Spire Fall 2021 Ultimate Notebook

Contributions

Ben:

e Exploratory data analysis of the CYGNSS Full DDM Lv1 data

» Prepare data for interpolation/finish the collocation of interpolated data
e Prepare the modeling dataset with all relevant DDM calibration variables
 Linear regression modeling

David:

» Exploratory data analysis of the ECMWF background wind speed and significant wave height (SWH)
data

 Interpolating background wind speed and SWH for specular points

e Machine learning modeling

Required Files:

» The only Python package files which needed to be installed for the project (weren't already
recognized by Colab) were in the Haversine package

* Input files include several .nc (NetCDF) or nc4(netCDF4) files, a few .pkl files, and one .png file
(involved in our Template Matching process)

e The team produced a database of collocated data, in 45 netCDF files, a shortcut to which will be
included in the Spire project folder

Abstract

Ever since the launching of the CYGNSS satellite system in 2016 by NASA, many data analysts have
experimented with models that use its Delay Doppler Map (DDM) information to predict weather
phenomena. Together, team members of the Fall 2021 Spire project team have analyzed DDM datasets
from CYGNSS, interpolated wind speed and wave height data from the European Centre for Medium-
Range Weather Forecasts (ECMWF), collocating those with corresponding CYGNSS data. They have
performed both linear and machine learning modeling on the collocated sets. The present analysis offers
preparation, diagnostics and conclusions for both models, including functions for
interpolation/collocation of ECMWF and CYGNSS data along the way.

Introduction

* What is the motive and history (before Math Clinic) of the project?

NASA's CYGNSS (CYCLONE GLOBAL NAVIGATION SATELLITE SYSTEM) program was launched in 2016.
It consists of eight satellites devoted to the gathering of weather data over the world's oceans, with the
aim of providing meteorologists and data scientists input for models that will better predict the
emergence of hurricanes and tropical cyclones. The satellites operate on a bistatic spacial priciple, being
grouped into pairs, each pair consisting of a transmitter satellite and a receiver satellite. Data is collected
through a process of reflectometry: the transmitter sends radio waves to the surface of the ocean at a
certain doppler frequency. The amount of time it takes for the signal to reflect on the ocean surface at a
'specular point' and return to the receiver, combined with the shift in doppler frequency, both of which are
functions of wind speed and wave height over the surface, are variables used to compute 'raw counts'
power values. These values, in turn, are used to color Delay Doppler Maps (DDMs), 4 per
timestamp/CYGNSS sample; all these maps are stored in netCDF files by sampling date, in a massive
CYGNSS database, most of which is freely available for download through NASA's OpenDap system.
Further information about the history and methods of the CYGNSS program can be found here: Source

The major motivation for the project is a desire, on the part of project sponsor Spire Global, to have wind
speed/wave height data from the European Center for Medium-range Forecasting (ECMWF) background
grids collocated with the CYGNSS Full DDM data offered by NASA for dates between March 1 and
September 1, 2021, perhaps for use in future modeling. As an additional point of academic curiosity, the
team was motivated to perform some elementary modeling with an eye toward predicting wind speed
and wave height from calibrations of the DDM data.

» What (ideally) will be its impact on the sponsor or other stakeholders?

Ideally, the impact of the project on the sponsor will be to provide their data analysts with a pool of
collocated data for any use in future modeling involving CYGNSS DDMs for 2021. Perhaps the collocated
database will even prove useful in helping future Math Clinic groups that are working with the CYGNSS
data in their efforts to contribute to forward model development, as is described in Huang, 2020.

* What is the general technical approach to solve the sponsor's problem?

The process of analyzing and preparing data for any eventual modeling began with independently
exploring CYGNSS Full DDM datasets. Then, the team moved into a phase of interpolating ECMWF wind
data/wave data (provided by Spire) by the location of specular points of CYGNSS sets against the
background wind data/wave data grid. The data was interpolated using inverse distance weighting

interpolation and the distance between points was found using the haversine forumla. The collocation
process was then completed for 45 CYGNSS files between March 1 and September 1, 2021, in an attempt
to process as much data in that time frame as possible, per the request of the project sponsors. Finally,
Linear Regression and Machine Learning Modeling was conducted independently by separate team

https://www.nasa.gov/cygnss/overview
https://gisgeography.com/inverse-distance-weighting-idw-interpolation/

members, with separate models predicting wind speed/wave height based on input from DDM
calibrations. This involved considerable research and diagnostic processing. At the end of the modeling
process, the model results were analyzed and their limitations detailed.

Methods

Data

» Describe the data or computational space, their amount (in bytes, number of files etc.), type
(categorical, numerical etc.) and physical units

Project data came from NASA's CYGNSS Delay Doppler Map data and from ECMWF background
wind/wave grid data, provided by the sponsor. Altogether, the team processed tens of gigabytes of that
data in the collocation phase, during which team members built a collocated database of 45 files. The
team then went on to perform modeling on a dataset built from 5 of those collocated files. Physical units
included meters/sec for wind speed values, meters for wave height, datetime64 datatype units down the
half-second for CYGNSS UTC timestamps, and delay times and doppler frequencies for power values that
color delay doppler maps.

The teams extensive use of CYGNSS DDMs merits a more detailed definition of Delay Doppler Maps.
According to a paper by University of Michigan and Soutwest Research Institute scholars Randy Rose,
Scott Gleason and Chris Ruf, "A perfectly smooth surface reflects a specular point while a rough surface
scatters it across a distributed “glistening zone”. The Delay Doppler Map (DDM) created by the GNSS-R
instrument is an image of that scattering cross-section in the time and frequency domains across the
glistening zone" (Gleason, et. al, 2014).

**paper can be found at: Link

More specifically, it appears that the receiving device measures the time delay and doppler frequency of
the reflected signal and cross correlates them with a "local copy" of original values for those variables
from the transmitter. That correlation function is given in Huang, et, al, 2020 as:

Ye(r. f) = ¢+ [ur(®)a(t + £)e2P it Ny

where 7 is the time delay, f is the frequency measure,) is the time for the "complex correlation result’,
a(t) is a function of the PRN code (also given in this dataset) and T; is the integration time (in CYGNSS'
case, T; = 1ms).

The N = 1000 sequential results are then "incoherently averaged":

Z(t, /)= & Yol Mz, NP

The power values stored in "raw_counts" in this dataset are just a linear combination of Z(z, f)

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9240/924005/The-NASA-CYGNSS-mission--a-pathfinder-for-GNSS-scatterometry/10.1117/12.2068378.short?SSO=1

All this can be found in the Huang (2020) paper: "A Forward Model for Data Assimilation of GNSS Ocean
Reflectometry Delay-Doppler Maps" Link

According to Gleason, et. al, "The DDM is an information-rich data set of surface state statistics. When
this measurement is obtained from the ocean's surface, the data is intimately related to the surface wind
vector and providing a direct measurement of the wave height statistics." The authors continue: "In the
case of ocean surface GNSS scatterometry, estimation of the ocean surface roughness and near-surface
wind speed is possible from two different properties of the DDM: The maximum scattering cross-section
(the dark red region...)and the shape of the scattering arc [yellow/red regions]..."(Gleason, 2014).

Important DDM calibrations for modeling that were calculated by the team were three in number. The first
was DDM Average, a simple average of 'raw counts' power values that color DDM plotsina 10 X 5 area
around the specular point bin of each DDM. The second was RMS ratio, the highest power value in a given
DDM divided by the root mean square of the rest of the power values (a statistic recommended for
inclusion by the instructor). A third was Maximum Template Matching Coefficient, the highest pixel
correlation coefficient in a template matching of each DDM against an 'ideal' template. The template
matching method chosen was the Normalized Correlation Coefficient Method in the Open CV package in
Python. This method works, according to Open CV documentation, by sliding across 7', the template
image matrix of pixels, and across I, the source/testing image matrix of pixels, and compares pixels,
20y T Y etx y+y") Link

calculating a correlation metric, in our case: R(x, y) =
\/Zx,’y, T’(X’,y,)z*le’yl I (x+x',y+y")?

Another important pair of variables in our dataset were Normalized Bistatic Radar Cross Section (NBRCS)
and Leading Edge Slope (LES), NASA's own, more sophisticated physical calibrations of the DDMs in the
CYGNSS datasets. These were pulled directly from NASA's publically available 'ALL DDM' dataset, and
then they were worked back into our modeling dataset.

The team had limited time to understand NBRCS and LES in all their wave-physical details, but outside
research led team members to conclude they might be useful values in modeling. Methods of calibration
of NBRCS and LES are described in the following article in the journal Remote Sensing: Link

The ECMWEF dataset includes information about wind speed and wave heights for latitude and longitude
pairs measured in 1/8 degree incriments. The variables of interest from the ECMWF data sets were
'U10m’ which is a measurement of the 10 meter zonal wind (m/s), 'V10m' which is a measurement of the
10 meter meridonal wind (m/s), and 'SWH' which is a measurement of significant wave height.

In most of the world the standard is to measure wind speeds at a height of 10 meters above ground level.
This ensures the measurement is not affected by surrounding vegitation. The United States measures at
20 feet above ground level. The wind is measured at that height to get a measurement unobstructed by
other objects on the ground. Link

Significant wave height is a measurement devised by Walter Munk during World War Il that measures the
average wave height from through to crest of the highest 1/3 of waves. Significant wave height is used to
estimate many aspects of a wave. The top 10% of waves are roughly 1.3 times SWH and the maximum
wave height one would expect to see is roughly double the SWH. Link

https://docs.opencv.org/3.4/de/da9/tutorial_template_matching.html
https://www.mdpi.com/2072-4292/12/22/3760/htm
https://www.mesonet.org/index.php/site/about/wind_measurements
http://www.firewords.net/definitions/10-meter_wind_speed.htm
https://media.bom.gov.au/social/blog/870/ruling-the-waves-how-a-simple-wave-height-concept-can-help-you-judge-the-size-of-the-sea/

Interpolation of Background Data

Interpolation is a technique used to estimate a property of an area based on known values of that
property in surrounding areas. This uses the assumption that thse properties behave more like areas
nearby than areas far away. We often do not have the technology to collect data for a continuous region
so things like weather stations will collect data and that data is interpolated to estimate the weather in
areas around the weather station. The best method for interpolating geospatial data depends on a what
weather property you are trying to interpolate. Based on the research the team found, there are conflicting
opinions as to what is the best method for interpolating wind speed data. The most common method
suggested was some form of inverse distance weighted interpolation. Acording to esri, a top GIS

company, the convention for using inverse weighted distance interpolation with geospatial data is to use
inverse weighted distance squared interpolation. (Link) The formula for inverse weighted distance
squared interpolation is given by:

XLCy)
Z(X) = o 1)
i=1 d;2

where z(x) is the interpolated value at point X, z; is a known value of z and d? is the squared distance
from point i to point x.

Finding the distance between two points on the globe is done using the haversine formula. This uses
triginometry to find the distance between two points on a sphere and is commonly used to calculate the
distance between two points on the globe. The haversine formula for is iven by:

= 2rSin_1(\/Sin2(¢2;¢l) + cos(¢p)cos(¢p)sin?(51)

where d is the distance between two points, r is the radius of the sphere, in this case that is the radius of
the Earth, ¢p; and ¢, are the the latitude of the two points and A, and A, are the longitude of the two
points.

What mathematical, statistical, or physical models are being used?

The two main types of models being used are linear regression models (ordinary least squares) and
machine learning models.

Modeling

https://www.esri.com/en-us/about/about-esri/overview
https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm
https://en.wikipedia.org/wiki/Haversine_formula

Linear Regression:

Diagnostic work for the linear regression models involved the use of variance inflation factor analysis for
multicolinearity assessment. Best subsets variable selection was performed, emphasizing the
maximization of Residual Sum of Squares values from various models fit. Error assumptions were
checked with normality plots to determine distribution of residuals, and with Durban-Watson test
statistics to assess autocorrelation of consecutive errors in the model.

Outliers were examined using a Bonferroni Test. According to Linear Models with R, by Julian Faraway, we
looked for observations whose Bonferonni corrected p-value, here called 'bonf(p)', is less than the
studentized residual for the observation, where the studentized residual is equal to

li = ”i(:__;__rl?)m'

and where r; is the residual for that observation, n is the number of observations, and p is the number of
regressors in the model. In the Bonferonni test, the Bonferonni adjusted p-value is equal to ‘:l where

a = .05.

Influential values were analyzed using Cook's Distance statistics, plotted against 'instances' (individual

observations ordered by sample/time). The formula for Cook's Distance is given in Faraway's text as:

h; . : : . .
D; = ,l,”iz {—j » Where p is the number of regressors in the model, r? is the residual effect of observation
. hi
i squared, and |-

Models with R: 2nd ed., UK: CRC Press, 2015, pages 90-91.

is the 'leverage term’ for the observation. This can be found in Faraway, Julian. Linear

Model structure was evaluated using fitted values vs. residuals plots and partial regression plots, to
determine which DDM calibrations had the most significance in the model fit for predicting wind speed
and wave height. Lastly, models were fit and their estimated coefficients interpreted in the context of the
problem of predicting wind speed/wave height.

Machine Learning:

Machine learning is one of the most exciting and rapidly growing fields in the world. There is more depth
to this than can be grasped in such a small amount of time. The general goal of a machine learning
algorithm is minimizing a cost function. That cost function is a function that determines how close the
model was to correctly predict test observations. The model is able to learn how to make its guesses by
inputing training data. In general, the more training data available, the more accurate the models'
predictions will be.

Since the Spire team aims to use the collocated data base to help train a machine learning model, and
there are so many basic machine learning functions that are ready to use with minimal understanding, the
team decided to attempt to develope a basic classification machine learning model.

A classification machine learning model takes in observations that train the model to recognize a class
that observation belongs in. After the model is trained, it tries to predict what class an observation should
be in. A common method for optimizing a classification model is to use gradient decent. Gradient decent
is a great tool for minimizing a cost function. Stochastic gradient descent uses a single sample to

compute the gradient. Sci-learn kit offers a Stochastic gradient classification alorithm called SGD-
Classifier. This is the alorithm the team will use to create their models.

Code for Notebook setup

Loading libraries

1 # Install necessary packages
2 !pip install haversine

Collecting haversine

Downloading haversine-2.5.1-py2.py3-none-any.whl (6.1 kB)
Installing collected packages: haversine
Successfully installed haversine-2.5.1

1 ##import necessary packages
import xarray as Xr

import netCDF4 as nc

import pandas as pd

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

0 N o0 U1k W DN

import pylab as py
9 import itertools
10 import seaborn as sns
11 import os
12 from matplotlib import ticker
13 from matplotlib import colors
14 import matplotlib.patches as mpatches
15 import math
16 from datetime import *
17 from datetime import datetime
18 from scipy.stats import halfnorm
19 from scipy.special import cbrt
20 from patsy import dmatrices
21 import statsmodels.api as sm
22 from statsmodels.stats.outliers_influence import variance_ inflation_factor
23 from yellowbrick.base import Visualizer
24 from statsmodels.stats.outliers_influence import OLSInfluence as influence
25 from sklearn.linear model import LinearRegression
26 import cv2
27 from google.colab.patches import cv2_ imshow
28 from sklearn.model selection import train test split
29 from sklearn.metrics import mean squared error
30 import pickle
31 from os.path import exists
32 from haversine import haversine, Unit

33 from tgdm import tgdm

34 from sklearn.linear model import SGDClassifier

35 from sklearn.datasets import load iris

36 from sklearn.datasets import make classification
37 from sklearn.model_ selection import train test split
38 from sklearn.metrics import confusion matrix

39 from sklearn.metrics import classification report
40 from sklearn.preprocessing import scale

41 from statsmodels.graphics.mosaicplot import mosaic
42 from matplotlib.patches import Patch

43 import itertools

44 from collections import deque

45 gmatplotlib inline

46 %precision 3

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: FutureWarnin
import pandas.util.testing as tm
'$.3f"

Drive mount/File path variables

1 #Allow user to mount to user google drive
2 from google.colab import drive
3 drive.mount("/content/drive")

Mounted at /content/drive

1 #Names of respective shortcuts in the Spire folder to team member Google drive file fol
2 David_path = 'For Davids Notebook v2/'
3 Ben_path = 'Files needed to run Spire project notebook/'

1 #Define variables to be used later in i/o pathways
2 cwd = os.getcwd() # Assumes no cd commands were executed
3 pathProfessor = 'Colab Notebooks/Math Clinic/2021fa/Spire/'

Functions for Notebook Execution

##FUNCTIONS FOR EXPLORATORY ANALYSIS PHASE:

1
2
3 ## define a function that plots the CYGNSS latitudes against CYGNSS longitudes and col
4 def location_time plot(ultimate_set,start sample index,end sample index):

5 selection = ultimate set.isel(sample=slice(start sample index,end sample index))

6 times_array = selection['ddm_ timestamp utc'].values

7

8

9

times array times array.flatten()

times array convert to minute(times array)

np.repeat(times_array, 4)

times array

10 lons = selection['sp lon'].values
11 lons = lons.flatten()

12 lats = selection['sp lat'].values

13 lats = lats.flatten()

14 cmap = matplotlib.cm.get cmap("viridis", 2)

15 axl = plt.scatter(x=lons, y =lats, s = 3, ¢ = times array, cmap = cmap)
16 cb = plt.colorbar(axl)

17 tick locator = ticker.MaxNLocator (nbins= 2)

18 cb.locator = tick locator

19 cb.update ticks()

20 cb.ax.set_yticklabels(['dropped string','1:05-1:15"', '17:02-17:12"'])

21 plt.xlabel('Specular Point Longitude')

22 plt.ylabel('Specular Point Latitutde')

23 plt.title('Specular Point Latitude vs. Longitude, Colored by Minute since 00:00, 4-1
24

25 #define a function that will convert the times_array in function 'location_time_ plot'
26 def convert to minute(times array):

27 times arrayl = [str(stamp) for stamp in times array]

28 times array2 = [stamp[l1:16] for stamp in times arrayl]

29 times array nump = np.array(times array2)

30 times array nump = np.char.replace(times_array nump, ':', '')
31 hour array = [stamp[0:2] for stamp in times array nump]

32 minute array = [stamp[2:4] for stamp in times array nump]

33 hour integer = [int(stamp) for stamp in hour array]

34 hour in min = [element * 60 for element in hour_ integer]

35 minute integer = [int(stamp) for stamp in minute array]

36

37 sum list = [a + b for a, b in zip(hour in min, minute integer)]
38 return sum list

39

40 #define a function that will plot all four DDMs associated with a given CYGNSS sample
41 def ddm plots(ourset, sample select):
42 fig, axes = plt.subplots(2,2)

43 plt.suptitle(f'DDMs for Sample {sample select}', va = 'bottom')

44 ourset.sel(sample = sample select, ddm = 0)['raw_counts'].plot(ax = axes[0][0], add_
45 ax = axes[0][0]

46 ax.set title('Channel 0')

47 ourset.sel(sample = sample select, ddm = 1)['raw_counts'].plot(ax= axes[0][1l], add 1
48 ax = axes [0][1]

49 ax.set title('Channel 1'")

50 ourset.sel(sample = sample select, ddm = 2)['raw_counts'].plot(ax= axes[1][0], add 1
51 ax = axes[1][0]

52 ax.set _title('Channel 2'")

53 ourset.sel(sample = sample select, ddm = 3)['raw_counts'].plot(ax= axes[1l][1l], add 1
54 ax = axes[1][1]

55 ax.set_title('Channel 3')
56 fig.tight layout()

57

58 def latlon index(ds, x, y, tol = 1/8):

59 LI)

60 Function that returns index values of nearest grid point to longitude
61 and latitude coordinates

62 ds = dataset
63 x = latitude coordinate (W < 0 <= E) by convention

64 y = longitude coordinate (S < 0 <= N) by convention

65 tol = The tolerance of the measuring device (distance between grid points)
66

67 Y

68 idx_x = (ds.lat > x - tol/2) & (ds.lat <= x + tol/2)

69 idx x = np.where(idx x)[0]

70 idx_x = idx_x[0]

71

72 idx y = (ds.lon > y - tol/2) & (ds.lon <=y + tol/2)
73 idx y = np.where(idx y)[0]

74 idx_ y = idx y[0]

75

76 return(idx _x, idx y)
77

78 def vizualize region(ds, x, y, tol = 1/8, grid size = 24, overlay=True, alpha = 1):
79 LI

80 Function that generates some basic plots to observe an area of interest

81 ds = dataset

82 x = latitude coordinate (E > 0 & W < 0) by convention

83 y = longitude coordinate (N > 0 & S < 0) by convention

84 tol = The tolerance of the measuring device (distance between grid points)
85 overlay = if True, Wind speed vector map and SWH contour plot will be overlain on ea
86 alpha = transparancy of SWH contour map if overlay is set to True

