Work Breakdown

Vasi Reiva: Worked on incorporating and analyzing new data (building size vs. building consumption),
redeveloping solar production vs. building consumption based on more contemporary data (building
location and weather), and conducting cost optimization.

Carter Baller: Worked on data visualization, as well as the SARIMA modelling process, including many
trial and error methods, and final convincing results.

Abstract

For fifteen buildings in Colorado, the Colorado Energy Office (CEO) provided energy consumption,
building size, and solar irradiance data, taken every fifteen minutes for around three years. Though the
data provided is similar in quantity and quality, variation among buildings includes missing data, slightly
different time frames, and the different provenances of weather data. This project analyzes the patterns
of energy consumption — comparing consumption to time, building size, and approximate solar panel
production, providing several different visualizations to identify such patterns and seasonalities. The
project also uses the collected data to create ARIMA models, accounting for three relevant seasonalities:
daily, weekly, and annually.

Introduction

The Colorado Energy Office (CEO) has a long-standing commitment to reducing greenhouse gas
emissions and consumer energy costs by advancing clean energy, energy efficiency, and zero-emission
vehicles to benefit all Coloradans. According to the CEQ's recent statistical survey, buildings account for
about 40% of energy consumed in the United States. While traditional energy production provides
economic benefits to Colorado, greenhouse gas emissions from fossil fuel combustion have a negative
impact on the overall environment. Thus, institutional electricity consumption habits and the
encouragement of clean energy use are important to consider when attempting to reduce the negative
environmental impacts of energy consumption by government agencies.

In the spring 2021 semester, Math Clinic students Xiang Li, Yushan Xu, Yuxuan Han, and Zixu Wang
constructed a project that focused mainly on forecasted electricity consumption of government
buildings in order to better understand their usage patterns. When concluding their project, they
acknowledged the fact that there are limitations and possible inaccuracies in their study, mostly
stemming from inadequate information. They found that the original data, with building energy

consumption data spanning over a period of about three years, were insufficient when building their
seasonal ARIMA model.

This project will further analyze the building energy consumption of the same government buildings in
order to provide our sponsor and/or other stakeholders with updated recommendations for optimization
of building energy usage. On top of the original data used by the previous group, we will use building size,
location and weather data to provide further evaluation and explanation of each building’s energy
consumption. Using the new data, this project will provide suggestions for solar energy investment and
utilization through more recent data and more accurate calculations of solar production. While using
building energy consumption data spanning over a period of only three years remains insufficient for
producing accurate forecasting, this project develops a seasonal ARIMA model with all seasons
accounted for and parameters that have shown to be chosen with accuracy. We hope that our sponsor
and/or other stakeholders will be able to use our improvements to better understand the electricity
consumption characteristics of each agency.

Methods

Reading Data Sets and Data Cleaning
e Loads excel files:

o Master Interval Data_public.xlIsb (Buildings 1-9)
o Master Interval Data_public2.xIsb (Buildings 10-15)

= Original Building Data

= DATE: numerical variable representing the date (mmddyy)

= HOUR: numerical variable representing the minute of day

= kW: numerical variable representing the rate of consumption of electricity (kW)
= BUILDING: categorical variable representing each building

o Facility Size_Location_temp.xIsx
= QOriginal Building Size Data

= Floor Area: numerical variable representing the square footage of the building (ftz)
= Building ID: numerical variable representing the building number

= QOriginal Building Location Data

= Name/Location: categorical variable representing the city in which the building
resides

= Original NREL Data

= Year: numerical variable representing the year (yyyy)

» Month: numerical variable representing the month (mm)

= Day: numerical variable representing the day (dd)

= Hour: numerical variable representing the hour of day

= Minute: numerical variable representing the minute of hour

= DHI: numerical variable representing solar radiation that does not arrive on a direct
path from the sun, but has been scattered by clouds and particles in the
atmosphere and comes equally from all directions (W /m?)

= DNI: numerical variable representing the amount of light that is coming
perpendicular to the surface (W /m?)

= Temperature: numerical variable representing the temperature in celsius

= City: categorical variable representing the city for which the NREL data represents

= QOriginal Electricity Rate Data

= Rate: categorical variable representing the electricity service provider

= Summer Season kW Demand: numerical variable representing the additional cost
of summer energy, based on the demand of summer energy

= Winter Season kW Demand: numerical variable representing the additional cost of
winter energy, based on the demand of winter energy

= Summer Season kWh: numerical variable representing the base cost of summer
energy

= Winter Season kWh: numerical variable representing the base cost of winter
energy

e Reads in data ensuring that the original file remains unchanged.
e Cleans and defines new variables in preparation for the subsequent modelling and analysis work on
data.

Data Visualization

e Analyzes data through time series, density plots, box plots, and scatter matrix plots.
e Explores different seasonalities in order to gain more knowledge on the behavior of data.

Building Size vs. Building Consumption

e Compares building size to respective building consumption for buildings in which building size data
are available.

Solar Production vs. Building Consumption
e Calculates Solar PV (photovoltaic).

e Uses Solar PV and three variations of solar panel amounts in order to provide reference for solar
panel installation decisions.

» Solar PV Calculation Explanation: Begin by calculating the solar zenith angle: a function of time,
day, and latitude. The Solar Zenith Angle (0) can be calculated using the equation
cos(0) = sin(d) sin(Z) 4+ cos(d) cos(Z’) cos(w), where J is the declination of the sun, £ is

https://rammb.cira.colostate.edu/wmovl/vrl/tutorials/euromet/courses/english/nwp/n5720/n5720005.htm
https://www.sciencedirect.com/topics/engineering/solar-declination

latitude (defined as a positive constant in the northern hemisphere), and w is the hour angle. The
Declination of the Sun (8) can be calculated using the equation & = ® cos(C(d — dr)/dy), where

@ is the tilt angle of 23.5 degrees, C is a full 360 degrees, d is the Julian day, dris the Julian day
for summer solstice on June 21 (172), and dy is the number of days per year (365). The Hour
Angle (w) can be calculated using the equation ® = 15(4 — 12), where A is the military hour and
 increases by 15 degrees for every hour before or after noon.

Once the solar zenith angle has been calculated, it is used to calculate Global Horizontal Irradiance
(GHI). GHI can be calculated using the equation GHI = (DN 1 X cos(0)) + DH I, where DNI is
Direct Normal Irradiance and DHI is Diffused Horizontal Irradiance.

Once GHI has been calculated, it is used to calculate Solar PV. The Solar PV (E) can be calculated
using the equation E = A X r X GHI X PR, where A is the total area of the panel (m?), r is the
solar panel yield (%), and PR is the performance ratio with a default value of 0.75. Without
knowledge of the PV systems that would be used to provide energy to each of the fifteen buildings,
a few assumptions must be made. In the calculations, total area is estimated using the dimensions
of a 78in X 39in commercial solar panel, solar panel yield is estimated using a value of 15% (with

expectations for improvement), and the performance ratio is estimated using the default value of
0.75.

 Visualization Explanation: Using the buildings for which location — and thus DHI and DNI data -
has been provided, a comparison among Solar PV, building consumption, and residual
consumption can be made. The first column in the Solar Production vs. Consumption visualization
uses one solar panel to calculate solar production. The last column in or Solar Production vs.
Consumption visualization uses n solar panels to calculate solar production, where n is the
optimized number of solar panels where the mean value of the residual curve is just below the
minimum value of the building consumption curve. The middle column in the Solar Production vs.
Consumption visualization uses 4/n, rounded down to the nearest integer, to represent a geometric
medium that favors the smaller value in order to keep the amount of solar panels to a minimum.

Optimize Spending on Existing Data Consumption

e Calculates and compares the average cost of electricity usage for each building based on three
different service providers.

SARIMA Modelling

» Creates ARIMA models for energy consumption for each of the buildings, taking into account daily,
weekly, and yearly seasonalities.

* Process of Creating a SARIMA Model: Given the series of all energy consumption data from one
building, the Fast Fourier Transform is calculated and plotted to determine relevant seasonality

frequencies. It is important to discover what seasonalities the data exhibit so that those
seasonalities can be removed to create an accurate model, as Autoregressive Integrated Moving

Average (ARIMA) models cannot support seasonality. The reason ARIMA models are being used

https://www.sciencedirect.com/topics/engineering/solar-declination
https://www.sciencedirect.com/topics/engineering/solar-declination
https://www.yellowhaze.in/solar-irradiance/
https://www.saurenergy.com/solar-energy-blog/here-is-how-you-can-calculate-the-annual-solar-energy-output-of-a-photovoltaic-system
https://news.energysage.com/average-solar-panel-size-weight/
https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

instead of SARIMA (Seasonal ARIMA) is because a SARIMA model can only handle one type of
seasonality, where most of the buildings exhibit multiple relevant seasonalities. As such, removing
the relevant seasonalities and creating an ARIMA model off that can provide more accuracy when
accounting for the multiple seasonalities.

Once the seasonalities are discovered, the function seasonal decompose, which has a seasonal

input, is used to break the series into three different parts: trend, residuals, and seasonality. The
series is broken down such that if the three parts are added together, the series reverts back to
normal. The reason the series is broken down is to remove the seasonality, in other words, add only
the trend and residual components together, excluding the seasonality. This is repeated for each of
the relevant seasonalities discovered.

After the series has been seasonally differenced, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) of the series is plotted. The ACF and PACF are essential to
determining what parameters to plug into the ARIMA model. Once the ACF and PACF are plotted,
for these data, the series is not initially stationary, which the series needs to be for accurate ACF
and PACF analysis. To become stationary, the series is differenced, or each point is subtracted by
the next point in the series. However many times the series is differenced to become stationary is
the d parameter in the ARIMA (p, d, g) model.

Once the series is stationary, both the ACF and PACF are analyzed to determine at which lag (p or g
respectively) do all the autocorrelation or partial autocorrelation values after p or g resemble white
noise, or, reside in the confidence interval.

Once all the parameters are determined, the ARIMA model is calculated along with test statistics
showing reliability of the model.

Dependencies

Installs

1 # Install library to support .xlsb files

2 !pip install pyxlsb

3 # Install library to support statsmodels and ARIMA
4 !pip install pmdarima

Collecting pyxlsb
Downloading pyxlsb-1.0.9-py2.py3-none-any.whl (23 kB)
Installing collected packages: pyxlsb
Successfully installed pyxlsb-1.0.9
Collecting pmdarima
Downloading pmdarima-1.8.4-cp37-cp37m-manylinux 2 17 x86_64.manylinux2014_ x86_ 64 .m:
| I | 1.4 MB 4.8 MB/s
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: Cython!=0.29.18,>=0.29 in /usr/local/lib/python3.7/dis
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in /usr/local/lib/python3.

https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html
https://en.wikipedia.org/wiki/Stationary_process

Collecting statsmodels!=0.12.0,>=0.11

Downloading statsmodels-0.13.1-cp37-cp37m-manylinux 2 17 _x86_64.manylinux2014_x86_t

| I | 0.8 MB 16.8 MB/s

Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (fr¢
Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.7/dist-p:
Requirement already satisfied: numpy>=1.19.3 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.7/dist-package:
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dis
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-package:
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (£
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: patsy>=0.5.2 in /usr/local/lib/python3.7/dist-packages

Installing collected packages: statsmodels, pmdarima
Attempting uninstall: statsmodels
Found existing installation: statsmodels 0.10.2
Uninstalling statsmodels-0.10.2:
Successfully uninstalled statsmodels-0.10.2
Successfully installed pmdarima-1.8.4 statsmodels-0.13.1

Imports

0 N o0 U W N

N e e e
N o U WN R OV

1
2

from google.colab import drive

import warnings

import os

import pandas as pd

from tgdm import tqgdm

from datetime import datetime

import matplotlib.pyplot as plt

from statsmodels.graphics.tsaplots import plot acf
from statsmodels.graphics.tsaplots import plot pacf

#
#
#
#
#
#
#
import seaborn as sns #
import statistics #
import numpy as np #
from scipy.fft import fft #
from scipy import signal #
from statsmodels.tsa.seasonal import seasonal decompose #
from statsmodels.tsa.arima.model import ARIMA #

#

from statsmodels.tsa.statespace.sarimax import SARIMAXResults

Allows access to Google Drive
drive.mount('/content/drive/")

Mounted at /content/drive/

Loading Excel Files - 1I
Loading Excel Files - 1
Building Data - Monthy
Building Data - Solar I
Time Series, ACF, & PAC
Time Series, ACF, & PAC
Time Series, ACF, & PAC
Data Visualization - Sc
Solar Production vs. Cc
Building Consumption v
SARIMA Modelling - SARI
SARIMA Modelling - SARI
SARIMA Modelling - SARI]
SARIMA Modelling - SARI
SARIMA Modelling - SARI

