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1 Abstract

Meshes are partitioned into tetrahedra which are then partitioned into four
hexahedra in a standard manner. The distributions of specific hexahedron
metrics determine the quality of the mesh. If the quality is low, the question
is could a different selection of hexahedron vertices affect the mesh positively?
Different vertices could improve one hexahedron and make another worse, so
optimizing is the ultimate goal. Helping to begin such a problem was the
purpose of this project. Five of sixteen metrics were analyzed. Once the rest
are added to the code the optimization can begin.
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2 Introduction

The motive before Math Clinic of tetrahedron meshes is to be used as finite
element methods to approximate numerical solutions to differential equations.
The mesh volume is partitioned into tetrahedra. Each tetrahedron is parti-
tioned into four hexahedra. The hexahedra are specifically cuboids (quadrilat-
eral hexahedra) but for this paper will be described as hexahedra. If certain
hexahedron metric distributions show a large amount of hexahedra are within
specific ranges, this creates a good mesh. The word large in the previous sen-
tence is intentionally chosen to be vague to represent the optimization problem
that would be the eventual goal of continuing this project. For now, the goal
of this project was to design a program that will input the coordinates of many
tetrahedra, partition them into hexahedra, and analyze the metrics mentioned
previously. The output of this program was histograms showing the distribu-
tions of the metric values. The impact of this code will be to give the sponsor
the ability to see if a design will or will not provide a good mesh.

One way to check the accuracy of the code was to standardize the position, scale
and orientation of each tetrahedron. The results will show such transformations
do not effect the metric distributions as was expected.
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3 Methods

The data for this project were for six meshes. Each mesh had a pair of files. The
first file was a list of vertices (up to about 10,000) each with three real numbers
representing cartesian coordinates. The second file was a list of tetrahedra (up
to about 40,000) each with four vertices whose coordinates can be referenced
in the first file. These data were extracted into an excel file and then read into
python. Using a loop, each tetrahedron was partitioned into four hexahedra
and the metrics were calculated.

The code written for this project begins by analyzing a regular tetrahedron.
Then data for six meshes are visualized and analyzed. Histograms of their met-
ric distributions are shown as well. The final part of the code shows examples
of hexahedra which have good and bad metric values. The purpose of these
visualizations is to further understand conceptually and visually what makes a
good and bad hexahedron.

3.1 Tetrahedron Analysis

The process for analyzing a tetrahedron in the project is described in this
subsection.

Given a tetrahedron, the vertices will be labeled ~A, ~B, ~C and ~D. Then the
two vertices incident with the shortest edge are labeled ~A and ~B, with ~A being
closer to the origin than ~B. ~C and ~D are assigned to the remaining vertices
such that the area of the face with vertices at ~A, ~B and ~C is less than the area
of the face with vertices at ~A, ~B and ~D. Heron’s formula is used to calculate
these areas.

Heron’s Formula for the area of a triangle with side lengths p, q and r is

Area =
√
s(s− p)(s− q)(s− r)

where s = p+q+r
2 .

Once the vertices have been labeled, a copy of the coordinates is made so the
original can be kept while a new tetrahedron is transformed.
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3.2 Tetrahedron Transformation

This will describe the manner in which each tetrahedron is transformed. The
purpose of this is to show the metric distributions are independent of scale,
position and orientation.

The first step of this transformation is to translate the tetrahedron so that
~A lies on the origin. Next, the tetrahedron is scaled so the magnitude of the
vector pointing from ~A to ~B is one (| ~AB| = 1). Then rotated so that ~B lies

on the positive x-axis. Then rotated again so ~C lies within the xy-plane. Let
the reader note it is necessary to scale before using the rotation functions listed
below and derived in the appendix.

The goal of the first function is to rotate ~B onto the x-axis. This function
then needs to be applied to all four vertices. Let the pre-rotated components
of ~B = (bx, by, bz) and the components of the point to be rotated be (xi, yi, zi).
The first rotation function used is below.

f1(xi, yi, zi) =


bxxi + byyi + bzzi

−xib
2
y−xib

2
z+bxbyyi+bxbzzi√
b2y+b2z

−bzyi+byzi√
b2y+b2z


One can see f1(0, 0, 0) = (0, 0, 0) and f1(bx, by, bz) = (1, 0, 0) as is expected.