87

88 Plot 1: v1Om vs ulOm

89 Plot 2: lon vs lat

90 Plot 3: swh boxplot

91 Plot 4: spd histogram

92 Plot 5: 10m Wind Speed vector field

93 Plot 6: Countour plot of SWH

94

95 Y

96 # returns latitude and longitude index values for the grid point that is
97 # closest to the given coordinates

98 lat_idx = (ds.lat > x - tol/2) & (ds.lat <= x + tol/2)
99 lat idx = np.where(lat idx)[0]

100 lat_idx = lat_idx[0]

101 lon_idx = (ds.lon > y - tol/2) & (ds.lon <=y + tol/2)

102 lon_idx = np.where(lon idx)[0]
103 lon idx = lon idx[0]
104

105 # Creates varaibles for plotting

106 x_min
107 X_max
108 y_min
109 y_max

lat idx - int(grid size/2)
lat idx + int(grid size/2)
lon_idx - int(grid size/2)
lon _idx + int(grid size/2)

110 u = ds['UlOm'][x min:x max, y min:y max]
111 v = ds['VIOm'][x min:x max, y min:y max]
112 lat = ds['lat'][x min:x max]

113 lon = ds['lon'][y min:y max]

114 swh = ds['SWH'][xXx min:x max, y min:y max]
115 spd = ds['SPD'][x min:x max, y min:y max]
116

117 # Variables for legend of Plot 2

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

grid leg = mpatches.Patch(color
spec_leg = mpatches.Patch(color

'blue', label = 'Grid Point')
'red', label = 'Input coordinates')

fig = plt.figure()

fig.set size inches(20, 15)
axl = plt.subplot2grid((3, 4), (0, 0))
ax2 = plt.subplot2grid((3, 4), (0, 1))
ax3 = plt.subplot2grid((3, 4), (0, 2))
ax4 = plt.subplot2grid((3, 4), (0, 3))
X, Y = np.meshgrid(lon, lat)

Plot 1

axl.scatter(u, v, s = 2)

corr = round(float(xr.corr(u, v)), 2)

axl.set title(f'vlOm vs ulOm correlation = {corr}')
axl.set xlabel('ulOm')

axl.set ylabel('v1Om')

Plot 2

ax2.scatter(X, ¥, s = 3)

ax2.plot(y, x, 'ro', markersize = 5)

idx x, idx_ y = latlon index(ds, x, y)

dist = round(haversine((x, y), (ds['lat'][idx x], ds['lon'][idx y])), 2)
ax2.set_title(f'Distance to nearest gridpoint: {dist} (km)'")

ax2.set xlabel('Longitude’)

ax2.set _ylabel('Latitude')

ax2.legend(handles=[spec_leg, grid leg], frameon=True)

Plot 3

swh_df = swh.to_dataframe()

ax3.boxplot(swh df['SWH'])

mean_swh = round(np.mean(swh _df['SWH']), 2)

std swh = round(np.std(swh df['SWH']), 2)

ax3.set title(f'Avg SWH = {mean swh:.2e} (m), std = {std swh}')
ax3.set_ylabel('SWH (m)")

Plot 4

spd df = spd.to _dataframe()

ax4.hist(spd df['SPD'], bins=25)

mean_spd = round(np.mean(spd df['SPD']), 2)

std _spd = round(np.std(spd df['SPD']), 2)

ax4.set xlabel('Windspeed (m/s)')

ax4.set _title(f'Avg windspeed = {mean spd} (m/s), std = {std spd}')

if overlay == True:
ax5 = plt.subplot2grid((3, 4), (1, 0), colspan=3, rowspan=2)

Plot 5

plotl = ax5.contourf (X, Y, swh, cmap='ocean', alpha=alpha)
plot2 = ax5.quiver(X, Y, u, v, spd, cmap='jet')

ax5.set _title('Wind speed vector map and SWH contour map')
ax5.set xlabel('Longitude')

ax5.set_ylabel('Latitude’)

172 plt.colorbar(plotl, ax=ax5, label='SWH')

173 plt.colorbar(plot2, ax=ax5, label='Wind Speed')
174 else:

175 ax5 = plt.subplot2grid((3, 4), (1, 0), colspan=2, rowspan=2)
176 ax6 = plt.subplot2grid((3, 4), (1, 2), colspan=2, rowspan=2)
177

178 # Plot 5

179 plot5 = ax5.quiver(X, Y, u, v, spd, cmap='jet')
180 fig.colorbar(plot5, ax=ax5, shrink=0.8)

181

182 ax5.set _title('l0m Wind Speed Vector Field')

183 ax5.set xlabel('Longitude’)

184 ax5.set _ylabel('Latitude')

185 ax5.set _aspect('equal')

186

187 # Plot 6

188 plot6 = ax6.contourf(X, Y, swh, cmap='ocean')
189 fig.colorbar(plot6, ax=ax6, shrink=0.8)

190

191 ax6.set title('Significant Wave Height Contour')
192 ax6.set xlabel('Longitude')

193 ax6.set _ylabel('Latitude')

194 ax6.set aspect('equal')

195

196 plt.subplots adjust(wspace = 0.3, hspace = 0.3)
197 plt.show()

198

199 def latlon index(ds, x, y, tol = 1/8):

200 Y

201 Function that returns index values of nearest grid point to given longitude
202 and latitude coordinates

203 ds = dataset

204 x = latitude coordinate (W < 0 <= E) by convention

205 y = longitude coordinate (S < 0 <= N) by convention

206 tol = The tolerance of the measuring device (distance between grid points)
207

208 Y

209 idx_x = (ds.lat > x - tol/2) & (ds.lat <= x + tol/2)

210 idx_x = np.where(idx x)[0]

211 idx x = idx x[0]

212

213 idx y = (ds.lon > y - tol/2) & (ds.lon <=y + tol/2)
214 idx y = np.where(idx y)[0]
215 idx_ y = idx_y[0]

216

217 return(idx_x, idx y)

218

219 ##FUNCTIONS FOR INTERPOLATION PHASE:

220

221 def spec_values nearest(ds, sp lat, sp lon, tol = 1/8):

222 e

223 Input an xarray dataset, latitude coordinate, longitdue coordinate, and tollerance

224 Output UlOm, V10m, and SWH of the grid point that is closest to the input coordinate
225 ds = xarray dataset

226 sp_lat = latitude coordinate of specular point

227 sp_lon = longitude coordinate of specular point

228 tol = tollerance of measuring device (distance between grid points)
229

230 Y

231 #Finding index values of the nearest gridpoint

232 idx_x, idx_ y = latlon_index(ds, sp_lat, sp_lon)

233

234 # Assigning values of interest to variables

235 Ul0m = float(ds['UlOm'][idx_x, idx y])
236 V10m = float(ds['V1Om'][idx x, idx y])
237 SWH = float(ds['SWH'][idx x, idx y])

238

239 return(UlOm, V10m, SWH)

240

241 def clean CYGNSS(ds):

242 e

243 In rare cases, CYGNSS data is not input correctly. One case was found where a
244 specular point had a longitude greater than 180.

245 This function checks for out of range longitude coordinates and corrects them.
246 *Longitude of 190 is the same as longitude of -170.

247

248 Currently this function does not check for or correct out of range latitude coordina
249 This is because a latitude value over 90 or under -90 has not been found in a CYGNSS
250 data set and does not make sense physically as that point does not exist on the glob
251 If such a case occurs, this function will be adjusted to include that functionality.
252 Y

253

254 n = len(ds)

255

256 # case: secular point longitude is greater than 180

257 for i in range(len(ds)):

258 if ds.at[i, 'sp_lon'] > 180:

259 ds.at[i, 'sp lon'] = -(360 - ds.at[i, 'sp lon'])

260

261 # case: specular point longitude is less than 180

262 for i in range(len(ds)):

263 if ds.at[i, 'sp lon'] < -180:

264 ds.at[i, 'sp lon'] = (360 + ds.at[i, 'sp lon'])

265

266 return(ds)

267

268 def idw interpolate(paired list, power = 2, default = np.nan):

269 Y

270 Input:

271 list in form [(dl, zl1), ... , (dn, zn)] where:

272 dl = distance from first neighbor

273 z1l = known value from first neighbor

274 dn = distance from nth neighbor

275 zn = distance from nth neighbor

276 power = power for interpolation

277 default = value used for missing or NA data

278

279 Output: inverse distance weighting interpolated value

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

num = [xX[1]/(x[0]**power) for x in paired list] # Generates list with each grid poin
denom = [1/(x[0]**power) for x in paired list] # Generates list with each grid point
#

if sum(denom) != 0:

idw _value = float(sum(num)/sum(denom))
else:

idw_value default

return(idw_value)

def interpolate point(ds, sp lat, sp lon, tol = 1/8, swh tol = 10000, power = 2, defau

Input an xarray dataset, lattitude coordinate, longitude coordinate, and optional to
Calculate disctance between the specular point and the four surrounding grid points
haversine formula.
Calculates wUl0Om, wV1l0Om, wSWH using inverse distance squared weighted interpolation
Returns weighted Ul0m (wUlOm), weighted V10m (wV10Om), and weighted SWH (wSWH)*

*Some significant wave height values are entered as 1le20.

To deal with this, grid points with SWH values > 10000 are not used for calculati

Finds index values of 4 surrounding grid points
idx x = np.where((ds.lat > sp lat - tol) & (ds.lat <= sp lat + tol))[O0]
idx y = np.where((ds.lon > sp lon - tol) & (ds.lon <= sp lon + tol))[0]

If the specular point lon is in the range (179.875, 180), the index value for -180
if len(idx_ y) == 1:
idx y = np.append(idx_y, 0)

Finding inverse distance squared between spec point and 4 nearest grid points
dl, d2, d3, d4 = (haversine((sp_lat, sp lon), (ds['lat'][idx x[0]], ds['lon'][idx y[

Finding weighted values for UlOm and V10m

UlOm list = [(dl, ds['UlOm'][idx x[0], idx y[0]]), (d2, ds['UlOm'][idx x[1], idx y[1l
(d3, ds['Ul0m'][idx x[0], idx y[1l]]), (d4, ds['UlOm'][idx x[1], idx y[O
V10m list = [(dl, ds['V1Om'][idx x[0], idx y[0]]), (d2, ds['V1Om'][idx x[1], idx y[l1
(d3, ds['V1Om'][idx x[0], idx y[1]]), (d4, ds['V1Om'][idx x[1], idx _y[O
temp SWH = [(dl, ds['SWH'][idx x[0], idx y[0]1]), (d2, ds['SWH'][idx x[1], idx y[1]])

(d3, ds['SWH'][idx x[0], idx y[1]]), (d4, ds['SWH'][idx x[1], idx y[0]]
SWH list = [x for x in temp SWH if x[1] < swh tol] # Generates list with SWH values

wUl0m = idw_interpolate(UlOm list)

wV1l0m = idw_interpolate(V10m list)

wSWH = idw_interpolate(SWH_list, default = default)

Ul0m neighbor, V10m neighbor, SWH neighbor = len(UlOm list), len(V1Om list), len(SWH

return(wUlOm, wv1l0m, wSWH, UlOm neighbor, V10m neighbor, SWH neighbor)

def interpolate date(mm, dd, power = 2, subset = False, len subset = 500, default = np

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
3717
378
379
380
381
382
383
384
385
386
387

mm is month (do not enter leading 0's e.g. January is 1 not 01)
dd is the date (do not enter leading 0's e.g the first is 1 not 01)
power = the power used for IDW interpolation

This function takes in a date,

Loads the appropriate datasets, and

Generates a data frame with:

index value

specular point latitude

specular point longitude

weighted UlOm (based on spec_values() function)

weighted V10m (based on spec_values() function)

weighted SWH (based on spec values() function)

for all coordinates in the CYGNSS dataset

Then it turns the data frame into a pickle and writes it to the drive
output file: "/content/drive/MyDrive/Spire data/wValues/wValues 2021mmdd.pkl"

Input files:
location: "/content/drive/MyDrive/Spire data/For Notebook/file name"
CYGNSS file in form: CYGNSS_mmdd.pkl
This file is a pickle formed from the xarray dataset for the input date
The pickle file has the columns: 'Timestamp', 'specular point lat', 'specular poin
Windspeed data file in form: 2021mmdd tod.nc
* tod = 00, 06, 12, or 18 depending on time of day sampling was done

subset and len subset variables allow for testing new functionality on small samples

Variables for file path
date = str(mm).zfill(2) + str(dd).z£fill(2)

Loding CYGNSS file for input date and corrects coordinates that are out of bounds
cyg_file = f"{pathTeam}CYGNSS {date}.pkl"

cyg = pd.read pickle(cyg file)

cyg clean CYGNSS(cyg)

Loading background windspeed data
ds00 = f"{pathTeam}ecmwf.t00z.pgrb.0pl25.£000 2021{date}00.nc"
if exists(ds00):

ds00 = xr.open dataset(ds00)

print('ds00 was loaded')
ds06 = f"{pathTeam}ecmwf.t06z.pgrb.0pl125.£000 2021{date}06.nc"
if exists(ds06):

ds06 = xr.open_dataset(ds06)

print('ds06 was loaded')
dsl2 = f"{pathTeam}ecmwf.t1l2z.pgrb.0pl125.£000 2021{date}l2.nc"
if exists(dsl2):

dsl2 = xr.open_dataset(dsl2)

print('dsl2 was loaded')
dsl18 = f"{pathTeam}ecmwf.t18z.pgrb.0pl125.£000 2021{date}18.nc"
if exists(dsl8):

ds1l8 = xr.open dataset(dsl8)

print('dsl8 was loaded')

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Defining variables

wcolumn names = ['lat', 'lon', 'wUlOm', 'wV1Om', 'wSWH']
wValues = pd.DataFrame()
neighbor col = ['Ul0m neighbor', 'V10Om neighbor', 'SWH neighbor']

neighbor count = pd.DataFrame()

if subset == True:

n = len_subset

date = date + str(' sample')
else:

n = len(cyg)

Loop that creates data frame with weighted values
for i in tgdm(range(0,n)):
float(cyg.iloc[i][1])
float(cyg.iloc[i][2])

X
y

Using the hours in the Timestamp to determine what dataset to load
ds tup = (ds00, ds06, dsl2, dsl8)

ts = cyg.iloc[i][0].hour

ts _idx = int((ts - ts%6)/6)

ds = ds_tup[ts_idx]

Calculating wUlOm, wV1Om, and wSWH
wUl0m, wVv1lOm, wSWH, ulOm neigh, v10Om neigh, swh neigh = interpolate point(ds, x, y

Generating data frame

wtemp df = pd.DataFrame([[x, Yy, wUlOm, wV10m, wSWH]], columns = (wcolumn_ names))
wValues = wValues.append(wtemp df)
temp neighbor = pd.DataFrame([[ulOm neigh, v10m neigh, swh neigh]], columns = (nei

neighbor count = neighbor count.append(temp neighbor)

filename = f"{pathTeam}wValues 2021{date}.pkl"
wValues.to pickle(filename)

Printing summary of data to check for errors

print()

print(wValues.describe())

print()

print('Neighbor count for UlOm: ')

print(neighbor count['Ul0m neighbor'].value counts().sort index())
print('Neighbor count for V10m:')

print(neighbor count['V10m neighbor'].value counts().sort index())
print('Neighbor count for SWH:')

print(neighbor count['SWH neighbor'].value counts().sort index())

def ecmwf check(mm, dd):

mm
dd

month (do not enter leading 0's e.g. January is 1 not 01)
date (do not enter leading 0's e.g the first is 1 not 01)

Input a month and date

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Output a statement with a list of strings potentially containing: {'00', '06', '12',
The strings represent the timeframe of ecmwf data needed to interpolate the data for
the given date

This function was run before 'idw_interpolate' everytime to ensure the correct files

date = str(mm).zfill(2) + str(dd).z£fill(2)
ds = pd.read pickle(f"{pathTeam}CYGNSS {date}.pkl")

ts list = []
ts_final = []

for i in range(0, len(ds)):
ts = ds.iloc[i][0].hour
ts = ts - ts%6
ts str(ts).zfill(2)
ts list.append(ts)

[ts_final.append(n) for n in ts list if n not in ts_final]

for j in range (0, len(ts_final)):
print (f'Need ECMWF file: ecmwf.t{ts final[j]}z.pgrb.0pl25.£f000 2021{date}{ts final

##FUNCTIONS FOR COLLOCATION PHASE:

#define a function that will collect specular point latitudes/longitudes and timestamp
##the function returns a pandas dataframe with the collected information
def collect latlons(cyg_data_set):

time array = cyg data set['ddm timestamp utc'].values

time array = time array.flatten()

time array np.repeat(time array, 4)
lat array = cyg data_set['sp lat'].values
lat_array lat _array.flatten()

lon array cyg_data_set['sp_lon'].values

lon_array
temp frame = pd.DataFrame({'timestamp':time array, 'sp lat':lat array, 'sp lon':lon_
return temp frame

lon_array.flatten()

##define function that integrates the collocated wind/wave data into the original xarr
def integrate sets(set to coll, coll set):

coll set.reset index(drop= True, inplace = True)

coll setA = coll set.drop(columns = ['lat', 'lon'])

samp array = set to coll['sample'].values

samp array.flatten()

samp_array = np.repeat(samp_array, 4)

ddm array = set _to coll['ddm'].values

ddm_array.flatten()

ddm array = np.concatenate((ddm array, np.tile(ddm array, 2415)))

multi frame = pd.DataFrame({'sample':samp array, 'ddm':ddm array})
mindx = pd.MultiIndex.from frame(multi frame)
coll setB = np.array(coll setA)

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

multi frame coll = pd.DataFrame(coll setB, columns = ['wUlOm', 'wv1lOm', 'wSWH'], ind
collocated set = multi frame coll.to xarray()
final coll set = xr.combine by coords([set_to coll, collocated set])

return final coll_set

##FUNCTIONS FOR DDM CALIBRATION PHASE:

##define function that will calculate the ddm average for a 10x5 bin area around each
def DDM_averages(cleaned set,sample first,delay start,delay end,doppler start,doppler

isolate first = cleaned set.sel(sample = sample first, delay = range(delay start,del
power first = isolate first['raw counts']

DDM_average first = power first.groupby('ddm').mean(dim=['delay', 'doppler'])
average_array = DDM average_first

for item in cleaned set['sample']:
isolate = cleaned set.sel(sample = item,delay = range(delay start,delay end), dopp
power = isolate['raw counts']
DDM_average = power.groupby('ddm').mean(dim =['delay', 'doppler'])
average array = Xr.concat([average array, DDM average], dim ='sample')

average array = average array.drop duplicates(dim='sample')
ds = average array.to dataset(name ='ddm average')

final set = xr.combine by coords([cleaned set, ds])

return final set

def NBRCS LES vals(all data set, final set, start samp,stop samp,start of interval,end

partition = final set.sel(sample = slice(start of interval,end of interval))
partition2 = all data set.sel(sample = slice(start samp,stop samp))

sampling array = partition['sample'].values

sampling array = sampling array.flatten()

partition2 = partition2.assign_coords(sample = sampling array)

nbrcs_vals
les vals = partition2['ddm les']
dsl= nbrcs_vals.to_dataset(name='nbrcs')

partition2['ddm nbrcs']

ds2= les vals.to dataset(name='les')

result set = xr.combine by coords([partition, dsl], compat = 'override')
result set = xr.combine by coords([result set, ds2], compat = 'override')
return result_ set

##define a function that finds the highest power value of DDM and divides it by the ro
def root square ratio(complete set, sample, ddm channel):

test ddm = complete set.isel(sample = sample, ddm = ddm channel)
spec_point_ select = test ddm.sel(delay = 64, doppler = 10)
spec_point power = spec point select['raw_counts'].max().values
test counts = test ddm['raw counts']

test_counts = test counts.values

test counts = test counts.flatten()

test counts = np.delete(test counts, np.argwhere(test counts == spec_point power))
squared = np.square(test counts)

square_sum = squared.sum()

square_sum divide = square sum/squared.size

RMS = math.sqrt(square_ sum divide)

RMS ratio = spec_point power/RMS

550 return RMS_ ratio

551

552 ##define a function that builds the RMS ratio index dataframe for a CYGNSS dataset
553 def RMS ratio_index(complete set):

554 RMS ratio array = []

555 sample array =[]

556 ddm array=[]

557 for item in range(0,complete set['sample'].size):

558 for items in range(0,complete set['ddm'].size):

559 RMS ratio_ array.append(root square ratio(complete set,item, items))
560 sample array.append(complete set.isel(sample = item)['sample'].values)
561 ddm array.append(complete set.isel(sample =item,ddm = items)['ddm'].values)
562

563 sample_array = np.array(sample array)

564 ddm array = np.array(ddm_array)

565 RMS ratio array = np.array(RMS ratio_array)

566

567 RMS index frame = pd.DataFrame(sample array, columns = ['sample'])

568 se = pd.Series(ddm array)

569 RMS index frame['ddm'] = se.values

570 se2 = pd.Series(RMS ratio_ array)

