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An Investigation on the Optimal Parameters of the SOR and GMRES
Solvers

0.1 Work Breakdown

Class Taught by Professor Fournier and sponsored by Dr. Stephen Thomas

Jacob Petersen: Data generation, building the AMG solver, computation of optimal strength of
connection/relaxation parameter using fixed tolerance value and loops, optimal configuration of the
post and pre-iterations for omega, and miscellaneous formatting and code optimization.

Alex Semyonov: Computation of the theoretical optimal omega value, optimal configuration of the
post and pre-iterations for theta, estimating theta using the standard form of a continuous
optimization problem, miscellaneous formatting and code optimization.

Christian Stout: Machine learning research and miscellaneous formatting and code optimization.

0.2 Abstract

Algebraic multigrid (AMG) is an efficient method often utilized to solve large, sparse systems of
equations. This method is advantageous relative to other multigrid methods as it does not require
any geometric information and can be readily applied to various problems. The primary goal of this
project is to determine the optimal parameters which enable the AMG to solve a system of
equations with maximum efficiency. While working on this project, the team determined an optimal
value for the relaxation parameter for the SOR algorithm and determined an optimal value for the
strength of parameter for the GMRES solver.

0.3 Introduction

NREL (The National Renewable Energy Laboratory) is interested in the optimal construction of wind
turbines. Flow dynamics are a particularly important factor to consider when constructing these
wind turbines (as the air flow generated by a turbine may influence surrounding turbines). This air
flow can be represented using the incompressible Navier Stokes equations which, when discretized,
result in an exceptionally large system of equations. Solving these equations can often be very
computationally taxing and time consuming. In order to efficiently solve this resulting system of
equations, NREL has investigated the performance of several AMG methods in “A Comparison of
Classical and Aggregation-Based Algebraic Multigrid Preconditioners for High-Fidelity Simulation of
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Wind Turbine Incompressible Flows” by Thomas et al. This paper also examines the incompressible
Navier-Stokes equations and their discretization. There are several parameters which may influence
the computing speed and the generated residuals. By identifying the optimal parameters for a
particular solving algorithm, one can reduce the number of iterations necessary to find a solution

and minimize the residual associated with this solution.

Ideally, the methods utilized to identify the optimal parameters can be generalized to other projects
and perhaps can illuminate efficient methods to optimize the parameters of a given solver. As the
discretization of partial differential equations often results in a large system of equations,
identifying and optimizing the parameters which influence the iterations and residuals is an
important task which may drastically influence computing requirements and solver accuracy.

Our general approach to this optimization problem can be divided into four essential steps:
1. Generating the data (an n x n matrix A and an n x 7 vector b).

2. Defining and building the appropriate solver (specifically one utilizing the SOR algorithm and
another utilizing GMRES).

3. Optimizing the appropriate parameters using a brute-force approach (cycling through various
parameter values and plotting residuals for each parameter)

4. Optimizing our method for determining the optimal parameter.

When possible, the group computed optimal parameters both mathematically and numerically
(although this was only possible with the SOR algorithm). This enabled the group to identify and
explain potential discrepancies between the numerical and theoretical results. This, however, was
more of a side-step than a progression step and thus is not included as an essential step.

1 Methods

Generally, the method for each set of experiments use a for loop to vary the desired settings
(omega, theta, pre-, and post-iterations) while constructing and running the AMG solver for each
setting combination.

For loops are used to construct and run the solver for each combination of settings--where the
for loop is changing the desired setting, it mostly runs multiple values of omega or theta. If
multiple nested for loops are used, it is to account for the combinations of pre- and post-smoother
iteration settings and how those affect the solver as well.

