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1 Abstract

The Colorardo Avalanche Information Center forecasts avalanches in 3 square kilometer regions, but they

would like to forecast more locally in some areas. We apply data wrangling techniques and a Kalman filter to

noisy snow depth data to create a finer resolution model of snow depth for usage in the SNOWPACK avalanche

model. The cleaning methods replace impossible values, and the Kalman filtered data provide a starting point

for further experimentation with SNOWPACK.

2 Introduction

The latest advancement in avalanche forecasting is using the SNOw TELemetry (SNOTEL) network input

with the Snowpack model. In order for the Colorado Avalanche Information Center (CAIC) to use SNOTEL

to its benefit, a few corrections need to be made. First the data collected by CAIC need to be put through

an error-correction process. A model by Avanzi, et al. allows for the processing of SNOTEL data; however, it

does not do any work to correct the errors in snow depth measurements. Our goal is to use a data assimilation

method known as a Kalman Filter to decrease the error in these measurements. This will improve avalanche

forecast correctness to some degree, which will benefit those who use CAIC forecasts in determining whether or

not to travel into the back-country at some specific time. This can help reduce the amount of people caught in

avalanches in Colorado and, hopefully, save lives.

Physical snow models are used widely for forecasting avalanches, floods, water availability, and more. Physical

models like SNOWPACK use data like temperature, precipitation, relative humidity, wind speed, etc. to predict

changes in energy and mass and therefore forecast future events [3]. SNOWPACK is currently the most used

physical snow model, and improvements for using SNOWPACK focus on data manipulation rather than improving

the model itself. Typically, modern users of SNOWPACK use SNOTEL data as input [2]. However, CAIC

currently uses High Resolution Rapid Refresh, or HRRR, data from the National Oceanic and Atmospheric

Administration (NOAA). The SNOTEL data are noisy and requires cleaning, as described by Avanzi, et al. [2].

However, even after cleaning and processing, the data need further improvement. As mentioned above, snow

depth is one of the most important measures for running SNOWPACK and is prone to error. Reducing the error

in the measured snow depth before inputting the data in to SNOWPACK will help SNOWPACK provide more

accurate forecasts, which is of specific interest to the Colorado Avalanche Information Center, or CAIC. CAIC

uses SNOWPACK forecasts to predict avalanche likelihoods in various regions and uses those predictions to warn

those going into the backcountry and even those using the mountain-lined Interstate 70 [1]. Accurate predictions

help reduce harm to people and property.

We are using a data assimilation method based on probabilities to reduce the error in snow depth measurements

and improve the simulation accuracy. In 2006, Andrew G. Slater and Martyn P. Clark of the Cooperative

Institute for Research in Environmental Sciences at University of Colorado Boulder used the Kalman filter (KF) to

assimilate snow-water equivalence, SWE, data from SNOTEL sites [6]. This method produced optimal weighting

between a modeled and observed state given estimates of the errors in the model and observations. 1

1In addition to implementing the project’s main Kalman filter algorithm, Joa performed and prepared all data wrangling, code

reviews, and visualizations. Sandra researched the methods to be used, worked on a machine learning algorithm and particle filter

algorithm that we opted not to use, corresponded with Coop for project updates, and kept the team on track to complete the project

in time. Reports were worked on together.

1



3 Methods

The available snow depth data are hourly ultrasonic depth sensor readings at weather stations throughout

Colorado. The sensor works by bouncing sound off of a surface and recording how long it takes to return. The

sensor is shown in figure 1.

Figure 1: Visual of the Judd ultrasonic depth sensor used to measure snow depth at SNOTEL sites.