Many of the SARIMA modelling processes produce pages upon pages of warnings, this cor

warnings.filterwarnings('ignore')

Global variables
A = 0.25 # Sampling interval in hours

3 hrpd = 24 # Hours per day
4 dpwk = 7 # Days per week
Functions

Data Visualization Functions

1 def density plot(plot type,axs,n,build name):

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

if plot type == 'Annual':
sns.histplot(df[(df["BUILDING"]==build name)]['kW'],
label='Annual',bins=100,color="b',alpha=0.3,stat="density"',
ax=axs[n,0],kde=True)
axs[n,0].set title(build name+' Annual')
axs[n,0].legend(loc="upper left')
axs[n,0].set xlabel('Electricity Consumption (kWh)"')
elif plot type == 'Seasonal':
sns.histplot(df[(df["BUILDING"]==build name)&(df["SEASON"]=="Summer")]["kwW"],
label='Summer',bins=100,color="r',alpha=0.3,stat="density"',
ax=axs[n,1l],kde=True)
sns.histplot (df[(df["BUILDING"]==build name)&(df["SEASON"]=="Winter")]["kW"],
label='Winter',bins=100,color="b',alpha=0.3,stat="density"',
ax=axs[n,1l],kde=True)
axs[n,l].set title(build name+' Summer & Winter')
axs[n,1l].legend(loc="'upper left')
axs[n,l].set xlabel('Electricity Consumption (kWh)"')
axs[n,1l].set_ylabel(' ')
elif plot type == 'Days':
sns.histplot(df[(df["BUILDING"]==build name)&(df["DAY OF WEEK"].isin([0,1,2,3,4])):
label='Weekday',bins=100,color="r',alpha=0.3,stat="'density’,
ax=axs[n,2],kde=True)
sns.histplot (df[(df["BUILDING"]==build name)&(df["DAY OF WEEK"].isin([5,6]))]1["kW":
label="'Weekend',bins=100,color="'b',alpha=0.3,stat="density’',
ax=axs[n,2],kde=True)
axs[n,2].set_title(build name+' Weekday & Weekend')
axs[n,2].legend(loc="upper left')
axs[n,2].set xlabel('Electricity Consumption (kWh)')
axs[n,2].set_ylabel(' ')

1 def semilogydensity plot(plot type,axs,m,build name):

2
3
4
5
6
7
8

9
10
11
12

if plot type == 'Annual':
sns.histplot(df[(df["BUILDING"]==build name)]['kW'],
label='Annual',bins=100,color="b',alpha=0.3,stat="density"',
ax=axs[m,0],kde=True, log scale=(False, True))
axs[m,0].set title(build name+' Annual')
axs[m,0].legend(loc="upper left')
axs[m,0].set xlabel('Electricity Consumption (kWh)"')
elif plot type == 'Seasonal':
sns.histplot(df[(df["BUILDING"]==build name)&(df["SEASON"]=="Summer")]["kwW"],
label='Summer',bins=100,color="r',alpha=0.3,stat="density"',
ax=axs[m,1l],kde=True, log scale=(False, True))

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0 N o U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

sns.histplot(df[(df["BUILDING"]==build name)&(df["SEASON"]=="Winter")]["kw"],
label='Winter',bins=100,color="b',alpha=0.3,stat="density"',

ax=axs[m,1l],kde=True, log scale=(False, True))
axs[m,1l].set _title(build name+' Summer & Winter')
axs[m,1l].legend(loc="upper left')
axs[m,1l].set xlabel('Electricity Consumption (kWh)"')
axs[m,1l].set _ylabel(' ')
elif plot type == 'Days':

sns.histplot(df[(df["BUILDING"]==build name)&(df["DAY OF WEEK"].isin([0,1,2,3,4])):
label='Weekday',bins=100,color="r"',alpha=0.3,stat="density"',

ax=axs[m,2],kde=True, log scale=(False, True))

sns.histplot(df[(df["BUILDING"]==build name)&(df["DAY OF WEEK"].isin([5,6]))]["kwW":
label='Weekend',bins=100,color="b',alpha=0.3,stat="'density’,

ax=axs[m,2],kde=True, log scale=(False, True))
axs[m,2].set_title(build name+' Weekday & Weekend')
axs[m,2].legend(loc="upper left')
axs[m,2].set xlabel('Electricity Consumption (kWh)"')
axs[m,1l].set _ylabel(' ')

def box plot(plot_ type,axs,index,build name):
labels={'Night':'royalblue', 'Day': 'darkorange’}
sns.boxplot (x="HOUR",y="kW" ,data=df[(df["BUILDING"]==build name)],

ax=axs[index,0],flierprops=dict(markersize=2),hue="DAYTIME",palette=1label

axs[index,0].set title(build name+' Consumption')
axs[index,0].legend(loc="upper left")
axs[index,0].set xlabel('Hours of the Day')
axs[index,0].set ylabel('Electricity Consumption (kWh)")
if plot type == 'Seasonal':

sns.boxplot (x="HOUR",y="kW" ,data=df[(df["BUILDING"]==build name)&(df["SEASON"]=="St

ax=axs[index,1],flierprops=dict(markersize=2),hue="DAYTIME",palette=1lak

axs[index,l].set title(build name+' Summer Consumption')

axs[index,1l].legend(loc="upper left")

axs[index,1].set xlabel('Hours of the Day')

axs[index,1].set ylabel(' ')

sns.boxplot (x="HOUR",y="kW" ,data=df[(df["BUILDING"]==build name)&(df["SEASON"]=="Wi

ax=axs[index,2],flierprops=dict(markersize=2),hue="DAYTIME",palette=lal

axs[index,2].set title(build name+' Winter Consumption')
axs[index,2].legend(loc="upper left")
axs[index,2].set xlabel('Hours of the Day')

axs[index,2].set _ylabel(' ')
elif plot type == 'Days':
sns.boxplot (x="HOUR",y="kW" ,data=df[(df["BUILDING"]==build name)&(df["DAY OF WEEK":

ax=axs[index,l],flierprops=dict(markersize=2),hue="DAYTIME", palette=lal

axs[index,1].set title(build name+' Weekday Consumption')
axs[index,1l].legend(loc="upper left")

axs[index,1].set xlabel('Hours of the Day')

axs[index,1].set ylabel(' ')

sns.boxplot (x="HOUR",y="kW" ,data=df[(df ["BUILDING"]==build name)&(df["DAY OF WEEK":

ax=axs[index,2],flierprops=dict(markersize=2),hue="DAYTIME", palette=1lak

axs[index,2].set title(build name+' Weekend Consumption')

axs[index,2].legend(loc="upper left")
axs[index,2].set xlabel('Hours of the Day')

axs[index,2].set _ylabel(' ')

Solar Production vs. Consumption Functions

1 def solar plot(plot type,axs,index):

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

if plot type ==

sns.lineplot(data=sub, x="HOUR", y="kW", label="Building kW", ax=axs[index,0])
sns.lineplot(data=sub, x="HOUR", y="Solar PV ({})".format(plot type), label="Solar
sns.lineplot(data=sub, x="HOUR", y="Residual ({})".format(plot type), label="Residt
axs[index,0].axvline(x=0, c="Black")

axs[index,0].axhline(y=0, c="Black")

axs[index,0].set_title(f"Building {x} Solar Production vs. Consumption\n for 1 Sole
axs[index,0].legend(loc="'lower right')

elif plot type ==

sns.lineplot(data=sub, x="HOUR", y="kW", label="Building kW", ax=axs[index,1])
sns.lineplot(data=sub, x="HOUR", y="Solar PV ({})".format(plot type), label="Solar
sns.lineplot(data=sub, x="HOUR", y="Residual ({})".format(plot type), label="Residi
axs[index,1l].axvline(x=0, c="Black")

axs[index,1l].axhline(y=0, c="Black")

axs[index,1l].set_title(f"Building {x} Solar Production vs. Consumption\n for {int(r
axs[index,1l].legend(loc="'lower right')

axs[index,1].set _ylabel(' ')

elif plot type ==

def
n

sns.lineplot(data=sub, x="HOUR", y="kW", label="Building kW", ax=axs[index,2])
sns.lineplot(data=sub, x="HOUR", y="Solar PV ({})".format(plot type), label="Solar
sns.lineplot(data=sub, x="HOUR", y="Residual ({})".format(plot type), label="Residt
axs[index,2].axvline(x=0, c="Black")

axs[index,2].axhline(y=0, c="Black")

axs[index,2].set _title(f"Building {x} Solar Production vs. Consumption\n for {n} Sc
axs[index,2].legend(loc="'lower right')

axs[index,2].set _ylabel(' ')

calculation_ demand(sub):
=1

minkW = min(sub["kW"])
res = statistics.mean(sub["kW"]) - statistics.mean(sub["Solar PV (1)"])

while res > minkW:

n=mn+1
res = statistics.mean(sub["kW"]) - (statistics.mean(sub["Solar PV (1)"]) * n)

return n

SARIMA Modelling Functions

1 # Coded primarily by Professor Fournier

2
3
4
5

def
n
r
X

fft AF(building,dfkw):

= len(dfkw)

= np.arange(n)

= np.abs(fft(dfkw))[:n//2]

0 9 o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0 N o U W N

11
12
13
14
15
16
17
18
19
20
21
22
23

f, axs = plt.subplots(1l,1,figsize=(30,10))
axs.loglog(r[l:n//2]1/(n*A*(1/hrpd)*(1/dpwk)) # Frequency in 1/week
yX[1:],'.=")
labels={1/52.:'1l/year',1/26.:'2/year"',3/52.:'3/year',1/13.:"'4/year",
.25:'1/month',.5:"'2/month"',
1:'1/week',2:'2/week',5:"'5/week"',
7:'1/day',14:'2/day"',21:'3/day',28:'4/day"',35:"'5/day"',42:'6/day"',
49:'7/day',168:'1/hour',336:'2/hour'} # Mark seasonalities for easy reading
for £ in [1/52.,1/26.,3/52.,1/13.,.25,.5,1,2,5,7,14,21,28,35,42,49,24*7,48%7]:
axs.text(f, x.min(), labels[f], rotation='vertical', ha='center')
plt.title('FFT Series of Building '+str(building)+' with Logarithmic y-scale',6 fontsi:
plt.xlabel('Frequency (1l/week)')
plt.ylabel('|FFT Value|')
plt.show()
Plots FFT with linear y-scale
f, axs = plt.subplots(l,1,figsize=(30,10))
axs.semilogx(r[l:n//2]/(n*A*(1/hrpd)*(1/dpwk))
yX[1e]*%2,".=")
for £ in [1/52.,1/26.,3/52.,1/13.,.25,.5,1,2,5,7,14,21,28,35,42,49,24*7,48%7]:
axs.text(f, x.min(), labels[f], rotation='vertical', ha='center', position=(f,max(:
plt.title('FFT Series of Building '+str(building)+' with Linear y-scale',fontsize=30)
plt.xlabel('Frequency (1l/week)')
plt.ylabel('|FFT Value|"2")
plt.show()
return x

def rseas(x,dfkw):

prominence = max(x[1l:]1**2)/100 # After trial and error, this prominence detects ez
while leaving out non-relevant seasonalities.
fftpeaks = signal.find peaks(x**2,height=prominence)
n = len(dfkw)
fftmul = []
for i in np.arange(len(fftpeaks[0])):
fftmul.append(1l/(fftpeaks[0][i]/(n*A*(1/hrpd)))) # Convert spike indices to un:
fftseas = []
for i in fftmul: # Evaluates every FFT spike
bo = (i >= 0.5 and i <= 1.5) or (i >= 6 and i <= 8) or (i >= 350 and i <= 380)
if bo == True:
fftseas.append(i) # Keeps only daily, weekly, or yearly
rseas = ['n','n','n'] # Creates a list of seasonalities, used for each building
rseas[0] is daily, rseas[l] is weekly, rseas[2] is yearljy
for i in fftseas:
if i >= 0.5 and i <= 1.5:
rseas[0] = 'y'
if i >= 6 and i <= 8:
rseas[1l] = 'y'
if i >= 350 and i <= 380:
rseas[2] = 'y'
return(rseas)

1 # Print statement of seasonalities
2 def rstate(rseas): # rseas is the set of seasonalities, y/n for each