For the SOR solver, the theoretical optimal relaxation parameter was computed mathematically
(using eigenvalues). For both the SOR and GMRES solvers, the optimal parameters (6 and w) are
also calculated by minimizing an objective function with scipy.optimize.minimize_scalar.
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After computing an optimal parameter, various visual graphs are implemented to demonstrate how Finally, the last function, build theta amg, Operates in the same way as previous function, except

def generate_problem(seednum, size, verbose=False):
seed(seednum)

# https://github.com/pyamg/pyamg
!pip install pyamg

diag = (randint(-size, size))+1000 # this is the random diagonal generated for the
import scipy
import numpy a = randint(-(abs(diag//6)), (abs(diag//6))) # these variables are the random stenci
import pyamg b = randint(-(abs(diag//6)), (abs(diag//6)))
import pylab c = randint(-(abs(diag//6)), (abs(diag//6)))
import random if verbose:
import pandas as pd print (f'A= {a}\nB= {b}\nC= {c}\nDiagonal= {diag}'
import seaborn as sb
import matplotlib.pyplot as plt stencil = [[a ,0 ,b], [c, diag, c], [b, 0, a]] # This stencil is set to be mostly sj
from matplotlib.pyplot import figure A = pyamg.gallery.stencil grid(stencil, (size,size), dtype=float, format='csr')
from matplotlib import cm A = .5%(A + A.transpose()) # This makes A symmetric
from random import seed B = numpy.ones((A.shape[0],1))
from random import randint return A, B, diag
#Make sure this runtime is connected to a tf device def build_sor_amg(A, B, omega, prelts, postIts, maxCourse=10, verbose=False):
#Edit -> Notebook Settings -> Hardware accelerator: GPU ml = pyamg.smoothed_aggregation_solver (
import tensorflow as tf A, B, max_coarse=maxCourse,
from tensorflow import keras presmoother=('sor', {'sweep':'symmetric', 'omega':omega, 'iterations' : preIts}
from keras import layers postsmoother=('sor', {'sweep':'symmetric', 'omega':omega, 'iterations' : postIts
device_name = tf.test.gpu_device_name() if verbose:
if device_name != '/device:GPU:0': print (ml)

print('No tf GPU found') b = numpy.random.rand(A.shape[0],1)
raise SystemError('GPU device not found') x0 = numpy.random.rand(A.shape[0],1)
print(device_name) return ml, b, x0
#Global Variables for consistancy in seed, size and tolerance level def build_theta_amg(A, B, theta, preIts, postIts, maxCourse=10, verbose=False):
seednum= 5 ml = pyamg.smoothed_aggregation_solver(
size = 100 A, B, max_coarse=maxCourse,
tol = le-13 strength=('symmetric', {'theta':theta}),
presmoother=('gmres', {'maxiter': prelIts}),
postsmoother=('gmres', {'maxiter' : postIts}))

~ 1.1 Problem Generation and AMG Construction

if verbose:

print (ml)
. . X i . . b = numpy.random.rand(A.shape[0],1)
experiments on. To do this the generate problem function was written, which produce a semi- %0 = numpy.random.rand(A.shape[0],1)

After importing all of the necessary packages, the next step was to create matrices to run
random, sparse, and diagonally dominant matrix. This matrix is based off of a global seed variable return ml, b, x0
to maintain consistency across all experiments.

The next function is the build sor amg which is the function that is used when running
experiments concering @, where the @ value and the pre- and post-smoother iterations can be set

when the function is called. ~ 1.2 Testing Omega with Default Pre and Post Iterations Values
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Using the two functions that are defined above, the problem matrix is generated and the SOR-based
AMG is constructed. Then using a command from the PyAMG package we can just run the solver
on our defined problem. It is in this step that we are varying , the relaxation parameter for SOR.
The optimization of w is the first step in optimizing the efficiency of the AMG solver with SOR pre-
and post-smoothing methods.

The program starts @ at 0.05 and ends at 2.0, testing every value of @ with a step size of 0.025.
In these tests, the values for the pre- and post-iterations are set to their default values of 1. This is
just to analyze how much a change in @ can influence the resulting residuals and iteration counts.

#This cell may take some time (typically under 30 seconds) to run
omega_experiments = []
A, B, diag= generate_problem(seednum, size)
for omega in numpy.linspace(0.05, 2.0, 80):
ml, b, x0 = build_sor_amg(A, B, omega, 1, 1)

residuals = []
x = ml.solve(b=b, x0=x0, tol=tol, residuals=residuals)

omega_experiments.append( (omega, residuals))

~ 2 Computing the Optimal Parameters

~ 2.1 Calculating the Theoretical Optimal @

When working with the SOR algorithm, @ denotes the relaxation parameter. This relaxation
parameter can drastically influence convergence rate. @ can be mathematically calculated by
finding the spectral radius of the Jacobi iteration matrix and utilizing a formula which allowed us to
directly compute the optimal relaxation parameter. There are several assumptions made in this
calculation, namely: (1) The Jacobi Iteration Matrix has real eigenvalues, (2) that Jacobi's method is
convergent, and that a unique solution exist. Furthermore, our eigenvalue computation relies on A
being symmetric. If A is not symmetric, the eigenvalue computation can be changed to eigs() but
will take longer to compute.

