A Study on Trends in Frequency Aimé Fournier
May 16, 2022

and Intensity of Winter Storms in Team p

Colorado

Contributions

David Carlton: David served as the lead coder for this
project. He was responsible for data processing, storm
calculations, variable creation, designing the coding
regressions, and interpreting the results. He also
visualized the results in graphs and assisted with
documentation of the project.

Walker Jones: Walker oversaw all communication. This
meant communicating with sponsors and taking notes
during the meetings and presentations. On top the
communication, Walker also worked to gather and
organize the initial data as well as working to clean data
and assisted with some of the code writing. Walker was
also in charge of writing the contributions, abstract, and
helped with describing the visualizations and methods.

Sydney Jenkinson: Sydney was the leader of this project.
She helped make the schedule and keep ensured that we
followed the schedule. She assisted with some of the
coding for visualizations as well as helping with simple
linear regressions to find trends in the data. Sydney also
wrote the Introduction and Conclusion.

Abstract

This report uses data provided by the United States
Department of Agriculture's National Water and Climate

Center, which is then analyzed for the Colorado
Avalanche Information Center. The goal of this report is
to determine if we see any statistically significant
change in the frequency and intensity of winter storms in
Colorado over time. This project effectively calculates
and analyzes trends in winter storms across Colorado.
The motive behind this project is to better understand
trends in snowstorms to provide useful information
about the relationship between winter storms and
climate.

Introduction

The Colorado Avalanche Information Center (CAIC) is a
program within the Colorado Department of Natural
Resources, a state government agency. They provide
information about snowpack stability throughout the
state of Colorado for motorists and backcountry
recreational use in order to reduce the number of
avalanche related injuries, and economic damages
within the state. They are interested in trends in
frequency and intensity of winter storms.

We have worked with the CAIC for the past few months
receiving Snow Water Equivalent (SWE) data across 115
stations, the majority of which span the last 30 years.
SWE is a common snowpack measurement used by
hydrologists and water managers to gauge the amount
of water contained within snowpack. It is equal to the
amount of depth contained within the snowpack when it
melts. We worked with the stations that contain data for
the full 30 years as this is a benchmark for climate
questions. With this information, we have been able to
look at trends in frequency and intensity of snowstorms
in Colorado.

The CAIC defines a storm as beginning when SWE
increases over a 24 hour period, and ending when there

is no increase over a 24 hour period. We define
frequency for this project as the number of winter
storms in a given year, and intensity as the the number
of days taken for a storm to surpass a given SWE
threshold, with a shorter duration indicating a more
intense storm assuming the same threshold. These
thresholds will be defined later in the notebook.

We hope that the impact of the project is to provide
insight to the CAIC about trends in winter storms, so that
they can use them to better understand the climate in
Colorado, possibly extend the study to other locations,
and ultimately make useful conclusions about winter
storm trends.

Methods

We received data directly from the CAIC. The file
includes daily SWE measurements from 1990 to 2021
across 115 Colorado stations, as well as the daily
average temperature for the same time period. For this
project, we decided to work with stations that have data
for the full time period, as about 30% do not. We did this
because 30 years is a benchmark for climate questions
according to the CAIC, so those with less are not
appropriate to include. The file contains 1,048,405 rows
and 4 columns containing the timestamp, station name,
SWE value in inches, and average temperature in
degrees Fahrenheit, respectively. We also filter the
dataset to only include the winter months because we
are dealing with winter storms.This dataset and similar
datasets can be generated using the US Department of
Agriculture's website, found here:
https://wcc.sc.egov.usda.gov/reportGenerator/

The dataset we worked with is organized in a stacked
format (all stations in one column). We formatted it this

way to allow for creation of new columns necessary to
our analysis.

Time series analysis, autoregression, and linear
regression are our primary statistical methods for this
project. We begin by conducting time series analysis on
the raw SWE data before calculating the number of
winter storms per year. Next, we build a dataframe
containing the number of storms per station per year,
and use linear regression to discover the relationship

Data Processing

Required files: 'CAICData.xIsx' (in Math Clinic Folder)

1 # If you get an error message in the next cell, uncomment below and install, then 1

2 !pip install statsmodels --upgrade

Requirement already satisfied: statsmodels i
Collecting statsmodels
Downloading statsmodels-0.13.2-cp37-cp37m-
| I | © - 8
Requirement already satisfied: packaging>=21
Requirement already satisfied: patsy>=0.5.2
Requirement already satisfied: pandas>=0.25
Requirement already satisfied: scipy>=1.3 in
Requirement already satisfied: numpy>=1.17 i
Requirement already satisfied: pyparsing!=3.
Requirement already satisfied: python-dateut
Requirement already satisfied: pytz>=2017.3
Requirement already satisfied: six in /usr/1l
Installing collected packages: statsmodels
Attempting uninstall: statsmodels
Found existing installation: statsmodels
Uninstalling statsmodels-0.10.2:
Successfully uninstalled statsmodels-0
Successfully installed statsmodels-0.13.2