0w g o0 U W

11
12
13
14
15
16
17
18
19
20
21
22
23
24

if rseas[0] == 'y

if rseas[l] == 'y':
if rseas[2] == 'y':
print('\nThere is evidence
elif rseas[2] == 'n':

print('\nThere is evidence

elif rseas[1l] == 'n'
if rseas[2] == 'y'
print('\nThere is evidence
elif rseas[2] == 'n':
print('\nThere is evidence
elif rseas[0] == 'n'
if rseas[l] == 'y'
if rseas[2] == 'y':

print('\nThere is evidence

elif rseas[2] == 'n
print('\nThere is evidence
elif rseas[1l] == 'n'
if rseas[2] == 'y'

is evidence

== n

print('\nThere
elif rseas[2]

print('\nThere is not much

def daily(building):

Creates a set of all timestamp

df build = df[df["BUILDING"]=="B
df build.index = df build['year
df build = df build.drop(columns

print("Consumption Data for all
Removes daily seasonality

df sd = seasonal decompose(df b
df sd = df sd.trend + df sd.resi

of a daily, weekly, and yearly seasonality.\n')

of a daily and weekly seasonality, but not much evic

of a daily and yearly seasonality, but not much evic

of a daily seasonality, but not much evidence of a v
of a

weekly and yearly seasonality, but not much ev]

of a weekly seasonality, but not much evidence of a

of yearly seasonality, but not much evidence of a

Q

evidence for seasonality.\n')

s and corresponding kWh values for one building
uilding "+str(building)].sort values("DATETIME")[["ye
month day']

='year month day')

measurements for Building "+str(building)+':\n',df bt

uild['kWh'],period=96,extrapolate trend='freq')
d
h day').sum().reset_index()

df sd = df sd.groupby('year mont
df sd.index = df sd['year month day']
df sd = df sd.drop(columns='year

df sd['kwh'] = df sd[0]
df sd = df sd.drop(columns=0)
return df sd

Removes seasonalities
def removal(rseasin,df build):

if rseasin[0] == 'y
sd = df build
elif rseasin[l] == 'y':

and rseasin

~month day')

rseasin is the set of seasonalities, y/n for each
rseasin[l] is weekly, rseasin[2] is yearly

df build is the set of dates and corresponding kWh
[1] == 'n’

and rseasin[2] == 'n

Breaks the series into seasonal, trend, and residual components
Adding the trend and residual components removes the relevant seasonality

sd = seasonal_ decompose(df build['kWh'],period=7,extrapolate trend='freq')
sd = sd.trend + sd.resid
if rseasin[2] == 'y':

sd = seasonal decompose(sd,period=365,extrapolate trend='freq')

14
15
16
17
18
19

sd

= sd.trend + sd.resid

elif rseasin[l] == 'n

if rseasin[2] == "y

sd
sd
return

Plots time series, ACF,
def rplots(sd,building,alpha):

seasonal decompose(df build['kWh'],period=365,extrapolate trend='freq')
= sd.trend + sd.resid
sd # sd is the seasonally-differenced series

and PACF
sd is the seasonally-differenced series

building is the building number

alpha is the confidence interval (typically 0.05)
Plots time series
plt.
plt.
plt.

figure(figsize=(30, 10))
plot(sd,'.',color="k")
title('Plot of One-Day Building
plt.xlabel('Date (YYYY-MM)')
plt.ylabel('Electricity Consumption (kWh) ')

Plots ACF

plt.subplots(figsize=(30,10))

plot_acf(sd,lags=30,alpha=alpha, ax=ax) # 30 lags shows enough to determine model
plt.title('ACF of One-Day Building '+str(building)+'
plt.xlabel('Lags (l-Day Intervals)')
plt.ylabel('Autocorrelation')

Plots PACF

plt.subplots(figsize=(30,10))

plot pacf(sd,lags=30,alpha=alpha,ax=ax) # 30 lags shows enough to determine model
plt.title('PACF of One-Day Building '+str(building)+'
plt.xlabel('Lags (l-Day Intervals)')
plt.ylabel('Partial Autocorrelation')

plt.show()

'+str(building)+' Data After Removing Seasonality

fig, ax =

Data After Removing Seasonality'

fig, ax =

Data After Removing Seasonalitj

Takes the first-order difference of the series
def diff(sd,building,d):

sd is the seasonally-differenced series
building is the building number
d is how many times to difference the series

if d ==
print('The series is stationary without differencing.')
else:
nd = sd.diff().dropna() # Takes the first difference
d=d-1

while d > 0:
nd = nd.diff().dropna()
d=d-1
if d == 0:
break
rplots(nd,building,0.00005)

Takes any additional differences

Use a lower alpha value to better see the parameters

Plots the created model against original data
def tracing(best model,sd,df build):

best model is the ARIMA model built
sd is the seasonally-differenced series
df build is the set of dates and correspondir

0 g9 o U,

P O W 00 O U b W IN -

= e

electrical energy consumption in kWh for one
Creates a data set based off the model for all the dates
modelling = best model.predict(start=str(sd.index[0]),end=str(sd.index[len(sd)-1]))
plt.figure(figsize=(30,10))
plt.plot(df build.index,df build['kWh'],'.',color='b',label='0Original Data')
plt.plot(df build.index[l:len(modelling)],modelling[l:len(modelling)],"'."',color="r",]
plt.title('Plot of Created Model Compared to Original Data',fontsize=30)
plt.xlabel('Date (YYYY-MM)')
plt.ylabel('Electrical Energy Consumption (kWh)"')
plt.legend()
cor = df build['kWh'].corr(modelling[l:len(modelling)])
print('\nCorrelation:\n',cor)
return cor

def stattest(best model,cor):
stattest = []
1j = best model.test serial correlation(method='ljungbox')[0][1][0] # Ljung-Box test
het = best model.test heteroskedasticity(method='breakvar')[0][1] # Heteroscedastic
stattest.append(1lj)
stattest.append(het)

if 1j > 0.05 and het > 0.05: # If neither tests are statistically significant
stattest.append('n') # Evidence to support the model, not necessary to ree
else:
stattest.append('y"') # Evidence to refute the model, should be reevaluatec

stattest.append(cor)
return stattest

def sarima groundwork(building): # building is the building number
Creates a set of all timestamps and corresponding kWh values for one building
df build = df[df["BUILDING"]=="Building "+str(building)].sort values("DATETIME")[["ye
df build.index = df build['year month day']
df build = df build.drop(columns='year month day')
print("Consumption Data for all measurements for Building "+str(building)+':\n',df bt
Calculates and plots the FFT of a data set
dfkw = df build['kWh'].values
print('\nPlotting FFT of series:\n')
x = fft AF(building,dfkw)
Determines relevant seasonalities
rseasin = rseas(x,dfkw)
return(rseasin) # rseasin is a set of seasonalities, y/n for each

def sarima analysis(building,rseasin,sparam): # building is building number
rseasin is the set of seasonalities,
sparam is a manually determined set ¢
each building, based off the differer
rstate(rseasin)
if rseasin[0] == 'y':
df sd = daily(building)
Removes other seasonalities
sd = removal(rseasin,df sd)
else:

Creates a set of daily timestamps and corresponding kWh-sum values for one buildinc

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

df build = df[df["BUILDING"]=="Building "+str(building)].sort values("DATETIME")[['

df build.index = df build['year month day']
df build = df build.drop(columns='year month day')

print ("Consumption Data for daily measurements for Building "+str(building)+':\n',c

Removes seasonalities
sd = removal(rseasin,df build)
print('\nPlotting series after removing seasonalities:\n')
Plots time series, ACF, and PACF
rplots(sd,building,0.05)
print('\nPlotting series after removing seasonalities and differencing:\n')
Takes the first-order difference of the series

diff(sd,building,int(sparam[1l])) # sparam[l] is the d parameter of the ARIMA model

analyzing the differenced ACF and PACF
Creates an ARIMA model based off the manually determined parameters
best model = ARIMA(sd, order=(int(sparam[0]),int(sparam[1l]),int(sparam[2]))).fit()
print('\nCreating ARIMA model for the series:\n',best model.summary())
Plots the created model against original data
if rseasin[0] == 'y':
cor = tracing(best model,sd,df sd)

else:
cor = tracing(best model,sd,df build)
stats = stattest(best _model,cor)

return stats

Reading Data Sets and Data Cleaning

Loading Excel Files

1

O 00 9 O U i W N

N o O W N

Creates path to data
cwd = os.getcwd()
pathCEO = cwd + '/drive/My Drive/'
Path for Professor Fournier
pathProfessor = 'Colab Notebooks/Math Clinic/2021fa/CEO/'
if os.path.exists(pathCEO + pathProfessor):
pathCEO += pathProfessor
pathCEO += 'CEO data/'
os.listdir (pathCEO)

['Master Interval Data public.xlsb',
'Facility Size Location_ temp.xlsx',
'DEN Solar Data Clean.csv',

'Master Interval Data public2.xlsb']

Loading data files into variables
Import data for Buildings 1-9
data file = []
efile = pd.ExcelFile(pathCEO + 'Master Interval Data public.xlsb', engine='pyxlsb')
data file.append(efile)
Import data for Buildings 10-15
efile = pd.ExcelFile(pathCEO + 'Master Interval Data public2.xlsb', engine='pyxlsb')

8 data_file.append(efile)

9

Import size, location, and weather data

10 efile = pd.ExcelFile(pathCEO + 'Facility Size Location temp.xlsx')
11 data_file.append(efile)

1 # Delete unwanted variables and installs
2 del(efile)

Reading Sheets from Excel

Building Data

1 # Define a list to hold the DataFrame for each Building
2 dfs = []

1 # Run Time: Approximately 2min
2 for sheet names, excel file in [(data file[0].sheet names[l:-1],data file[0]),

3

0 g o U

11
12
13
14
15
16
17
18
19
20
21
22

(data_file[l].sheet names[l:],data file[l])]:
for sheet name in tqgdm(sheet names):
if sheet name == "Building 1":
df _build = pd.read_excel(excel file,sheet name=sheet name,header=10,usecols="B:C,
df build["BUILDING"] = sheet name
df build.columns = df build.columns.str.strip()
dfs.append(df build)

elif sheet name == "Building 15":
df build = pd.read_excel(excel file,sheet name=sheet name,header=9,usecols="B,F")
df build["BUILDING"] = sheet name
df build["DATE"] = df build[" DATE & Time"].map(lambda x: datetime.fromtimestamp|
df build["HOUR"] = df build[" DATE & Time"].map(lambda x: datetime.fromtimestamp|
df build = df build.drop([" DATE & Time"],axis=1)

df build.columns = df build.columns.str.strip()
dfs.append(df build)
else:
df build = pd.read excel(excel file,sheet name=sheet name,header=1,usecols="B:C,}
df build["BUILDING"] = sheet_ name
df build.columns = df build.columns.str.strip()
dfs.append(df build)

100 || °/9 [(01:00<00:00, 6.77s/it]
100% || 6/6 [00:43<00:00, 7.22s/it]

datetime Function Explanation: Building 15 is different from the other buildings in that the date is in the
form of datetime (mm/dd/yy hh:mm); to correspond with the other buildings, we want date in the form of

date (mmddyy) and hour (hhmm). Excel's date system starts from 01/01/1900. In order to convert from

Excel's decimal-date-value to Python's, which starts 01/01/1970, we must subtract the number of days

between those two dates (25569 days) and then multiply the days since 01/01/1970 by the number of

seconds in a day (86400 sec/day) to get seconds since 01/01/1970. Once converted to seconds,

strftime converts the decimal value to date (mmddyy) and hour (hhmm).