Once the second function has been applied to all four vertices, the z-component
of ~C should be zero. Again, let the pre-rotated components of ~C = (cx, cy, cz).
Then the next rotation function used is below.

f2(xi, yi, zi) =


xi

cyyi+czzi√
c2y+c2z

cyzi−czyi√
c2y+c2z


One can see f2(0, 0, 0) = (0, 0, 0), f2(1, 0, 0) = (1, 0, 0) and f2(cx, cy, cz) =

(cx,
√
c2y + c2z, 0) as is expected.

3.3 Hexahedra

This project’s standard of partitioning a tetrahedron into four hexahedra fol-
lows. Each hexahedron has eight vertices. The 1st vertex in each hexahedron
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is a vertex of the tetrahedron. Each hexahedron also has 3 vertices which are
midpoints of the tetrahedron edges incident to the 1st vertex. Each hexahe-
dron also has 3 vertices at the centroids of the tetrahedron faces sharing a
vertex with the 1st. Finally, each hexahedron also has a vertex at the centroid
of the tetrahedron.
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Theoretical Advances in Hexahedral Mesh Generation Jeff Erickson. Univer-
sity of Illinois, Urbana-Champaign p. 20

Once the four hexahedra have been determined, the program analyzes the fol-
lowing five hex metrics: aspect ratio, skew, taper, stretch and diagonal ratio.
While consistency has been attempted, the reader should allow the notation of
each metric to be independent.

3.3.1 Hex Metric 1: Aspect Ratio

Let s = max{distances from hex centroid to vertices}

Let t = min{distances from hex centroid to face centroids}

Then Aspect Ratio = s
t

3.3.2 Hex Metric 2: Skew

Let ~c be the centroid of a hexahedron with two distinct vertices ~u and ~v. Let
the components of these vectors be listed as below.
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~c = (cx, cy.cz)

~u = (ux, uy, uz)

~v = (vx, vy, vz)

Let the vectors beginning at the centroid and extending to ~u and ~v be denoted
as ~cu and ~cv.

Let αu,v be the smaller angle separating ~cu and ~cv.

Then Skew = max{| cos(αu,v)|}

The program calculated the cosine by solving the following function for cosine.

~cu · ~cv = | ~cu||~cv| cos(αu,v)

3.3.3 Hex Metric 3: Taper

Taper is the maximum ratio of the lengths of two edges of the hexahedron which
share no common vertex.

3.3.4 Hex Metric 4: Stretch

Let s = min{edge lengths}

Let t = max{body diagonal lengths}

Then Stretch =
√
3s
t

3.3.5 Hex Metric 5: Diagonal Ratio

Let s = min{body diagonal lengths}

Let t = max{body diagonal lengths}

Then Diagonal Ratio = s
t
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4 Results

This section is broken into 3 parts. No uncertainty analysis is done in this
project. It seems it would only be necessary due to computer round-off error.
So far, it has been assumed it is small enough to ignore.

4.1 shows the metric results for hexahedra partitioned from a regular tetrahe-
dron. All metric results besides taper are within acceptable ranges.

4.2 shows the six different meshes. These include pictures of the meshes as
well as histograms of the five tested metrics showing their distributions. These
histograms were the main goal of this project. They allow the sponsor to see
how good a mesh is. The black dotted lines on the histograms represent the
acceptable metric ranges.

It is surprising to see how few hexahedra are in acceptable ranges, especially
skew and taper. This is discussed more in the next section but taper requires
another note. Seeing these histograms, observe that not a single hexahedron
has a good taper. As a result, the range of taper was chosen in two different
manners. Meshes 1 and 2 show a range of 0-2 and emphasize that no hexahedra
with good taper are produced. Meshes 3-6 show the full range of taper to show
how far out of the acceptable range some of these are.