A, B, diag = generate_problem(seednum, size)
jacobi=scipy.sparse.identity(size*size)-A/diag #Definition of Jacobi matrix
max_eigenval =scipy.sparse.linalg.eigsh(jacobi, k=1, which='LM',return_eigenvectors=F:

print("Largest Magnitude Eigenvalue: ", max_eigenval)
optimal_omega = 1 + (max_eigenval/(l+numpy.sqrt(l-max_eigenval**2)))**2#Formula for of
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print("Optimal Omega: ", optimal_ omega)

~ 2.2 Continuous Optimization of w

The following code block finds the optimal @ by first defining an objective function: w2iter(w) which
returns the iteration count at which the residual falls below the desired tolerance level. The function
then finds the @ that minimizes the iteration count. Comparing the produced value to the theoretical
omega demonstrates that the difference between the two values is rather miniscule, which
suggests that the algorithm can accurately estimate the optimal relaxation parameter.

#This code was made by prof Fournier, I posted it here to try to disect it and compare
from scipy.optimize import minimize_ scalar
A, B, diag= generate_problem(seednum, size)
#This is our objective function
def w2iter(w) :
ml, b, x0 = build_sor_amg(A, B, o, 1, 1)

residuals = []
x = ml.solve(b=b, x0=x0, tol=tol, residuals=residuals)
iterCount = numpy.nonzero([r == 0#< tolerance is set to 0

for r in residuals])[0] # Oth of all indexes of all resic
if iterCount.size > 0
return float(iterCount)
else :
return float(len(residuals))
res_omega = minimize scalar(w2iter, bounds=(0.05, 2.0), method='Bounded', tol=0) #fin
res_omega

2.3 Using the Theoretical Optimal @ To Find the Best Iteration

v
Settings
In this code, we have fixed the relaxation parameter to be the theoretical optimal parameter
calculated above. This allows us to identify which pre/post-iteration settings are optimal in terms of
speed and accuracy. To do this, the AMG construction and solver are repeated 25 times for all
possible combinations of pre- and post-iterations while keeping the @ value constant between
experiments.
iteration_experiments = []
A, B, diag= generate_problem(seednum, size)
for preIts in numpy.arange(l, 6, 1): #Pre iterations 1c¢
for postIts in numpy.arange(l, 6, 1): #Post iterations
ml, b, x0 = build_sor amg(A, B, optimal omega, prelts, postIts) #Optimal omega frc
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residuals = []
x = ml.solve(b=b, x0=x0, tol=tol, residuals=residuals)

iteration_experiments.append( (preIts, postIts, residuals))

~ 2.4 Testing to find the Optimal 6

The optimal @ for running the solver cannot be calculated theoretically in a similar manner to the
optimal w.

Instead the use of a brute force method is applied, in which a number of experiments are done for
each combination of pre- and post-smoother settings. There are 25 different combinations for the
pre- and post-smoother settings, which can have an integer value from 1 to 5 each, and the range of
0 spans 0.0 to 0.6. For every comination of pre- and post- iterations, the program will construct and
solve an AMG for every @ value from 0.0 to 0.6 with steps of 0.01.

After each solution is finished, the residuals list is passed to a new array to store the values along
with the current 8 and pre- and post-iterations.