571 RMS index frame['Highest/RMS'] = se2.values

572 return RMS_index frame

573

574 ##define a function that integrates the RMS ratio values for each DDM as a column in t
575 def return ratio_set(complete set,ratio indexl):

576 ratio indexla = ratio indexl.drop(columns = ['Highest/RMS'])

577 mindx = pd.MultiIndex.from frame(ratio indexla)

578 ratio_indexlb = ratio_indexl.drop(columns = ['sample', 'ddm'])

579 ratio_arrayl = np.array(ratio_ indexlb)

580 ratio_index2 = pd.DataFrame(ratio_arrayl, columns = ['RMS ratio'], index = mindx)
581 ratio set = ratio index2.to xarray()

582 complete set = xr.combine by coords([complete set, ratio _set])

583 return complete set

584

585 ##define a function that will return an array of all maximum template matching coeffic
586 def match coeff array(complete set, template image):
587 coeff array =[]

588 for item in range(0,complete set['sample'].size):

589 for items in range(0,complete set['ddm'].size):

590 samp_select = item

591 ddm_select = items

592

593 prepare_test image(complete set,samp select, ddm select)
594 testing image = cv2.imread('image to_ test.jpg',0)

595

596 w, h = template image.shape[::-1]

597 img = testing image.copy()

598 method = eval('cv2.TM_CCOEFF_NORMED')

599 # Apply template Matching

600 res = cv2.matchTemplate(img,template image,method)

601 min val, max val, min loc, max loc = cv2.minMaxLoc(res)
602 coeff array.append(max_val)

603 plt.close()

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

!rm image to_ test.jpg
return coeff array

##Define a function that prepares the test image for each template matching
def prepare test image(complete set, sample selection, ddm selection):
complete set.isel(sample = sample selection, ddm = ddm selection)['raw_counts'].plot
ax = plt.gca()
ax.axes.xaxis.set visible(False)
ax.axes.yaxis.set visible(False)
plt.savefig('image to test.jpg', bbox inches = 'tight')

define a function to create a dataframe with multiindex and then incorporates Max
##the original xarray dataset
def create complete with maxes(complete set,max coeff frame):
sample_array =[]
ddm_array=[]
for item in range(0,complete set['sample'].size):
for items in range(0,complete set['ddm'].size):
sample array.append(complete set.isel(sample = item)['sample'].values)
ddm array.append(complete set.isel(sample =item,ddm = items)['ddm'].values)

sample_array = np.array(sample array)
ddm_array = np.array(ddm_array)

multiIndex frame = pd.DataFrame(sample array, columns = ['sample'])

se = pd.Series(ddm array)

multiIndex frame['ddm'] = se.values

max_coeff framel = np.array(max_coeff frame)

mindx = pd.MultiIndex.from frame(multiIndex frame)

multi frame var = pd.DataFrame(max coeff framel, columns = ['Max Matching Coeff'], i

set with maxes = multi frame var.to xarray()
complete set = xr.combine by coords([complete set, set with maxes])

return complete_set

#define a function that converts wind speed components to wind speed with pythagorean
def create_ speed var(complete set):

u_array = complete set['wUlOm'].values
u_array = u_array.flatten()
v_array = complete set['wV1lOm'].values

v_array = v_array.flatten()

u_array = np.square(u_array)

v_array = np.square(v_array)
sum_array = np.add(u_array, v_array)
speed_array = np.sqrt(sum _array)

sample array =[]
ddm_array=[]
for item in range(0,complete set['sample'].size):
for items in range(0,complete set['ddm'].size):
sample array.append(complete set.isel(sample = item)['sample'].values)
ddm_array.append(complete set.isel(sample =item,ddm = items)['ddm'].values)

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

sample array = np.array(sample array)
ddm array = np.array(ddm array)

multiIndex frame = pd.DataFrame(sample array, columns = ['sample'])

se = pd.Series(ddm array)

multiIndex frame['ddm'] = se.values

mindx = pd.MultiIndex.from frame(multiIndex frame)

multi frame var = pd.DataFrame(speed array, columns = ['wind speed'], index = mindx)
set with speed = multi frame var.to xarray()

complete set = xr.combine by coords([complete set, set with speed])

return complete set

##create a function that will perform template matching; code source: Open cv2 pytho

def create matching(template image, testing image):

methods = ['cv2.TM CCOEFF', 'cv2.TM CCOEFF_NORMED', 'cv2.TM CCORR',
'cv2.TM CCORR NORMED', 'cv2.TM SQDIFF', 'cv2.TM SQDIFF NORMED']
w, h = template image.shape[::-1]

for meth in methods:
img = testing image.copy()
method = eval(meth)
Apply template Matching
res = cv2.matchTemplate(img,template image,method)
min val, max val, min loc, max_loc = cv2.minMaxLoc(res)

If the method is TM SQDIFF or TM SQDIFF_NORMED, take minimum
if method in [cv2.TM SQDIFF, cv2.TM SODIFF NORMED]:

top left = min loc
else:

top_ left
bottom right

max_loc
(top_left[0] + w, top left[1l] + h)

cv2.rectangle(img,top left, bottom right, 0, 5)

plt.subplot(121),plt.imshow(res,cmap = 'gray')

plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])

plt.suptitle(meth)
plt.show()

print(max_val)

###FUNCTIONS FOR EXPLORATORY ANALYSIS OF MODELING DATASET PHASE:

##define a function that compares all relevant DDM calibration variables and wind spee
def full scatter compare(modeling set):

dset = modeling set
array list = [dset['ddm average'], dset['RMS ratio'], dset['Max Matching Coeff'], ds

array_ list [item.values for item in array list]

array list
array list[6] = np.sign((array_ list[6]))*np.log(np.absolute(array list[6])+1)
array list[5]

[i.flatten() for i in array list]

np.sign(array list[5])*np.log(np.absolute(array list[5])+1)

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

array list[0] = np.log(array list[0])
array list[1l] = np.log(array list[1l])
names = ['ddm average', 'RMS ratio', 'Matching Coeff', 'wind speed', 'wave height',

frame = pd.DataFrame.from dict(dict(zip(names, array list)))

times array = modeling set['ddm timestamp utc'].values

times array = np.repeat(times array, 4)

pd.plotting.scatter matrix(frame, c = times array, cmap = 'viridis', figsize = (10,1
plt.tight layout()

plt.show()

#define a function that plots a box plot for a variable of interest, along with that v
def ddm box plot(ultimate set,var of interest):

ddm array = ultimate set[var of interest].values
ddm _array = ddm array.flatten()

ddm_array ddm array[~np.isnan(ddm_ array)]
plt.subplot(1l,2,1)
plt.boxplot (ddm _array)
plt.axis(ymin = 0)
plt.title(var_of interest)
plt.subplot(1,2,2)
if (var_of_interest == 'nbrcs') or (var_of interest == 'les') or (var_of_ interest ==
plt.hist(ddm array,log = True, bins = 25)
else:
plt.hist(ddm array,bins = 25)
plt.title(var_of interest)

#define a function that allows the notebook user to select sample and DDM channel from
###corresponding callibration for the DDM or collocated wind speed/wave height associa
def ddm plots with vars(full dataset, sample sel, ddm sel):

ddm = full dataset.sel(sample = sample sel, ddm = ddm sel)
ddm['raw_counts'].plot()
samp = ddm['sample'].values

chan = ddm['ddm'].values

plt.title(f'Sample:{samp} DDM Channel:{chan}')

variable list = [ddm['ddm average'], ddm['RMS ratio'], ddm['Max Matching Coeff'], dd
variable list = [item.values for item in variable list]

variable list = [[j.tolist()] for j in variable list]

names = ['ddm average: ', 'RMS ratio: ', 'Max Matching Coeff: ', 'wind speed(m/s): '

dictionary = dict(zip(names, variable list))
frame = pd.DataFrame.from dict(dictionary)
pd.set option('display.max _columns', None)
pd.set option('expand frame repr', False)

frame = frame.round(3)
print (frame)
print(nnnn

)

##define a function that will zoom in on the points in a particular scatter plot, allo
###also, display the correlation coefficient between the plotted variables, for the us
def close up scatter(total set, x min, x max, y min, y max, var of intA, var of intB):

var_list = [total set[var of intA].values, total set[var_of intB].values]
var_list
cmap = matplotlib.cm.get cmap("viridis", 5)

times_array = total set['ddm timestamp utc'].values

[item.flatten() for item in var list]

766
767
768
769
770
771
772
773
774
775
776
7717
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

times array = np.repeat(times_array, 4)

plt.figure(figsize = [8,8])

axl = plt.scatter(x = var_list[0], y = var list[l], ¢ = times array, cmap = cmap, S
plt.axis(xmin = x min, xmax = X _max, ymin = y min, ymax = y max)

cb = plt.colorbar(axl)

tick locator = ticker.MaxNLocator (nbins= 5)

cb.locator = tick locator

cb.update ticks()

cb.ax.set_yticklabels(['dropped string', 'March 15-April 15', 'April 16-Mayl5', 'May
plt.xlabel(var_of intA)

plt.ylabel(var_ of intB)

corr = np.corrcoef(var list[0], var list[1])[0,1]

print (f'Pearson Correlation Coefficient: {corr}')

##define a function that will produce a correlation matrix for all calibration/wind/wa
def correlation matrix(modeling set):
dset = modeling set
array list [dset['ddm average'], dset['RMS ratio'], dset['Max Matching Coeff'], ds

array list = [item.values for item in array list]
array list = [i.flatten() for i in array list]
names = ['ddm average', 'RMS ratio', 'Matching Coeff', 'wind speed', 'wave height',

frame = pd.DataFrame.from dict(dict(zip(names, array list)))
coeff matrix = frame.corr()

coeff matrix = coeff matrix.round(3)

return coeff matrix

#define a function that plots two variables on a twin y-axis plot, with time as the sh
def create_twin plot(total_set, start_samp, end samp, channel, var of_ intA, var of int

partial set = total set.where((start _samp <= total set['sample']) & (total set['samp
fig, axl = plt.subplots()

axl.plot(partial set['ddm timestamp utc'],partial set[var of intA], '.', color = 'ta
axl.set xlabel('timestamp')

axl.set_ylabel(var_of intA, color = 'tab:red')

ax2 = axl.twinx()

ax2.plot(partial_set['ddm timestamp utc'], partial_set[var_of_ intB], '.', color = 't
ax2.set _ylabel(var of intB, color = 'tab:blue')

plt.setp(axl.get xticklabels(), rotation=30, horizontalalignment='right')

start time = partial set['ddm timestamp utc'].values[O0]

end time = partial set['ddm timestamp utc'].values[partial set['ddm timestamp utc'].
plt.title(f'Sampling Interval:{start time} to {end time}')

#define a function that will calculate and display the basic statistical summary for a
def stat summaries(ultimate set, var of int):
var_array = ultimate set[var_of int].values

my mean = var_array.mean()

my median = np.ma.median(var_array)

my std = var_ array.std()

my max = var_array.max()

my min = var_array.min()

my_array = np.array([my mean, my median, my std, my max, my min])

name_array np.array(['Mean', 'Median', 'Std', 'Max', 'Min'])

stat frame pd.DataFrame(name array, columns = ['Statistics'])

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

stat frame['Values'] = my array

stat_frame['Values'] = stat frame['Values'].astype('float64')
stat_frame['Values']
print(stat frame)

stat frame['Values'].round(3)

###FUNCTIONS FOR LINEAR MODELING PHASE:

#define a function that will take the variables of interest in our dataset and work th
def create dataframe(modeling set):
dset = modeling set
array list = [dset['ddm average'], dset['RMS ratio'], dset['Max Matching Coeff'], ds
array list = [item.values for item in array list]

array list [i.flatten() for i in array list]
names = ['ddm average', 'RMS ratio', 'Matching Coeff', 'wind speed', 'wave height',
frame = pd.DataFrame.from dict(dict(zip(names, array list)))

return frame

#define a function that will take in a dataframe and remove variables as we find probl
def remove_colinear var(modeling frame, var_ to_ remove):

modeling frame = modeling frame.drop([var to remove], axis = 1)

return modeling frame

##define a funtion that will plot a fitted vs. residuals plot for linear model
def FitvResid(regress, X, y):
dataframe = pd.concat([X,y], axis = 1)
model fitted y = regress.fittedvalues
plot 1Im = plt.figure()
plot Im.axes[0] = sns.residplot(model fitted y, dataframe.columns[-1], data = datafr
plot Im.axes[0].set title('Residuals vs. Fitted')
plot Im.axes[0].set xlabel('Fitted values')
plot Im.axes[0].set ylabel('Residuals')

#define a function that will actually calculate the VIF values given a modeling datafr
##NOTE: much of this code is adapted from the page 'Detecting Multicolinearity with VI
def find VIF(modeling frame, dependent var):

X = modeling frame.drop([dependent var], axis = 1)

vif data = pd.DataFrame()

vif data["feature"] = X.columns

vif data["VIF"] [variance inflation factor(X.values, i) for i in range(len(X.colum

vif data["VIF"] vif data["VIF"].round(decimals = 3)

return vif data

#define a function that will take in a dataframe of variables to be used in linear mod
##and then calculate the RSS (residual sum of squares) for the model
##NOTE: Much of this code was adapted from science.smith.edu
def mod_ subset(variable set):
mod = sm.OLS(y,X[list(variable set)])
regress = mod.fit()
RSS = ((regress.predict(X[list(variable set)]) - y) ** 2).sum()
dic = {'model':regress, 'RSS': RSS}
return dic

#define a function that calls mod subset for each combination of regressor variables a
#NOTE: Much of this code was adapted from science.smith.edu

874
875
876
8717
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

def highest RSS(num of regressors):

array = []

for combination in itertools.combinations(X.columns, num of regressors):
array.append(mod_subset(combination))

models_ frame = pd.DataFrame(array)

best mod = models frame.loc[models frame['RSS'].argmin()]

return best mod

#define a function that plots cooks distances from our linear models
def cooks distances plot(regression mod):

inf = influence(regress)
C, P = inf.cooks_distance
_, ax = plt.subplots(figsize=(9,6))
ax.stem(C, markerfmt=",")

ax.set xlabel("instance")

ax.set ylabel("distance")

ax.set title(f"Cook's Dist. Influentials Plot: {y.name} Model")

#define a function that plots fitted values against observed values for linear model
def fitVsobserved(results):

fig, axl = plt.subplots(2,2)
sm.graphics.plot fit(results,
sm.graphics.plot fit(results,
sm.graphics.plot fit(results,
sm.graphics.plot fit(results,
plt.tight layout()
fig.set size inches(8,8)

ax = ax1[0,0])
ax = ax1[0,1])
ax = ax1[1,01])
ax = ax1[1,1])

w N = O
~ N~

~

#define a function that plots component plus residuals plot grid for variables in a mo
def ccpr plots(results):

fig, axl = plt.subplots(2,2)

sm.graphics.plot ccpr(results, ax = ax1[0,01])
ax = ax1[0,1])
ax = ax1[1,01])

ax = axl1l[1l,1])

~

sm.graphics.plot_ccpr(results,

~

sm.graphics.plot ccpr(results,

w N = O
~

~

sm.graphics.plot ccpr(results,
plt.tight layout()
fig.set size inches(8,8)

#define a function that presents outliers from bonferroni test
def bonf outlier(bonf test):

bonf outliers = bonf test.where(bonf test['student resid'] > bonf test['bonf(p)'])
bonf outliers

bonf outliers.dropna()

bonf outliers bonf outliers.astype('float64')
bonf outliers bonf outliers.round(3)
return bonf outliers

#define function that plots a histogram of model residuals
def resid Hist(regress):

mod resid = regress.resid

fig, ax = plt.subplots(figsize =(10, 7))
ax.hist(mod_resid)

ax.set xlabel('error')

ax.set title('Residuals Distribution')
plt.show()

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
9717
978
979
980
981

del mod_resid

#define a function that compares averages for dependent variables of total modeling se

def compare dependent average(outlier select,modeling set):
av_wind outliers = outlier select['wind speed'].values.mean()
av_wave_outliers = outlier select['wSWH'].values.mean()

av_wind total modeling set['wind speed'].values.mean()

av_wave_total
print(f''' Average Wind Speed (Sample Subset): {av_wind outliers.round(3)}
Average Wave Height (Sample Subset): {av_wave outliers.round(3)}

Average Wind Speed (Total Set): {av_wind total.round(3)}

Average Wave Height (Total Set): {av_wave total.round(3)}''"')

modeling set['wSWH'].values.mean()

###FUNCTIONS FOR MACHINE LEARNING MODELING PHASE:

def ML data prep(ds, sample=False, size = 1000, replace=False, ext = ''):
Input:
ds = xarray dataset
sample = If True, sample a subset from the full data set
size = this will determine the size of the sample (only if sample = True)
replace = If True, sample with replacement (only if sample = True)
ext = an optional string added to allow for generating and saving multiple

sampling data sets easily

Output data frame ready for machine learning

Removing uneeded variables and converting to dataframe
dset = ds
array list
array list [item.values for item in array list]

array list = [i.flatten() for i in array list]

names = ['ddm average', 'RMS ratio', 'Matching Coeff', 'wind speed', 'wSWH',
df = pd.DataFrame.from dict(dict(zip(names, array list)))

Categorizing wind speed

wind category = []

n wind = len(df)

mean wind = df['wind speed'].mean()
sd wind = df['wind speed'].std()

for i in tgdm(range(0, n_wind)):
if df['wind speed'][i] < mean wind - sd wind:

temp = 'Calm'’

elif df['wind speed'][i] > mean wind + sd wind:
temp = 'Strong'

else:
temp = 'Mild’

wind category.append(temp)

df['wind category'] = wind category

[dset['ddm average'], dset['RMS ratio'], dset['Max Matching Coeff'], ds

982 # Categorizing significant wave height

983 wave_category = []

984 n_wave = len(df)

985 mean wave = df['wSWH'].mean()

986 sd wave = df['wSWH'].std()

987

988 for i in tgdm(range(0, n_wave)):

989 if df['wSWH'][i] < mean wave - sd_wave:
990 temp = 'Low'

991 elif df['wSWH'][i] > mean wave + sd_wave:
992 temp = 'High'

993 else:

994 temp = 'Medium'

995

996 wave_ category.append(temp)

997

998 df['wave category'] = wave_category

999

1000 if sample == True:

1001 df.to_pickle(f'{pathTeam}ML data sample{ext}.pkl')
1002 else:

1003 df.to pickle(f'{pathTeam}ML data{ext}.pkl')
1004

1005 def nclass_classification mosaic plot(n_classes, results):
1006 mmnn

1007 build a mosaic plot from the results of a classification
1008

1009 parameters:

1010 n_classes: number of classes

1011 results: results of the prediction in form of an array of arrays
1012

1013 In case of 3 classes the prdiction could look like

1014 [rio, 2, 41,

1015 1, 12, 37,

1016 [2, 2, 9]

1017 1

1018 where there is one array for each class and each array holds the
1019 predictions for each class [class 1, class 2, class 3].
1020

1021 This is just a prototype including colors for 6 classes.
1022 e

1023 class_lists = [range(n_classes)]*2

1024 mosaic_tuples = tuple(itertools.product(*class lists))
1025

1026 res list = results[0]

1027 for i, 1 in enumerate(results):

1028 if 1 ==

1029 pass

1030 else:

1031 tmp = deque(l)

1032 tmp.rotate(-1i)

1033 res list.extend(tmp)

1034 data = {t:res list[i] for i,t in enumerate(mosaic_tuples)}

1035

1036 fig, ax = plt.subplots(figsize=(8, 7))

1037 plt.rcParams.update({'font.size': 16})

1038

1039 font color = '#2c3e50'

1040 # pallet = |

1041 # '#6a89cc’',

1042 # '#4a69bd’,

1043 # '#1e3799",

1044 # '#0c2461',

1045 # '#82ccdd’',

1046 # '#60a3bc’,

1047 # 1

1048 pallet = ["#labc9c", "#3498db", "#e74c3c", "#£39cl2", "#95a5a6"]

1049 #pallet = ["#487eb0","#6a89cc", "#8lcfel","#00b5cc", "#52b3d9"]

1050 colors = deque(pallet[:n _classes])

1051 all colors = []

1052 for i in range(n_classes):

1053 if i > 0:

1054 colors.rotate(-1)

1055 all colors.extend(colors)

1056

1057 props = {(str(a), str(b)):{'color':all colors[i]} for i,(a, b) in enumerate(mosaic
1058

1059 labelizer = lambda k: ''

1060

1061 p = mosaic(data, labelizer=labelizer, properties=props, ax=ax)

1062

1063 title font dict = {

1064 'fontsize': 15,

1065 'color' : font_color,

1066 }

1067 axis label font dict = {

1068 'fontsize': 10,

1069 'color' : font color,

1070 }

1071

1072 ax.tick params(axis = "x", which = "both", bottom = False, top = False)
1073 ax.axes.yaxis.set ticks([])

1074 ax.tick params(axis='x', which='major', labelsize=14)

1075

1076 ax.set title('Mosaic Plot of Confusion Matrix', fontdict=title font dict, pad=25)
1077 ax.set_xlabel('Observed Class', fontdict=axis_label font_dict, labelpad=10)
1078 ax.set ylabel('Predicted Class', fontdict=axis label font dict, labelpad=35)
1079

1080 legend elements = [Patch(facecolor=all colors[i], label='Class {}'.format(i)) for
1081 ax.legend(handles=legend elements, bbox to anchor=(1,1.018), fontsize=16)
1082

1083 plt.tight layout()

1084 plt.show()

Results and Discussion

Exploratory Data Analysis

CYGNSS data

Exploring an Initial CYGNSS Data Set (Associated with April 17)**

#read in the first CYGNSS file from google drive
##for notebook user without access to drive, load in 'cyg firstfile.nc' from the 'Files
pathTeam = cwd + '/drive/My Drive/'
if os.path.exists(pathTeam + pathProfessor):
pathTeam += pathProfessor
pathTeam += Ben path # Should be a shortcut (Links to an external site.) to Team's shar

N o0 o W

os.listdir(pathTeam)

['cyg firstfile.nc',
'all _data CYGNSS_0411l.nc4',
'all data CYGNSS 0411B.nc4',
'ddm_screenshot.png',
'CYGNSS_Background Collocated 20210411l.nc’,
'set_4 11 RMS_av.nc',
'modeling dataset.nc',
'wValues 20210411.pkl']

1 cyg data_set = xr.open dataset(f'{pathTeam}cyg firstfile.nc')
2 cyg data_set

> (ddm: 4, delay: 128, doppler: 20, sample: 2416)

sample (sample)
ddm (ddm)

ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)

spacecraft_id (sample)
spacecraft_num (sample)
ddm_sample_in... (sample)
prn_code (sample, ddm)

raw_counts (sample, ddm, delay, doppler)

As the summary for the dataset shows, this is a four-dimensional delay-doppler map record across 2416
samples taken on one day: April 11, 2021. Next, we dig into the dataset to understand its structure and

what it shows about the CYGNSS GNSS scatterometry process.