Importing libraries

1
2
3 import matplotlib

4 import pandas as pd

5 import numpy as np

6 from google.colab import drive
7 from google.colab import files

8 import matplotlib.pyplot as plt
9 import matplotlib.cm as cm
10 import matplotlib.colors as mcolors
11 import os
12 import seaborn as sns
13 from IPython.core.pylabtools import figsize
14 from sklearn.linear model import LinearRegression
15 from sklearn.model_selection import train_test_split
16 from sklearn import metrics
17 import statsmodels.api as sm
18 import joblib
19 import sys
20 sys.modules|['sklearn.externals.joblib'] = joblib
21 from mlxtend.feature_selection import SequentialFeatureSelector as SFS
22 from mlxtend.plotting import plot_sequential_ feature_selection as plot_sfs
23 from scipy import stats
24 from pandas.plotting import lag_plot
25 from statsmodels.tsa.api import acf, graphics, pacf
26 from statsmodels.tsa.ar_model import AutoReg, ar_select_order
27 from pandas.plotting import scatter_matrix
28
29 %matplotlib inline
30 sns.set_theme()
31 plt.rcParams['axes.grid'] = True

1 drive.mount('/content/gdrive')

Mounted at /content/gdrive

1 cwd = os.getcwd() # Assumes no cd commands were executed

2 pathTeam = cwd + '/gdrive/My Drive/'

3 pathProfessor = 'Colab Notebooks/Math Clinic/2022sp/CAIC/'

4 if os.path.exists(pathTeam + pathProfessor):

5 pathTeam += pathProfessor

6 #os.listdir(pathTeam) # Just a handy check that we see the expected files

The following block takes about 2 minutes to run. We
import the data then convert it to a Pandas DataFrame.

1 swe_data = pd.read_excel(pathTeam+'CAICData.xlsx', sheet_name=None, parse_dates=Tri

1 df = pd.DataFrame.from dict({(i,j): swe_data[i][]]

2 for i in swe_data.keys()
3 for j in swe_data[i].keys()})
1df

Sheetl
Date Station Name Snow Water
0 1990-01-01 Apishapa
1 1990-01-02 Apishapa
2 1990-01-03 Apishapa
3 1990-01-04 Apishapa
4 1990-01-05 Apishapa
1046716 2021-12-27 Vallecito
1046717 2021-12-28 Vallecito
1046718 2021-12-29 Vallecito
1046719 2021-12-30 Vallecito
1046720 2021-12-31 Vallecito

1046721 rows x 4 columns

In the following two cells, we organize the columns and
add variables containing the daily change in SWE, as well
as lagged (one day behind) versions of both of those
variables. The lagged version will be used to check
certain conditions and accurately calculate frequency of

storms.

1 df['Date'] = df[('Sheetl', 'Date')]

2 df['Station Name'] = df[('Sheetl', 'Station Name')]

3 df['SWE (in)'] = df[('Sheetl', 'Snow Water Equivalent (in) Start of Day Values')]
4 df['Air Temp Avg'] = df[('Sheetl', 'Air Temperature Average (degF)')]

5

6 df = df.drop(columns=[('Sheetl', 'Date'),

7 ('Sheetl', 'Station Name'),

8 ('Sheetl', 'Snow Water Equivalent (in) Start of Day Values'),
9 ('Sheetl', 'Air Temperature Average (degF)')])

1 df['SWE Difference'] = df['SWE (in)'].diff()

2 df['Lagged SWE'] = df['SWE (in)'].shift()

3 df['Lagged SWE Difference'] = df['SWE Difference'].shift()

4

5 # Indicator of positive change in SWE

6 df['Storm Indicator'] = np.where(df['SWE Difference'] > 0, True, False)

This next block creates a variable that counts the

SWE (in)
number of consecutive days that the storm indicator
variable has been true. This calculates the duration in
days of each storm, which is key for measuring intensity. Station . Arapaho Bear Bear
Apishapa . . eal
Name Ridge Lake River
. . . Date
1 gl = df['Storm Indicator'].ne(df['Storm Indicator'].shift()).cumsum()
2 df['Duration'] = df.groupby(gl)['Storm Indicator'].transform('size') * np.where(df]| 1990-01- i N - Nt
3 df['Duration Lag'] = df['Duration'].shift()