1
2
3

1
2
3

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Merge all data from 15 buildings
df = pd.concat(dfs)

print (df)

DATE HOUR kw BUILDING
0 10118.0 15.0 15.360 Building 1
1 10118.0 30.0 17.920 Building 1
2 10118.0 45.0 17.280 Building 1
3 10118.0 100.0 16.000 Building 1
4 10118.0 115.0 18.560 Building 1
108924 21721.0 130.0 29.852 Building 15
108925 21721.0 145.0 30.180 Building 15
108926 21721.0 200.0 31.292 Building 15
108927 21721.0 215.0 28.620 Building 15
108928 21721.0 230.0 31.740 Building 15

[1587418 rows x 4 columns]

Delete possible missing values
df = df.dropna()
df = df.reset index(drop=True)

Column modification
Change DATE and HOUR type to string

df["DATE"] = df["DATE"].astype(int).astype(str)
df["HOUR"] = df["HOUR"].astype(int).astype(str)
Convert DATE to Year-Month-Day
df["year month day"] = pd.to datetime(df["DATE"].str.zfill(6), format="%m%d%y")
Modify data with HOUR equal to 2400
df.loc[df[df["HOUR"] == "2400"].index, "year month day"] = df.loc[df[df["HOUR"] == "24(
df.loc[df[df["HOUR"] == "2400"].index, "HOUR"] = "0"

Add new datetime column
df["DATETIME"] = pd.to _datetime(df["DATE"].str.zfill(6)+df["HOUR"].str.zfill(4), format
#df = df.drop(["year month day"], axis=1)

Add year, month, day, hour columns

df["YEAR"] = df["DATETIME"].dt.year

df["MONTH"] = df["DATETIME"].dt.month

df["DAY"] = df["DATETIME"].dt.day

df["HOUR"] = df["DATETIME"].dt.hour

Add daytime column (0900-1700 = Day; 1701-0859 = Night)

df["DAYTIME"] = df["HOUR"].astype(int).map(lambda x: "Day" if 9 <= x <= 17 else "Night'
Add day of week column (Monday = 0; Sunday = 6)

df ["DAY OF WEEK"] = df["DATETIME"].dt.dayofweek
Add season column (June-September = Summer; October-May = Winter)

df["SEASON"] = df["MONTH"].map(lambda x: "Summer" if x in [6, 7, 8, 9] else "Winter")

Add kWh column

25 df["kWh"] = df["kW"] * A
26 print(df)

DATE HOUR kw BUILDING ... DAYTIME DAY OF WEEK SEASON kWh
0 10118 0 15.360 Building 1 ... Night 0 Winter 3.840
1 10118 0 17.920 Building 1 Night 0 Winter 4.480
2 10118 0 17.280 Building 1 Night 0 Winter 4.320
3 10118 1 16.000 Building 1 Night 0 Winter 4.000
4 10118 1 18.560 Building 1 Night 0 Winter 4.640
1587411 21721 1 29.852 Building 15 ... Night 2 Winter 7.463
1587412 21721 1 30.180 Building 15 ... Night 2 Winter 7.545
1587413 21721 2 31.292 Building 15 ... Night 2 Winter 7.823
1587414 21721 2 28.620 Building 15 ... Night 2 Winter 7.155
1587415 21721 2 31.740 Building 15 ... Night 2 Winter 7.935

1 del(dfs, sheet names, excel file, sheet name, df build)

Building Size Data

1 sdf = pd.read excel(data file[2], sheet name="Facility information", header=2, usecols:
2 sdf.columns = sdf.columns.str.strip()
3 print(sdf)

Building ID Floor Area

0 1 17888.0
1 2 NaN
2 3 NaN
3 4 NaN
4 5 NaN
5 6 NaN
6 7 NaN
7 8 NaN
8 9 NaN
9 10 338777.0
10 11 NaN
11 12 174908.0
12 13 131990.0
13 14 164553.0
14 15 NaN

Building Location Data

1 1df = pd.read excel(data file[2], sheet name="Facility information", header=2, usecolss=
2 1df.columns = ldf.columns.str.strip()

3 ldf.dropna(subset = ["Name/ Location"], inplace=True)

4 1df["Name/ Location"].replace({"Fort Lupton": "Ft Lupton"}, inplace=True)

5 1df.reset_index(inplace=True)

6 print(1ldf)

index Building ID Name/ Location
0 1 2 Denver

1 2 3 Denver
2 3 4 Golden
3 4 5 Rifle
4 5 6 Sterling
5 9 10 Denver
6 10 11 Denver
7 11 12 Grand Junction
8 12 13 Aurora
9 13 14 Golden
10 14 15 Ft Lupton

NREL Data

1 # Define a list to hold the DataFrame for each Building
2 wdfs = []

1 for sheet names, excel file in [(data file[2].sheet names[l:],data file[2])]:

2 for sheet name in tgdm(sheet names):

3 df build = pd.read_excel(excel file,sheet name=sheet name,header=2,usecols="A:G,K")
4 df head = pd.read excel(excel file,sheet name=sheet name,usecols="F")

5 df build["Latitude"] = df head["Latitude"][0]

6 df build["City"] = sheet name

7 df build.columns = df build.columns.str.strip()

8 wdfs.append(df build)

100 | S| 7/7 [00:01<00:00, 3.78it/s]

1 # Merge all data from 15 buildings
2 wdf = pd.concat(wdfs)
3 print(wdf)

Year Month Day Hour Minute DHI DNI Temperature Latitude City
0 2017 1 1 0 30 0 0 -2.0 39.73 Aurora
1 2017 1 1 1 30 0 0 -2.0 39.73 Aurora
2 2017 1 1 2 30 0 0 -2.0 39.73 Aurora
3 2017 1 1 3 30 0 0 -3.0 39.73 Aurora
4 2017 1 1 4 30 0 0 -3.0 39.73 Aurora
8755 2015 12 31 19 30 0 0 -11.0 40.61 Sterling
8756 2015 12 31 20 30 0 0 -10.0 40.61 Sterling
8757 2015 12 31 21 30 0 0 -10.0 40.61 Sterling
8758 2015 12 31 22 30 0 0 -10.0 40.61 Sterling
8759 2015 12 31 23 30 0 0 -10.0 40.61 Sterling

[61320 rows x 10 columns]

1 del(wdfs, sheet names, excel file, sheet name, df build, df head)

Electricity Rate Data

1 df info = pd.read excel(data file[0],sheet name="Rates & Info",header=1,usecols="E, G:{
2 # Change "Rate" to index

3 df info = df info.set index(["Rate"])

4 print(df info)

Summer Season kW Demand ... Winter Season
Rate .
Secondary General (SG) 19.65 ... 0.0
Secondary General Low-Load Factor (SGL) 5.63 ... 0.1:
Primary General (PG) 18.12 ... 0.0

[3 rows x 4 columns]

Results/Discussion

Data Visualization

Time Series by Season with One-Day Interval

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

for i in range(1l5):

Creates set of all timestamps, and their corresponding kWh values and season categc
df build = df[df["BUILDING"]=="Building "+str(i+l)].sort values("DATETIME")[["year mc
Sorts set by season, producing summer values first, then winter

df sum = df build.sort values('SEASON').reset index()

The amount of days in the summer months (June, July, August, September) is always I
Multiply by 96 to turn the measurements into units of days, and multiply by 3 to ac
df summer df sum[:122*96*3]

df summer = df summer.drop(columns='index').drop(columns='SEASON').sort values('year_
df summer = df summer.groupby('year month day').sum() # Converts to daily, summer-—c
df winter = df_sum[122*96%*3:]

df winter = df winter.drop(columns='index').drop(columns='SEASON').sort values('year_
df winter = df winter.groupby('year month day').sum() # Converts to daily, winter-c
plt.figure(figsize=(30,10))

plt.plot(df summer,'.',color='r',label='Summer"')

plt.plot(df winter,'.',color='b',6label="'Winter")

plt.title("Building "+str(i+l),fontsize=30)

plt.xlabel('Date (YYYY-MM)')

plt.ylabel('Electricity Consumption (kWh) ')

plt.legend(fontsize=15)

plt.show()

22 del(i,df build,df sum,df summer,df winter)

Building 1

= Summer
R Winter
wee et .
1200 . N . .
. .. hEY . * .
1000 * "
£ e e
£ .. EN -
2 ~
S 600 . . S .
F <.t . .
i .. *
200 s P
200
o
208.01 01805 208.08 201801 019.05 201808 2020.01 2020.05 020-08 202100
Date (YYYY-MM})
17500
© Summer
+ Winter
15000
Y.
%%,
12500 R
Fa)
£
H
= 10000 .
£
S
z TS00
s000
2500
0
2018-01 2018-05 2018-09 201%-01 2019-05 201%-09 2020-01 2020-05 2020-09 2021-01
Date (YYYY-MM)
30000 g
Summer
: + Winter
250000
20000 [y Lt
- N - Nt
N e TN Y
£ T ST
H RIS PR
H et
£ 15000 .
g
=
& 10000
5000
o
01801 01805 201809 2019.01 201805 201509 2020.01 202005 2020-08 02101
Date (1YEMM)
2000 . * Summer
: * Lt + Winter
1750
1500 fe L. . . " .
: . PO S RPR A
Fempan, - Slin el
Feptipe Lo st - PRI S oo
B PR - . oty oo B S o
AN S e . TR0 N
£ 1o R ORI MR 220
£ . PR . . e ot Pl
H s e e, . ¢
5 PRI
£ d
3 1000 - .
g N

Time Series, ACF, & PACF with 15-Minute Interval

%0 l

1 # Run Time: Approximately 1.5min
2 for index, build name in enumerate(tgdm(df["BUILDING"].unique())):

0w g o0 U b W

9
10
11
12
13
14
15
16
17
18
19
20
21

date kWh = pd.DataFrame(df[(df["BUILDING"]==build name)],columns=["DATETIME", "kWh"])
date kWh.index = date kWh['DATETIME']
layout = (30,2)
date kWh['kWh'].plot(figsize=(30,300),title=build name,
ax=plt.subplot2grid(layout, (index*2,0),colspan=2),
style='k.',alpha=0.2)
plt.title('Time Series at 15-Minute Intervals of '+str(build name),fontsize=30)
plt.xlabel('Date (YYYY-MM')
plt.ylabel('Power Consumption (kW)')
plot acf(date kWh['kWwh'],lags=20,
ax=plt.subplot2grid(layout, (2*index+1,0)),alpha=0.5)
plt.title('Autocorrelation Function of '+str(build name),fontsize=30)
plt.xlabel('Lags (l15-minute Intervals)')
plt.ylabel('Autocorrelation')
plot pacf(date kWh['kWh'],lags=20,
ax=plt.subplot2grid(layout, (2*index+1,1)),alpha=0.5)
plt.title('Partial Autocorrelation Function of '+str(build name),fontsize=30)
plt.xlabel('Lags (l15-minute Intervals)')
plt.ylabel('Partial Autocorrelation')

22 plt.show()
23 del(index,build name,date kWh,layout)

100 | SN | 15/15 [00:52<00:00, 3.50s/it]

Time Series at 15-Minute Intervals of Building 1

Power Consumption (kW)

F\e“ p\e”" _@ef F\@v“‘“ p\av“" o 'F"Qn ,eq_e“" ,sqpiﬁ ,97;\»“\
Date (YYYY-MM
Autocorrelation Function of Building 1 ... Partial Autocorrelation Function of Building 1

: 1,

Autocarrelation
Partial Autocorrelation
g
g
-
4
-
-
o
-
-
-
-
-
-
o
o
o
-
o
o
o
o

Density Plots
|

Run Time: Approximately 2min
fig, axs = plt.subplots(nrows=15,ncols=3,figsize=(16,50),constrained layout=True)
for index, build name in enumerate(tgdm(df["BUILDING"].unique())):
density plot('Annual',axs,index,build name)
density plot('Seasonal',axs,index,build name)
density plot('Days',axs,index,build name)
plt.show()
del(fig, axs, index, build name)

0 N o U W N

100 | NN | 15/15 [00:51<00:00, 3.44s/it]

Building 1 Annual Building 1 Summer & Winter Building 1 Weekday & Weekend
0.08 0 Annual 008 4 [0 Summer 0084 0 Weekday
007 : m Winter e Weekend
4 ooy
0.06
0.05
2 004
I}
o
003
002
001
0.00 . AT NIRRT T Ry wie -
o 20 40 60 80 100 120 140 40 B0 80 100 120 140 o 20 40 B0 80 100 120 140
Electricity Consumption (kWh) Electricity Consumption (kWh) Electricity Consumption (k\Wh)
Building 2 Annual Building 2 Summer & Winter Building 2 Weekday & Weekend
0.005
50 Annual 0006
0.004 0.005
0.004 4
:E 0003
5 0.003
O 0.002
0.002 4
/
0001 ”H 001
000 Ls il \ 0000 | -
1] 200 400 600 800 200 400
Electricity Consumption (kWh) Electricity Consumption (kWh) Electricity Consumption (kKWh)
Building 3 Annual Building 3 summer & Winter Building 3 Weekday & Weekend
0.005
00035 1 F50 Annual 00040 0 Weekday
50 Weekend
0.0030 0.004 1 0.0035
00025 0.0030
= 0.003 4 0.0025
w 0.0020
[0.0020
9 00015 0.002 4
0.0015
0.0010 0001 | 00010
0.0005 H“ 00005
00000 L fi 0.000 > 00000 Ls =
o 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400 600 800 1000 1200 140
Electricity Consumption (kWh) Electricity Consumption (kWh) Electricity Consumption (kWh)
Building 4 Annual Building 4 Summer & Winter Building 4 Weekday & Weekend
0.05 pos 4 © Summer 0.06 { =1 Weekday
: = Weekend
0.04 i\
I
\
Z 003 i
g N
g \
002 Y
- I“ HH.I
000 .\I\‘| H“““IIIH. ’ =
20 40 60 a0 100 120 20 40 [=4] a0 100 120
Electricity Consumption (kWh) Electricity Consumption (kWh) Electricity Consumption (kKWh)

Results/Discussion: The above density plots illustrate energy consumption at 15-minute intervals
annually, summer/winter, and weekday/weekend. Building 1 and Building 15's density plots are unimodal
and relatively similar between annual, summer/winter, and weekday/weekend plots suggesting that
consumption does not change through summer/winter or weekday/weekend. The lack of data illustrated
in the density plots for Building 8 and Building 9 is a result of periods of zero consumption. Data from
Building 8 shows no energy consumption from March 6th, 2019 to June 12th, 2019 and the data from
Building 9 shows no energy consumption from February 28th, 2019 to March 2nd, 2019. A possible
explanation for these gaps in energy consumption could be due to building closure, or it could be error.
While data illustrated in Building 7's density plots looks minimal, data from Building 7 shows no lengthy
periods in which energy consumption is zero.