Dissecting the Structure of a CYGNSS Dataset:

First, we looked at some plots of specular point latitude against specular point longitude to get an idea of
how the satellites are moving over the sampling time intervals for this dataset (samples taken on April 11,
2021).

1 #call the function that will plot specular point latitude against specular point longit
2 #Note: this function allows the user to specify which sampling interval to plot, by sta
3 ###in this cell, we will just plot all the samples across all timestamps and DDMs

4 start sample index = 0

5 end_sample index = 2415

6 location time plot(cyg data set, start sample index, end sample index)

Specular Point Latitude vs. Longitude, Colored by Minute since 00:00, 4-11-21

17:02-17:12

-5
g -10
=
o -15
s "
o 20 - ~ 105-1-15
L - 'f / /
D -5 e . /
:? -~

-30

35 f/

] 100 110 120 130

Specular Point Longitude

Here we can see that two CYGNSS satellites took Delay Doppler Map measurements across two time
intervals, each logging four Delay Doppler Maps (from four specular points) every half second for each of
those two intervals. Now, we examine four of the thousands of Delay Doppler Maps in the CYGNSS single
file dataset, to get a sense of how different they can be to one another.

1 ##1looking at the DDMs for sample index 1:
2 sample _in =1

3 ddm plots(cyg data set, sample in)

4 del sample in

DDMs for Sample 1

Channel 0 Channel 1
12000
100 1spop 100
11000
50 50
10000 10000
a a
0 5 0 15 0] 10 15
Channel 2 Channel 3
e 16000 ey~ g 13nnn

It's clear that the DDM can give a few broad types of images. One is the well-defined parabola, as seen in
the DDM for channel 0 above. Another is the less well-defined parabola. The third is a more scrambled
image, as seen in the DDMs for channels 1 and 3 in this sample. The last, not seen in this particular
sample, is the occurence of a single, bright specular point, surrounded by dark blue, as with this DDM:

1 cyg_data_set.sel(sample=1200, ddm = 0)['raw_counts'].plot()

<matplotlib.collections.QuadMesh at 0x7£86d22ac7d0>
sample = 1200, ddm = 0, ddm_timestamp_utc = 202_..

120 100000
100 B0000
a0
60000
&0
0 40000
N 20000
0
o0 25 50 75 100 125 150 175

doppler

delay
DDM bin raw counts [1]

Interestingly, there are a few unusuable Delay Doppler Maps recorded by the satellites, usually at the
beginning of major sampling time intervals. In this set, we have four such DDMs at the very start of the
dataset (sample 0), and another four at sample 1206, the start of the second sampling/time interval for

the day. We look at the one from sample 0:

1 cyg _data_set.sel(sample=0, ddm=0)['raw_counts'].plot()

<matplotlib.collections.QuadMesh at 0x7£86d21e0490>
sample = 0, ddm = 0, ddm_timestamp_utc = 2021-0...

1240
004
100
002
ik
=

Further down, this dataset is processed through several functions that remove different types of

“counts [1]

junk/missing data, this type included.
- I

ECWMF data

aoppier

Exploring the ECWMF Wind Speed/Wave Height Background Files (associated with Aprill 11)

1 # Importing netCDF files with background wind speed data for April 11, 2021

2 ##first, must reset pathTeam to exclude Ben path information:

3 pathTeam = cwd + '/drive/My Drive/'

4 ##Check to add professor's path

5 if os.path.exists(pathTeam + pathProfessor):

6 pathTeam += pathProfessor

7 pathTeam += David path # Should be a shortcut (Links to an external site.) to Team's sh
8 os.listdir(pathTeam)

['cyg firstfile sps.pkl',
'cyg.ddmi.s20210411-010506-e20210411-171248.11.power-brcs-full.a30.d31l.nc',
'ecmwf.t00z.pgrb.0pl125.£000 2021041100.nc’,
'ecmwf.t12z.pgrb.0pl125.£000 2021041112.nc’,
'ecmwf.t18z.pgrb.0pl25.£000 2021031118.nc’,
'"CYGNSS 0311.pkl',

'CYGNSS 0411.pkl',

'CYGNSS_ Background Collocated 2021031l.nc',
'modeling dataset.nc',

'wValues 20210311.pkl',

'ML_data sample2.pkl',

'wValues 20210411.pkl’,

'wValues 20210411 sample.pkl',
'ML_data.pkl']

1 # Importing netCDF files with background wind speed data for April 11, 2021

2 # Adding speed column to dataset

3 ds00 = xr.open dataset(f'{pathTeam}ecmwf.t00z.pgrb.0pl25.£000 2021041100.nc")

4 ds00 = ds00.assign(SPD = np.sqrt(ds00.UlOm**2 + ds00.V10m**2)) # Calculates wind speed
5 ds00.info

<bound method Dataset.info of <xarray.Dataset>

Dimensions: (x: 1441, y: 2880)
Coordinates:
lat (x) float32 ...
lon (y) float32 ...

Dimensions without coordinates: x, y

Data variables:

UlOm (x, y) float32 10.57 10.57 10.57 10.57 ... -0.8188 -0.8188 -0.8188

V10m (x, y) float32 4.126 4.126 4.126 4.126 ... 5.423 5.423 5.423 5.423

SWH (x, y) float32 ...

SPD (x, y) float32 11.35 11.35 11.35 11.35 ... 5.484 5.484 5.484 5.484
Attributes:

description: Weather related data.>

This dataset is a 2D dataset with the zonal and meridonal wind speed vectors and significant wave height
values for every latitude and longitude pair in 1/8 incriments on April 11, 2021. The wind speed variable
was added in the notebook because wind speed can be useful for visual data analysis.

The team coded a function that generates 5 or 6 plots (depending on the boolean passed in the function
parameter ‘overlay’) for a region surrounding input coordinates.

Plot 1: Shows a U10m vs V10m scatter plot and prints the correlation between the two variables in the
plot title

Plot 2: Shows a plot with the ECWMF grid layout in blue and the input coordinates as a red dot. The
distance from the input corrdinates to the nearest grid point is printed in the title

Plot 3: Shows a significant wave height boxplot. The title has the mean and standard deviation of the
SWH values in the region.

Plot 4: Shows a wind speed histogram. The title has the mean and standard deviation of the wind speed
in the region.

Plot 5: Shows a vector map of wind speed plotted over a contour map for SWH for the region. By
changing the value passed in the function through the parameter ‘'alpha =", you can adjust the
transparancy of the SWH contour plot. The value must be in the range (0, 1]. Based on the pattern shows,
it appears like this area is over a spiraling wind pattern and that wind patter has caused the SWH to be
higher near the center of the wind pattern.

Note: If ‘overlay = True' is passed into the function, Plot 5 splits into two plots and displays the wind
speed vector map and SWH contour map seperately.

1 vizualize region(ds00, -24.53, 110.44, alpha=0.8)

v10m vs ulOm correlation = 0.11 Distance to nearest gridpoint: 6.93 (km) Avg SWH = 6.07e+00 (m), std=144 Avg windspeed = 15.85 (m/s), std = 5.52

235 [1-

240 -

vi0m

245 |~

Latitude

=255 —++

-0 — 260 0
=20 -0 a 10 il 1090 1085 1100 1105 110 1115 1120 1 5 n 15 il s 30
ulOm Longitude Windspeed (m/s)

Wind speed vector map and SWH contour map

250 L Y

a6

-235

88

a0 S

72

Latitude
o]
Wind Speed
SWH

64

56
-25.0

48

255 - v v A A 4 A "

L A A

3z
108.0 1095 oo 105 nio n1s
Longitude

Plot 1: The correlation between the V10m and U10m variables for this region is 0.11. This indicates that

there is not a strong correlation between the two variables in this region.

Plot 2: Shows where the input coordinates are in relation to the background grid. The distance from the

input coordinates to the nearest grid point is 6.93 km.

Plot 3: The average SWH for this region is 6.07 meters with a standard deviation of 1.44. The median of
this boxplot appears to be a little under 6. The mean is higher than the median which indicates that the

data is positively skewed.

Plot 4: There is an average windspeed of 15.85 m/s with a standard deviation of 5.52 for the region. The
histogram shows a bimodal distribution. It is possible that the wind vortex in the region (visualized in plot
5) is causing this bimodal distribution since the windspeeds act differently towards the center of the

vortex when compared to the rest of the region.

Plot 5: The SWH contour and wind speed vector map show how these two variables interact with each
other. This plot shows that the areas with higher SWH values tend to have a stronger wind blowing above.
This also demonstrates that the 'eye of the storm' is fairly calm compared to its surrounding region as the
wind speed vectors dramatically lower at the center of the vortex than they are in the area immediately

surrounding.

1 vizualize region(ds00, 42.3467, -71.7972, overlay = False)

v10m vs ulOm correlation = 0.34 Distance to nearest gridpoint: 4.99 (km SWH =7.53e+19 (m), sid =inf Avg windspeed = 4.02 (m/s), std = 1.83
gridpe 1e20V9 g pe
0 10 .
&
55 0
a8
’ 40 »
4 n z 06 0
5 E 425 =
i 4 % 04 o
420
2N
a
a5 0z
in
- 4.0 [} o
o
-2 a 2 4 & -730 -725 -720 -715 -710 -705 1 2 4 6 8
ulOm Longitude Windspeed (mis)
10m Wind Speed Vector Field Significant Wave Height Contour 170
4.0 105
.................) -
R e { ir by E
4 - - - - t L
=T 45
535 L IS D " 080
+ R . - |- " o 8
L O Y] y
LI T A ¢ w b oe sy R !
‘. SRS SRR Y/ 7 @0 o
280 - ~
DL L. AN/
L 1 £ 4 ."C f f &
PR | LN | ; .r/ § ; 060
D - 4 / L
= 425 e © 45
é I B / / / / / 5 é
5 LI -« 1 f (/ / / E 045
frlas s
20 I e ox F v / 4
R E oa ” ./ 20
ioFoE f A ¥ 030
IR I .y 3
P S B A R A B A P Z
[B I T I BV R AN / 415
RN VOSSN S Vs 2 015
i
40 LI N
t Qod
41.0
730 -125 720 715 =110 -5 730 725 720 715 710 705
Longitude Longitude

Plot 1: The correlation between V10m and U10m for this region. Due to a difference in temperature and
pressure between the ocean and land, wind tends to blow from a body of water to a land mass during the
day, and from a land mass to a body of water at night. Link. The higher correlation in this region could be
due in part to the pecense of a coastline (visualized in plot 6).

Plot 2: Shows where the input coordinates are in relation to the background grid. The distance from the
input coordinates to the nearest grid point is 4.99 km.

Plot 3: The boxplot of SWH demonstrates something strange happening with the data, as the mean value
is 7.54e19 m. The findings and how the team handled this is discussed further below.

https://en.wikipedia.org/wiki/Sea_breeze

Plot 4: The average windspeed for the region is 4.02 m/s with a standard deviation of 1.83. This
histogram is unimodal and positively skewed.

Plot 5: The wind speed vector field shows calm winds in general. The bottom right area of the plot shows
some stronger winds. This is likely due to the fact that the coastline is in that area of the region.

Plot 6: The SWH contour plot again shows an issue with the data as the color scale has a maximum value
of 1e20. Visually, some conclusions can still be drawn. The difference in SWH is due to the fact that both
land and water appear in the region. This plot shows the coastline present in the region. The water is
colored green, and the land is colored light blue.

Note: This region might be more interesting to analyze with overley set to True, however, the team wanted
to demonstrate that functionality so the region was analyzed with overlay set to False.

As shown in plots 3 and 6 of the visualization above, there are SWH values in the dataset with
unreasonable values. What the team found was that ECWMF uses the value 1€20 in place of a Null value.
This convention from ECWMF required action from the team before the interpolation process could
begin. In order to interpolate the SWH values, the definition of the search neighborhood needed to be
adjusted. If a specular point has a grid point in the serach neighborhood that is over land, there will be a
1e20 value recorded for SWH. To account for this, the team omitted all grid points in the search area that
have a SWH value of 1€20 when interpolating SWH values. In the case that the search neighborhood for
the specular point has no usable grid points for SWH, the value is set to np.nan per the request of the
project mentor. Additional functionality was added to the interpolation function late in the process that
allowed the team to track the proportion of observations with a SWH search neighborhood affected by
this fact. The team tracked 84,042 observations over 5 days and found that around 15% of the
observations had less than 4 neighbors in the search neighborhood for interpolating SWH. A summary of
this process is shown in the table below.

Value 4 Neighbors 3 Neighbors 2 Neighbors 1 Neighbors 0 Neighbors

u10m 1.00 0 0 0 0
V1i0m 1.00 0 0 0 0
SWH 0.84 0.10 0.08 0.07 0.13

Data Collocation

First, the team needed to interpolate the Wind Speed/Wave Height Background Data on some
geometric/location principle, so we could get just one wind speed and wave height value per DDM. This
entailed getting a list of the timestamps and latitude/longitude of all specular points in the CYGNSS file
extracted:

1 #build a list of CYGNSS file timestamps/lats/lons for use in the background grid interp

2 latlon frame = collect latlons(cyg data_set)

This dataframe was then transfered between team members as a pickle file, for interpolation of wind
speed/wave height data.

Interpolation

Interpolation of the Background Wind Grid Data in Advance of Collocation with the Original CYGNSS
Dataset:

The first step for interpolation was to open and understand the structure of the timestamp pickle file that
was generated above.

1 ds_cord = pd.read pickle(f'{pathTeam}CYGNSS 0411l.pkl')
2 ds_cord

timestamp sp_lat sp_lon

0 2021-04-11 01:05:06.499261678 -31.94055938720703 90.30609893798828
1 2021-04-11 01:05:06.499261678 -25.70931053161621 85.83236694335938
2 2021-04-11 01:05:06.499261678 -28.654094696044922 87.773681640625
3 2021-04-11 01:05:06.499261678 -23.13581657409668 91.06610870361328

4 2021-04-11 01:05:06.999261612 -31.931716918945312 90.33650970458984

9659 2021-04-11 17:12:47.999261690 -24.73063087463379 128.42019653320312
9660 2021-04-11 17:12:48.499261605 -29.96910858154297 129.6576385498047
9661 2021-04-11 17:12:48.499261605 -21.37551498413086 134.84649658203125
9662 2021-04-11 17:12:48.499261605 -31.438047409057617 125.68804931640625
9663 2021-04-11 17:12:48.499261605 -24.740629196166992 128.4476318359375

9664 rows x 3 columns

The pickle file loads as a pandas dataframe with the variable's 'timestamp/, 'sp_lat’, and 'sp_lon.' The goal
will be to interpolate U10m, V10m, and SWH based on the sp_lat and sp_lon varibales.

The next thing the team did in their efforts to interpolate the wind speed and wave height data for the
CYGNSS specular point locations was to code a funcion that finds the closest ECMWF data collection
point to a CYGNSS specular point. This function will work with any input latitude and longitude cordinates
but was not used in that manner.

1 spec_values nearest(ds00, ds cord['sp lat'][0], ds _cord['sp lon'][0])

(2.306,

The function above returns a tuple with the U10m, V10m, and SWH values of the ECWMF data collection
point closest to the first specular point in the CYGNSS data set for April 11th, 2021. While this is not the
most accurate way to assign these values to the specular point locations, this was useful in motivating

4.751,

2.533)

the function used to interpolate the desired data for each specular point.

The team did not get all the ECMWEF datasets needed initially. In order to save time, the team coded a
function that will read the CYGNSS timestamp pickle file for a date and print out what ECMWF files are

needed to run the interpolation function.

1 ecmwf_check(4,

11)

Need ECMWF file: ecmwf.t00z.pgrb.0pl25.£000 2021041100.nc
Need ECMWF file: ecmwf.tl2z.pgrb.0pl25.£000 2021041112.nc

Once the team was able to confirm that the proper files were uploaded, they were prepared to interpolate

the data for that day.

WARNING the function below takes around 3 minutes and 30 seconds to execute for April 11, 2021.

1 interpolate date(4,

ds00 was loaded
dsl2 was loaded
100%|—| 9664/9664 [04:12<00:00, 38.29it/s]

count
mean

std
min
25%
50%
75%
max

9664 .
-21.

6.
-35.
-26.
.540831
-16.
-1.

=21

lat
000000
149852
789308
971329
438673

813571
941648

11)

9664
109
10
85
101
108
118
134

Neighbor count for UlOm:

4

9664

lon wU1l0m
.000000 9664.000000
.690522 1.020228
.319270 4.328611
.832367 -7.593077
.445791 -2.585555
.835327 0.975676
.226568 4.065569
.846497 11.554374

Name: UlOm neighbor, dtype: int64
Neighbor count for V10m:

4

9664

Name: V10m neighbor, dtype: int64
Neighbor count for SWH:

0
1
2

1840
32
65

9664.
1.

5.
-13.
-1

1

6.

12

wV10m
000000
916744
575101
718920

.796945
.727017

893683

.180312

7824.
.615569
.699901
.146045
.293432
.700940
.964786
.827818

&S DN DNMNMNOON

wSWH
000000

3 47
4 7680
Name: SWH neighbor, dtype: int64

Functionality was added to the code to allow for a subset of the data to be run through the
interpolate_date function. By passing 'subset = True' into the function, only the first n observations will be
interpolated. The value n is set to a default value of 500 but can be adjusted by passing 'len_subset = n' to
the interpolate_date function. Interpolation of the first 500 observations of this dataset only takes around
11 seconds

1 interpolate date(4, 11, subset = True)

ds00 was loaded
dsl2 was loaded
1002 || 500/500 [00:12<00:00, 38.93it/s]

lat lon wU1l0m wV10m wSWH
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean -29.330124 92.031972 -3.290570 7.005655 2.693062
std 3.723712 3.935408 3.345849 1.127885 0.222715
min -35.971329 85.832367 -7.041207 4.651071 2.232990
25% -31.555711 88.989885 -5.412166 6.222458 2.581645
50% -28.650121 91.321507 -4.385120 7.027007 2.750525
75% -25.707332 94.006428 -2.959006 7.537441 2.840100
max -22.797634 100.089447 5.582742 9.521032 3.014740

Neighbor count for UlOm:

4 500

Name: Ul0Om neighbor, dtype: int64
Neighbor count for V10m:

4 500

Name: V10m neighbor, dtype: int64
Neighbor count for SWH:

4 500

Name: SWH neighbor, dtype: int64

The printout for this funcion has 3 sections. The first section shows the ECMWF files needed. In this
case, the files loaded match the files needed as found by the 'ecmwf_check' function. The second part of
the printout tracks the loop's progress. The third part of the printout a summary of the new dataset. This
summary shows no strange or unexpected values, so the interpolation process proceeded as planned.
This process was done for all 45 days of data provided to the team. As the datasets with the interpolated
data were completed, the collocation process began.