4.3 shows visualizations of some different hexahedra. Each metric gets one page.
On each page is repeated the metric from mesh 1. Additionally, each page shows
5 hexahedra that produced good (when possible) results and 5 that produced
bad. Each of these pictures have the same range and orientation. Given this
range and orientation, graphs that could be clearly seen were chosen.
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4.1 Regular Tetrahedron

When a regular tetrahedron is partitioned into 4 hexahedra in the manner
described in this paper, all 5 metric values are the same for each hexahedron.
These values are

Aspect Ratio: 2.847

Skew: 0.498

Taper: 2.449

Stretch: 0.577

Diagonal Length: 0.816
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4.2 Mesh Visualization and Metric Distributions

Object # 1

39,262 Tetrahedra
157,048 Hexahedra
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Object # 2

332 Tetrahedra
1,327 Hexahedra
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Object # 3

1,151 Tetrahedra
4,604 Hexahedra
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Object # 4

369 Tetrahedra
1,476 Hexahedra
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Object # 5

1,399 Tetrahedra
5,596 Hexahedra
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Object # 6

9,236 Tetrahedra
36,944 Hexahedra
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4.3 Visualizations of Good and Bad Hexahedra

Aspect Ratio

Acceptable Range: 1 - 4

Good: 2.4 - 2.5 Bad: < 1 or > 4
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Diagonal Ratio

Acceptable Range: 0.65 - 1

Good: 0.65 – 1 Bad: 0 – 0.3
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Stretch

Acceptable Range: 0.25 - 1

Good: 0.4 – 1 Bad: 0 – 0.25
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Taper

Acceptable Range: 0 - 0.4

Good: 0 - 0.4 (no pictures available) Bad: 0.9 – 1
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Skew

Acceptable Range: 0 - 0.5

Good: 0 - 0.5 Bad: 0.9 - 1
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5 Discussion

First, we would have guessed that a larger portion of hexahedra would have
good results. Of course one possible explanation is that our code needs to be
double checked. Another is that we are just measuring a binary result for each
metric. Perhaps we should be measuring how good each hex is rather than
if it is good enough. To do this, of course one would need to decide how to
measure how good the entire hexahedron is. Still another explanation could be
that tetrahedron meshing is difficult and the results are as good as one should
expect. Whatever the explanation, taper and skew have particularly low results.

5.1 Metrics

In all six meshes, not a single hexahedron had a taper in the acceptable range.
The reason for this is actually quite clear, but the solution is not. The definition
of taper as listed in section 3.3.3 is the maximum ratio of the lengths of two
edges of the hexahedron which share no common vertex. Any two edges in
consideration have a ratio that is less than 1 and a ratio that is greater than
1. The code considers both and takes the max of all possibilities so no hex will
ever produce a taper of less than 1 as it is currently calculated. This will of
course mean it will never be in the acceptable range of [0, 0.4].

One suggestion was that the code should only consider the ratios that are
less than 1. The code is easily adaptable to do this. They python function
metricTaper has a line that has been commented but can be switched with the
next to apply this suggestion. However, it is likely this is still not correct. If it
were, the total range of taper would be [0, 1], but it is listed as [0,∞).

Skew is the maximum absolute value of the cosine of the angle between the vec-
tors extending from the hexahedron centroid to two distinct vertices. Because
cosine is bounded between -1 and 1, Skew will be bounded between 0 and 1. It
can be shown (and is in the appendix) that any hexahedron partitioned from a
tetrahedron in the manner described in the this report will have skew of 1. This
happens because the two vertices of the hexahedron that are the tetrahedron
centroid and vertex are co-linear with the hexahedron centroid. This will give
a cosine of -1, the absolute value of which is the maximum possibility for skew.

One suggestion was to ignore the absolute value sign. The histograms shown
in the results section applied this suggestion. The code is easily adaptable to
disregarding this suggestion. The python function metricSkew contains a few
lines that are commented which will add the absolute value back.
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Another suggestion is to keep the absolute value but ignore the anticipated
value of -1. This would allow a user to search for other values of -1. This would
be easily done by adding a few lines of code to the same function. There is
commented code which will exclude all values of -1 and can easily have another
few lines of code to only exclude the anticipated value of -1. This anticipated
case is when the 1st and 8th vertices are chosen (of course, this means their
python indices are 0 and 7).

