.
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Sy + See below for the graphs for the second simulation with 9 satellites. € is % — 0.25, the inclination
%g + is 84°, and the altitude is 600 km, which is the maximum for the CIRiS instruments on the satellite.
HEE + This simulation gave a little over 100% coverage. This simulation was tested with the maximum
;E e ++ altitude of the satellite. Due to the higher altitude, there was more coverage of the arc with each
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Location of Daytime Arc Crossings for 9 Satellites

Arc Longitude in radians (0 to 2n)
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=== Boundary of Arc Longitudes
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This figure shows the arc long itude@g?\rﬂﬂ ee";ac egla}l?eﬂlitselacrrlsgsler; ?ﬁgrgrc during daytime as related to
the time since the first satellite was launched. The orange line represents sunrise and the blue sunset.
The distance between the black dashed horizontal lines represents the length of the arc.
Tested with inclination of 84, height of 600 km, (O = (n/4)-0.25.

Location of Daytime Arc Crossings for 9 Satellites
Bounded by Arc Longitudes

5.0 I++

~ Minimum Altitude (& = 400 km)

| I 1 |
See below for graphs for the third simulation with 9 satellites. Q is % — 0.25, the inclination is 84°,
and the altitude is 400km, which is the minimum possible for the CIRIS instruments on the satellite.
At an altitude of 400km, there is only about 81% coverage because there is less coverage of the arc
at each crossing point. Although there was also a shorter period and thus more instances of the
satellite crossing over the arc, the additional crossings did not make up for the smaller ground
tracking projection.
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Location of Daytime Arc Crossings for 9 Satellites

Arc Longitude in radians (0 to 2n)
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=== Boundary of Arc Longitudes
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This figure shows the arc long itude@g?\rﬂﬂ ee";ac egla}l?eﬂlitselacrrlsgsler; ?ﬁgrgrc during daytime as related to
the time since the first satellite was launched. The orange line represents sunrise and the blue sunset.
The distance between the black dashed horizontal lines represents the length of the arc.

Tested with inclination of 84, height of 400 km, (O = (n/4)-0.25.

Location of Daytime Arc Crossings for 9 Satellites
Bounded by Arc Longitudes

¢
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1

~ Longitude of the Ascending Node (Q = )

| : 1 |
Here is the graph for the last simulation with 9 satellites. Q is %, the inclination is 84° and the
altitude is 525 km:

This simulation gives about 96% coverage because there are fewer daytime arc crossings. There are
21 crossings with the changed Q, whereas with the original Q (% — 0.25), there are 25 crossings.
In the first plot "Location of Daytime Arc Crossings for 9 Satellites," it is clear that the first satellite
does not cross the arc at sunrise (when time in hours is 0) and there are also fewer crossing points
before sunset, which is why there is less coverage.
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Location of Daytime Arc Crossings for 9 Satellites

Arc Longitude in radians (0 to 2n)
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=== Boundary of Arc Longitudes
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This figure shows the arc long itude@g?\rﬂﬂ ee";ac egla}l?eﬂlitselacrrlsgsler; ?ﬁgrgrc during daytime as related to
the time since the first satellite was launched. The orange line represents sunrise and the blue sunset.
The distance between the black dashed horizontal lines represents the length of the arc.
Tested with inclination of 84, height of 525 km, 0 = (m/4).
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This figure shows the longitude (bounded by arc) at which each satellite crosses the arc during daytime as related
to the time since the first satellite was launched. The error bars show the swath coverage at each crossing point.
Tested with inclination of 84, height of 525 km, 0 = (n/4).

Daytime Coverage of Arc Crossings within 24 hours with 9 Satellites
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~ Conclusion

Tested with inclination of 84, height of 525 km, 0 = (n/4)

0.0
5

Cumulative Arc coverage in percentage

Our notebook produces the groundwork to allow future students to optimize coverage of satellites

for defined areas of the world such as the United States. It builds upon the work of previous

semesters which demonstrated that the minimum number of satellites need to achieve full daytime

coverage within 24 hours was 10 satellites. According to our calculations, which were centered on
producing an arc as a means of calculating coverage as opposed to the equator itself, optimal
coverage is achieved from 9 satellites. Ball Aerospace anticipated that 8 satellites would be ideal,
but we are unsure of the root cause of the discrepancy. We chose our arc to be the furthest most
eastern and western points of the contiguous United States which also could lead to more areas
being covered than necessary to achieve satisfactory coverage of the U.S. For future students, we

would suggest initially considering equidistant satellites, then optimized satellite spacing. Proof-of-
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concept with graphs that show global coverage are needed to validate bounded sections of the
world. Finally, we would suggest improving further on our concepts of optimization by exploring
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packages that may assist with the parameters that may have caused our over-coverage. Much like

the previous semester, our takeaway is a deeper understanding of orbital mechanics and the two-
body problem, along with enhanced coding skills and interdisciplinary collaboration.

~ Appendix A

Additional Coding Examples

v~ Examples of c3d2 and merge_interval_helper functions

#This shows the Swath in Arc prior to being converted to a 2d array

Global_swathInArc

[r[-2.
[-1.
[-1.
[-1.
[-1.