# THIS TESTS OVER 1500 SETTINGS COMBINATIONS, TAKES A WHILE TO RUN#

theta_experiments = []

hm data = []

hm _data_all = []

seednum= 5

A, B, diag = generate_problem(seednum, size)
for preIts in numpy.arange(l, 6, 1): # Pre iteration loop
for postIts in numpy.arange(l, 6, 1): # Post iteration loop
temp_resid_len = []

temp_theta_store = []

for theta in numpy.linspace(0.01, .60, 60): # Theta value loop
ml, b, x0 = build_theta_amg(A, B, theta, prelIts, postIts)

residuals = []
x = ml.solve(b=b, x0=x0, tol=tol, residuals=residuals)

# Array stores ALL data for display later
theta_experiments.append((theta, preIts, postIts, residuals))

# Temporary storage for each combination of pre and post its
temp_theta_store.append((theta, prelts, postIts, residuals/residuals[0]))

# Temporary storage of length for all thetas in current combination of pre and
temp_resid_len.append(len(residuals))
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# These two lines find the theta with the fewest iterations for each pre and post
minpos = temp resid_len.index(min(temp resid len))
the, pre, post, resid = temp_theta_store[minpos]

# Storage for the 25 optimal thetas and their respective results for use in displ:
hm_data_all.append((the, pre, post, resid[-1]/resid[0], len(resid)))
hm data.append((the, pre, post))

~ 2.5 Continuous Optimization Problem 8

This code block once again defines an objective function: Oiter(0). Which is a function of 6 that
returns the iteration count (to hit desired tolerance). This function is then minimized using
scipy.optimize.minimize_scalar(). The produced theta solution always tends towards the upper
bound and differs from the estimated theta value discovered by utilizing the "brute-force" approach
above.

from scipy.optimize import minimize_ scalar
A, B, diag = generate_problem(seednum,size)
def Oiter(0): #0bjective function definition

ml, b, x0 = build_theta_amg(A,B,0,1,1) #Varying pre/post iteration essentially has
residuals = []
x = ml.solve(b=b,x0=x0,tol=tol,residuals=residuals)
iter count = numpy.nonzero([r < tol for r in residuals])[0]
if iter_count.size > 0
return float(iter_ count)
else
return float(len(residuals))

res_omega = minimize_scalar(®iter, bounds = (0.01, 0.6), method = 'Bounded', tol=0) #
res_omega

2.6 Pre- and Post- iterations with a Fixed 0

The section above tests all values for theta against every combination of pre- and post-iterations,
but that also takes a long time to run. This section allows the user to run an individually chosen
theta value on all combinations of pre- and post-iteration values. The main reason we left this in is
to test any value that might be of interest, or to test fewer values by hand, which will result in much
faster response times for ease of use.

theta_iteration_experiments = []

+hAta—n 1N0
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A, B, diag= generate_problem(seednum, size)
for preIts in numpy.arange(l, 6, 1):
for postIts in numpy.arange(l, 6, 1):
ml, b, x0 = build theta amg(A, B, theta, prelts, postIts)
residuals = []
x = ml.solve(b=b, x0=x0, tol=tol, residuals=residuals)

theta_iteration_experiments.append((prelIts, postIts, residuals))

~ 3 Results

Seperated into different categories below are the results, and their graphs, for each experiment run
above.

3.1 Testing Omega with Default Pre and Post iterations Values:
Results

Once the AMG solver has run for all of the desired values of w, all of the resulting residuals will be
graphed according to their total number of iterations for a solution.

Below the graph, the optimal omega value from all of the tested values is printed. In this case, the
optimal w was determined by sorting the list of residual arrays by the length of the residual arrays.
This gives the @ value that corresponds to the fewest number of residuals, or fewest iterations.

residuals_len =[]
figure(figsize=(18, 12))
plt.x1im(0,20)

# Loop to graph each residuals list from the experiments
for experiment in omega_experiments:
omega, residuals = experiment
#Fournier added the edits below, the color is sorted, fewest iterations are light g1
pylab.semilogy(residuals/residuals[0], '.-', label=f"w: {omega:.2f}",
c=cm.rainbow((omega - omega_experiments[0][0])/(omega_experiments[-1
residuals_len.append(len(residuals/residuals[0]))

# Graph Labels
pylab.xlabel('iterations')
pylab.ylabel('normalized residual')
pylab.legend(loc="upper right',ncol=4)
pylab.show()

# Just some useful information as well as the optimal choice for Omega in regards to
minpos = residuals_len.index(min(residuals_len))
print (f'Lowest iteration count = {min(residuals_len)} \n')

https://colab research.google com/drive/1Jr6rS9TvgKancoy3bZiODH6LFb746Df#printMode=true 9/18