0 sdo 1000 100 2000 2500 0 560 1000 1500 2000 2500 0 500 1000 100 2000 500
Semilogy Density Plots
. 1a Il | oo Il | oo) |

1 # Run Time: Approximately 2min
2 fig, axs = plt.subplots(nrows=15,ncols=3,figsize=(16,50),constrained layout=True)
3 for index, build name in enumerate(tqgdm(df["BUILDING"].unique())):

4 semilogydensity plot('Annual',axs,index,build name)

5 semilogydensity plot('Seasonal',axs,index,build name)
6 semilogydensity plot('Days',axs,index,build name)

7 plt.show()

8 del(fig, axs, index, build name)

100 | SN | 15/15 [00:51<00:00, 3.41s/it]

Building 1 Annual Building 1 Summer & Winter Building 1 Weekday & Weekend
107t - 107t
0 Annual 0 0 Summer 0 WWeekday
= Winter 0 Weekend
e o m 10 m

Boxplots
Boxplots by Season
“3 g (TS I om0 1 7 || T |

1 # Run Time: Approximately 1.5min

2 fig, axs = plt.subplots(nrows=15,ncols=3,figsize=(16,50),constrained layout=True)
3 for index, build name in enumerate(tgdm(df["BUILDING"].unique())):

4 box plot('Seasonal',axs,index,build name)

5 plt.show()

6 del(fig,axs,index,build name)

100 | S| 15/15 [00:20<00:00, 1.35s/it]

Building 1 Consumpticn Building 1 Summer Consumption Building 1 Winter Consumption
_. 140 1 mmm Night [140 { mmm Night 140 | s Night
=
S o™ Day 120 | = Day 120 | == Day
c i i
5 100 4 100 100
=
E 804 0 . a0 |
2 i ;
S 80+ . 60 ' 60 .
£ 4 H P : ' 0 H
| v NI HooiH b
o
O » & & o . 0% » & « - .. 0 -
R A e e e e e e e e L A S e s e O e S S e — T T T T T
01234567 891011121314151617181920212223 012345678 9101112131415161718192021 2223 01234567 8910111213141516171819202122 23
Hours of the Day Hours of the Day Hours of the Day
Building 2 Consumption Building 2 Summer Consumption Building 2 Winter Consumption
_ B Night T . . B Night T . 800 { WEE Night T i1 i
gmo = Day 800 | s Day 3 == Day : N
< 500 |
S 600 4 600
=1
£
£ 400 g H 00 ! 400 4 $!
[=) 1 . ¥ .
= N [: .
g 200 4 e 200 - i i 200 4 .
o L] . . P
& H N . ¥
o
04 LR L I L I I R 0 L LI 01 LU L N L L L L
R s s e e s e e L A A e T
01234567 891011121314151617181920212223 0123456708 9101112131415161718192021 2223 01234567 89%1011121314151617181920212223
Hours of the Day Hours of the Day Hours of the Day
Building 3 Consumpticn Building 3 Summer Consumption Building 3 winter Consumption

Boxplots by Day of Week

nsu

o L P L n e S) N R 0 & 2 L I TP ITEEEETLT

1 # Run Time: Approximately 1.5min

2 fig, axs = plt.subplots(nrows=15,ncols=3,figsize=(16,50),constrained layout=True)
3 for index, build name in enumerate(tqgdm(df["BUILDING"].unique())):

4 box plot('Days',axs,index,build name)

5 plt.show()

6 del(fig,axs,index,build name)

100 | | 15/15 [00:17<00:00, 1.16s/it]

Building 1 Consumpticn Building 1 Weekday Consumption Building 1 Weekend Consumption
_ 140 1 mmm Night i 140 | mmm Night T 140 | mmm Night
=
I Day I Day mm Day
2 120 120 120 4
i
5 100 1 100 100
=
E 80 80 i 80
i 1l
e
S 80+ .] - 60 1 :
£ H i) ' 40
e ekt b 4- -I-
o
O{s o v o - . e Ofs o ¢ v 0.
L e e e e LI — T
01234567 891011121314151617181920212223 012345678 910111213141516171819 20212223 012345678 91011121314151517181920212223
Hours of the Day Hours of the Day Hours of the Day
Building 2 ConEumption Building 2 Weekday Cunsumpt\on Building 2 Weekend Consumption
_ B Night B Night 800 1 pm nght
£ 800 | mm Day 800 | mmm Day 700 4 = Day
=
T &00 4
2 800 4 600
=3 500
£
£ a0 400 400 1
=] 300
g ’ 200
v}] B .. 1
E 200) 200 .\
B 100 4
o
LB [R R I N R] . 0 [I I R R R T] ’ 0 LR
T S s s e e e L . e T R
01234567 891011121314151617181920212223 0123456708 910111213141516171819 20212223 012345675910]112]314]5161?18]3202.223
Hours of the Day Hours of the Day Hours of the Day
Building 3 Consumpticn Building 3 Weekday Consumption Building 3 Weekend Consumption
1400 4 1400
— I Night M 7 N N Night M | Wl Night
é 1200 { W Day 1200 1 B Day - Day
g 1000 4 1000
g 800 800
a H
£ 600 4 T 600 Y
b Ea * A
2400 | f 400 '
g . L) .
B] . [L I
HEJ 0 f] w0 f HE 20
L] . Ll . .
04 R 0 TR 0 IEEER
— T T T T T T T T T T T T T T T T T T T — T
01234567 8910111213141516171819202122 73 012345678 310111213141516171819 20212223 01234567 8910111213141516171819202122 73
Hours of the Day Hours of the Day Hours of the Day
Building 4 Consumption Building 4 Weekday Consumption Building 4 Weekend Consumption
- m Might P P mm Night A i m Night : H
£ 120 | mm Day ’Il 1‘ 120 { @ Day .'|| +' == Day |1 Ii*
£ : . : . 100 A P
= o [. Tl [. o |

Scatter Matrix Plot

golTILLTLLLLLITEPITT AL o T TTELE LR L LUt ot e PP DL TLTT Y

Run Time: Approximately 4min
dfpp = df[["BUILDING", "DATE","kWh"]].groupby(["DATE", "BUILDING"]).sum()
dates = sorted(set([d for d, b in dfpp.index]))
items = []
for date in dates:
items.append(dfpp.loc[date].to dict()["kWh"])
dfpp = pd.DataFrame(items)
dfpp = dfpp[[f"Building {x}" for x in range(1l,16)]]
grid = sns.PairGrid(dfpp,height=4)
grid = grid.map_upper(plt.scatter,color="'darkred')
grid = grid.map lower(sns.kdeplot,cmap='Reds')
grid = grid.map diag(plt.hist,bins=10,color="'darkred',edgecolor='k"');
plt.show()
del (dfpp,dates,items,date,grid)

b

s A
TR

-

'.‘. !\\’ " B 3 ::':

-

w

AL R R R A e

rRAE NN 4

,.
33

-

P KON W N A

]
<
9
)
S
A\

S 6 |

2l e [ala s o a7

The upper triangle of the scatter matrix plot is a scatter plot, showing correlation or lack thereof between

power consumption of any combination of two buildings. The lower triangle is a kernel density estimate
(KDE) plot, which "represents the data using a continuous probability density curve,’ (seaborn) essentially
showing the same correlations in a way that is less cluttered than the scatter plot.

< w v, @ i Y 0] U N Vs Y -

Building Size vs. Building Consumption

_ a0 | mm nont -2 TTT T | a0 | e wiont T TrT T 30 | igne TerTr

Calculate Yearly Average Energy Consumption
items = {}
[items.setdefault(x, []) for x in ("Building Number", "Year", "Month","kWsum")]

build year month = list(df[['BUILDING', 'YEAR', 'MONTH']].drop duplicates().to_ records(ir
df index = df.set index(["BUILDING", "YEAR", "MONTH"]).sort index()

numbers = lambda x:[int(word) for word in x.split() if word.isdigit()]1[0]

O 0 N o U B W N

10 for BUILDING, YEAR, MONTH in tqgdm(build year month):

12 sub_df = df index.loc[BUILDING, YEAR, MONTH]

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://seaborn.pydata.org/generated/seaborn.kdeplot.html

13 # Change in Time (Every Quarter Hour)

14 sum kW = sub df.kW.sum() * A

15

16 items['Building Number'].append(numbers (BUILDING))
17 items["Year"].append(YEAR)

18 items["Month"].append (MONTH)

19 items["kWsum"].append(sum kW)

20

21 df cost = pd.DataFrame(items)

22 df cost = df cost[["Building Number", "Year", "Month", "kWsum"]].groupby(["Building Nun
23 df cost = df cost[["kWsum"]].groupby(["Building Number", "Year"]).sum()

24 df cost = np.round(df cost[['kWsum']], 2)

25 df cost_average df cost[['kWsum']]
df cost_average.reset_index()
df cost _average[df cost average["Year"].isin([2018, 2019, 2020, 2021

np.round(df cost average[['kWsum']], 2)

26 df_cost_average

27 df _cost_average
28 df_cost_average
29

30 dfc = df cost_average.copy(deep=True)

31 dfc.reset_index(inplace=True)

100 || 554/554 [00:06<00:00, 87.31it/s]

1 # Add average energy consumption to building size data

2 sdf["Average Energy Consumption"] = dfc["kWsum"]

3 sdf.dropna(subset = ["Floor Area"], inplace=True)

4 sdf['Building ID'] = ['Building 1','Building 10', 'Building 12', 'Building 13', 'Building
1 # Create graph to show relationship between building energy consumption and building si
2 sns.scatterplot(

3 x="Floor Area",

4 y="Average Energy Consumption",

5 data=sdf,

6 hue = "Building ID"

7))

8

9 plt.legend()

10 plt.title("Building Size vs. Average Energy Consumption")

11 plt.ylabel('Annual Average Energy Consumption (107 kW)')

12 plt.xlabel('Building Size (ft2)")

13 plt.show()

14 print(sdf)

1e¢ Building Size vs. Average Energy Consumption

=)

. # Building 1 -
= 251 & Building 10

] @ Building 12

2 504 e Buidingls

E @ GBuilding 14

£

15 []
=y

=

:Ej .
o 10

=

1 del(items, build year month, df index, numbers, sub df, sum kW, df cost, df cost averac
2 | e I
Results/Discussion: The building consumption vs. building size visualization illustrates a positive
relationship between a building's size and its respective energy consumption, implying that, in general,
building size increases with building energy consumption. This confirms the previous groups
speculations that building size affects building consumption.