1 del ds00, ds_cord # Deleting uneeded global variales

Collocation

Joining the Interpolated Wind/Wave Data Back into the Original CYGNSS Dataset:

1 # Importing the interpolated wind data

2 ##reset pathTeam to exclude David path information

3 pathTeam = cwd + '/drive/My Drive/'

4 ##Check to add professor path

5 if os.path.exists(pathTeam + pathProfessor):

6 pathTeam += pathProfessor

7 pathTeam += Ben path # Should be a shortcut (Links to an external site.) to Team's shar
8 os.listdir(pathTeam)

['cyg firstfile.nc',
'all data CYGNSS 0411.nc4',
'all data CYGNSS 0411B.nc4',
'ddm_screenshot.png',
'CYGNSS_Background_Collocated_ 20210411l.nc',
'set 4 11 RMS av.nc',
'modeling dataset.nc',
'wValues 20210411.pkl']

1 #read in the dataframe of interpolated wind/wave values created in the previous section
2 coll set = pd.read pickle(f'{pathTeam}wValues 20210411.pkl")

All that remained was for the interpolated data to be joined back into the original xarray CYGNSS dataset:

1 #Now, we combined that interpolated data back into the original CYGNSS dataset
2 set _to coll = cyg data set

3 collocated set = integrate sets(set_to_coll, coll_ set)

4 collocated_set

> (ddm: 4, delay: 128, doppler: 20, sample: 2416)
sample (sample)
ddm (ddm)
ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)

spacecraft_id sample)
spacecraft_num sample)
ddm_sample_in... (sample)

(

(

(
prn_code (sample, ddm)
raw_counts (sample, ddm, delay, doppler)
wU10m (sample, ddm))
wV10m (sample, ddm) [
wSWH (sample, ddm) =]

So we see that we now have the original CYGNSS dataset, but this time with background wind/wave data,
interpolated as a weighted average of wind/wave values around each specular point, all saved in their
respective new variables.

Data Cleaning after Collocation

Now it remained for the team to remove 'junk’ (all zero DDM) samples, as well as samples with significant
wave height data that was simply missing (as associated specular point may be on land):

1 ##clean the collocated set of its 'junk' DDM samples:

2 collocated clean = collocated set.where(collocated set['raw counts']!= 0)
3 collocated clean = collocated clean.dropna(dim = 'sample')
4 collocated clean
> (ddm: 4, delay: 128, doppler: 20, sample: 1354)

sample (sample)

ddm (ddm)

ddm_timestamp... (sample)

sp_lat (sample, ddm)

sp_lon (sample, ddm)

spacecraft_id sample, ddm, delay, doppler
spacecraft_num sample, ddm, delay, doppler
ddm_sample_in... (sample, ddm, delay, doppler

()
()
()
prn_code (sample, ddm, delay, doppler)
()
()
()
()

raw_counts sample, ddm, delay, doppler
wU10m sample, ddm, delay, doppler
wV10m sample, ddm, delay, doppler

iy iy (i)

wSWH sample, ddm, delay, doppler

We can see that two samples have been removed for containing useless DDMs. Because the second
code line in the previous cell removes all samples with any 'NaN' values, it eliminated all samples with
junk DDMs or with any 'nan’ values for significant wave height.

So it seems that for April 11, 2021, 1354 samples were retained with all clean and collocated data.

The team repeated the collocated and cleaning process for nearly every CYGNSS FULL DDM file NASA
had available for samples taken from March 1 - Sep 1 of 2021. This collocated database is saved as a

collection of netCDF files, accessible through a google drive shortcut in the Spire project folder, under
‘Spire_Clean_Collocated'".

The collocated/cleaned database contains 45 files in all, with the total amount of data retained after
cleaning being 76.15% of the original, uncleaned CYGNSS data.

1 del collocated_clean

DDM Calibration

Once the team had managed to interpolate/collocate the background wind/wave data for each CYGNSS
set of interest, we proceeded to process/find all the desired calibrations of the DDM data we would
eventually seek to model with. This section demonstrates the processing of all those calibrations and
their inclusion as variables in the greater dataset for just the date 4/11/21.

IMPORTANT NOTE: Even though we demonstrated the cleaning process on the collocated data we made
available to Spire in the previous section, it is necessary for files we wanted to callibrate DDMs for (and
model with) that all samples be retained in their original order from CYGNSS, if the NBRCS/LES retrieval
function is to work properly. Hence, we start this section by reading in the original, uncleaned collocated
4/11/21 dataset, and then we clean it of junk DDMs and 'nan’ significant wave height values later on in
this section (after retrieval of NBRCS/LES values has been performed).

DDM Average Calculation

1 #first, we open the datafile that has collocated wind/wave data for 4/11
2 data_set 411 = collocated_set
3 del collocated_set

First, we calculated the simple DDM average calibration- a simple average of raw counts values in a 10 x
5 area around the specular point bin of each DDM:

1 ##NOTE: This cell takes approximately 30 seconds to execute

2 sample first = data set 41l.isel(sample=0)['sample’]

3 ##the following values are to set the limits on delay and doppler for our 10x5 area ave
4 delay start = 60

5 delay end = 70

6 doppler start = 8

7 doppler_end = 13

1 data_set_411

8 data_set 411 = DDM averages(data set 411,sample first,delay start,delay end,doppler sta

(ddm: 4, delay: 128, doppler: 20, sample: 2416)

sample (sample)

ddm (ddm)
ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)

ddm_average (sample, ddm) 2
spacecraft_id (sample)

spacecraft_num (sample)

ddm_sample_in... (sample)

prn_code (sample, ddm)

raw_counts (sample, ddm, delay, doppler)

wU10m (sample, ddm) 2
wV10m (sample, ddm) 2
wSWH (sample, ddm) 2

We can see that the ddm averages have been calculated and added back into our dataset.

RMS Ratio Calculation

Next, we calculated the RMS ratio values (the highest power value for a given DDM divided by the Root
Mean Square of the rest of the power values).Again, the team and instructor considered that it might be a
useful statistic for eventual modeling:

1 ##calculate RMS ratio values for each DDM to include as a column in set 4 11

2 ###first, build RMS ratio index as a dataframe

3 ###then, combine content of dataframe back into CYGNSS dataset

4 ###NOTE: The warnings that arise as this cell executes occur when there are junk DDMs (
5 ###However, samples with these DDMs are removed further down in this calibration/data p
6 ###WARNING: takes a few minutes to run on a dataset with 2416 samples

7 ###NOTE: To test this function on a smaller set of data the user could first slice off

8 ###CONTINUED: And then process the smaller set through the functions

9 ###CONTINUED: Using the following 3 lines of code (here commented out):

10 ### data set partition = data _set 41l.sel(sample = slice(starting sample, ending sample
11 ### RMS Ratio_index = RMS ratio index(data set partition)

12 ### data_set partition = return_ratio_set(data_set partition, RMS_Ratio_index)

13 RMS Ratio_index = RMS ratio index(data_set 411)

14 data_set 411 = return ratio_ set(data set 411, RMS Ratio index)
15 data_set 411

/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:544: RuntimeWarning: inv

> (ddm: 4, delay: 128, doppler: 20, sample: 2416)
sample (sample)
ddm (ddm)
ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)
RMS ratio (sample, ddm) =]
ddm_average (sample, ddm))
spacecraft_id (sample)
spacecraft_num (sample)
ddm_sample_in... (sample)
prn_code (sample, ddm)
raw_counts (sample, ddm, delay, doppler)
wU10m (sample, ddm) =2
wV10m (sample, ddm) =]
wSWH (sample, ddm) =]

Note: The RMS ratio value was set equal to 'nan’ by the function for the first (and 1206th) samples
because the DDMs at this point of this section and at those samples are junk, with all power values still
set to zero, so RMS ratio = 0 and division by zero is impossible. This doesn't really matter, as those
samples will be dropped by a cleaning command further down. The only reason we didn't drop them
already is, again, because it is necessary to retain all original samples until for the NBRCS/LES retrieval
function to work properly.

NBRCS/LES Retrieval

Next, we found the NASA files containing NBRCS and LES values corresponding to these samples/this
date, and worked NBRCS and LES into the dataset as well. NOTE: samples in our set were taken by two
separate satellites (hence the two separate sampling intervals), so it became necessary to perform this

data match-up in two halves, to avoid writing a function that would need to search through 170,000
samples in the NASA file.

1 ###bring in NBRCS and LES values for these DDMs (from NASA's CYGNSS ALL DATA dataset)
2 ##start by reading in data from that larger CYGNSS Lvl file

3 ##open file containing nbrcs data and les data

4 ##again this file can be found in the 'Files needed to run' folder

5 all data set = xr.open dataset(f'{pathTeam}all data CYGNSS 041l.nc4')

The first sampling interval runs from sample 0 to sample 1205, so we isolate those samples. In the NASA
dataset, the corresponding samples run from sample indexes 7812 to 9017, so we isolate those samples
and bring their NBRCS and LES values into the original set.

1 #extract first sampling interval's nbrcs/les values
2 first_half set = NBRCS_LES vals(all_data_set, data set_ 411, 7812, 9017, 0, 1205)

The second sampling interval runs from sample 1206 to sample 2415. In the NASA dataset, the
corresponding samples run from sample indexes 122727 to 123936. We isolate those samples and bring
their NBRCS and LES values into the original set. We must read in a new NASA file however, as there is a
separate file for the different satellite.

1 #open the dataset for the second satellite for 4/11 since our dataset's second time int
2 all data_set = xr.open dataset(f'{pathTeam}all data CYGNSS 0411B.nc4')

1 second_half set = NBRCS_LES vals(all data_set, data set 411, 122727, 123936, 1206, 2415

1 #combine the two half sets into one set, with original sample values and nbrcs/les incl
2 data_set_411 = xr.combine by coords([second half set, first half set])
3 data_set 411

> (ddm: 4, delay: 128, doppler: 20, sample: 2416)

sample (sample)
ddm (ddm)
ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)

Importantly, many of the NBRCS and LES values from the NASA set are 'nan’. NOTE: we did double check
to make sure those values were given by NASA as 'nan’ in the original set, so the 'nan’ values there are not
the result of any problem in our data match-up. However, it is useful to eliminate samples with any 'nan’
values for NBRCS or LES:

em et —— i /5N [TS VU R [R R

Removing Samples with NaNs

wSWH (eamnla Adm) m

1 ##remove all samples with 'nan' for nbrcs/les/wSWH

2 ##NOTE: This command also removed samples with junk DDMs (samples 0 and 1206), presumab
3 ##NASA did not calculate nbrcs/les for their all-zero DDMs.

4 data_set 411 = data_set 41l.dropna(dim = 'sample')

5 data_set 411

1 ##delete superfluous variables from the NBRCS/LES gathering process:
2 del first half set, second half set, all data_set

sample (sample)

Maximum Template Matching Coefficient Calculation
Sp_ldl (sdlripie, udin)

The dataset now has all DDM calibrations but one: Maximum Template Matching Coefficient. Also, there
are no missing values for 'nbrcs' or 'les'. Our work to perform the matching began with choosing an image
for an 'ideal' ddm template image and then choosing a Template Matching Method.

spacecrart_lid (sample)

Though it has since been deleted for missing nbrcs/les values, the ddm for sample 1 had a fairly ideal
parabolic pattern for a template matching template/ Fortunately, before the sample removal, we took a
screenshot of this DDM for use as a template going forward. That file, 'ddm_screenshot.png' is included
in the 'Files needed to run' folder.

RVTET \VS vy gy =

1 #convert to greyscale for better defined parabola
2 template image = cv2.imread(f'{pathTeam}ddm screenshot.png',0)

1 #save a jpg of testing ddm for comparison

2 sample selection =1

3 ddm_selection = 0

4 prepare_test image(data set 411, sample selection, ddm selection)

1 ##again, convert to greyscale
2 testing image = cv2.imread('image to_ test.jpg',0)
3 cv2_imshow(testing image)

1 ##perform template matching
2 create matching(template image, testing image)

o2 TM_CCOEFF

Detected Point

Matching Result

S

We looked at DDMs that clearly didn't contain our template image, to show how much lower the

maximum template matching coefficient would be:

1 ##1looking at a ddm much less similar to our template image
2 data_set 4l1l.sel(sample = 2, ddm = 1)['raw_counts'].plot()

<matplotlib.collections.QuadMesh at 0x7£86d02b2£f50>
sample = 2, ddm = 1, ddm_timestamp_utc = 2021-0...

120 13000
12500
100
&0
a0
10500
40
10000
Ly
00
a
g0 25 B0 TE 100 125 150 175

doppler

E E B
2 & a8
= & o

DDM bin raw counts [1]

delay

1 ##make this DDM our testing image:

2 sample selection = 2

3 ddm_selection =1

4 prepare test image(data set 411, sample selection, ddm selection)
5 testing image = cv2.imread('image to test.jpg',0)

6 cv2_ imshow(testing image)

1 ##perform template matching
2 create matching(template image, testing image)

o2 TM_CCOEFF

Detected Point

Matching Result

S

10982604.0
o2 TM_CCOEFF_MNORMED

Predictably, the maximum template matching coefficient was lower for many of the matching algorithms
in this case.

. = - |
After template matching for all these methods across many DDMs, the team settled on the method
‘TM_COEFF_NORMED'. This method's maximum template matching coefficient values seemed to be the
most linked with the different kind of visual patterns possible for the delay doppler maps. Once the
algorithm was selected, it remained for us to run such a matching, with that method, on every DDM:

1 ##Now, create an array of maximum matching coefficients for template matches on the DDM
2 ###NOTE: This cell takes a while to run; Approx 5 minutes for 353 samples
3 coeff array = match_coeff array(data_set 411, template_image)

1 #pull this data into a dataframe
2 coeff frame = pd.DataFrame(coeff array, columns = ['Max Matching Coeff'])

ATTCANCADD N

1 ##Perform combination of max coefficient values into the original dataset
2 data_set 411 = create complete with maxes(data set 411, coeff frame)
3 data_set_ 411

> (ddm: 4, delay: 128, doppler: 20, sample: 353)

sample (sample)
ddm (ddm)

ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)

Max Matching ... (sample, ddm) 2

DRAC vAtin lamnranla AAnA) m

1 ##delete dummy variables involved in creating the Max Template Matching Coeff Variable:
2 del coeff array, coeff frame, template image, ddm selection, sample selection

spacecraft_num (sample)
If we search for samples 0 and 1206 (with our junk DDMs), we'll find they were removed automatically by
the NBRCS/LES missing value removal function. Therefore, we didn't need to execute any specific code to
remove samples with all-zero power values for any DDMs in this case.

wVvV10m (sample, ddm) [

Creating Wind Speed Variable
1o \SQuIpIT,; uuliy

Now, it remains to convert the wind speed component variables to create one more variable with simple
'Wind Speed', with the Pythagorean Theorem:

1 #Calculate/save wind speed from wind vector components
2 data_set 411 = create_speed var(data_set 411)
3 data_set 411

> (ddm: 4, delay: 128, doppler: 20, sample: 353)

sample (sample)
ddm (ddm)

ddm_timestamp... (sample)
sp_lat (sample, ddm)
sp_lon (sample, ddm)

1 del data_set 411

frrmrs riee— g s Nty ey =

This set is now completely processed, with all relevant DDM calibration/Background Grid data variables,
and also, no missing values and no samples associated with junk DDMs. The team performed all these
processing steps for 5 days worth of CYGNSS data, across 5 months of sampling in the Full DDM NASA
database for 2021. The results were then compiled into a single, large modeling dataset, which can be
read in at the start of our next section (which covers modeling).

wU10m (sample, ddm) 2

Modeling

Linear Modeling

Exploratory Analysis on the Modeling Dataset

1 #read in the large modeling dataset

2 ##the file containing this dataset can be found in the 'Files needed to run' folder
3 modeling set = xr.open dataset(f'{pathTeam}modeling dataset.nc')

4 modeling set

> (ddm: 4, delay: 128, doppler: 20, sample: 2670)

sample (sample) 2
ddm (ddm)
ddm_timestamp... (sample)
sp_lat (sample, ddm)
(

sp_lon sample, ddm)

Max Matchlng (ample ddm) @

This dataset contains about 10,000 full Delay Doppler Maps across five days of CYGNSS satellite Delay
Doppler Mapping sampling intervals, with four Delay Doppler Maps per sample. Furthermore, each day
was selected from a myriad of days in a given month, so that 5 months are represented in the dataset:

March, April, June, July and August.

raw cnilinte (eamnle ddm delav dnnnler)
We began by plotting a Delay Doppler Map (DDM), one of approx. 10,000 in the dataset, to show how each
DDM is associated with a particular set of calibration and wind speed/wave height values:

nhrAan laAarmnla AAnma)
1 ##plot ddm with corresponding variable values
2 sample select = 2000
3 ddm_select = 2
4 ddm plots with vars(modeling set, sample select, ddm select)
5 del sample select, ddm select

ddm average: RMS ratio: Max Matching Coeff: wind speed(m/s): wave height:
0 13470.96 1.57 0.867 6.409 1.84

Sample:2000 DDM Channel:2

120 22000

100 20000
18000

)

&0

T

0 10000
8000

0

00 25 50 75 125 150 175

doppler

delay
E B
2 a
(=] [==]

ks
=
=

DDM bin raw counts [1]

The first visualization of interest in our exporatory analysis is a full scatter plot matrix of all these ddm
calibration and wind/wave data, to get a sense of any patterns/structure in their pairwise relationships:

1 ##create scatterplot matrix of variables from set, colored by UTC timestamp for the sam
2 ###NOTE: les and nbrcs contain negative values and so have been transformed with sign(x
3 ###stretch/better visualize their patterns

4 ###ALSO: RMS ratio and DDM average values have been transformed with standard log scale
5 full scatter compare(modeling set)

o 3 Y 3
<] { R L
: P IR Q’ i
‘l - 'Y
% : -
£ 9 *‘J l¢E
] 4 r.n——“' ;m"’"
-
3 >
2 Yy -
H oz '
@ = .8
z et
a
E Tl
[
n O5d
=
ﬁ z3
[1=]
= g
o
=
[E]
[T
=1
WA
=
=
=

wave height

nbres

ks

n =] o

™ =1
RMS ratio Matching Coeff ~ Wind speed

"
wave height nhres les

H
ddm average

A correlation matrix will help to quantify the patterns (or in certain cases, lack thereof) in the plots above:

1 ##create a correlation matrix for comparison with the scatterplot matrix given just abo
2 correlation matrix(modeling set)

ddm RMS Matching wind wave
average ratio Coeff speed height nbres les
ddm average 1.000 0.897 0.067 -0.187 -0.254 0.304 -0.439
RMS ratio 0.897 1.000 0.037 -0.196 -0.290 0.317 -0.375
Magg:fi;'g 0.067 0.037 1.000 -0.138 -0.084 -0.125 0.069
wind speed -0.187 -0.196 -0.138 1.000 0.679 -0.209 0.006
wave height -0.254 -0.290 -0.084 0.679 1.000 -0.198 0.080

The relatively high correlation between wave height and wind speed is unsurprising. Also, the high

correlation between ddm average and RMS ratio is no surprise, as both represent a sort of average of

large portions of data in each DDM. That les and nbrcs are related is interesting, although both represent

NASA callibrations of the 'raw count' power values that color each DDM.

It seems worthwhile to take a much closer look at the individual scatterplots of 1) nbrcs against wind

speed, 2) nbrcs against wave height, 3) RMS ratio against wind speed, 4) RMS ratio against wave height.

This is because these pairs of variables represent the most highly correlated pairs of callibration values

with wind speed/wave height values:

1 #a closer look at nbrcs vs. wind speed

2 x min
3 x_max
4 y min
5 y_max
6 close

0
100
0
15

_up_scatter(modeling set, x min, x max, y min, y max,

'nbrcs',

'wind speed')

Pearson Correlation Coefficient: -0.20928394183575258

14
July 16-August 15

L . . X
5,

The negative relationship seems to be stronger for certain time intervals than others. For example, the
purple time interval (the two March-April dates) seems to have a more distinct relationship than the green
(the two June/July dates), which appears to be more distinct than with the yellow (the August date).

8 R st v i KW 2 - 1l

1]

y _max = 5

1 ##now, we take a close up look at nbrcs against wave height
2x min =0

3 x max = 100

4 y min = 0

5

6

close_up_ scatter(modeling set, X min, x max, y min, y max, 'nbrcs', 'wSWH')

Pearson Correlation Coefficient: -0.1982501467287308
5

July 16-August 15

June 16-July 15

May 16-June 15

April 16-May15

1 e s .-- -!. :
S A T S N SPTE E
. o0 | R

i L

. March 15-April 15

nbrcs

Again, while a slight negative relationship appears overall, that relationship is stronger in the first two time
intervals (the spring and summer intervals) than the other two.