1/11/2021 AMGnotebook_ultimate_AF.ipynb - Colaboratory

print (f'All iteration counts = {residuals_len} \n')
print(f'Optimal Omega index = {minpos} \n')
print(f'Optimal Omega value = {omega_experiments[minpos]}')

3.2 Using Theoretical Optimal w to find Iteration Settings: Results

The graph below suggests that there is a connection between the pre- and post-smoother iterations,
and how many overall iterations it takes for the AMG solver to finish. It seems that as the pre- and
post-iterations both increase, the number of overall iterations decreases. Unfortunately, a problem
was identified in the code block below just prior to the end of the term and the group was unable to
correct it in time. Changing the direction of the for-loop, that is, looping through
iteration_experiments in the reverse order produces a different result. This is troubling as the
answer produced should be the same regardless of the order of the loop and must be investigated
further.

residuals_len =[]
figure(figsize=(20, 16))
plt.x1lim(0,20)

for experiment in iteration_experiments:
prelts, postIts, residuals = experiment
residuals_len.append(len(residuals))
pylab.semilogy(residuals/residuals[0], '.-', label=f"Pre Its: {prelIts} Post Its: {pc
c=cm.rainbow( (prelts-iteration_experiments[0][0])/(iteration_experiments[-1][0]-ite:
marker='${}$"'.format (postIts))

pylab.xlabel('iterations')
pylab.ylabel('normalized residual')
pylab.legend(loc="'best',ncol=2)
pylab.show()

minpos = residuals_len.index(min(residuals_len))

print(f'Lowest iteration count = {min(residuals_len)} \n')

print (f'All iteration counts = {residuals_len} \n')

print(f'Optimal Iteration Index = {minpos} \n')

print(f'Optimal Iteration Values = {iteration_experiments[minpos]}")

3.3 All @ Values Tested for all Pre and Post Iteration Combinations:
Results

The graph below shows the results from the experiments in the prior cell. It is graphed using the
same method described previously, with one caveat. Despite best efforts, removing the repeating
final residual from many of these experiments would also remove many data points that are
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important. Any method attempted to remove these values also removes residual values that are
below the desired tolerance level, sometimes leaving only values that are above the tolerance level.

The values of  and pre and post-iterations that led to the repeating of iterations, despite having
already hit the tolerance threshold, are quite troublesome. It seems that some part of the AMG
package does not terminate the algorithm sometimes, even though it seems to hit the desired
tolerance level prior to repeating the last residual a hundred times before stopping. This leads to
another problem that came up, there is no actual guarantee in these experiments that the final
residual achieved is below the tolerance level. The PYyAMG package is designed to solve systems
with this tolerance constraint, but there was never a check implemented to make sure this is the
case. That is an oversight of the project and something to keep in mind when viewing the below
results.

While the method for finding the best 8 using the residuals list with the shortest length still
functions, some part of the PYAMG package causes the solver to repeat iterations of the last
residual. So for the sake of accuracy with the existing values, the residuals list is kept the same.

residuals_len = []
figure(figsize=(20, 16))
plt.x1im(0,20)

# Loop to graph each residuals list from the experiments
for experiment in theta_experiments:
theta, preIts, postIts, residuals = experiment

# Commented out the legend because it was too long
pylab.semilogy(
residuals, '.-', label=f"0: {theta:.2f}",c=cm.rainbow( (theta-theta_e:
(theta_experiments[-1][0]-theta_experiments[0][0])))

residuals_len.append(len(residuals))

pylab.xlabel('Iterations')
pylab.ylabel('Normalized Residual')
#pylab.legend(loc="best")
pylab.show()

# Prints the Theta and Pre/Post iterations combo that used the least iterations to so!
minpos = residuals_len.index(min(residuals_len))

print (f'Optimal Theta index = {minpos} \n')

print(f'Optimal Theta value = {theta_experiments[minpos]}')

print(min(residuals_len))
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3.4 Heatmap View of the Optimal @ for Each Combination of Pre- and
Post-lterations

First, a small note about the heatmaps, the axes are indexed from 0 to 4 even though the pre and
post iteration values are from 1 to 5, so keep that in mind when viewing the results. For example, if
you want 3 pre-iterations and 4 post-iterations, look at row 2 column 3.

The heatmap on the left shows the 0 value that resulted in the fewest number of iterations for each
combination of pre- and post-iterations. Most of these were 0.01, but as the map shows there were
a few values that differed.