Frs Dusaivuiily 1o LUL sV eV LVvVUTIUI e L

Solar Production vs. Building Consumption

1 # Solar PV Calculations
2 # Tilt Angle (Constant)

3f = 23.5

4 # Full 360 Degrees (Constant)

5C = 360

6 # Julian Day

7 wdf["datetime"] = pd.to datetime(wdf[['Year',6 'Month', 'Day']])

8 wdf["d"] = ((wdf["datetime"].map(lambda x: (x-x.replace(month = 1, day = 1)).days)) + I

9 # Julian day for Summer Solstice (Constant; Use 173 on a Leap Year)
10 dr = 172
11 # 365 days (Constant; Use 366 on a Leap Year)

12 dy = 365

13 # Declination of the Sun

14 wdf["del"] = f*(np.cos((C*(wdf["d"]1-dr))/dy))

15 # Hour Angle

16 wdf["w"] = 15*(wdf["Hour"]-12)

17 # Solar Zenith Angle

18 wdf["sza"] = (np.sin(wdf["del"]) * np.sin(wdf["Latitude"])) + (np.cos(wdf["del"]) * np.
19 # GHI (kW)

20 wdf["GHI"] = ((wdf["DNI"] * np.cos(wdf["sza"])) + wdf["DHI"]) / 1000

21 # Area of Solar Panel (lin. = .0254m)

22 dim = [78,39]
23 Al = (dim[0] * .0254) * (dim[1] * .0254)
24 # Solar Panel Yield (Estimated Constant)

25y = 15
26 # Solar Panel Performance Ratio (Constant; Default Value)
27 pr = .75

28 # Solar PV (Power)
29 wdf["Solar PV (1)"] = Al * y * (wdf["GHI"]) * pr

1 fig, axs = plt.subplots(nrows=11,ncols=3,figsize=(16,50),constrained layout=True)

2 for index, x in enumerate(ldf["Building ID"].unique()):
df sub = df[df["BUILDING"] == "Building {}".format(x)][["HOUR", "kW"]].groupby ("HOUI

3

0 N o U

11
12
13
14
15

wdf_ sub wdf[wdf["City"] == 1ldf["Name/ Location"][index]][["Hour",
wdf sub wdf sub.rename({'Hour': 'HOUR'}, axis=l)

sub = pd.merge(df sub, wdf sub, on="HOUR")

n = calculation demand(sub.copy())

sub["Solar PV (2)"] int(np.sqrt(n)) * sub["Solar PV (1)"]
sub["Solar PV (3)"] n * sub["Solar PV (1)"]

sub["Residual (1)"] = sub["kW"] - sub["Solar PV (1)"]
sub["Residual (2)"] = sub["kW"] - sub["Solar PV (2)"]
sub["Residual (3)"] = sub["kW"] - sub["Solar PV (3)"]

solar plot(1l,axs,index)
solar plot(2,axs,index)
solar plot(3,axs,index)

"Solar PV (1)"11.

Building 2 Solar Production vs. Consumption Building 2 Solar Production vs. Consumption Building 2 Solar Production vs. Consumption
for 1 Solar Panel for 3 Solar Panel for 15 Solar Panel

800 A 500 800 4
500 4 500 500 4
400 4 400 400 4
= 300 4 300 300 4
200 4 200 200 4
100 4 —— Building kKW 100 —— Building kW 100 4 —— Building kW
—— Solar PV —— Solar PV —— Solar PV
o —— Residual kW] 0 —— Residual kit | 0 —— Residual ki |
T T T T T T T T T T T T
0 5 10 15 20 [} 5 10 15 20 (1} 5 10 15 20
HOUR HOUR HOUR
Building 3 Solar Production vs. Consumption Building 3 Solar Production vs. Consumption Building 3 Solar Production vs. Consumption
for 1 Solar Panel for 4 Solar Panel for 19 Solar Panel
1000 1000 1000
800 800 800

1 # wdf = wdf.drop(["datetime", "d", "del", "w", "sza", "GHI"], axis=1)
2 # del(f, C, dr, dy, dim, Al)
3 # Passes: df, sdf, 1df, wdf, df info, dfc

‘ I —— SDIarPv J | | —— BOlar PV | I —— sDIar Py J
~ kW ~ Recidual kW ~ kW

Solar Production vs. Consumption Results/Disscusiion: Although a larger depression in the middle of
the net demand curve can reduce the total electricity consumption of the building, it is inefficient to use
solar energy in this way. As summarized in the line graphs in the data visualization section, a building's
electricity consumption curve does not necessarily follow the same pattern as the solar production
curve, which achieves a single peak maximum at noon. Thus, in order to keep a building's load at zero
during the day, a large number of solar systems would need to be installed. An agency could certainly
choose to make this investment, but such an investment would be inefficient. This project is devoted to
exploring the most efficient case, i.e., installing the fewest solar systems possible, to reduce a building's
electrical load.

When calculating cost of electricity consumption for each building, maximum kW of electricity used is an
important parameter. By keeping this maximum value as low as possible, money can be saved on
electricity consumption. With that being said, we can make an educated decision on wheather or not
each building is suitable for installation of solar panels based on how many solar panels it takes to
produce a residual curve that is relatively horizontal. The middle column of the Solar Production vs.
Building Consumption visualization above, representing the happy medium number of solar panels,
suggests that Building 5 and Building 10 produce relatively horizontal residual curves with installation of
2 and 3 commercial sized solar panels and, thus, are potential candidates for solar panel installation.
Looking closer at the kW values of each buildings residual, Building 4, 12, and 15 show less than 50 kW
between the residual minimum and the residual maximum suggesting they are also potential candidates
for solar panel installation.

(! I I

Optimize Spending on Existing Data Consumption

0 5 10 15 20 o 5 10 15 20 o 5 10 15 20
HAl D HAlR HAl

Calculate Cost

o | | o | | o= | N

Monthly Utility Cost

w00 { | | wof | | wed | / \ |

Summer: Monthly Utility Cost = Summer season kW Demand X MAX(monthly kW) + Summer season
kWh X SUM(Monthly kWh)

Winter: Monthly Utility Cost = Winter season kW Demand X MAX(monthly kW) 4+ Winter season kWh X
SUM(Monthly kWh))

w01 | | 0] | | w0 | N

1 # Define a list to hold monthly utility cost
2 items = {}
3 [items.setdefault(x, []) for x in ("Building Number","Year", "Month","kWsum","SG Cost",'

4

5 build year month = list(df[['BUILDING', 'YEAR', 'MONTH']].drop duplicates().to records(ir
6 df index = df.set index(["BUILDING", "YEAR", "MONTH"]).sort index()

7

8 numbers = lambda x:[int(word) for word in x.split() if word.isdigit()][0]

9

10 for BUILDING, YEAR, MONTH in tgdm(build year month):

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

sub df = df index.loc[BUILDING, YEAR, MONTH]
sum kW = sub_df.kW.sum()
max_kw = sub_df.kW.max()

sum_kwh = sub df.kW.sum() * A
Season = "Summer" if MONTH in {6, 7, 8, 9} else "Winter"

SG_kw = max kw * df info.loc["Secondary General (SG)"][f"{Season} Season kW Demand"]
SG_kwh = sum kwh * df info.loc["Secondary General (SG)"][f"{Season} Season kWh"]

SGL_kw = max_kw * df info.loc["Secondary General Low-Load Factor (SGL)"][f"{Season} ¢
SGL_kwh = sum kwh * df info.loc["Secondary General Low-Load Factor (SGL)"][f"{Season]

PG kw = max_kw * df info.loc["Primary General (PG)"][f"{Season} Season kW Demand"]
PG _kwh = sum kwh * df info.loc["Primary General (PG)"][f"{Season} Season kWh"]

items['Building Number'].append(numbers (BUILDING))
items["Year"].append(YEAR)
items["Month"].append (MONTH)

items["kWsum"].append(sum kW)

items["SG Cost"].append(SG _kw + SG_kwh)

items["SGL Cost"].append(SGL_kw + SGL_kwh)
items["PG Cost"].append (PG _kw + PG _kwh)

100% | I | 554/554 [00:05<00:00, 95.40it/s]

HOUR HOUR HOUR

1 # Merge monthly utility cost data
2 df cost = pd.DataFrame(items)

3 df cost = df cost[["Building Number", "Year", "Month", "kWsum", "SG Cost", "SGL Cost",

(I} Ay e | (B} \ e | (B} AY rd |

Annual Utility Cost

y / Ve / P I / N
Annual Utility Cost = Sum(Monthly Utility Cost)

muun un nuun

1 df cost
2 df cost
3 df _cost

df cost[["kWsum", "SG Cost", "SGL Cost", "PG Cost"]].groupby(["Building Numtk
np.round(df cost[['kWsum', 'SG Cost', 'SGL Cost',6'PG Cost']], 2)

kWsum SG Cost SGL Cost PG Cost
Building Number Year
1 2018 1217073.28 28116.12 51877.36 25097.58
2019 1241296.00 29509.35 53462.84 26390.75
2020 1239062.40 29266.87 53117.36 26171.79
2021 15885.44 1847.59 1154.79 1605.93
o aN1Q 19999020 B9 172R77 N7 RQ7NRA B4 41RRQRA N4

Calculate Cost Savings

2020

19238786.70

172763.05

1 # Average cost savings for each building

OW 00 9 O U1 & W N

I R S S S
N =)

733699.63

156087.02

df cost average = df cost[['kWsum', 'SG Cost', 'SGL Cost', 'PG Cost']]

df cost _average = df cost average.reset index()

Takes mean of three years of data for buildings with years 2018-2020, takes mean of {
df cost average = df cost average[df cost average["Year"].isin([2018, 2019, 2020, 2021
df cost_average = np.round(df_cost_average[['kWsum', 'SG Cost', 'SGL Cost','PG Cost']],
df cost average["save SG SGL"] = np.round(df cost average["SG Cost"] - df cost average]|
df cost_average["percent SG SGL"] = np.round((df cost average['"save SG SGL"]/df cost_ ax
df cost_average["save SG PG"] = np.round(df cost average["SG Cost"] - df cost average['
df cost_average["percent SG PG"] = np.round((df cost average["save SG PG"]/df cost ave:
df cost_average

kWsum SG Cost SGL Cost PG Cost save_SG_SGL percent_SG_SGL save

Building
Number
1 928329.28 22184.98 39903.09 19816.51 -17718.11 -79.87
2 14342575.49 134234.96 547976.64 121177.34 -413741.68 -308.22 1
3 23119065.90 206979.43 883691.66 187039.08 -676712.23 -326.95 1

1 del(items, build year month, df index, numbers, sub df, sum kW, max kw, sum kwh, Seasor
R ADDRT77A Q4 NORRQ 71 1RQN2R QA NR7279 Q7 1419292 44 _naQ RA
Results/Discussion: There are three electricity companies offering services to our buildings: Secondary
General (SG), Secondary General Low-Load Factor (SGL), and Primary General (PG); all of which have
different service charges. Primary General service requires the utility customer to own and operate their
own transformer, whereas, the other service providers do not.

Data shows SGL was the most expensive service, followed by SG, leaving us with PG as the cheapest
service. The SGL service is optimal in the winter when electricity consumption peaks are low. However,
overall, it is not cost effective to use it as a year-round service.

12 A7N2R0 1 ARDQR 27 1RRNOR 1R 41042 N4 -12QRQN7 QK -200 an

SARIMA Modelling

e e vevuUwiv e —_—— o v (R RV v o v —_———ow

1 # Creates a blank table to fill out with each model created

2 sarima summary = [[' ']*16]

3 sarima_summary = pd.DataFrame(sarima summary,columns=['Building',1,2,3,4,5,6,7,8,9,10,]
4 sarima summary['Building'] = ['Daily', 'Weekly', 'Yearly',6 'p','d','q', 'Correlation', 'Ljur
5 sarima summary.index = sarima_ summary['Building’]

6 sarima_summary = sarima_ summary.drop(columns='Building')

7 sarima_summary

1 2 3 45 6 7 8 9 10 11 12 13 14 15

Building 1

Waalkiv

1 rseasin = sarima groundwork(1l)

Consumption Data for all measurements for Building 1:

kwh

year _month day

2018-01-01 3.84
2018-01-01 4.48
2018-01-01 4.32
2018-01-01 4.00
2018-01-01 4.64
2021-01-05 10.72
2021-01-05 9.60
2021-01-05 9.76
2021-01-05 9.12
2021-01-05 9.44

[105634 rows x 1 columns]
Plotting FFT of series:

FFT Series of Building 1 with Logarithmic y-scale

Sweek
Lday
2day
d:
d:
S/day
Gday

1 3
: £

Ly

2ys
Jyear
ay
Umonth
2month

- 2 f. H
107 107 107 10* 107
trequency Cussi
- FFT Series of Building 1 with Linear y-scale
5 H EOE 2 £ 3 i k] > > 2 0z oz 2
2 L N £ z H H H g : fi:ig H H

FFT Value| ~2

10~ 107 100 100 107
Frequency (L/week)

1 sparam = [1,1,9] # Chosen from analysis of ACF and PACF below
2 stat = sarima_analysis(l,rseasin,sparam)