5.2 Regular Tetrahedron

The regular tetrahedron was specifically chosen to analyze because it should be
the best tetrahedron in terms of hex metrics. We can see form section 4.1 it
will have the following values

Aspect Ratio of 2.847 within the acceptable range of [1, 4]

Skew of 0.498 barely within the acceptable range of [0, 0.5]

Taper of 2.449 which is not within the acceptable range of [0, 0.4]

Stretch of 0.577 within the acceptable range of [0.25, 1]

And diagonal ratio of 0.816 within the acceptable range of [0.65, 1]

The fact that taper is so far off even in a regular tetrahedron is confirmation
that the definition listed in this paper needs more understanding before one
should draw any conclusions from the taper histograms. Skew is so close to
the edge of the acceptable range it suggests there likely exists a better strategy
than getting rid of the absolute value sign.

5.3 Tetrahedron Transformation

With few exceptions, the results of this project show translating, scaling, and
rotating a tetrahedron will not affect the hexahedron metrics tested thus far.
However, about 15 out of 40,000 tetrahedra are worth mentioning. Each one
had a division by zero error and gave results of nan for all four hexahedra on
every metric.

The most likely explanation is in the first rotation function. If ~B already lies
on the x-axis, there will be a division by zero error. This should not be an issue
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with the second function because ~C should not be on the x-axis (that would
mean three vertices of the tetrahedron are co-linear). This was discovered late
in this project and efforts to confirm this have yet to be undertaken. Assuming
this is correct, the code is easily adaptable. One would need only to add an
if statement skipping the first rotation if ~B already lies on the x-axis. It was
originally suggested that the error was caused when the four vertices of the
tetrahedron were co-planar. This does not seem to be the case but could be
double checked if the first explanation fails.

5.4 Other Partitions Considered

One vertex of each hexahedron is at the centroid of the tetrahedron, three
are centroids of faces and three are midpoints of edges. It should be noted
that triangles and tetrahedra have different centers besides the centroids. The
centroids were chosen because unlike some other centers, they will always be
within a tetrahedron or triangle and because they are simple formulas (the
arithmetic mean of the vertex components). The midpoints seemed like a logical
choice.

In fact, for the optimization portion of this project which would come farther
down the road, the choices do not need to be centers or midpoints at all. They
can be any point in the volume of the tetrahedron and any point in the plane
of a face and any point along an edge. Determining the best choice of partition
would be difficult. Among other reasons, one could easily change a vertex to
improve the quality of one hexahedron, but it could (and I believe likely would)
decrease the quality of another hexahedron. This optimization would be the
ultimate goal this project attempts to begin.
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6 Conclusion

If more time were given on this project, several more tasks would be accom-
plished. First, more metrics would be taken into consideration. The rest, save
dimension, are all dependent on the Jacobian matrix so understanding that
would be a top priority.

Also, confirmation on current metrics measured should be attained. Skew and
taper clearly have work. Multiple suggestions have been made but it seems
that efforts to ensure accuracy should be made rather that picking whichever
one seems best. Aspect ratio seems clear but it never hurts to double check
anything. Stretch and diagonal ratio have diagonal lengths in their definitions.
It seems that these should be body diagonals but there are also face diagonals
one could consider. We do not believe they should be, but this again could be
confirmed.

At the beginning of this project there was discussion of not only analyzing
current meshes, but also providing advice on how to create a good mesh in the
future. Obviously this task would be dependent upon analyzing more metrics.
However, even with only the five that were analyzed it would be difficult.

The difficulty in creating a good mesh is threefold. First, a single metric (like
taper) could be the max of a set with dozens of values. There would be a very
large amount of conditions necessary to describe a tetrahedron which produces
4 hexahedra meeting all metrics. This leads to the next difficulty which is
the fact that a mesh which partitions a volume must be created. These are
not single tetrahedra being created and are being measured on a range. This
would seem to make creating better meshes even more difficult to analyze. This
leads to the final reason such advise would be difficult. Any such advise would
probably have to be purely mathematical. It does not seem (at first glance) to
be easy to visualize when a hexahedron would have a good or bad metric value.