The second heatmap shows the final residual when the solver is run with the 6 settings from the
first heatmap.

The final heatmap shows how many iterations it took to reach the final residuals shown in the
second heatmap. The problem with these heatmaps lies in the third and final one because of the
combinations that led to over 100 iterations. These are not indicative of a proper solution by the
solver and so they skew the results shown in the heatmap, since they are not a reliable indicator of
how that combination of 6 and pre- and post-iterations truly affect the solution. There is a possibility

theta_map = numpy.zeros((5,5))
resid _map = numpy.zeros((5,5))
its_map = numpy.zeros((5,5))
k=0

#for x in hm data_all:
#print(x)

for i in numpy.arange(0,5,1):
for j in numpy.arange(0,5,1):
the, pre, post, resid, len_resid = hm_data_all[k]

#print (i, J)

theta_map[i][]j]= the

resid map[i][]j]= resid
its_map[i][j]= len_resid
k += 1

fig, ax = plt.subplots(ncols=3, sharey=False)
fig.set_size_inches(24,6)

the_heat = sb.heatmap(theta_map, annot= True, ax=ax[0], linewidths= 0.5, cmap="Y1lGnBu'
resid_heat = sb.heatmap(resid map, annot=True, ax=ax[1l], linewidths= 0.5, cmap="Y1lGnBt
its_heat = sb.heatmap(its_map, annot=True, ax=ax[2], linewidths= 0.5, cmap="Y1lGnBu")
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fig.suptitle('Optimal Theta Results for All Combinations of Pre- and Post-Iterations'
ax[0].set_title('Optimal Theta')

ax[1l].set_title('Last Residual')

ax[2].set_title('Total Iterations')

for ax in ax.flat:
ax.set(xlabel='Post-Iterations', ylabel='Pre-Iterations')

3.5 Pre and Post iterations with a Fixed @: Results

This code block below graphs the results of fixing a @ value and varying the pre- and post-iterations,
in the same manner as the previous graphing cells. Excluding the results cell for section Testing to
Find the Optimal 6.

The results once again show that there is a relationship between the solver iterations and the
number of iterations the pre- and post-smoothers have to run. If the pre- and post-smoothers are
allowed more iterations each, then the overall iteration count of the solver goes down.

This is the case if the repeating residuals are excluded, as mentioned above, the solver sometimes
continues running even after the desired tolerance is reached. The group was unable to identify the
cause for this troubling finding.

residuals_len =[]
figure(figsize=(20, 16))
plt.x1im(0,20)

for experiment in theta_iteration_experiments:
prelts, postIts, residuals = experiment
residuals_len.append(len(residuals))
pylab.semilogy(residuals/residuals[0], '.-', label=f"Pre Its: {prelts} Post Its: {pc
c=cm.rainbow( (preIts-theta_iteration_experiments[0][0])/(theta_iteration_experiments
marker='${}$'.format (postIts))

pylab.xlabel('iterations')
pylab.ylabel('normalized residual')
pylab.legend(loc='best', ncol=2)
pylab.show()

minpos = residuals_len.index(min(residuals_len))

print(f'Lowest iteration count = {min(residuals_len)} \n')
print(f'All iteration counts = {residuals_len} \n')

print(f'Optimal Iteration Index = {minpos} \n')

print(f'Optimal Iteration Values = {iteration_experiments[minpos]}')
print(theta)
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3.6 Discussion

The difference between the tested optimal @ and the theoretical optimal w is the most interesting
result. This result was unexpected, and raised a lot questions as to why the tested @ and the
theoretical w were always different. Looking a bit more into the mathematics of iterative methods, it
seems that the optimal theoretical w is considered optimal in terms of the rate of convergence of
the iterative method. The experiments regarding w revealed the value that reduces the number of
iterations for the solver. This does not imply that this value also acts as the optimal w for the rate of
convergence.

The tests involving the strength of connection paramter, 6, also had some interesting results, each
experiment showed that there was not a heavy dependence on @ for the solver to run to completion.
Any value used seemed to have the same effect on the sparse, diagonally dominant matrices. This
might not be the case if given matrices with different properties, which is something to look into for
further testing. Generally, increasing both the pre- and post- iterations decreases the solver
iterations; this result was achieved regardless of the values of the other parameters (, 6).