There is evidence of a dailv. weeklv. and vearlv seasonalitv.
1 sarima summary[l] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

kWh
Building 2

2710 N1 N1 A 29

1 rseasin = sarima groundwork(2)

Consumption Data for all measurements for Building 2:
kWh

1 sparam = [2,1,7]
2 stat = sarima analysis(2,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 2:
1 sarima summary[2] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

2018-01-01 143.430
Building 3

2018-01-01 142 .380

1 rseasin = sarima groundwork(3)

Consumption Data for all measurements for Building 3:
kwh

year month_day

2018-01-01 222.885

1 sparam = [2,1,6]
2 stat = sarima_analysis(3,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 3:

kWh
year month day
1 sarima summary[3] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste
2018-01-01 222.885
Building 4
2021-01-08 176.784

1 rseasin = sarima groundwork(4)

Consumption Data for all measurements for Building 4:

kwh
year _month_day
2018-01-01 13.7550
2018-01-01 13.2300
2018-01-01 13.6500

1 sparam = [5,1,12]

2 stat = sarima analysis(4,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 4:

kwh
year month day
2018-01-01 13.7550
2018-01-01 13.2300

1 sarima summary[4] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

4ZU15-U1l-Ul 15.38/2
Building 5
2021-01-139 14 .221/5

1 rseasin = sarima groundwork(5)

Consumption Data for all measurements for Building 5:

kwh
year _month_day
2018-01-01 32.400
2018-01-01 30.816
2018-01-01 32.112
2018-01-01 32.256
2018-01-01 30.816

1 sparam = [1,1,3]
2 stat = sarima analysis(5,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 5:

kWh

year month day

2018-01-01 32.400
2018-01-01 30.816
2018-01-01 32.112
2018-01-01 32.256

1 sarima summary[5] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste
Building 6

1 rseasin = sarima groundwork(6)

Consumption Data for all measurements for Building 6:

kwh

year _month_day

2018-01-01 374.904
2018-01-01 377.571
2018-01-01 364.998
2018-01-01 369.189
2018-01-01 372.999
2021-01-25 354.711

1 sparam = [3,2,8]
2 stat = sarima analysis(6,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 6:

kWh

year month day

2018-01-01 374.904
2018-01-01 377.571
2018-01-01 364.998
2018-01-01 369.189
2018-01-01 372.999
2021 _N1_2RK QWA 711

1 sarima summary[6] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

27N 1 N1 o ~ 2E2 107

Building 7

1 rseasin = sarima_groundwork(7)

Consumption Data for all measurements for Building 7:

kwh

year _month_day

2018-01-19 44.1
2018-01-19 44.1
2018-01-19 42.0
2018-01-19 37.8
2018-01-19 37.8
2021-01-13 48.3
2021-01-13 46.2
2021-01-13 46.2

1 sparam = [3,1,3]
2 stat = sarima analysis(7,rseasin,sparam)

There is evidence of a daily seasonality, but not much evidence of a weekly or yearls

Consumption Data for all measurements for Building 7:

year month day
2018-01-19
2018-01-19
2018-01-19
2018-01-19
2018-01-19

2021-01-13
2021-01-13
2021-01-13

1 sarima_ summary[7]

Building 8

44.
44.
42.
37.
37.
48.
46.
46.

kwh

0 00 O K -

.
N W e

[rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

1 rseasin = sarima groundwork(8)

Consumption Data for all measurements for Building 8:

kwh

year _month_day

2018-04-27 112.86
2018-04-27 112.32
2018-04-27 112.05
2018-04-27 111.78
2018-04-27 112.32
2021-02-04 110.70
2021-02-04 109.35
2021-02-04 109.89
2021-02-04 110.97
2021-02-04 109.08

1 sparam = [2,1,5]
2 stat = sarima_analysis(8,rseasin,sparam)

There is evidence of a daily and weekly seasonality, but not much evidence of a year:

Consumption Data for all measurements for Building 8:

kWh

year month day

2018-04-27 112.86
2018-04-27 112.32
2018-04-27 112.05
2018-04-27 111.78
2018-04-27 112.32
2021-02-04 110.70
2021-02-04 109.35
2021-02-04 109.89
2021-02-04 110.97
2021-02-04 109.08

1 sarima summary[8] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

Building 9
|

1 rseasin = sarima groundwork(9)

Consumption Data for all measurements for Building 9:

kwh

year _month_day

2018-01-01 137.52
2018-01-01 138.24
2018-01-01 151.92
2018-01-01 163.44
2018-01-01 159.12
2021-01-07 96.00
2021-01-07 96.00
2021-01-07 96.00
2021-01-07 96.00
2021-01-07 96.00

[105673 rows x 1 columns]

1 sparam = [5,1,5]
2 stat = sarima_analysis(9,rseasin,sparam)

There is evidence of a daily and yearly seasonality, but not much evidence of a week:

Consumption Data for all measurements for Building 9:

kwh

year month day

2018-01-01 137.52
2018-01-01 138.24
2018-01-01 151.92
2018-01-01 163.44
2018-01-01 159.12
2021-01-07 96.00
2021-01-07 96.00
2021-01-07 96.00
2021-01-07 96.00
2021-01-07 96.00

[105673 rows x 1 columns]

1 sarima summary[9] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],ste

Building 10

25000 1

et

1 rseasin = sarima groundwork(10)

Consumption Data for all measurements for Building 10:

kwh

year _month_day

2018-01-01 89.725500
2018-01-01 89.344500
2018-01-01 88.344375
2018-01-01 90.916125
2018-01-01 89.582625
2021-02-08 114.109500
2021-02-08 114.633375
2021-02-08 116.347875
2021-02-08 110.918625
2021-02-08 111.061500

[108917 rows x 1 columns]

Plotting FFT of series:

1 sparam = [3,1,13]
2 stat = sarima analysis(10,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 10:

kwh

year month day

2018-01-01 89.725500
2018-01-01 89.344500
2018-01-01 88.344375
2018-01-01 90.916125
2018-01-01 89.582625
2021-02-08 114.109500
2021-02-08 114.633375
2021-02-08 116.347875
2021-02-08 110.918625
2021-02-08 111.061500

[108917 rows x 1 columns]

Plotting series after removing seasonalities:
1 sarima summary[10] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],st
| U |
Building 11

ety Tesasn e v e, . pt ey ew . . W e - . -
‘ g, CERILSEY TS PR + “ .. . v 3 . . - R SPLIN

£ LR R T P . R CRPL AP

1 rseasin = sarima groundwork(1ll)

Consumption Data for all measurements for Building 11:

kwh

year_month day

2018-01-01 65.05575
2018-01-01 67.05600
2018-01-01 69.43725
2018-01-01 65.43675
2018-01-01 64.10325
2021-01-20 61.15050
2021-01-20 58.38825
2021-01-20 60.10275
2021-01-20 61.91250
2021-01-20 62.86500

[107079 rows x 1 columns]
Plotting FFT of series:

FFT Series of Building 11 with Logarithmic y-scale

A '

1 sparam = [3,1,11]
2 stat = sarima analysis(1ll,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 11:

kwh

year month day

2018-01-01 65.05575
2018-01-01 67.05600
2018-01-01 69.43725
2018-01-01 65.43675
2018-01-01 64.10325
2021-01-20 61.15050
2021-01-20 58.38825
2021-01-20 60.10275
2021-01-20 61.91250
2021-01-20 62.86500

[107079 rows x 1 columns]
Plotting series after removing seasonalities:

‘ Plot of One-Day Building 11 Data After Removing Seasonality ‘

1 sarima summary[ll] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2], st
Building 12
g coe et T R TR ST e RS e 1L L L e

1 rseasin = sarima groundwork(12)

Consumption Data for all measurements for Building 12:

kwh

year_month day

2018-01-01 29.505
2018-01-01 29.820
2018-01-01 29.820
2018-01-01 30.555
2018-01-01 28.140
2020-12-09 25.200
2020-12-09 25.200
2020-12-09 24.500
2020-12-09 25.200
2020-12-09 25.200

[103044 rows x 1 columns]
Plotting FFT of series:

FFT Series of Building 12 with Logarithmic y-scale

1 sparam = [2,2,7]
2 stat = sarima analysis(12,rseasin,sparam)

There is evidence of a daily and yearly seasonality, but not much evidence of a week:

Consumption Data for all measurements for Building 12:

kwh

year month day

2018-01-01 29.505
2018-01-01 29.820
2018-01-01 29.820
2018-01-01 30.555
2018-01-01 28.140
2020-12-09 25.200
2020-12-09 25.200
2020-12-09 24.500
2020-12-09 25.200
2020-12-09 25.200

[103044 rows x 1 columns]
Plotting series after removing seasonalities:

Plot of One-Day Building 12 Data After Removing Seasonality

4500

By

1 sarima summary[1l2] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2], st

A (kW

e e e e .
. EFAK s ST
‘ S ed e T . T B 3 . . - .. ‘

Building 13

[. e e i er een
‘ . - T . LY . . - d

-
/
k4
-
t

1 rseasin = sarima groundwork(13)

Consumption Data for all measurements for Building 13:

kwh

year_month day

2018-01-01 57.384
2018-01-01 57.096
2018-01-01 56.304
2018-01-01 56.304
2018-01-01 55.872
2021-02-05 69.408
2021-02-05 71.280
2021-02-05 69.120
2021-02-05 68.688
2021-02-05 68.184

[108605 rows x 1 columns]
Plotting FFT of series:

FFT Series of Building 13 with Logarithmic y-scale

| Wit L RELH i & I

10 Tl | LA 1 | bl
1 ‘ |I z\,. i .

i R

1 sparam = [3,1,4]
2 stat = sarima analysis(13,rseasin,sparam)

There is evidence of a daily and yearly seasonality, but not much evidence of a week:

Consumption Data for all measurements for Building 13:

kwh

year month day

2018-01-01 57.384
2018-01-01 57.096
2018-01-01 56.304
2018-01-01 56.304
2018-01-01 55.872
2021-02-05 69.408
2021-02-05 71.280
2021-02-05 69.120
2021-02-05 68.688
2021-02-05 68.184

[108605 rows x 1 columns]

Plotting series after removing seasonalities:

Plot of One-Day Building 13 Data After Removing Seasonality

1 sarima_ summary[1l3] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2], st
\ : ' |
Building 14

Ticity

4000 *

1 rseasin = sarima groundwork(14)

Consumption Data for all measurements for Building 14:

kwh

year_month day

2018-01-01 49.72050
2018-01-01 51.14925
2018-01-01 53.34000
2018-01-01 48.67275
2018-01-01 50.67300
2021-01-18 54.00675
2021-01-18 54.38775
2021-01-18 56.10225
2021-01-18 52.00650
2021-01-18 52.67325

[106892 rows x 1 columns]
Plotting FFT of series:

FFT Series of Building 14 with Logarithmic y-scale

1 sparam = [8,3,7]
2 stat = sarima analysis(1l4,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 14:

kwh

year month day

2018-01-01 49.72050
2018-01-01 51.14925
2018-01-01 53.34000
2018-01-01 48.67275
2018-01-01 50.67300
2021-01-18 54.00675
2021-01-18 54.38775
2021-01-18 56.10225
2021-01-18 52.00650
2021-01-18 52.67325

[106892 rows x 1 columns]
Plotting series after removing seasonalities:

Plot of One-Day Building 14 Data After Removing Seasonality

6500

6000

g

g
g

“ansumption (kWh)

1 sarima summary[14] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2], st

o] \

Building 15

Date (YYYY-MM)

1 rseasin = sarima groundwork(1l5)

Consumption Data for all measurements for Building 15:

kwh

year_month day

2018-01-01 10.553
2018-01-01 12.293
2018-01-01 13.553
2018-01-01 10.410
2018-01-01 10.688
2021-02-17 7.463
2021-02-17 7.545
2021-02-17 7.823
2021-02-17 7.155
2021-02-17 7.935

[108929 rows x 1 columns]
Plotting FFT of series:

FFT Series of Building 15 with Logarithmic y-scale

o It "‘," 1] “r ""‘w.}l‘““ ‘”“ || “-Hla " 1
HII}‘ | l!

1 sparam = [2,1,8]
2 stat = sarima_analysis(15,rseasin,sparam)

There is evidence of a daily, weekly, and yearly seasonality.