[4]

These data date back as far as 2012, before which most stations only recorded daily values. SNOTEL has

a website where these readings are recorded each hour, making it simple to obtain 24 values for each day for a

given station. We can then build a data file over the snow season as each day passes. The data currently being

used by the CAIC are from NOAA; This is known as HRRR, High-Resolution Rapid Refresh. According to our

sponsor, Mike Cooperstein (hereafter Coop), the data from NOAA are less reliable than SNOTEL because the

data are given for 3 kilometer regions rather than localized points. The variability of the measurements across

such a large region are not typically accurate for the entire region, and thus the data are not particularly helpful

in pinpointing regions that may have avalanche activity. The tools to use SNOTEL data have not been developed

for use by CAIC yet. Our project aims to build at least some of those tools.

We used the following methods established by Avanzi et al. to correct transmission errors in hourly snow

depth readings:

1. Filling in missing data - We forward-fill zero, negative, and Not-A-Number entries that are surrounded by

non-zero entries with the previous value.

2. Removing data outside of the acceptable range - We replace entries that are greater than the determined

maximum depth with the maximum depth.

3. Filter out data from Summer - Only dates between October and June are read and used.
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4. Check for changes that are greater than Hmax - We replace entries that have increased beyond the maximum

hourly increase with the previous value.

We begin by checking for negative values and values greater than the maximum snow height, Hmax, which is

determined separately for each site. Avanzi et al. also reduce any snow depth values recorded during summer

to zero, which we have decided is unnecessary. Our model will only be run from October to June, a time-frame

with no summer values, so the summer measurements will simply be filtered out. The ultrasonic sensors are

prone to fluctuations between hours (due to high wind, low density snow, etc.), so our next step is to validate

those fluctuations and eliminate them if erroneous. To do this, we first calculate the hourly difference in snow

depth between two successive readings. Then we compare that incremental value to the hourly difference of the

previous two readings; if the previous hourly difference is equal in absolute value, we assume the snow depth

did not actually change and can thus replace that hour’s value with the one before. Additionally, we have set a

threshold for the maximum change in height between hours, ∆HMAX , to be 0.6 meters. We leave the decision

to increase or decrease this value to Coop’s expertise. Once these processes are complete, the daily data are

appended to the existing annual data and saved to be used in the following steps.

Figure 2: Example of cleaned snow depth data for three days, January 2012.

The Kalman Filter is a recursive solution to the linear filtering of discrete data; it uses the linear stochastic

difference equation to estimate the state, x, of a discrete-time controlled system. The algorithm takes five steps,

show in Figure 3 below3, to complete an iteration:

1. First, from the chosen starting point and error, the state is projected ahead by adding the previous state

value to the control input.

2. Then the error covariance is also projected ahead by adding the process covariance, Q, to the previous error

covariance.

3. Next we compute the Kalman Gain, Kk, by multiplying the projected error covariance by the inverse of the

error covariance plus the measurement error, R, like so: Kk = P−
k HT (HP−

k HT + R)−1.

4. then we update the estimate with the observed measurement, zk, by adding the projected state the the

Kalman Gain multiplied by the change in the observation.

5. the final step is to update the error covariance by multiplying the previous P−
k by the identity minus the

Kalman Gain, Pk = (I −KkH)P−
k .
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See the table below for a list of variables for the filter:

k Current time index

x̂−
k Projected system state

A State-transition Matrix

B Control-input Matrix

P−
k Projected error covariance

Kk Kalman Gain

H Transformation Matrix

zk Snow Depth Observation Vector

Q Process Noise Covariance

R Observation Noise Covariance

In our case, the matrices A, B, and H are the identity matrix due to the simplicity of our problem. While A

and B are likely to stay constant, future iterations could use further analysis to arrive at a non-identity H based

on other conditions. We can establish R from the known tolerance of the sensor being used.

Figure 3: Steps of the Kalman Filter Algorithm

[7]

4 Results

The main result of our project is the hourly filtered depth data and the ability to run SNOWPACK on a

significantly more local scale. Since the data are all from a specific site, the CAIC can build more specific,

regional models of snow layers closer to areas of interest; this was more challenging before because the snow

depth data from HRRR are at a 3km resolution, making it difficult to know the snow depth at a specific point

within that region. Using a covariance of Q = 0.1, the result of applying the Kalman Filter is shown in figure 4.