Thus, it seems the optimization problem would not have simple analytic solu-
tions. I do not know much on the subject of optimization, only the basics. If it
were a finite function (which it is not) one could simply check all the function
values. If it were a differentiable function of one variable (which it is not) one
could set the first derivative equal to zero and find roots. At first glance, it
seems this would be a function of 17 variables (3 for the tetrahedron centroid,
8 for the face centroids, 6 for the edges). With this many variables it would
be easy to get stuck in a local minimum and not find the optimal solutions.
We could probably outline a set of 17 loops which would check all the discrete
values of each variable, but it seems like computational power would soon be
a problem. In any event, it seems such optimization would be fascinating and
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challenging.

We end this report by saying how much we appreciate Tech-X for being a
sponsor for this class and Dr. Fournier for all the help and advise. We enjoyed
this project and learned much. Thank you.
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7 Appendix

7.1 Regarding Skew

The purpose of this section explain why according to the definition listed in the
paper, any tetrahedron partitioned in the manner this project does, will yield
four hexahedra, each with Skew of 1. Recall, from the definition of skew, it is
the maximum absolute value of the cosine of the angle formed by the vectors
extending from the centroid of the hexahedron to any two distinct vertices.

Because the absolute value of cosine is bounded between 0 and 1, we need to
show that any potential hexahedron will have two vertices which will yield an
angle of π and therefore a cosine of -1. The absolute value of which will be the
max value used for a skew of 1. This will happen because two of the vertices of
the hexahedron will always be co-linear with the centroid of the hexahedron.

These two vertices are the tetrahedron centroid and the tetrahedron vertex. We
need to show these two points are always co-liner with the hexahedron centroid.
Let an arbitrary tetrahedron have vertices A,B,C,D with components A =
(ax, ay, az), B = (bx, by, bz), C = (cx, cy.cz), D = (dx, dy, dz). Without loss of
generality, consider the hexahedron sharing vertex A with the tetrahedron. This
hexahedron has the following vertices:

v1 = (ax, ay, az)

v2 = (ax+bx
2 ,

ay+by
2 , az+bz

2 )

v3 = (ax+cx
2 ,

ay+cy
2 , az+cz

2 )

v4 = (ax+dx

2 ,
ay+dy

2 , az+dz

2 )

v5 = (ax+bx+cx
3 ,

ay+by+cy
3 , az+bz+cz

3 )

v6 = (ax+bx+dx

3 ,
ay+by+dy

3 , az+bz+dz

3 )

v7 = (ax+cx+dx

3 ,
ay+cy+dy

3 , az+cz+dz

3 )

v8 = (ax+bx+cx+dx

4 ,
ay+by+cy+dy

4 , az+bz+cz+dz

4 )

The centroid of a hexahedron is the arithmetic mean of the vertex components.
This hexahedron has a the following centroid.
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hc = 17
96 ( 45

17ax + bx + cx + dx,
45
17ax + bx + cx + dx,

45
17ax + bx + cx + dx)

The vector originating at hc and extending to v1 is below.

~hcv1 = 17
96 (−3ax + bx + cx + dx).

The vector originating at hc and extending to v8 is below.

~hcv8 = − 7
96 (−3ax + bx + cx + dx).

So, one can see that ~hcv8 = − 7
17

~hcv1. From this, one can see the points hc, v1
and v8 will all be co-linear and taper will be 1.

7.2 Rotation Functions

This section contains the derivations for the rotation functions used. Please
allow for independent notation in each subsection.

7.2.1 Rotation Function 1: Rotation about an arbitrary axis onto
the x-axis

This function should rotate a vector in R3 whose norm is 1 (recall the tetrahe-
dron had been scaled such) onto the x-axis. Call the components of this vector
~r = (x, y, z). We will do this using two rotation matrices. Here, ~r is playing

the role of ~B on the tetrahedron.

The first matrix will rotate ~r about the x-axis into the xy-plane so that so that
z = 0. The rotation matrix about the x-axis is by a an angle whose tangent is
z
y is shown below.

Rx(ψ) =

1 0 0
0 cos(ψ) sin(ψ)
0 − sin(ψ) cos(ψ)

 =

1 0 0
0 y√

y2+z2

z√
y2+z2

0 − z√
y2+z2

y√
y2+z2


There are two angles in [0, 2π) whose tangent is z

y . When this matrix is in
terms of the components, it naturally makes the correct selection.
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The result of multiplying (x, y, z) with Rx(ψ) is listed below.