1 #now, we take a close up look at RMS ratio against Wind Speed

2 x min = .8

3 x max = 2

4 y min = 0

5y max = 15

6 close up_scatter(modeling set, x min, X max, y _min, y max, 'RMS ratio', 'wind speed')

Pearson Correlation Coefficient: -0.19586388337276633

14
July 16-August 15
12 a| . :': T
=L L K .
' ’ - FLET | ;‘. '.-ﬁt.:q'-' “‘" ‘} .. '
S R N K) AR June 16-July 15
10 2 Bt .
¥
= &
0 8 .
% g
- May 16-June 15
§ '
6 I ...'f_;')cf Tt
I""-5"'!"'[' R @t 1,_‘.‘{
. " o e A
". J . L+ a- .
= r.-""'__u -
4 I j:;.'f- 2] April 16-May15
. IR
.'_.';. L e
R I
2 ll P :
: March 15-April 15
1]
na 10 12 14 16 18 20

RMS3 ratio

On somewhat closer examination, we see that the negative correlated relationship looks fairly weak,
regardless of specific time interval.

1 #take a closer look at RMS ratio vs. Wave Height

2 x min = .8
3 x max = 2
4 y min = 0
5y max = 5

6 close up_ scatter(modeling set, x min, x max, y _min, y max, 'RMS ratio', 'wSWH')

Pearson Correlation Coefficient: -0.2897082112588838
5

July 16-August 15

e elemenn. e v e
. _,.i.i: -

June 16-July 15

May 16-June 15

For RMS ratio vs. Wave Height, the inverse correlation appears slightly for especially low or especially

high values of RMS ratio, but elsewhere, these variables appear almost independent.

We might be able to clarify some of the patterns by looking at them over specific time intervals. We do

that with the following plots, looking at nbrcs/les/RMS ratio against wind speed and wave height in

pairwise turns:

O 00 3 O U1 & W N -

RMS ratio

#create a twin plot with time on mutual x-axis comparing nbrcs and wind speed for sampl
#NOTE: this plot isolates trends across just one of this satellite's four DDM channels,
start_samp = 0

end_samp = 593

channel = 0

var_of intA = 'nbrcs'

var of intB = 'wind speed’

create _twin plot(modeling set, start samp, end samp, channel, var of intA, var of intB)
del start_samp, end samp, channel, var of intA, var of intB

Sampling Interval:2021-03-24T13:36:01.999261583 to 2021-03-24T13:43:55.999261681
- oz

[{=]
wind speed

In just this isolated time interval, the anti-correlation of the nbrcs and wind speed variables seems fairly
strong. Let's look at nbrcs vs. wave height, for the same time interval and DDM channel:

create twin plot(modeling set, start samp, end samp, channel, var of intA, var of intB)
del start samp, end samp, channel, var of intA, var of intB

1 start_samp = 0

2 end samp = 593

3 channel = 0

4 var of intA = 'nbrcs'
5 var_of intB = 'wSWH'
6

7

Sampling Interval:2021-03-24T13:36:01.999261583 to 2021-03-24T13:43:55.999261681

'y
300

Here, while the significant wave height plot layout is a much denser than wind speed, the anti-correlation
is still more obvious than when we plot all ddm data across all time intervals, as with the scatter plots
above. Now, we take a look at 'les’ vs. wind speed and wave height.

1 start _samp = 0

2 end_samp = 593

3 channel = 0

4 var_of _intA = 'les'

5 var of intB = 'wind speed'’

6 create_twin_plot(modeling set, start_samp, end_samp, channel, var_of_ intA, var_ of_ intB)
7 del start samp, end samp, channel, var of intA, var of intB

Sampling Interval:2021-03-24T13:36:01.999261583 to 2021-03-24T13:43:55.999261681

* 12
5] . _I
n [}
.'] 1
4
- = = 10
' .*. v T

The anticorrelation here is still present but a bit less strong than for nbrcs, which is mimicked by the anti-
correlation of these variables over all the data in the modeling dataset. Now, looking at les vs. wave
height:

- ’ 14 T ot
1 start_samp = 0
2 end samp = 593
3 channel = 0
4 var of intA = 'les'
5 var_of_ intB = 'wSWH'
6 create_twin plot(modeling set, start samp, end samp, channel, var of intA, var of intB)
7 del start samp, end samp, channel, var of intA, var of intB

Sampling Interval:2021-03-24T13:36:01.999261583 to 2021-03-24T13:43:55.999261631

& 200
50 275
40 250
T
& 225 %
=
2 200
m 175
0 150
S

For these variables, the relationship is far more slight and appears to almost reverse halfway through the
time interval. Finally, we take examine the relationship between RMS ratio (our most promising DDM
calibration done by the team), and wind speed/wave height over these intervals:

1 start _samp = 0

2 end_samp = 593

3 channel = 0

4 var_of _intA = 'RMS ratio'

5 var_of intB = 'wind speed’

6 create twin plot(modeling set, start samp, end samp, channel, var of intA, var of intB)
7 del start_samp, end_samp, channel, var_of intA, var of intB

Sampling Interval:2021-03-24T13:36:01.999261583 to 2021-03-24T13:43:55.999261681

24 a .. r e
& ;
22 B 1
sl
20 Sy 3 __._..L - o
. AFETUNER P
ET T am AL [At e &
216 ., ';.’Ig-‘:"';. - 7 E
o s " ‘ h.“ . 8 =
14y RS, ‘, , ‘.\;
= S - = T
12 ..:-;.'&ﬂ w“ 4
10 i 6

I T SR SN ST . NN ' SR S - S -
Once more, there is a more well-defined anti-correlation between RMS ratio and wind speed over this
smaller time interval than over the whole dataset. Looking at RMS ratio vs. wave height, we get:

1 start _samp = 0

2 end_samp = 593

3 channel = 0

4 var_of intA = 'RMS ratio'

5 var of intB = 'wSWH'

6 create_twin_plot(modeling set, start_samp, end_samp, channel, var_of_ intA, var_ of_ intB)
7 del start samp, end samp, channel, var of intA, var_ of intB

Sampling Interval:2021-03-24T13:36:01.999261583 to 2021-03-24T13:43:55.999261681

24
300
22
275
20
250
=]
'E 18 =
7] 225
= 15 Z
W
14 20
2 175
10 150
p A A)) A L e b
5 A Y ot it it ! 5t !
R S L L L L L

timestamp

As with les, we get a less obvious relationship with wave height than with wind speed.

At this point, it may be helpful to look at the distributions of these individual variables as well, along with
basic statistical summaries for each variable. NOTE: these represent data across the entire dataset,
rather than across a limited time interval.

1 #create the boxplot and corresponding histogram for nbrcs
2 #note, the histogram frequency axis is converted to a log scale for visual clarity
3 ddm box plot(modeling set, 'nbrcs')

nbrcs norcs

5000 o 104
o
&)
4000 o 10
3000
8 102
2000
10!
1000
0 107 | I |
1 a 2000 4000

1 stat_summaries(modeling set, 'nbrcs')

Statistics Values
Mean 59.007
Median 42.214

std 139.520
Max 5092.975
Min -289.579

= W D e O

It seems that nbrcs has a very large number of outliers, with most data being concentrated around a very
few values between zero and 1. Once we transform the frequency axis with a log scale, we see that
overall, nbrcs is non-normally distributed, being fairly right-skewed.

1 #create the boxplot and corresponding histogram for les
2 ##As with nbrcs, the distribution for les seems to be heavily concentrated around zero,
3 ddm box plot(modeling set, 'les')

ks ks
104
a0 o]
103
G600
8 102
400 g
g 10
200 1
0 10° |-I l | I |
1 =2000 -1000 0

1 stat summaries(modeling set, 'les')

Statistics Values

Mean 15.991
Median 15.458
Std 64.356
Max 791.867
Min -1904.772

= W N R o

The distribution for les seems to be heavily concentrated around zero, so that the histogram also benefits
from a log scale transformation, with the more visible distribution on the right showing a somewhat left-
skewed graphic.

1 #create the boxplot and corresponding histogram for RMS ratio
2 ##As with nbrcs and les, RMS ratio has been given a log scale density axis for its hist
3 ddm box plot(modeling set, 'RMS ratio')

RMS ratio RMS ratio
104

103

o
E
15 102
10
10
5
10°
1

1 stat summaries(modeling set, 'RMS ratio')

Statistics Values
Mean 1.644
Median 1.400
Std 1.526

Max 27.831

Min 0.875

=S W NPk o

Here, we see that RMS ratio is extremely right-skewed, with mean greater than the median. Finally, we
look at the individual distributions and statistical summaries of wind speed and wave height:

1 #create box plot and corresponding histogram for wind speed:
2 ddm_box plot(modeling set, 'wind speed')

wind speed wind speed

200 o
; 1400
175
1200
150
1000
125
10.0 00

1 stat_summaries(modeling set, 'wind speed')

Statistics Values
Mean 6.988
Median 7.078
std 2.474

Max 19.721

Min 0.167

= w NN RO

1 ##and for wave height...
2 ddm box plot(modeling set, 'wSWH')

WSWH WSWH

1750

1 stat summaries(modeling set, 'wSWH')

Statistics Values
Mean 2.066
Median 2.077
Sstd 0.704

Max 5.674

Min 0.017

=S w Nk o

Both these variables are fairly normal in distribution. The presence of some correlations and
anticorrelations in the data, particularly across specific time intervals, but also in the dataset at large,
would suggest that linear modeling might be fruitful, given the right combination of non-colinear
variables.

Next, we begin the process of assessing all DDM callibration and wind/wave variables in the modeling

Assessing Colinearity

1 ##start by creating a pandas dataframe from the ddm calibrations/wind speed/wave height
2 modeling frame = create dataframe(modeling set)
3 modeling_ frame

modeling frame.astype('float64')

4 modeling frame modeling frame.round(3)

5 modeling frame

ddm average RMS ratio Matching Coeff wind speed wave height nbrcs les

0 7401.46 1.077 0.289 9.300 1.577 62.245 25.984

1 14560.06 1.648 0.757 8.765 1.721 33.157 12.925

2 10968.92 1.927 0.860 9.553 1.247 38.311 20.428

3 15699.80 1.839 0.845 6.573 1.903 31.601 13.440

4 7512.64 0.964 0.294 8.576 1.573 72.595 -1.148
10675 8693.80 1.090 0.480 7.692 2.011 60.153 36.688
10676 19592.18 2.520 0.860 8.318 1.973 75.276 36.031
10677 9361.48 1.614 0.853 1.935 2.103 88.845 42.700
10678 8453.16 1.104 0.229 6.609 1.954 0.000 0.000
10679 8374.92 1.045 0.347 7.691 2.011 49.668 22.902

10680 rows x 7 columns

1 #remove the dependent variable of interest, in this case, 'wind speed', fit multiple re
2 find VIF(modeling frame, 'wind speed')

feature VIF

0 ddm average 16.517
1 RMS ratio 11.590
2 Matching Coeff 9.568
3 wave height 6.484
4 nbrcs 1.974

5 les 1.988

It actually does seem that given the general rule of of thumb that a VIF value should not exceed 10 (such
a high value indicates a colinearity problem for that variable), we do have possible collinearity issues. We

resolve this by removing ddm average and re-runing the multiple regression, re-checking the Variance
Inflation Factors again, afterwards:

1 #drop the ddm average variable and reassess VIF:

2 modeling frame = create_ dataframe(modeling set)

3 modeling frame = remove colinear var(modeling frame, 'ddm average')
4 find VIF(modeling frame, 'wind speed')

feature VIF

0 RMS ratio 2.506

—h

Matching Coeff 8.651
2 wave height 6.393
3 nbrcs 1.961

4 les 1.861

The removal of ddm average appears to have corrected the colinearity problem (all VIF values are now
under 10), suggesting that it was the extremely high correlation of RMS ratio to ddm average that was
making our original VIF assessment model so highly multicolinear (ddm average and RMS ratio would
have explained roughly the same amount of variance in our eventual wind speed model).

We repeated the VIF assessment process for a potential model with wave height as the dependent
variable:

1 ##reset modeling dataframe, but this time find VIF with all variables except Wave Heigh
2 modeling frame = create_ dataframe(modeling set)
3 find VIF(modeling frame, 'wave height')

feature VIF

0 ddm average 16.380
1 RMS ratio 11.401
2 Matching Coeff 9.056
3 wind speed 5.837
4 nbrcs 1.979

5 les 1.983

1 #drop the ddm average variable and reassess VIF:
2 modeling frame = create_ dataframe(modeling set)

3 modeling frame = remove colinear var(modeling frame, 'ddm average')
4 find VIF(modeling frame, 'wave height')

feature VIF

0 RMS ratio 2.484

—r

Matching Coeff 7.916
2 wind speed 5.803

3 nbrcs 1.967

a las 1 8A3
And once again, we see the colinearity problem corrected. So we see that in any linear model built to
predict either wind speed or wave height, we would certainly want to exclude the crude ddm average, as it
is too highly correlated with RMS ratio, and because, of the two variables, RMS ratio offers more
promising correlation with our would-be dependent variables.

If we wanted to be even more aggressive in our insistence that the model have no multicolinearity
problems (some statisticians insist on having VIFs not much higher than 5), we could further remove
Maximum Template Matching Coefficient as a variable from these VIF calculations and see the result:

#remove ddm average and max matching coeff from modeling dataframe and assess VIF for w

modeling frame create dataframe(modeling set)

modeling frame = remove colinear var(modeling frame, 'ddm average')
modeling frame = remove colinear var(modeling frame, 'Matching Coeff')
find VIF(modeling frame, 'wind speed')

u & W N =

feature VIF

0 RMS ratio 1.977
1 wave height 2.088
2 nbrcs 1.909

3 les 1.723

#do the same for a model that would have wave height as the dependent variable
modeling frame = create dataframe(modeling set)

modeling frame = remove colinear var(modeling frame, 'ddm average')

modeling frame = remove colinear var(modeling frame, 'Matching Coeff')
find VIF(modeling frame, 'wave height')

u & W N =

feature VIF

For both our prospect models (using wind speed or wave height as the dependent variable), we would
drastically mitigate the colinearity problems we would otherwise get by removing both ddm average and
maximum template matching coefficient as independent regressors to those models, though whether we
should remove Maximum matching coefficient too depends on how strongly we wish to avoid the
problem of multicolinearity.

For the purposes of our model, we won't remove Maximum Matching Coefficient, as its colinearity with
wind speed and wave height is far more limited than when we include ddm average.

Variable Selection

Now that we have identified a set of variables that is not colinear for linear models that might use wind
speed or wave height as a predictand, we can do best subsets variable selection to try and identify a
'best' combination of regressor/predictor variables for such models.

##start by building a dataframe with only the variables which we know are not colinear
#also in this cell, we define y (the dependent variable for the model), as wind speed
modeling frame = create dataframe(modeling set)

1
2
3
4 modeling frame = modeling frame.drop(['ddm average'], axis = 1)
5y = modeling frame['wind speed']

6

X = modeling frame.drop(['wind speed'], axis = 1)

1 ##use functions defined above to create a dataframe that contains best models produced
2 models highest RSS = pd.DataFrame(columns=["RSS", "model"])

3 for i in range(l,6):

4 models highest RSS.loc[i] = highest RSS(i)

5 models highest RSS vals models highest RSS['RSS']
6
7
8

models highest RSS vals models_highest RSS vals.astype('float64')

models highest RSS vals.round(3)

##This cell produces a dataframe with the number of variables in the model on the left
9 ###with that number of variables

39928.029
37834.713
37492.034
37279.259
36970.417
Name: RSS, dtype: floaté64

g W N -

1 ##get more information about the models that produced the highest RSS for each number o
2 ###start with model that produced highest RSS for model with only 1 regressor:
3 print(models highest RSS.loc[l, "model"].summary())

OLS Regression Results

Dep. Variable: wind speed R-squared (uncentered): 0.9

Model: OLS Adj. R-squared (uncentered): 0.9
Method: Least Squares F-statistic: 1.463e+
Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.
Time: 01:33:53 Log-Likelihood: -2219
No. Observations: 10680 AIC: 4.439%e+
Df Residuals: 10679 BIC: 4.440e+
Df Model: 1
Covariance Type: nonrobust

coef std err t P> t| [0.025 0.975]
wave height 3.2786 0.009 382.508 0.000 3.262 3.295
Omnibus: 560.889 Durbin-Watson: 1.071
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 761.290
Skew: -0.498 Prob(JB): 4.88e-166
Kurtosis: 3.847 Cond. No. 1.00
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

It is not too surprising that any model including wave height, even one with just the variable wave height,
(which is so highly correlated with wind speed), will have a very high R*2 statistic. It will be interesting,
then, to do the same best subsets selection process, but on all non-colinear variables not including wave
height:

1 ##start by building a dataframe with only the variables which we know are not colinear
2 ###This time, we also exclude wave height as a predictor:

3 #also in this cell, we define y (the dependent variable for the model), as wind speed
4 modeling frame = create dataframe(modeling set)

5 modeling frame = modeling frame.drop(['ddm average'], axis = 1)

6 y = modeling frame['wind speed']

7 X = modeling frame.drop(['wind speed'], axis = 1)

8 X = X.drop(['wave height'], axis = 1)

##use functions defined above to create a dataframe that contains best models produced
models highest RSS = pd.DataFrame(columns=["RSS", "model"])
for i in range(1l,5):

models highest RSS.loc[i] = highest RSS(i)

S W N P

[y

##again, we want more specific information about the model that uses only 1 regressor v
##for the models with 3 variables:
print (models highest RSS.loc[l, "model"].summary())

w N

OLS Regression Results

Dep. Variable: wind speed R-squared (uncentered): 0.8
Model: OLS Adj. R-squared (uncentered): 0.8
Method: Least Squares F-statistic: 5.103e+

Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.
Time: 01:33:54 Log-Likelihood: -2718
No. Observations: 10680 AIC: 5.437e+
Df Residuals: 10679 BIC: 5.437e+
Df Model: 1
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Matching Coeff 9.1541 0.041 225.897 0.000 9.075 9.234
Omnibus: 504.611 Durbin-Watson: 1.588
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 578.962
Skew: 0.551 Prob(JB): 1.91e-126
Kurtosis: 3.293 Cond. No. 1.00
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

1 ##and the best model with 2 variables

2 print(models highest RSS.loc[2,

"model"].summary())

OLS Regression Results

Dep. Variable: wind speed R-squared (uncentered): 0.8
Model: OLS Adj. R-squared (uncentered): 0.8
Method: Least Squares F-statistic: 2.55%e+
Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.
Time: 01:33:54 Log-Likelihood: -2716
No. Observations: 10680 AIC: 5.434e+
Df Residuals: 10678 BIC: 5.436e+
Df Model: 2
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Matching Coeff 9.2343 0.043 213.327 0.000 9.149 9.319
nbrcs -0.0011 0.000 -5.223 0.000 -0.002 -0.001
Omnibus: 532.527 Durbin-Watson: 1.589
Prob(Omnibus): 0.000 Jarque-Bera (JB): 616.027
Skew: 0.566 Prob(JB): 1.70e-134
Kurtosis: 3.318 Cond. No. 220.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

1 #and the model with 3 regressors:

2 print(models highest RSS.loc[3,

"model"].summary())

OLS Regression Results

Dep. Variable:

wind speed

R-squared (uncentered):

Model: OLS Adj. R-squared (uncentered): 0.8
Method: Least Squares F-statistic: 1.708e+
Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.
Time: 01:33:54 Log-Likelihood: -2716
No. Observations: 10680 AIC: 5.433e+
Df Residuals: 10677 BIC: 5.435e+
Df Model: 3
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Matching Coeff 9.3291 0.050 184.756 0.000 9.230 9.428
nbrcs -0.0017 0.000 -6.352 0.000 -0.002 -0.001
les -0.0022 0.001 -3.643 0.000 -0.003 -0.001
Omnibus: 567.718 Durbin-Watson: 1.590
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 663.290
Skew: 0.586 Prob(JB): 9.30e-145
Kurtosis: 3.343 Cond. No. 263.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

1 #the model that regresses wind speed on all four variables

2 print(models highest RSS.loc[4,

"model"].summary())

OLS Regression Results

Dep. Variable: wind speed R-squared (uncentered): 0.8
Model: OLS Adj. R-squared (uncentered): 0.8
Method: Least Squares F-statistic: 1.282e+
Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.
Time: 01:33:54 Log-Likelihood: -2716
No. Observations: 10680 AIC: 5.433e+
Df Residuals: 10676 BIC: 5.436e+
Df Model: 4
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
RMS ratio -0.0459 0.021 -2.192 0.028 -0.087 -0.005
Matching Coeff 9.4289 0.068 138.706 0.000 9.296 9.562
nbrcs -0.0016 0.000 -5.913 0.000 -0.002 -0.001
les -0.0025 0.001 -4.018 0.000 -0.004 -0.001
Omnibus: 582.012 Durbin-Watson: 1.589
Prob(Omnibus): 0.000 Jarque-Bera (JB): 682.783
Skew: 0.593 Prob(JB): 5.44e-149
Kurtosis: 3.354 Cond. No. 363.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

Clearly, the exclusion of wave height reduces the adjusted R? value for the model, but it appears that our
best model with 3 variables (from the standpoint of maximizing RSS), regresses wind speed on the
variables les, nbrcs, and Matching coeff. Were we to regress wind speed on just 2 variables, we should
use nbrcs and Matching coeff. Were we to use only 1 variable, we would see that Matching coeff is the
best variable to regess wind speed on. We also see that using all four variables maximizes adjusted R2.