Consumption Data for all measurements for Building 15:

kwh

year month day

2018-01-01 10.553
2018-01-01 12.293
2018-01-01 13.553
2018-01-01 10.410
2018-01-01 10.688
2021-02-17 7.463
2021-02-17 7.545
2021-02-17 7.823
2021-02-17 7.155
2021-02-17 7.935

[108929 rows x 1 columns]
Plotting series after removing seasonalities:

Plot of One-Day Building 15 Data After Removing Seasonality

1500

1000

500

Electricity Consumption (KWh)

1 sarima summary[15] = [rseasin[0],rseasin[l],rseasin[2],sparam[0],sparam[l],sparam[2],st

e |

SARIMA Summary
L

1 sarima_summary

Building
Daily y y y y y y y
Weekly y y y y y y n
Yearly y y y y y y n

4 ~ ~ - 4 ~ ~

Explanation of Statistical Tests: The Ljung-Box test assumes a null hypothesis that data are
independently distributed, and an alternative hypothesis that data are not independently distributed.
Independent distribution of data indicates a valid forecasting model. According to the p-values of the
Ljung-Box test of all the models, all models have independent distribution of their data after removing
seasonalities.

Homoscedasticity is a condition of models stating that all modelling errors have approximately the same
variance, and heteroscedasticity states that modelling errors do not have the same variance. The

statistical test here assumes a null hypothesis that the model has homoscedasticity, and an alternative
hypothesis that the model has heteroscedasticity. Homoscedasticity is indicative of a valid forecasting
model. According to the p-values of the heteroscedasticity test of all the models, Buildings 7, 8, 10, 13,
14, and 15 have heteroscedasticity, which could bring up forecasting errors for those buildings.

T |
Explanation of Correlation Coefficients: Assuming the statistical tests are indicative of the validity of the
models, the correlation coefficients of the buildings who pass the statistical tests are quite difficult to
interpret as "good" or "bad" values. Ideally, a perfectly valid model would not have a correlation coefficient
of 1, simply because models are not perfect representations of data. One way to interpret the correlation
coefficients is relative comparison to other models who have passed the statistical tests. For example,
Buildings 1 and 2 are both determined as valid by the Ljung-Box test and the heteroscedasticity test,
however the correlation coefficient of Building 2's model is greater than that of Building 1, so the model
created for Building 2 can be interpreted as more accurate than the model created for Building 1.

For the buildings who do not pass the statistical tests, the correlation coefficients should not carry much
weight in their validity, as heteroscedasticity already invalidates the model.

[: r . |

Individual Building Observations: Observing the time series of Buildings 7, 8, 10, and 15, there seems to
be visual errors or odd occurrences in data, which are outlined below. Whether or not these data errors
are the causes to the modelling errors is unknown, however another possibility is that there are other
relevant seasonalities that were not accounted for.

Lags (1-Day Intervals)

https://en.wikipedia.org/wiki/Ljung%E2%80%93Box_test
https://en.wikipedia.org/wiki/Heteroscedasticity

Electricity Consumption (kWh)

Electricity Consumption (kWh)

Electricity Consumption (kWh)

2000

3000

2000

1000

25000

20000

15000

10000

14000

13000

12000

11000

10000

Building 7

.
.
L4
e
‘v
PARLAT)
- TR Y N
. $ -f."‘.;.,'
~ . sia
Py
‘ IS4 .
- - . . e -
. T
PN S ad e
ST .
P .
-
N
.
.
2018-01 201805 201809 2019-01 2019-05 2019-09 2020-01 2020-05 2020-09 202101
Date (YYYY-MM}
——— TO n NnNo"1" n NnNAA 1 nT70 n NnAaAODO n NnNA1 n 177 c
.
.
. .
* K
. .
. .
- . * - % Tt . .
. . . .0 LR) - . *
R . . " e, . L .
- F . . . PR . . .
.,o,
- 0 . . . <. * . . e e - MY t e,
.§-,‘.;,. * .o et a2 k4 ..t ot et . ras s T, et . - .
L & L) P P e N P S U S -n'"".’"""‘". "’M{; e, e e
. M’ A - W An e et STT0 " Ay "\ﬁ\.ﬁ.O Py e . LAC
" : el . b o
.
R
.
-- I_I
201805 2018-09 2019-01 m 2019-09 2020-01 2020-05 2020-09 2021-01
Date (YYYY-MM)
.
<. .
RS LR
e e, Cet
FARCRE L B
Y soed
e T e S
. . e .
LR i e . . Ganaras .
e PR Then ’ .
.3 RN V. . .
. B [T P I A
PR L R RPN
R, . at. et P . ot
. . . * .o . et o, "
. LR Y s . . L . .. LR . .',’
"~~“Il':' PrE M . e Lo . e, . . s e e L,
AP W . Coaaits TS e N L e seseses EE
E Slagette oL . e oa, bl T . E L R S S U .s . Al
. . P 1L . IR A Sl I T A e . POTCY PR g AR noo. . . L)
P I - P e VA, ' B N T oo v,
. s G e . v R - 3 B .
o . * e R SRR s - o e ety
. . AOFYRIEY o . o LA O ST PaCINr
*aes ottt . .~ . R . W e A . e
L PPN st A e, WY ae . PR SRR
: Ly et . e . [T I
L et e g e atiet L e [P
M . e, Se . HEE . .
.. . .
Lt .
.
.
2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05 2020-09 2021-01

Date (YY1¥-MM)

Building 15

&
H

Electricity Consumption (kWh)
=]
H

.
ot .-

cee ® * % .
et . 2.8 1 atee, 4. . . *s s
S da e AT . PN tatenl E
.t . Sl ."..",.’, ta:’.%':' goases’ o

500 .- .
R B s tanSnf gt hEIRt) *
R T R B R R A T P

201801 201805 2018-09 201901 2019-05 909 202001 202005 202009 202101

201
Date (1YYY-MM)

Observing Building 13, there do not seem to be any data errors, nor any errors in the ACF or PACF with
differencing. So there is no indication as to why the model is heteroscedastic, so there could be a
relevant seasonality that is not daily, weekly, or yearly that could create this modelling error.

When creating the model for Building 14, determining the differencing parameter was different compared
to the other buildings in that the series had to be differenced three times, and differencing a fourth
makes the ACF and PACF unreadable for the modelling process. However even when differenced three
times, the ACF is still not ideal. This could be due to some error in data that cannot be seen visually, or it
could have some additional seasonality that is not yearly, weekly, or daily.

ACF of One-Day Building 14 Data After Removing Seasonality

Autocorrelation

-1.00

15
Lags (1-Day Intervals)

Plotted below is the Modelled Data vs. Original Data Time Series for Building 1.

Building 1 is unique compared to the rest of the buildings, where the data shows a greater spread. After
observing the effect of building size on energy consumption, it is possible that, because of the small size
of Building 1, the spread is greater because there is less energy being consumed overall. Due to this
spread, it seems to be more difficult to model the data with precision, and so the modelled data appears
as more concise than the original data.

Plot of Created Model Compared to Original Data

« Original Data
+ Modelled Data

00

1000

ion (KWh)

00

Electricity Consumpti

600

00

201801 201805 201809 2019.01 201905 2019-09 202001 202005 202009 202101
Date (1YY¥-MM)

Trial and Error Description: The process for creating a convincing and accurate SARIMA model required
a great amount of trial and error to arrive at a method that works well.

Trying to interpret the work done by the previous group was quite difficult, many of the decisions they
made were unclear and unsupported. The models created by the previous group were SARIMA models
with a weekly seasonality, for the purpose of more accuracy, ARIMA models were created instead, while
taking into account different seasonalities, essentially creating seasonal models, while bypassing the
limitation of a singular seasonality. In addition, the models created in this project are supported with
tests of statistical significance and clear visual tracking.

Outliers: At one point, for instances like Building 8, where many data were missing, outliers (or values of
zero for any day) were removed, and models created from that. However, this posed seasonality
differencing errors. For example, if a data set had a month of its data missing, but outside of that it had a
yearly seasonality. When the data are differenced by 365 days, ideally what should happen is the data
point from 03-03-2018 is subtracted from the data point from 03-03-2019, however if data points are
removed, what happens is that the differencing is offset, and a yearly seasonal difference is not an
accurate yearly seasonal difference.

Seasonal Differencing Method: Currently, for first-degree differencing (after seasonal differencing), the
function diff () is used — this function takes the value of one data point and subtracts the value of the
preceding data point from it. This was also used to for seasonal differencing at one point, using

diff (periods=365) to account for a yearly seasonality. Currently, the function seasonal decompose
is used as explained in Methods section. The difference between the two methods is not drastically
evident, however comparing Akaike Information Criterion (AIC) from the first method to the current, the

current produces a lesser AIC, which indicates a better model. Though there is no evidence to suggest
that the first method is invalid by any means.

ARIMA Parameter Grid Search: Both with the previous group and at one point in this process, an ARIMA
parameter gridsearch was conducted to come up with the best possible ARIMA parameters. However,
the time commitment of this search is about 5-10 minutes per search, to repeat this for every building

https://en.wikipedia.org/wiki/Akaike_information_criterion

would make the notebook timeout. In addition, choosing p = 8 over p = 9 would only change the AIC of
the model by such a miniscule amount (usually < 1%), that deciding to leave the search out did not
sacrifice much.

Conclusions

Building Size vs. Building Consumption: After confirming the previous group's speculations that building
size affects building consumption, it can be further speculated as to why building consumption
increases with building size. Our Building Size vs. Building Consumption results show that smaller sized
buildings consume less energy. The most common speculation is that smaller sized buildings use less
energy to power, heat, and air condition. However, another possibility is that smaller buildings may not
have as much commercial use, and thus do not have as high of an electricity demand.

Solar Production vs. Building Consumption: The use of solar systems, as well as the lowest and most
efficient solar system installation for each building was determined by each building's electricity
consumption habits. From the analysis conducted, the building was suitable for solar system installation
only when the building's electricity load pattern and solar production pattern were similar, i.e., the
maximum values were both obtained around noon. This project found that Buildings 4, 5, 10, 12, and 15
were all potential candidates for solar panel installation.

Optimize Spending on Existing Data Consumption: This project confirmed that the existing data are not
sufficient enough to forecast electricity consumption farther than the three to four years provided.
Therefore, this project does not forecast electricity consumption for each building, and thus does not
predict future annual electricity expenditures.

After calculating three to four years of electricity consumption expenditures for each building under
different commercial electricity services, this project found SGL to be the most expensive service,
followed by SG. Our calculations found PG to be the cheapest service for all buildings. Dependent on the
cost of installing a transformer, the use of PG services could be debated.

SARIMA Modelling: To add to the previous group's work, the process of creating ARIMA models was
made more clear such that the process can be easily manipulated to make improvements for future
groups. In addition, with the use of Fast Fourier Transform analysis of the buildings, it can be said with
accuracy that, if any of the buildings had daily, weekly, or yearly seasonalities, they were correctly
accounted for and differenced properly. Models created for Buildings 1, 2, 3,4, 5,6, 9, 11, and 12 have
statistical evidence to suggest they are valid forecasting models, and can be ranked according to their
correlation coefficients. Although some errors or anomalies in the raw data may be the cause of the
heteroscedasticity present in the models of Buildings 7, 8, 10, 13, 14, and 15, it may also be due to a
relevant seasonality that was not daily, weekly, or yearly — a possibility that seems quite evident with the

abnormality of Building 14, as explained in the "SARIMA Summary" section. A clear observation of the
correlation coefficients shows that Buildings 7, 8, and 9 have abnormally high coefficients — these should
not be taken into consideration when determining if these models are valid, the presence of
heteroscedasticity overrides and invalidates the correlation coefficient value. Should the
heteroscedasticity be a result of errors in data, it is likely that accurate forecasting models for those
buildings cannot be created from these data with confidence.

One possibility to create valid models for the buildings whose data show abnormalities is to collect more
data — an increased data set size decreases the effect of the abnormalities. An extension of this project
should be to understand if there are other relevant seasonalities present with the consumption of all
buildings, and if so, create ARIMA models with those seasonalities in mind and test the validity of the
models, which should ideally improve.

Reader Takeaways

This project studied and observed that building size is positively correlated with building electricity
consumption. With the studies of solar production, it was found that Buildings 4, 5, 10, 12, and 15 are
potential candidates that would benefit from solar panel installation, whereas Buildings 1,2, 3, 6,7, 8,9,
11, 13, and 14 do not have much evidence to suggest a benefit. Of the three commercial electricity
services, SGL was found to be the most expensive, followed by SG, followed by PG as the least
expensive. In addition, SARIMA models created for Buildings 1, 2, 3,4, 5,6, 9, 11, and 12 were found to
have statistical evidence to suggest they are valid forecasting models, whereas models created for
Buildings 7, 8, 10, 13, 14, and 15 have statistical evidence to refute their accuracy.