[r-2.
[-1.
[-1.
[-1.
[-1.

[r-2.
[-1.
[-1.
[-1.
[-1.

[r-2.
[-1.
[-2.

.6896665065765601,

.2683833296147955,

.9715922937571309,

.5501338975164891,

.1088804189377477,

.6429169635512162,

.2216337865894522,

.9248427507317871,

.5033843544911454,

.0621308759124037,

.5961674205258722,

.1748842435641083,

.8780932077064434,

.4566348114658016,

158590465858506,
7371320696178643,
316827193573757,
8299151356525913,
4086319586908271,
111840922833162,
6903825265925203,
2703377558623064,
783165592627248,
3618824156654832,
0650913798078183,
6436329835671766,
2235882128369626,
736416049601904,
3151328726401392,
018341836782475,
5968834405418328,
1553522846940707,

-2.1130768904547903],

-1.6914326731919198],

-1.2712197833444914],

-1.8755724159133302],
-1.454112240349865]],

-2.0663273474294463],

-1.6446831301665754],
-1.2249626224368544],

-1.828822872887987],

-1.407362697324521]],
-2.019577804404103],

-1.5979335871412321],
-1.1782130794115107],

-1.782073329862643],

-1.360613154299177]1,

-1.9728282613787593],

-1.551184044115888],
-2.1100041945006197,
-1.735323786837299],

-1.3138636112738333]],

-1.9260787183534154],
-1.5044345010905442],
-2.063310697755375],
-1.688574243811955],
-1.26711406824849]1,
-1.8793291753280716],
-1.457684958065201],
-2.016561154730031],
-1.6418247007866111],
-1.220364525223146]1,
-1.832579632302728],
-1.4109354150398572],
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[-2.01538133288706, -1.9698116117046869],
[-1.549417877500529, -1.5950751577612678]],
[-1.8313436646810997, -1.7858300892773842],
[-1.409885268440458, -1.3641858720145135],
[-1.9230620686793443, -1.9686317898617176],
[-1.502668334475185, -1.548325614735924]],
[[-1.784594121655756, -1.7390805462520404],
[-1.363911047649211, -1.3184703071409405],
[-1.8763125256540003, -1.9218822468363737],
[-1.4559187914498408, -1.5015760717105797]]]

[

#This shows the converted array

print("The following is the converted array")

c3d2(Global_swathInArc)

#Please note that the array contains the same longitudinal pairs just
#at a new index.

#Also note that the fourth ordered pair

#(-1.8299151356525913, -1.8755724159133302) which has a "lower" limit
#greater than its "upper limit"

The following is the converted array

[[-2.158590465858506, -2.1130768904547903],
[-1.7371320696178643, -1.6914326731919198],
[-1.316827193573757, -1.2712197833444914],
[-1.8299151356525913, -1.8755724159133302],
[-1.4086319586908271, -1.454112240349865],
[-2.111840922833162, -2.0663273474294463],
[-1.6903825265925203, -1.6446831301665754],
[-1.2703377558623064, -1.2249626224368544],
[-1.783165592627248, -1.828822872887987],

[-1.3618824156654832, -1.407362697324521],
[-2.0650913798078183, -2.019577804404103],
[-1.6436329835671766, -1.5979335871412321],
[-1.2235882128369626, -1.1782130794115107],
[-1.736416049601904, -1.782073329862643],

[-1.3151328726401392, -1.360613154299177],
[-2.018341836782475, -1.9728282613787593],
[-1.5968834405418328, -1.551184044115888],
[-2.1553522846940707, -2.110004194500619],
[-1.6896665065765601, -1.735323786837299],
[-1.2683833296147955, -1.3138636112738333],
[-1.9715922937571309, -1.9260787183534154],
[-1.5501338975164891, -1.5044345010905442],
[-2.1088804189377477, -2.063310697755375],
[-1.6429169635512162, -1.688574243811955],
[-1.2216337865894522, -1.26711406824849],

[-1.9248427507317871, -1.8793291753280716],
[-1.5033843544911454, -1.4576849580652011],
[-2.0621308759124037, -2.016561154730031],
[-1.5961674205258722, -1.6418247007866111],
[-1.1748842435641083, -1.220364525223146],
[-1.8780932077064434, -1.832579632302728],
[-1.4566348114658016, -1.4109354150398572],
[-2.01538133288706, -1.96981161170468691],

[-1.549417877500529, -1.5950751577612678],
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[-1.8313436646810997, -1.7858300892773842],
[-1.409885268440458, -1.3641858720145135],
[-1.9230620686793443, -1.9686317898617176],
[-1.502668334475185, -1.548325614735924],
[-1.784594121655756, -1.7390805462520404],
[-1.363911047649211, -1.31847030714094057],
[-1.8763125256540003, -1.9218822468363737],
[-1.4559187914498408, -1.5015760717105797]]