Here, we filter the data to only include winter months.

o 1.4 NaN 52 NaN

Here, we unstack the data now that our new variables
1 df = df[df.index.month.isin([10, 11, 12, 1, 2, 3])]

are created, but keep a stacked version for calculation of g ;
P Aimé Fournier n 1.4 NaN b2 NaN
storms Ma_y 17,2022
. (edited 12:51 PM Yesterday)

)) L In the next two cells, we create columns containing the
Note that averaging a difference implies

all but a couple of values cancel each averages of our variables of interest across all stations.
1 dfStacked = df.copy() other.
2 df = df.pivot(index='Date', columns='Station Nai 10an.n1.
3 df 1 df['Average SWE'] = df['SWE (in)'].mean(axis=1)
2 df['Average SWE Difference'] = df['SWE Difference'].mean(axis=1)
3 df['Average Air Temp'] = df['Air Temp Avg'].mean(axis=1)
4 df['Average Storm Duration'] = df['Duration'].mean(axis=1)

/usr/local/lib/python3.7/dist-packages/ipyke
A value is trying to be set on a copy of a s
Try using .loc[row_indexer,col_indexer] = va

See the caveats in the documentation: https:

"""Entry point for launching an IPython ke
/usr/local/lib/python3.7/dist-packages/ipyke
A value is trying to be set on a copy of a s
Try using .loc[row_indexer,col_indexer] = va

See the caveats in the documentation: https:

/usr/local/lib/python3.7/dist-packages/ipyke
A value is trying to be set on a copy of a s
Try using .loc[row_indexer,col_indexer] = va

See the caveats in the documentation: https:

This is separate from the ipykernel packag
/usr/local/lib/python3.7/dist-packages/ipyke
A value is trying to be set on a copy of a s
Try using .loc[row_indexer,col_indexer] = va

See the caveats in the documentation: https:
after removing the cwd from sys.path.

1 # Used for scatter matrix later in notebook 11

2 dfAverages = df[['Average SWE', 'Average SWE Difference', 'Average Air Temp', 12 for year in g: # Loop through each year of dataframe
3 'Average Storm Duration']].copy() 13 for swe, sweLag, sweDiff, sweDiffLag in zip(
4 dfAverages = pd.pivot_table(dfAverages, index='Date') 14 year['SWE (in)'],
15 year['Lagged SWE'],
. . 16 year['SWE Difference'],
Frequency and Intensity Calculations 1 emr| ' agged SWE Difference]):
18 if sweDiff > 0 and sweDiffLag <= 0: # Set initial value when storm begins
19 swelnitial = swelag
The variables we have calculated thus far tell us about 20 elif sweDiff > 0 and sweDiffLag > 0: # Continue if storm in progress
changes in daily SWE values, but not necessarily about 21 continue
winter storms as defined by the CAIC. The CAIC defines 22 elif sv.veDJ.ff <= 0 and sweDiffLag > 0: # Set final value when storm ends
23 sweFinal = swelLag
a storm as beginning when SWE increases over 24 24 if (sweFinal - swelInitial) > threshold: # Count a storm if threshold is exces
hours, and ending when SWE remains constant or 25 count += 1

26 stormsList.append(count) # Add count to list of storms

decreases over 24 hours. The following code blocks
27 count = 0 # Reset storm count for each year

loop through the data to check conditions that will

calculate frequency of storms, that is, the number of The next cell loops through the grouped dataframe and
storms each year. 11,688 is length of columns that calculates stores the duration of storms for each year,
contain the full 30 year data, and we wish to only use skipping days where there is no storm.

these for our calculation, which is why that number is

used to filter the data. The 'Date1’ variable is used 1 intensityList = []

because of an unresolved issue we had with the pandas 2

roupby function 3 for year in g:
g pby : 4 for duration in year['Duration']:
5 if duration > 0:

6

1 dfStacked = dfStacked.groupby('Station Name').filter(lambda x: len(x) == 11688) intensityList.append(duration)

2 dfStacked.insert (0, 'Datel', dfStacked['Date'])

3 dfstacked.set_index('Date’, inplace=True) We take the list of storms and durations calculated in

the previous blocks and split them by station and year.