Next, we do the same best subsets selection to maximize RSS for models predicting wave height:

##fit models for best subsets variable selection for wave height prediction, dropping w
modeling frame = create dataframe(modeling set)

modeling frame modeling frame.drop(['ddm average'], axis = 1)

X modeling frame.drop(['wave height'], axis = 1)
X X.drop(['wind speed'], axis = 1)
models highest RSS = pd.DataFrame(columns=["RSS", "model"])
for i in range(1l,5):
9 models highest RSS.loc[i] = highest RSS(i)
10 #find the 'best' model that regresses wind speed on each number of variables
11 #save the R"2 value:
12 rsquared = []
13 for i in range(1l,5):
14 rsquared.append(models highest RSS.loc[i, "model"].rsquared)
15 rsquared

1
2
3
4 y = modeling frame['wave height']
5
6
7
8

[0.842, 0.843, 0.844, 0.844]

It seems that in both cases, where we are trying to predict wind speed or wave height, of the models
which maximize RSS for each number of regressor variables, the model that regresses on all four
possible predictors is the one that maximizes adjusted RZ.

1 del models highest RSS, models highest RSS vals, rsquared

Checking Error Assumptions and Identifying Influential Observations/Outliers

In this section, we must check that the error assumptions in Linear Regression Analysis hold for our data.
First, it must be true that errors/residuals (differences between the actual values and the predicted ones)
are roughly normally distributed. Second, it must be the case that the errors are basically uncorrelated.
Lastly, it must hold true that the variances of the errors are more-or-less constant (homoscedasticity).

Checking Error Assumptions for the Wind Speed Model:

1 #first we build our modeling dataframe that includes all the four variables we want to
2 modeling frame = create dataframe(modeling set)
3 modeling frame = modeling frame.drop(['ddm average'], axis = 1)

4 modeling frame = modeling frame.drop(['wave height'], axis = 1)
5y = modeling frame['wind speed']

6 X = modeling frame.drop(['wind speed'], axis = 1)

7 #fit our model for wind speed/summarize:

8 mod = sm.OLS(y,X)

9 regress = mod.fit()

10 mod resid = regress.resid

1 #get the residuals and create a histogram of their distribution:
2 resid Hist(regress)

Residuals Distribution
3000

2300

2000

1500

1000

500

enror

This histogram of error values from our model seems to confirm that the assumption about rough
normality of errors distribution is satisfied. We can double-check this assumption with the use of a QQ
plot:

1 ##create a QQ plot to assess normality of errors/residuals from the model
2 sm.qgplot(mod_resid, ylabel = 'residuals')
3 py.show()

siduals

Here, we see that the qq plot shows a fairly straight line though not perfect, which indicates a fairly
normal distribution; (curvalinear structure in the qq plot would indicate non-normal residuals). So the first
of the error assumptions, that of basic normality would at first appear to indicate our first error
assumption is satisfied.

TR ———
Next, we look at the assumption of our errors being uncorrelated, which assess by looking at the Durbin-
Watson test statistic in the model summary. According to TowardsDataScience.com page "Verifying the
Assumptions of Linear Regression’, if the Durbin-Watson test statistic is < 2, there is siginificant positive
residual auto-correlation; if > 2, then there is significant negative autocorrelation; if roughly equal to 2,
then there is no autocorrelation and our assumption is satisfied:

1 #look at Durbin Watson Statistic from our model summary:
2 regress.summary()

OLS Regression Results

Dep. Variable: wind speed R-squared (uncentered): 0.828

Model: OoLS Adj. R-squared (uncentered): 0.828
Method: Least Squares F-statistic: 1.282e+04

Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.00
Time: 01:33:54 Log-Likelihood: -27160.
No. Observations: 10680 AlC: 5.433e+04
Df Residuals: 10676 BIC: 5.436e+04
Df Model: 4

Covariance Type: nonrobust
coef std err t P>Itl [0.025 0.975]
RMS ratio -0.0459 0.021 -2.192 0.028 -0.087 -0.005
Matching Coeff 9.4289 0.068 138.706 0.000 9.296 9.562
nbrcs -0.0016 0.000 -5.913 0.000 -0.002 -0.001
les -0.0025 0.001 -4.018 0.000 -0.004 -0.001
Omnibus: 582.012 Durbin-Watson: 1.589
Prob(Omnibus): 0.000 Jarque-Bera (JB): 682.783

Skew: 0.593 Prob(JB): 5.44e-149
Kurtosis: 3.354 Cond. No. 363.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The Durbin-Watson test statistic indicates that we have some positive autocorrelation between the
residuals themselves. While a Durbin-Watson test value less than 1 would be cause for much more
concern (according to TowardsDataScience.com), the assumption of uncorrelated errors for our model is
not entirely satisfied Source.

Finally, we looked at the last assumption, that the variance of the errors is basically constant, which we
do with a scatter plot of residiuals vs. fitted values in the model:

1 ##plot a residuals vs. fitted values plot for the model:
2 FitvResid(regress,X,y)

/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning: Pass
FutureWarning

Residuals vs. Fitted

Residuals

Fitted values

A residuals vs. fitted values plot is used to check for constant error variance and for model structure in
Linear Regression Modeling. It is a plot of fitted values (predicted y) against the residuals, the differences
between each observed dependent variable value and the y predicted value lying along the line of fit.
Ideally, there should be a basically random distribution of points around the mean for the residuals
(always zero in a proper linear regression model). Source: Faraway, Linear Models with R, 2015, pg 77.

The variance of the errors does appear to be roughly constant, despite a bit pattern/structure in the
densest regions of this plot. The loess smoother line approximates the horizontal line at Residual = 0
(representing our line of fit in the model). So the error mean does appear to be zero and the constant
variance error assumption appears to be mostly satisfied.

Checking Error Assumptions for the Wave Height Model:

1 #first we build our modeling dataframe that includes all the four variables we want to

https://towardsdatascience.com/linear-regression-explained-1b36f97b7572

modeling frame = create_ dataframe(modeling set)
modeling frame = modeling frame.drop(['ddm average'], axis = 1)
modeling frame = modeling frame.drop(['wind speed'], axis = 1)

y = modeling frame['wave height']

X = modeling frame.drop(['wave height'], axis = 1)
mod = sm.OLS(y,X)

regress = mod.fit()

O 00 9 O U1 & W N

mod_resid = regress.resid

#get the residuals and create a histogram of their distribution:
resid Hist(regress)

N -

Residuals Distribution

4000

3000

2000

1000

enror

The histogram for residuals in the wave height model seems to be a bit skewed, more so than for the
residuals in the wind speed model. Having a bit more curved distribution of points in the qqgplot for
residuals confirms this:

1 ##create a QQ plot to assess normality of errors/residuals from the model
2 sm.qgplot(mod_resid, ylabel = 'residuals')
3 py.show()

2

siduals

1
Now we look at the Durbin-Watson Statistic to assess this model's assumption of non-correlated
consecutive errors:

- _JiFr

1 ##Now we look at the Durbin-Watson Statistic
2 regress.summary()

OLS Regression Results

Dep. Variable: wave height R-squared (uncentered): 0.844
Model: OLS Adj. R-squared (uncentered): 0.844
Method: Least Squares F-statistic: 1.439e+04
Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.00
Time: 01:34:05 Log-Likelihood: -13585.
No. Observations: 10680 AIC: 2.718e+04
Df Residuals: 10676 BIC: 2.721e+04
Df Model: 4

Covariance Type: nonrobust
coef stderr t P>Itl [0.025 0.975]
RMS ratio -0.0584 0.006 -9.953 0.000 -0.070 -0.047
Matching Coeff 2.8297 0.019 148.381 0.000 2.792 2.867
nbrcs 0.0001 7.72e-05 1.315 0.189 -4.98e-05 0.000
les 0.0005 0.000 2.642 0.008 0.000 0.001
Omnibus: 910.356 Durbin-Watson: 1.262
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1511.850

Skew: 0.632 Prob(JB): 0.00
Kurtosis: 4.342 Cond. No. 363.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The Durbin-Watson test statistic is a bit lower than would be ideal, but still above 1. Were it beneath 1, we
would have more serious cause to believe that our model's violation of linear modeling error assumptions
is deal-breaking.

Finally, we look at a plot of residuals vs. fitted values, to assess the assumption of constant variance for
the residuals:

1 #get fitted values to plot and plot against residuals
2 FitvResid(regress,X,y)

/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarning: Pass
FutureWarning

Residuals vs. Fitted

Residuals

-1.0 -05 oo 05 10 15 20 25
Fitted values

The deviation of the lowess smoother line from the error mean line at Residuals = 0 suggest that the
assumption of constant error variance seems more generally violated than we saw with the model
predicting wind speed.

Ultimately, there are arguable violations of error assumptions in our models. For the wind speed model,
these violations are not as extreme as for the wave height model. From here, we move on to the process
of identifying outliers/Influential values.

1 del mod resid

Identifying Outliers/Influential Values

The Wind Speed Model

#create the modeling set and fit a model regressing wind speed on variables RMS ratio,
#first we build our modeling dataframe that includes all the four variables we want to

modeling frame create dataframe(modeling set)

1)
1)

modeling frame

1

2

3

4 modeling frame.drop(['ddm average'], axis
5 modeling frame = modeling frame.drop(['wave height'], axis
6

7

8

9

0

y = modeling frame['wind speed']

X = modeling frame.drop(['wind speed'], axis = 1)
#fit our model for wind speed/summarize:

mod = sm.OLS(y,X)

10 regress = mod.fit()

First, we will want to look at outlier observations without accounting for their leverage values status. We
can do this with a Bonferroni outlier test, which our model has a built-in function to perform:

1 #conduct Bonferroni Outlier Test for our wind speed Model:
2 ##NOTE: This cell requires a few minutes to run
3 bonf test = regress.outlier test()

1 #determine which observation has the highest studentized residual:
2 bonf outliers = bonf outlier(bonf test)
3 print(bonf outliers)

student resid wunadj p bonf(p)

0 2.206 0.027 1.0
4 1.939 0.053 1.0
8 1.747 0.081 1.0
12 1.960 0.050 1.0
16 1.751 0.080 1.0
10671 1.523 0.128 1.0
10674 1.046 0.295 1.0
10675 1.106 0.269 1.0
10678 1.463 0.143 1.0
10679 1.495 0.135 1.0

[1765 rows x 3 columns]

1 #determine ratio of number of outliers in our model to the number of observations, base
2 observation number = 10680

3 outlier ratio = len(bonf outliers)/observation number

4 print(format(outlier ratio, '.3f'))

0.165

Clearly, we have a rather large number of outliers (about 16.5% of our dataset) by the Bonferroni test
criterion. We must now assess whether that translates to a large number of influential observations
(which have significant bearing on model fit).

Influential observations are observations whose exclusion would significantly alter the model fit; they
account for not just outlier status, but also leverage value status of a given observation.

In order to identify influential observations whose inclusion might be problematic for the model, we look
at Cook's Distance, a statistic quantifying the influence of each observation (the extent to which removing
that observation would greatly modify the model fit). The formula for Cook’s Distance is given in

Faraway's text as: D; = ll’r,-2 :"h. , Where p is the number of regressors in the model, ri2 is the residual
effect of observation i squared, and 1fih' is the 'leverage term’ for the observation. According to the Penn

State Statistics Department webpage, "The leverage A; is a measure of the distance between the x value
for the ith data point and the mean of the x values for all n data points." Source.

https://online.stat.psu.edu/stat501/lesson/11/11.2#:~:text=The%20leverage%20h%20i%20i,regression%20coefficients%20including%20the%20intercept

1 #calculate/plot cook's distances to identify influential observations:
2 #Takes approx. 1 minute to execute
3 cooks_distances_plot(regress)

/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:884: UserWarning: In Mat

Cook's Dist. Influentials Plot: wind speed Model

006

006

distance
=
B

002

0o —L~ S |

0 2000 4000 G000 8000 10000
nstance

NOTE: Here, the instance axis is not random, but presumably follows the progression of observations
across the UTC timestamps working from March through late August, for our modeling set. This Cook's
Distance plotting function's source code exists in a Python package that gets called by the function
'cooks_distances_plot(), and so whether this is true is not completely clear, but the team assumes there
to have been no reason for that algorithm to have shuffled the order of observations (samples and ddms)
before constructing this plot.

It appears that our model has a fair number of observations which, if removed, would greatly alter the fit
of the model. The rule of thumb, according to statology.org, is that if an observation has a Cook's

distance of more than i, where n is the number of observations, then it is a likely outlier Source. 4

n

in our

case is approximately equal to .0004, and so we see many such values.

Another rule of thumb, given by Cook himself, suggests that Cook's Distance values of > 1 are not of
significant concern as influential values (Cited in Weisberg, Sanford. Residuals and Influence in
Regression,. New York, Chapman and Hall, 1982.) By that rule, we would appear to have no observations
whose impact on the model fit is, for that stand-alone observation, highly significant.

However, the high number of influential values under the more stringent guidelines indicates that Linear
Regression may not be the best approach for modeling with this dataset and that perhaps our Machine

https://www.statology.org/how-to-identify-influential-data-points-using-cooks-distance/#:~:text=A%20data%20point%20that%20has,considered%20to%20be%20an%20outlier.

Learning model might give more reliable predictions.

The Wave Height Model

#start by re-fitting wave height model

1

2 modeling frame = create_ dataframe(modeling set)

3 modeling frame = modeling frame.drop(['ddm average'], axis = 1)
4 modeling frame.drop(['wind speed'], axis = 1)
5 y = modeling frame['wave height']
6
7
8

modeling frame
X = modeling frame.drop(['wave height'], axis = 1)

mod = sm.OLS(y,X)
regress = mod.fit()

###conduct Bonferroni Outlier Test for our wave height Model:

N =

##NOTE: This cell requires a few minutes to run
3 bonf test = regress.outlier test()

1 #determine which observations might qualify as outliers; look at the number of such obs
2 bonf outliers = bonf outlier(bonf test)
3 print(bonf outliers)

student resid wunadj p bonf(p)

2109 1.053 0.292 1.0
2117 1.023 0.306 1.0
2121 1.024 0.306 1.0
2125 1.022 0.307 1.0
2129 1.037 0.300 1.0
10670 1.538 0.124 1.0
10671 1.381 0.167 1.0
10674 1.270 0.204 1.0
10678 1.588 0.112 1.0
10679 1.243 0.214 1.0

[1563 rows x 3 columns]

1 #determine ratio of number of outliers in our model to the number of observations, base
2 observation number = 10680

3 outlier ratio = len(bonf outliers)/observation number

4 print(format(outlier ratio, '.3f'))

0.146
The Wave Height model has fewer potential outliers than the wind speed model, but not by too many.
There are still more of them than is comfortable for linear regression modeling, but as with wind speed,

we need to see how much these translate into observations influential enough to change the model fit by
their removal. We proceed to that analysis, again with Cook's Distance measurements:

1 #calculate/plot cook's distances for wave height model to identify influential observat

2 ##again, this cell takes approx 1 min. to run
3 cooks_distances_plot(regress)

/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:884: UserWarning: In Mat

Cook’s Dist. Influentials Plot- wave height Model
010

006

=}
&

distance

=}
B

002

000 . _ll.l AL |

0 2000 4000 G000 8000 10000
nstance

Once more, using our Cook's Distances rule of thumb dictating that any distances greater than
fl ~ .0004, we see a great many influential values. However, less strict rules of thumb, some of which
are also outlined at statisticshowto.com on the page 'Cook's Distance: Definition/Interpretation’, dictate
that only Cook's Distance values greater than .5 should be considered outliers Source. By that rule, we

have siginificantly fewer for both the wind speed model and the wave height model.

In any case, we should do a little further investigation of what is happening at some of the sampling
intervals where we see extreme influential value peaks.

Of particular interest is the sampling interval between roughly 8000 and 9500, as that interval of
observations seems to contain the most outliers. These would correspond to DDMs from samples 2000

to 2375 in our modeling dataset, which we look at now:
1 outlier select = modeling set.sel(sample = slice(2000, 2375))

Here, it may prove informative to look at the average wind speed/wave heights for this subset of samples
compared to the overall average for those variables:

1 compare dependent average(outlier select, modeling set)

Average Wind Speed (Sample Subset): 7.025
Average Wave Height (Sample Subset): 1.62

https://www.statisticshowto.com/cooks-distance/

Average Wind Speed (Total Set): 6.988
Average Wave Height (Total Set): 2.066

Let's see what the time intervals of the influential samples are:

1 outlier start time = outlier select.sel(sample=2000)['ddm timestamp utc'].values
2 outlier end time = outlier select.sel(sample = 2375)['ddm timestamp utc'].values
3 print(f''"'" Influentials Start Date/Time: {outlier start time}

4 Influentials End Time: {outlier end time}''")

Influentials Start Date/Time: 2021-06-28T06:09:53.499261457
Influentials End Time: 2021-07-03T10:10:15.499261438

Clearly, the outlier/influential value status of so many observations in our models are linked to the much
larger overall wind speed/wave height for the samples ~ 2000-2375. These samples correspond to the
timestamps from June and July of 2021.

Analyzing Model Structure

#refit the wind speed model
modeling frame = create dataframe(modeling set)
modeling frame

modeling frame.drop(['ddm average'], axis = 1)
1)

1

2

3

4 modeling frame = modeling frame.drop(['wave height'], axis
5y = modeling frame['wind speed']

6 X = modeling frame.drop(['wind speed'], axis = 1)

7 mod = sm.OLS(y,X)

8 regress = mod.fit()

N =

fitVsobserved(regress)

#fit four plots, showing the fitted values vs. the observed values for each regressor v

Fitted values versus RMS ratio Fitted values versus Matching Coeff

@ ® | wind speed @ ® wind speed
15 # ftted 15 & ftted
L
T W T W
L] [E)
))
g 5 o 5
.E .E
z =z
a a
5 5

1 ##now, fit four components-plus-residuals plots, plotting residuals against each regres
2 ccpr_plots(regress)

Component and component plus residual plot Cospponent and component plus residual plot
=
@ g
= 5 10
& &
+ =
E 3 S
o g 0
o oo a5
RMS ratio Matching Coeff
Component and component plus residual plot Component and component plus residual plot
NI o
£ o
& 2
[4] 3
5 2
+
x =
[=] =]
; i
g &
=2000 -1000 0
nbrcs ks

1 #finally, plot partial regression plots for each regressor variable:
2 fig = plt.figure(figsize=(8,8))
3 fig = sm.graphics.plot partregress grid(regress, fig=fig)

Partial Regression Plot

40
[]
X
73 =3
= =
B g0
(=8 (=1
]]
= =
T T 20
40
-10 0 10 2 -5 -4 -2 0 2 4
e(RMS ratio | X) e(Matching Coeff | X)
10 10
< 'Y <, * .

#do the same plotting for the wave height model
#first, fit the model for wave height:
modeling frame = create dataframe(modeling set)

modeling frame modeling frame.drop(['ddm average'], axis = 1)

modeling frame.drop(['wind speed'], axis = 1)
y = modeling frame['wave height']

X = modeling frame.drop(['wave height'], axis = 1)

mod = sm.OLS(y,X)

1
2
3
4
5 modeling_ frame
6
7
8
9 regress = mod.fit()

1 ##1ook at the fitted vs. observed values for each regressor variable in the wave height
2 #fit the wind speed model
3 fitVsobserved(regress)

Fitted values versus RMS ratio Fitted values versus Matching Coeff

[
® vave height ’
ittad L]

wave height
wave height

@' "wave height

- -7

1 #1look at components plus residuals plots for wave height model
2 ccpr_plots(regress)

Component and component plus residual plot Component and component plus residual plot

) E 6 ®
g g g
£ :
[=] B 4

[}
£ 2
2 : ’
73
+ = 2
= +
= 51l e
‘o =]
[=
= &

o 0o 05

RMS ratio Matching Coeff
Component and component plus residual plot Component and component plus residual plot
4
NI 4 3]
£ o
o £ 5
4 2 £
5 2
[+ s ..
+ - orP®
0 £ 0
E b
g g
r _p -2
0 2000 4000 -2000 -1000 0
nbres ks

1 #finally, look at partial regression plots for each regression variable in wave height
2 fig plt.figure(figsize=(8,8))
3 fig

sm.graphics.plot partregress grid(regress, fig=fig)

Partial Regression Plot

10

5
3 2

=) =
[E} [E]
= =
£ 2

H L
[¥ 3

-10

-15

-10 0 10 2 -5 -4 -2 0 2 4
e(RMS ratio | X) e(Matching Coeff | X)

L | L.