The strength of connection parameter (¢) was also optimized by minimizing a function that takes in
0 and returns the iteration counts required to reach a desired tolerance level. While this approach
worked wonderfully for optimizing the relaxation parameter, w, used in the SOR solver, using it to
compute an optimal theta yielded unclear results. The supposed optimal theta value always tends
to the upper bound. So for example if the upper bound is set to 0.6, the optimal theta will
supposedly be 0.5999999, if the upper bound is set to 0.3 it will 0.299999. This occured regardless
of what post/pre-iteration settings were used. While the reason for this was never unequivocally
determined it may be due to the construction of the GMRES solver in the PyAMG source code and
should be investigated in the future. Since this process accurately computed the optimal relaxation
parameter, the group is inclined to believe that the issues lies with the GMRES solver and not the
minimize_scalar() function.

4 Conclusions

Due to restrictions present in Google Colaboratory, the group was not able to work directly with the
data produced by NREL. This was simply because the data produced by NREL was too large for
Colab to handle. After collaborating with both Dr. Aimé Fournier and Dr. Stephen Thomas, the group
successfully generated data (a diagonally dominant A matrix and b vector for the solver to ingest)
and identified which parameters appeared to influence the number of iterations as well as the
generated residuals. After identifying these parameters, the group needed to develop a method for
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optimizing these data. The group began by using the SOR algorithm to solve a large, sparse system
of equations and were able to successfully identify an optimal parameter for the relaxation
parameter, @, mathematically and then proceeded to find the optimal value by fixing a particular
tolerance level and varying the relaxation parameter in order to see which @ value minimized the
number of iterations. Graphs of the residuals were generated and the group was able to visualize
how varying the relaxation parameter changes the associated residual. The group employed a
similar method to find the optimal strength of connection parameter (which cannot be easily found
mathematically) and proceeded to investigate how other parameters influence the strength of
connection parameter as well as the residual and computation times. Specifically, the group
investigated how the strength of connection parameter influenced the post and pre-iterations. The
group's approach yielded unclear results regarding the optimal settings for the GMRES solver and
different methods should be investigated in the future. The group also computed the optimal
parameters by minimizing a function which takes in a desired parameter value (either strength of
connection or relaxation) and returns the number of iterations needed to reach the desired
tolerance. This was done in an attempt to accelerate and increase the accuracy of the group's
optimization and yielded somewhat unclear results (with the 6 parameter specifically).

There are a few main conclusions to draw from the results of the experiments above. First, it is best
to note again that all of these experiments were done using sparse, diagonally dominant matrices,
these results might vary if given matrices with different properties.

The first conclusion deals with the pre- and post-smoother iterations. The group initially was unsure
of how the pre- and post-smoother iterations would impact the total number of iterations. According
to the group's testing, increasing the pre- and post-smoothers to their maximum values appears to
decrease the amount of overall iterations needed to reach a solution; increasing the pre- and post-
smoothers to their maximum values (or close to their maximum values) resulted in the fewest
iterations. This result was seemingly independent of the other settings and were consistent
between all experiments. In general, the group's findings suggest that when the pre- and post-
iterations increase, the solver iterations decrease. Unfortunately, an error was identified which could
not be corrected in the alloted time. The answer for the optimal values differed if the order of the
elements in iteration_experiments changed. This insinuates that the group's method is not locating
the correct residual and must be addressed.

The second conclusion deals with the SOR relaxation parameter (). Specifically, the difference
between the optimal w for reducing solver iterations and the theoretical optimal w. In all
experiments, the tests to find the @ that reduces the solver iterations to the fewest possible
produced multiple possible w values, the program returns the first one it encounters. This means
that, the search for the relaxation parameter was not optimal. Despite this, the unique optimal
parameter can be reproduced by decreasing the tolerance level. Generally, the group's approach did
not initially follow the standard form of a continuous optimization problem but this was addressed
towards the end of the project. Defining an objective function with appropriate bounds (which
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correspond to the parameter being optimized) and minimizing the function using
scipy.optimize.minimize_scalar led to a more rigorous and accurate optimization of the relaxation
parameter (SOR), but yielded unclear results when applied to the strength of connection parameter
(GMRES). Specifically, the value of the optimal parameter would always tend towards the upper
bound of the given range which raises doubts regarding the accuracy of this value.