We are working with Coop and his colleagues at the CAIC to see how our data compare to HRRR. We explored

how the data assimilation using KF is affected by the choice of process covariance Q. In figure 5, we visually

compare the data provided by the KF while varying Q. This image shows the algorithm’s increasing hesitation
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Figure 4: Applying the KF with Q = 0.1

to change the estimated state of the model as Q gets smaller. The ”correct” Q value is elusive and will require

more testing–perhaps on a per-site basis–to pin down; this is being worked on with Coop’s colleagues.

Figure 5: The adjusted data varies with process covariance, Q.

5 Discussion

When we began researching this project, all arrows pointed toward using machine learning to build a better

model. As we got more familiar with the data, it became clear that we do not have nearly enough data points for

machine learning to work. The estimated sample size we would need to achieve a 99 percentile confidence interval,

if the population of avalanches is 25,000 and we allow margin of error of 5 percent, is 646[5]. Unfortunately we

do not have 646 correct snow depth measurements to train a machine learning algorithm. The filter method we

researched, Kalman Filtering, seemed to apply much more appropriately to our situation. In the end, the filter

method allow us to build a more accurate, ”living” model of snow depth at a weather station over the course of

the snow year. Our work is certainly not a finished product, but rather a first step that can be used for further
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study and development. This project can be used as a starting point for others to expand on, such as an indexed

process covariance, Qk, analysis on the relationship between different SNOTEL sites, or further data validation

through other variable observations at the same station (wind, air presssure, SWE, et cetera).

6 Conclusion

Even if the Kalman Estimates are entirely inaccurate and there isn’t a way to fix them, we will still have made

a tool CAIC can use to gather better snow depth data in a more refined manner than they are currently using.

We think this will be relevant to our sponsor’s work, but our results may be useful to other avalanche research

groups as well. SNOTEL gathers data at thousands of weather stations across the continent, and an easy to use

tool like ours could be helpful to many of them.

With more work on the process covariance and modeling of SNOTEL sites, our work could be expanded on

to build a model of all SNOTEL sites within a given range; this would create a map of depths in an entire region

that updates hourly, which could be used by CAIC to monitor extreme changes and alert them of potentially

avalanche-triggering conditions.

References

[1] About the CAIC. url: https://avalanche.state.co.us/about- us/about- the- caic/. (accessed:

03.29.2019).

[2] Francesco Avanzi et al. “A processing–modeling routine to use SNOTEL hourly data in snowpack dynamic

models”. In: Advances in Water Resources 73 (2014), pp. 16–29. doi: https://doi.org/10.1016/j.

advwatres.2014.06.011.

[3] Perry Bartelt and Michael Lehning. “A physical SNOWPACK model for the Swiss avalanche warning: Part

I: numerical model”. In: Cold Regions Science and Technology 35 (3 2002), pp. 123–145. doi: https://doi.

org/10.1016/S0165-232X(02)00074-5.

[4] Judd Communications. Judd Communications Depth Sensor. url: https://www.cs.unc.edu/~welch/

media / pdf / kalman _ intro . pdhttp : / / static1 . 1 . sqspcdn . com / static / f / 1146254 / 15414722 /

1322862508567/ds2manual.pdf?token=M60l3VwgYw7IJEW5Syn08azgrjE%3Df.

[5] Qualtrics. Sample Size Calculator. url: https://www.qualtrics.com/blog/calculating-sample-size/.

[6] Andrew G. Slater and Martyn P. Clark. “Snow Data Assimilation via an Ensemble Kalman Filter”. In:

Journal of Hydrometeorology 20.2 (2006), pp. 478–493. doi: https://doi.org/10.1175/JHM505.1.

[7] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. url: https://www.cs.unc.edu/

~welch/media/pdf/kalman_intro.pdf.

A Required Files

1. kalmanSnowDepth.ipynb

2. WolfCreekSummit2018.csv

3. avanziExample.png
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