In both models, it appears that Maximum Template Matching Coefficient is the most significant

contributor to the model fit by far. The components plus residuals plots also seem to suggest some non-
linear structure in the variables, when assessed for model impact one at a time.

v M " J . .
This, along with slight violations of error assumptions describe above, could imply that linear regression
modeling is not the most beneficial technique for modeling on this dataset. Regardless, we move on to
interpret the two model's fitted lines, predictions and coefficients, to wrap up the Linear Modeling
segment.

Linear Model Fitting/Validation
The Wind Speed Model:

Here, we fit the final models with training/testing data for some degree of validation outside of just R*:

#create wind model/fit

1
2 modeling frame = create_dataframe(modeling_ set)

3 modeling frame = modeling frame.drop(['ddm average'], axis = 1)
4 modeling frame 1)

modeling frame.drop(['wave height'], axis

#we use 80% of the data for training the model

train, test = train test split(modeling frame, train size=0.8, random state=1)
modTrain = pd.DataFrame(train, columns= modeling frame.columns)

modTest = pd.DataFrame(test, columns= modeling frame.columns)

=W N R

1 cols = ['RMS ratio', 'Matching Coeff', 'nbrcs', 'les']

2

3y

1 wind_mod =

2

X modTrain[cols]

modTrain['wind speed']

wind mod.summary ()

sm.OLS(y, x).fit()

OLS Regression Results

Dep. Variable: wind speed R-squared (uncentered):
Model: OLS Adj. R-squared (uncentered):
Method: Least Squares F-statistic:
Date: Tue, 21 Dec 2021 Prob (F-statistic):
Time: 01:37:27 Log-Likelihood:
No. Observations: 8544 AlC:
Df Residuals: 8540 BIC:
Df Model: 4

Covariance Type: nonrobust

coef stderr

t P>Itl [0.025 0.975]

RMS ratio -0.0332 0.023 -1.472 0.141 -0.077 0.011
Matching Coeff 9.3869 0.075 125.359 0.000 9.240 9.534
nbrcs -0.0014 0.000 -4.703 0.000 -0.002 -0.001
les -0.0023 0.001 -3.441 0.001 -0.004 -0.001
Omnibus: 501.961 Durbin-Watson: 1.959
Prob(Omnibus): 0.000 Jarque-Bera (JB): 597.090
Skew: 0.615 Prob(JB): 2.21e-130
Kurtosis: 3.405 Cond. No. 375.
Warnings:

0.828
0.828
1.026e+04
0.00
-21731.
4.347e+04
4.350e+04

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Now, we look at a simple validation of the model by calculating normalized RMSE between predicted

values from trained model and dependent variable values observed in the testing data partition:

1

0 o U1 W N

S W N P

X _test = modTest[cols]

y_test = modTest['wind speed']

predictions = wind mod.predict(x_test)

Compute the root-mean-square of errors

rms_error = np.sqrt(mean squared error(y_test, predictions))
#normalize root mean square error

rms_normed = rms_error/(modeling frame['wind speed'].mean())
rms_normed

0.440

#scatterplot of predictions values against observed values in testing data

fig = plt.figure()

axl = fig.add subplot(111)

axl.scatter(predictions.index, predictions, c =

label =

'predictions', alpha

.25

5 axl.scatter(y_test.index, y test, ¢ = 'r', label = 'testing data observations', alpha
6 plt.xlabel('observations')
7 plt.ylabel('predicted wind speed (m/s)')

8

Clearly, the distribution of the predictions is far more concentrated than that of testing data observations,
which falls in line with the moderate accuracy of the model as reflected by the normalized RMSE statistic.

plt.legend(loc = 'upper left')

<matplotlib.legend.Legend at 0x7f86be55f210>

s predictions »
testing data chservations

150

125

10.0

7h

an

predicted wind speed (mJs)

25

o

0 2000 4000 G000 8000 10000
observations

The Wave Height Model:

##fit final wave height model with training/testing data

modeling frame = create dataframe(modeling set)

modeling frame = modeling frame.drop(['ddm average'], axis = 1)

modeling frame modeling frame.drop(['wind speed'], axis = 1)

train, test = train test split(modeling frame, train size=0.8, random_ state=1)

modTrain = pd.DataFrame(train, columns= modeling frame.columns)
modTest = pd.DataFrame(test, columns= modeling frame.columns)
cols = ['RMS ratio', 'Matching Coeff', 'nbrcs', 'les']

X = modTrain[cols]

y = modTrain['wave height']

wave mod = sm.OLS(y, x).fit()

wave_mod.summary ()

OLS Regression Results

Dep. Variable: wave height R-squared (uncentered): 0.843
Model: OLS Adj. R-squared (uncentered): 0.843
Method: Least Squares F-statistic: 1.144e+04
Date: Tue, 21 Dec 2021 Prob (F-statistic): 0.00
Time: 01:37:28 Log-Likelihood: -10895.
No. Observations: 8544 AlC: 2.180e+04
Df Residuals: 8540 BIC: 2.183e+04
Df Model: 4

Covariance Type: nonrobust
coef stderr t P>Itl [0.025 0.975]

1 ##attempt validation with calculation of normalized RMSE between predicted values and o
2 X _ test = modTest[cols]

3 y test = modTest['wave height']

predictions = wind mod.predict(x_test)

Compute the root-mean-square

rms_error = np.sqrt(mean squared error(y_ test, predictions))

#normalize root mean square error

rms_normed = rms_error/(modeling frame['wave height'].mean())

O 00 3 o Ul »

rms_normed

2.334

L'] St IVt U e U U MU U I LML LI WDV T AT IV T AL I/ W UV WV U I WD ULy WS

#scatterplot of predictions values against observed values in testing data

fig = plt.figure()

axl = fig.add subplot(111)

axl.scatter(predictions.index, predictions, ¢ = 'b', label = 'predictions', alpha = .25
axl.scatter(y_test.index, y test, ¢ = 'r', label = 'testing data observations', alpha =
plt.xlabel('observations')

plt.ylabel('predicted wind speed (m/s)')

0 N o0 U W N -

plt.legend(loc = 'lower left')

<matplotlib.legend.Legend at 0x7f86b5187a50>

il
EE
wl
T 4
=
=
o
'-E 2
(=18

pedictions’ g
0 testing daﬁﬁhsewaﬁnm
1] 2000 4000 6000 8000 10000
ochservations

Just as the extremely high normalized RMSE statistic calculated just above indicates, the wave height
linear model is woefully inaccurate once a train/test split is used for attempted validation. This is

unsurprising, as the team assumed linear modeling on the simple calibrations we have included to be a
far too simplistic a method to reliably and consistently predict something so complicated as ocean
surface weather patterns.

Futher conclusions about this validation and interpretation details are offered in the section 'Conclusions'
below.

1 del modeling frame, regress, rms_error, rms_normed, bonf outlier, bonf outliers, bonf t
2 del x_test, y test, x, y, predictions
3 del fig, axl

Machine Learning

The team spent some time experimenting with machine learning. It was recommended to the team to
start with a categorical machine learning model.

The modeling dataset needs some adjustments to be ready for machine learning. Many of the variables
included have no predictive power and will not be useful for machine learning. Those variables need to be
removed. The timestamp variable needs to be changed into a numeric variable to be used for machine
learning and last, the categories need to be generated for wind speed and wave height.

1 #Reach into David's file folder to extract 'ML_data.pkl'

2 ##Must reset pathTeam to eliminate Ben_path info

3 pathTeam = cwd + '/drive/My Drive/'

4 #Check to add professor path

5 if os.path.exists(pathTeam + pathProfessor):

6 pathTeam += pathProfessor

7 pathTeam += David path # Should be a shortcut (Links to an external site.) to Team's sh
8 os.listdir(pathTeam)

['cyg firstfile sps.pkl',
'cyg.ddmi.s20210411-010506-e20210411-171248.11.power-brcs-full.a30.d31.nc’,
'ecmwf.t00z.pgrb.0pl125.£000 2021041100.nc’,
'ecmwf.t1l2z.pgrb.0pl25.£000 2021041112.nc’,
'ecmwf.t18z.pgrb.0pl125.£000 2021031118.nc’,
'CYGNSS 0311.pkl',

'"CYGNSS 0411.pkl',
'CYGNSS_Background_Collocated_2021031l.nc',
'modeling dataset.nc',
'wValues_20210311.pkl"',

'ML_data sample2.pkl',
'wValues_20210411.pkl"’,

'wValues 20210411 sample.pkl',
'ML_data.pkl']

1 modeling set = xr.open dataset(f'{pathTeam}modeling dataset.nc')

1 ML._data prep(modeling set)

100% || 10680/10680 [00:00<00:00, 45870.65it/s]
100 || 10680/10680 [00:00<00:00, 64801.82it/s]

1 ML ds = pd.read pickle(f'{pathTeam}ML data.pkl')
2 ML _ds

ddm RMS Matching wind

. WH 1 1 A2
average ratio Coeff speed WS nbres es wU1l0m w

0 7401.46 1.077134 0.288958 9.299924 1.577483 62.245186 25.983896 -8.181535 4.421¢
1 14560.06 1.648460 0.756654 8.764927 1.720895 33.156757 12.924806 -7.606535 4.354¢
2 10968.92 1.926753 0.859642 9.552515 1.246971 38.310802 20.427641 -8.074068 5.104¢
3 15699.80 1.839177 0.844802 6.573362 1.902701 31.600922 13.439723 -6.564295 0.345°

4 7512.64 0.963515 0.293512 8.576059 1.572910 72.594566 -1.148427 -7.503491 4.152¢

10675 8693.80 1.090208 0.480093 7.691555 2.011177 60.152973 36.688282 -0.149721 7.690(
10676 19592.18 2.520207 0.859517 8.318233 1.972587 75.276253 36.030926 -3.374051 7.603:
10677 9361.48 1.613579 0.853095 1.934908 2.103230 88.844673 42.699989 -1.882078 0.449(
10678 8453.16 1.104028 0.228713 6.609409 1.954110 0.000000 0.000000 -1.104201 6.516¢
10679 8374.92 1.044738 0.347402 7.691287 2.011186 49.667934 22.902370 -0.149276 7.689¢

10680 rows x 13 columns

The new clean dataset has 10,680 observations and includes only the variables wanted for machine
learning. Some small adjustments will need to be made depending on which model the team is working
on (wind speed or wave height).

Wind speed model

ly ML ds['wind category']
2
3 x = ML ds

4 x.drop(['wUlOm', 'wvlOm', 'wind speed', 'wave category', 'wind category'], inplace=True

1 xtrain, xtest, ytrain, ytest = train test split(x, y, test size = 0.15)
2

(o) W ©2 B~ OV)

0 o0 U b W N

WNNNNDNNNDNNDNNDNNNRRRRRRB B 2B 2 @2
O WV O oUW NRE O WVWODNIO U & WNKRE OV

sgdc = SGDClassifier(max_ iter=10000, tol=0.01)
print(sgdc)

sgdc.fit(xtrain,ytrain)

SGDClassifier(max_iter=10000, tol=0.01)
SGDClassifier(max_iter=10000, tol=0.01)

score = sgdc.score(xtrain, ytrain)
print(f"Training score: {score}")

null = max(ytest.value counts())/sum(ytest.value counts())
print (f£"Null training score: {null}")
print()

ypred = sgdc.predict(xtest)

cm = confusion matrix(ytest, ypred)
CM=pd.DataFrame.from dict({
'Calm _actual': [cm[0][0], cm[O0][1l], cm[O][2]1],
'Mild _actual': [cm[1][O0], cm[1][1], cm[1][2]],
'Strong_actual': [cm[2][0], cm[2][1l], cm[2][2]]
o
orient='index', columns=['Calm predict', 'Mild predict', 'Strong predict'])
print (CM)
print()

results = [
[cm[0][0], cm[0][1l], cm[0][2]], # predictions for class 1
[cm[1][0], cm[1][1l], cm[1l][2]], # predictions for class 2
[cm[2][0], cm[2][1], cm[2][2]], # predictions for class 3

nclass_classification mosaic_plot(3, results)
print()

cr = classification report(ytest, ypred)
print(cr)

Training score: 0.1440846001321877
Null training score: 0.6841448189762797

Calm predict Mild predict Strong predict

Calm actual 5 0 270
Mild actual 4 0 1092
Strong_actual 0 0 231

Mosaic Plot of Confusion Matrix

BN Class 0
BN Class 1
BN Class 2
4
(]
B
=
h=]
5
o
4] 1 2
Observed Class
precision recall fl-score support
Significant Wave Height Model
1 ML ds2 = pd.read pickle(f'{pathTeam}ML data.pkl')
2
3 y2 = ML ds2['wave category']
4
5 x2 = MI, ds2
6 x2.drop(['wUl0Om', 'wvlOm', 'wSWH', 'wave category', 'wind category'], inplace=True, axi
_WGJ. LI_HJ. L \ avceyo a\jc 7 amwmwoulLiriclL , lllD\j_D LaLr v, ER D) \ LrLTouL L’ ’

xtrain2, xtest2, ytrain2, ytest2 = train test split(x2, y2, test size = 0.15)

sgdc2 = SGDClassifier(max iter=10000, tol=0.01)
print(sgdc2)

o U W N R

sgdc2.fit(xtrain2,ytrain2)

0 N o U W N

WINNNMNMNNMNNMNNNNRRRRRRRBR B R
O VW WU U™ WNREPOWO®NUO U™ WNR O W

SGDClassifier(max_iter=10000, tol=0.01)
SGDClassifier(max iter=10000, tol=0.01)

score = sgdc2.score(xtrain2, ytrain2)
print(f"Training score: {score}")

null = max(ytest2.value counts())/sum(ytest2.value counts())
print (f£"Null training score: {null}")
print()

ypred2 = sgdc2.predict(xtest2)

cm2 = confusion matrix(ytest2, ypred2)
CM2=pd.DataFrame.from dict({
'"High actual': [cm2[0][0], cm2[0][1], cm2[0][2]],
'Low_actual': [cm2[1][0], cm2[1][1], cm2[1l][2]],
'Medium actual': [cm2[2][0], cm2[2][1], cm2[2][2]]
b
orient='index', columns=['High predict', 'Low predict', 'Medium predict'])
print (CM2)
print()

results = |
[cm2[0][0], cm2[0][1], cm2[0][2]], # predictions for class 1
[cm2[1]1[0], cm2[1][1l], cm2[1][2]], # predictions for class 2
[cm2[2][0], cm2[2][1], cm2[2][2]], # predictions for class 3

nclass_classification mosaic plot(3, results)
print()

cr2 = classification report(ytest2, ypred2)
print(cr2)

Training score: 0.6560916501432034
Null training score: 0.7590511860174781

High predict Low predict Medium predict

High actual 0 59 127
Low_actual 0 72 128
Medium_ actual 0 239 9717

Mosaic Plot of Confusion Matrix

0 1 2

The quality of the model can be determined by looking at the 4 different parts of the printout. The firstis a
training score for the model and a null model, the sceond is a confusion matrix, the third is a mosaic plot
of the confusion matrix, and the final part is a classification report.

BN Class 0
B Class 1
B Class 2

Predicted Class

The training score measures the number of correct guesses against the total number of guesses. This
number is not very useful if not compared to a null score. The null score is the training score a model
would get if it only guessed the most common class. In general, it is best for the model training score to
be greater than the null training score, however, this is not always true. Due to that, the training score is
not the best method for determining the quality of a model.

The next part of the printout is a confusion matrix. A confusion matrix tallies what the correct answer of a
given test element is vs what the guess from the model was. If the model guesses correctly, a tally will be
made along the main diagonal. For example, if the test element belongs to category 1 and the model
guesses category 1, the count in position (1,1) on the matrix will go up by one. If instead, the maching
guesses category 2, the matrix tally will increase by one in the position (1,2). For a confusion matrix to
provide evidence that demonstrates a good model, the elements of the matrix not on the main diagonal
should be very low as they represent incorrect guesses by the model.

The mosaic plot of the confusion matrix is a way to visualize the confusion matrix. The width's of the
classes on the x-axis are determined by the proportion of each class in the testing dataset. The bars are
colored based on how many times each class was guessed. For a model that is accurately classifying
observations, one would expect the bars to be colored mostly by the proper prediction class color (i.e. the
bar of observed class 0 would be mostly the color for class 0 as defined in the legend).

The final part of the printout is a classification report which gives an in-depth look into how a
classification model performed. The 'precision’ column gives the ratio of correct guesses for an individual
class to total guesses of that class. The 'recall' column gives the ratio of correct guesses of a class to
total occurances of that class. The 'f1-score' column is a metric that combines precision and recall and is

used to compare models, not to determine model accuracy. The f1-score is given by

fl __ 2%xRecallxPercision
" (Recall+ Precision)

the testing data.

. The final column 'support' counts the total number of times that class appears in

Depeding on how the dataset gets split into training and testing data, the results will vary. For every trial
the team ran, the results were not encouraging.

In general, the windspeed model was not able to beat the null training score. However, there was one trial
the team ran that beat the null training score. The confusion matrix consistantly shows too many
incorrect guesses. The mosaic plot shows that the class 'mild’' was guessed almost every time. The
classification report shows a poor precision and recall score. All of these factors suggest that the
windspeed model created is not a good model. The column with the most support (Mild) is consistantly
the most accurately guessed. This leads the team to believe that increasing the size of the modeling
dataset would likely improve the model.

In general, the wave height model showed better restults as the training score was very close to the null
training score and depending on how the dataset is split for training and testing, the training score was
actually higher than the null score on occasion. That being said, the confusion matrix still showed a
signifant number of incorrect guesses and the mosaic plot shows that the 'medium’ category was almost
exclusively guessed. The classification report backed up the findings of the confusion matrix, suggesting
the model is not accurately classifying the different types of significant wave height. The team believes
that increasing the size of the modeling dataset would also improve this model.

Conclusions

¢ What are you taking away from your work?
Linear Modeling Conclusions:
The error assumptions of linear modeling were only partly satisfied by our dataset.

Our most interesting conclusions for the linear model came where we assessed the status of influential
values/outliers, and also where we performed model fitting/prediction. With regard to outliers/influential

values, the consecutive times with the most influential values might suggest that there could be a
seasonal component to wind speed/wave height, and that either a linear model with a much larger range
of dates contributing samples, or a model accounting for seasonality, could reduce the status of these
observations as influential values. This could be a promising avenue of future research.

Linear Modeling Results/Interpretation:

The Linear Model we fit for Wind Speed gives the fitted equation:

wind/;peed = —.0332(RM Sratio) + 9.3869(M atchingCoe f f) — .0014(nbrcs) — .0023(les)

The Linear Model we fit for Wave Height gives the fitted equation:

wavelf\zeight = —0.0539(RM S'ratio) + 2.8247T(M atchingCoe f f) + .0000771(nbrcs) + 0.0003(!

For each respective model, assuming we can count on the assumptions of linear modeling for this
dataset, there is a 95% probability that the confidence intervals listed in the regression summaries above
contain the true values of the f coefficients.

According to Statology.org, the generally closer a Normalized RMSE value is to zero, the more reliable the
model is (the less likely to be overfit or underfit). Several university-affiliated postings on
ResearchGate.net suggest that an NRMSE of >= .5 reflects a generally inability of the model to predict
reliably Link By that standard, our Wind Speed Linear Regression Model predicts with greater reliability
than our Wave Height Model.

Machine Learning Modeling Conclusions:

The team was not able to develope a categorical machine learning model capable of predicting wind
speed or significant wave height. While neither model was successful, the significant wave height model
generally has an accuracy score around 80%. It is possible that the model could be improved to the point
that the accuracy score reaches a desirable level.

e What do you want the reader to take away?

Hopefully, the reader/notebook user has taken away not only more insight into the CYGNSS project by
NASA, but has been stimulated to consider future directions modeling research with that CYGNSS data
may take. We especially hope this notebook has contributed an interesting combination of DDM
calibrations to predict weather patterns on the ocean surface in various simple models. It remains for
further research to enhance the sophistication of the CYGNSS modeling work begun here, and to build up
the accuracy/reliability of predictions.

e Be honest about what conclusions are really supported
Linear Modeling Limitations:

While the ability to use linear regression modeling to predict wind speed/wave height from Maximum
Template Matching Coefficient of DDM data seemed promising, the model did, realistically, have a
worrying degree of violation of linear modeling assumptions. Thus, the interpretation of OLS coefficient
estimates from our model, as given above, should be taken with a large grain of salt.

https://www.researchgate.net/post/Whats-the-acceptable-value-of-Root-Mean-Square-Error-RMSE-Sum-of-Squares-due-to-error-SSE-and-Adjusted-R-square

Machine Learning Modeling Limitations:

There were many limitations with the teams' efforts in developing a categorical machine learning model.
The team was limited by its understanding of the SGDClassifier. More optimal parameter tuning for this
model may exist. The team attempted to find the optimal parameter settings by trial and error. Therer is
also a significant amount of data available in the collocated data base to add to the training set if a future
team is to try to improve the models. There could also be room for improvment if more time were to be
spend on the variable selection process. Taking any, or all of these steps would likely improve the
categorical machine learning model.