In regards to the optimal @ value, these data do not seem overly-dependent on the 8 value. Varying
the 0 parameter did not result in large variations in the number of iterations. This is likely due to the
type of matrices the solver is using (sparse, diagonally dominant matrices). The data generated by
the group suggests that almost all the values of 8 seem to result in a solution being found in the
same number of iterations. It is important to note that varying the post and pre-iteration settings
does lead to variations in the optimal strength of connection parameter.

It is critical to address the discrepancy between the optimal theta calculated using the "brute-force"
approach (looping over various post/pre-iteration values and 6) and the optimal 6 value generated
by minimizing an objective function which takes in a value for 6 and returns the iterations necessary
to reach the desired residual. While the latter approach is much quicker, the tendency for the
optimal 6 to consistently be the upper bound is concerning and may have occured for several
reasons including: a limitation in the PyAmg source code when building the solver, a quirk in the
minimize_scalar() which leads to problems when computing the optimal 6. Perhaps the optimal
parameter actually tends to be the upper bound, however the group couldn't identify a reason for
this to be the case. The fact that this approach worked seamlessly for the relaxation parameter (in
the SOR solver) suggests that this problem is specific to € which may insinuate an issue in the
PyAmg source code and needs to be investigated in the future.

Towards the very end of the semester, it was discovered that the group's program does not locate
the correct residual and iteration count (the ones associated with the optimal parameter) effectively.
Essentially, the students' method for locating the aforementioned residual would return the first
residual in a set of equal-length residuals. This first residual is generally not the one associated with
the optimal parameter. Due to time constraints, the group was unable to rework the necessary code.
Unfortunately, theta cannot readily be computed mathematically (as is the case for @) so the group
is uncertain of the accuracy of their calculated optimal @ parameter. If future research is conducted,
changing the method described about and comparing the value produced with the optimal
parameter calculated using scipy.optimize.minimize_scalar() may prove to be a useful starting
point.

5 Continued Research: Machine Learning

The next step in AMG optimization which couldn't be implemented this semester comes from the
field of Al and machine learning. Much of our work here is formulaic enough that a machine can be
trained to find the optimal parameters for the optimal smoothing methods with enough training
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data. Using the solutions from either NRELs data or our toy data, an algorithm can close in on the
optimal 6 or w, removing the need for the time-consuming brute force or exact method.

A method for this supervised learning would resemble a standard linear regression model:

1. Define the input matrix the model will iterate on, the pre-calculated output matrix it will train
towards, and whatever parameters the model will vary to get from the input to the output.

2. Have the model run our functions while varying the parameters, narrowing the error between
the input and output data with each iteration

3. When the model has passed a certain error threshold, output the optimal parameters it found.

4. Once the model is trained, it can do this without needing to be given the output matrix
beforehand.

Keras for TensorFlow and scikit-learn are the two most accessible frameworks for implementing
machine learning in Colab/Jupyter. A problem we ran into was getting a TensorFlow instance to

accept both the data matrix and the solution matrix to train against. The former is a Scipy matrix
and the latter is a Numpy array, and they will both need to be converted into tensors (or the Scikit

equivalent) for the machine learning instance to operate on them.

A subset of machine learning is deep learning, which uses multiple inference layers to reach its
desired outcome, mimicking a human brain. Each additional layer requires lots of computing power,
so while machine learning has been around for decades, deep learning is relatively new. This further
accelerates the task by using a neural network to have the model learn either supervised or
unsupervised. Several kinds of neural networks have come about, including artificial (ANN),
convolutional (CNN), recurrent (RNN), recursive (RvNN), and the more novel graph (GNN). A team at
the Weizmann Institute in Israel has recently researched using a single GNN to find the optimal

prolongation operator for any AMG. Their approach differs from ours by using unsupervised
learning to accelerate the prolongation/interpolation step, while ours focuses accelerating the
smoothing and iterative method, and would have involved supervised learning for those parameters.
Although these approaches are very different, they both accomplish the same goal of solving large
lineary systems quickly. Future research may involve replicating or improving this approach, or using
it in conjunction with our approach.
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