Rx(ψ)

xy
z

 =

1 0 0
0 y√

y2+z2

z√
y2+z2

0 − z√
y2+z2

y√
y2+z2


xy
z

 =

 x√
y2 + z2

0


Now that ~r has been rotated into the xy-plane, it should be rotated about the
z-axis onto the x-axis. The degree of this rotation is an angle whose tangent is√

y2+z2

x

The rotation matrix about the z-axis, recalling the scaling of ~r is shown below.

Rz(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 =


x√

x2+y2+z2

√
y2+z2

x2+y2+z2 0

−
√

y2+z2

x2+y2+z2
x√

x2+y2+z2
0

0 0 1

 =

 x
√
y2 + z2 0

−
√
y2 + z2 x 0
0 0 1


We can see below that putting ~r through this rotation will give us (1, 0, 0) as is
desired.

Rz(θ)

 x√
y2 + z2

0

 =

 x
√
y2 + z2 0

−
√
y2 + z2 x 0
0 0 1

 x√
y2 + z2

z

 =

1
0
0


So the rotation matrices to rotate ~r onto the x-axis have been derived. The
next step is to rotate any point in R3 in the same manner. Let the components
of this point be (xi, yi, zi). The function which will input these components and
output the rotated components is below.

f1(xi, yi, zi) = Rz(θ)Rx(ψ)

xiyi
zi

 =

 x
√
y2 + z2 0

−
√
y2 + z2 x 0
0 0 1


1 0 0

0 y√
y2+z2

z√
y2+z2

0 − z√
y2+z2

y√
y2+z2


xiyi
zi

 =
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xxi + yyi + zzi

−xiy
2−xiz

2+xyyi+xzzi√
y2+z2

−zyi+yzi√
y2+z2


One can see that substituting (xi, yi, zi) with (0, 0, 0) will give us a point at the
origin as it should. Also, if one substitutes (xi, yi, zi) with (x, y, z) and recalling
scaling will end with (1, 0, 0) as it should.

7.2.2 Rotation Function 2: Rotation about the x-axis into the xy-
plane

This function should rotate a vector in R3 onto the xy-plane. Call the com-
ponents of this vector ~r = (x, y, z). This will be done with a single rotation

matrix. Here, ~r is playing the role of ~C on the tetrahedron.

This matrix will rotate ~r about the x-axis into the-xy plane so that so that
z = 0. The rotation matrix about the x-axis is by an angle whose tangent is z

y
is shown below.

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 =

1 0 0
0 y√

y2+z2

z√
y2+z2

0 − z√
y2+z2

y√
y2+z2



So the rotation matrices to rotate ~r into the xy-axis have been derived. The
next step is to rotate any point in R3 in the same manner. Let the components
of this point be (xi, yi, zi). The function which will input these components and
output the rotated components is below.

f2(xi, yi, zi) = Rx(φ)

xiyi
zi

 =


1 0 0

0 y√
y2+z2

z2√
y2+z2

0 − z√
y2+z2

y√
y2+z2


xiyi
zi

 =⇒ =

 xi
yyi+zzi√

y2+z2

yzi−zyi√
y2+z2



And as before, we can see a point at the origin will remain there, a point at
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(1, 0, 0) will remain there, and (x, y, z) will rotate to (x,
√
y2 + z2, 0) all as

expected.

7.3 Hexahedron Vertex Adjacency

When the code for this project calculates a hexahedron metric, it passes an
array of eight arrays of size three to represent the eight cartesian coordinates of
the vertices. If the reader needs to know, to continue to use the code, what the
order of vertices are, see the picture below. This could help with determining
adjacency, diagonals, faces, etc.
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7.4 Required Files

a. Main Program: Tech-X.ipynb
b. Input Files

1. Coordinate Location.xlsx
2. Tet Verts.xlsx
3. ele2.xslx
4. ele3.xslx
5. ele4.xlsx
6. ele5.xlsx
7. ele6.xlsx
8. node2.xlsx
9. node3.xlsx
10. node4.xlsx
11. node5.xlsx
12. node6.xlsx

The input files were originally in a different format and data were transferred
into excel.
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