#This shows the sorted array

print("The following is the sorted array")

sorted_swathInArc =merge_intervals_order helper(c3d2(Global_swathInArc))
#note that the "lower" limit and "upper" limits have been corrected

#in the fourth ordered pair.

sorted_swathInArc

The following is the sorted array
[[-2.158590465858506, -2.1130768904547903],
[-1.7371320696178643, -1.6914326731919198],
[-1.316827193573757, -1.2712197833444914],
[-1.8755724159133302, -1.8299151356525913],
[-1.454112240349865, -1.4086319586908271],
[-2.111840922833162, -2.0663273474294463],
[-1.6903825265925203, -1.6446831301665754],
[-1.2703377558623064, -1.2249626224368544],
[-1.828822872887987, -1.783165592627248],
[-1.407362697324521, -1.3618824156654832],
[-2.0650913798078183, -2.019577804404103],
[-1.6436329835671766, -1.5979335871412321],
[-1.2235882128369626, -1.1782130794115107],
[-1.782073329862643, -1.736416049601904],
[-1.360613154299177, -1.3151328726401392],
[-2.018341836782475, -1.9728282613787593],
[-1.5968834405418328, -1.551184044115888],
[-2.1553522846940707, -2.110004194500619],
[-1.735323786837299, -1.6896665065765601],
[-1.3138636112738333, -1.2683833296147955],
[-1.9715922937571309, -1.9260787183534154],
[-1.5501338975164891, -1.5044345010905442],
[-2.1088804189377477, -2.063310697755375],
[-1.688574243811955, -1.6429169635512162],
[-1.26711406824849, -1.2216337865894522],
[-1.9248427507317871, -1.8793291753280716],
[-1.5033843544911454, -1.457684958065201],
[-2.0621308759124037, -2.016561154730031],
[-1.6418247007866111, -1.5961674205258722],
[-1.220364525223146, -1.1748842435641083],
[-1.8780932077064434, -1.832579632302728],
[-1.4566348114658016, -1.4109354150398572],
[-2.01538133288706, -1.9698116117046869],
[-1.5950751577612678, -1.549417877500529],
[-1.8313436646810997, -1.7858300892773842],
[-1.409885268440458, -1.3641858720145135],
[-1.9686317898617176, -1.9230620686793443],
[-1.548325614735924, -1.502668334475185],
[-1.784594121655756, -1.7390805462520404],
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[-1.363911047649211, -1.31847030714094057,
[-1.9218822468363737, -1.8763125256540003],

[-1.5015760717105797, -1.4559187914498408]]

~ Appendix B (5 satellites)

The sponsor asked for the coverage of the contiguous United States with 5 satellites.

Cumulative percent coverage over the arc with 5 satellites: 0.641035837722568

(Note that the satellites are equally spaced to maximize coverage and minimize overlap)

The graphs below show the locations of daytime arc crossings and the cumulative coverage of the
arc for daytime arc crossings with 5 satellites.

Location of Daytime Arc Crossings for 5 Satellites
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This figure shows the longitude {bounded by arc) at which each satellite crosses the arc during daytime as related to the time

since the first satellite was launched.
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Arc Longitude in radians (0 to 2m)
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Daytime Coverage of Arc Crossings within 24 hours with 5 Satellites
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This figure shows the arc longitude at which each satellite crosses the arc during daytime
as related to the time since the first satellite was launched.

The right axis shows the accumulated coverage of the arc by the swath intervals (as a percentage) over the 24 hour pericd

~ Appendix C (West of the Mississippi River)

The sponsor asked for the coverage for the western US (west of the Mississippi River). Wickliffe,
Kentucky (36.966600°N, 89.086822°W) is on the eastern bank of the Mississippi River at what
appears to be the eastern-most point of the river. Thus the longitude of Wickliffe (-89.086822°) is

used as the eastern longitude (variable x1).

Cumulative percent coverage over arc with different numbers of satellites:

Cumulative Arc coverage in percentage

(Note that satellites are equally spaced to maximize coverage and minimize overlap)

5 satellites: 0.647959611858685

6 satellites: 0.7124282184392872
7 satellites: 0.8489295795155646
8 satellites: 0.9653912111816317
9 satellites: 1.0151297478535097

Thus 9 satellites are still needed for full coverage of the arc west of the Mississippi River. However,
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if 96.5% coverage is sufficient, then 8 satellites could be used.
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The graphs below show the locations of daytime arc crossings and the cumulative coverage of the

arc for daytime arc crossings with 9 satellites.

Location of Daytime Arc Crossings for 9 Satellites
Bounded by Arc Longitudes
(Arc from USA West Coast to the Mississippi River)
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This figure shows the longitude {bounded by arc) at which each satellite crosses the arc during daytime as related to the time

since the first satellite was launched.
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Daytime Coverage of Arc Crossings within 24 hours with 9 Satellites
(Arc from USA West Coast to the Mississippi River)
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This figure shows the arc lengitude at which each satellite crosses the arc during daytime
as related to the time since the first satellite was launched.

The right axis shows the accumulated coverage of the arc by the swath intervals (as a percentage) over the 24 hour pericd
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