In the following cell, the loop checks for storms that The resulting dataframes contain the number of winter

exceed a given SWE threshold over their timeframe. We storms that exceed the given SWE threshold for each

check those conditions and then create a dataframe station, each year, and the duration of each storm

containing the results. organized by year, respectively.

dfGrouped = dfStacked.groupby([pd.Grouper (key='Datel', freg='Y'), 'Station Name'])

1 dfGroupedName = dfStacked.groupby('Station Name')
g = [group for frame, group in dfGrouped] 2 stormsListSplit = np.array split(stormsList, 32)
3 dfStorms = pd.DataFrame(stormsListSplit, columns=dfGroupedName.groups.keys())
stormsList = [] 4 dfStorms.insert(0, 'Year', np.arange(1990, 2022, 1))
count = 0 5 dfStorms.set_index(np.arange(1990, 2022, 1), inplace=True)
sweInitial = 0 6 dfStorms['Average Storms Across Stations'] = dfStorms.drop('Year', axis=1).mean(nur

sweFinal = 0

[

Here, the SWE threshold is defined. It may be adjusted as necessary. intensityListSplit = np.array split(intensityList, 32)

threshold = 2

© VW oW NOU e WN

—
N

dfIntensity = pd.DataFrame(intensityListSplit)

3 dfIntensity.insert(0, 'Year', np.arange(1990, 2022, 1))
4 dfIntensity.set_index(np.arange(1990, 2022, 1), inplace=True)

5 dfIntensity['Average Storm Duration'] = dfIntensity.drop('Year',6 axis=1).mean(nume: Year Apishapa Bear Beartown BerthoY
Lake Summi

1 dfStorms 1990 1990 1 4 3

1991 1991 1 1 5

1992 1992 2 0 2

1993 1993 1 4 5

1994 1994 0 2 7

1995 1995 1 4 4

1996 1996 0 4 5

Autoregression
190q 10009) 4 4

First, we run an autoregression on each of our variables
of interest to see if there are statistically significant
trends over time without considering to their
relationships to other variables. The period we use is
365 days, implying that each value is being compared to
itself exactly a year before.

To run this regression for individual stations,
uncomment the first line of the following cell, comment
out the second line, replace Average SWE with the
variable of interest, and replace Apishapa with the
station of interest.

2010 2010 n 2 4

1 # mod = AutoReg(df[('Average SWE','', 'Apishapa')], period=365, lags=10)
2 mod = AutoReg(df['Average SWE'], period=365, lags=10)

3 mod2 = AutoReg(df['Average SWE Difference'], period=365, lags=10)

4 mod3 = AutoReg(df['Average Air Temp'], period=365, lags=10)

5 mod4 = AutoReg(df['Average Storm Duration'], period=365, lags=10)

6 res = mod.fit()

7 res2 = mod2.fit()

8 res3 = mod3.fit()

9 res4 = mod4.fit()

/usr/local/lib/python3.7/dist-packages/stats
self. init dates(dates, freq)
/usr/local/lib/python3.7/dist-packages/stats

self._init_dates(dates, freq)
/usr/local/lib/python3.7/dist-packages/stats
self._init_dates(dates, freq)
/usr/local/lib/python3.7/dist-packages/stats
self._init_ dates(dates, freq)

Linear Regression

Next, we run a linear regression to see if there is a
relationship between air temperature and any of our
variables. Professor Fournier requested that we use air
temperature because our ultimate goal to provide useful
climate information, and we know that air temperature is
one of the most important factors in these types of
questions. We run separate linear regressions on each
variable, using average air temperature as the predictor.

Similar to the autoregression, this regression can be run
for individual stations. The commented-out first line is a
template which may be edited as desired.

X = df[('Average Air Temp','', 'Apishapa')]
= df['Average Air Temp']

df['Average SWE']

sm.add_constant(X)

XoKOX 3%

model = sm.OLS(Y, X).fit()
predictions = model.predict(X)

W NV W N

print_model = model.summary()

X2 = df['Average Air Temp']
Y2 = df['Average SWE Difference']
X2 = sm.add_constant(X2)

model2 = sm.OLS(Y2, X2).fit()
predictions2 = model.predict(X2)

0 N oUW N

print_model2 = model2.summary()

1 X3 = df['Average Air Temp']

Y3 = df['Average Storm Duration']
X3 = sm.add_constant(X3)

2

3

4

5 model3 = sm.OLS(Y3, X3).fit()

6 predictions3 = model.predict(X3)
7
8

print_model3 = model3.summary()

Here, we calculate the average temperature for each
year to match the frequency and intensity data.

Aimé Fournier

May 19, 2022

So the time axis also excludes 6 mo/y?
That's weird.

1 dfTemp = dfStacked.groupby([pd.Grouper (key='Datel', freg='Y')]).agg('mean')

2 dfTemp = dfTemp.reset_index()

/usr/local/lib/python3.7/dist-packages/panda
obj = obj._drop_axis(labels, axis, level=l

For the following regression, we used average storms
across stations as the response. This may be replaced
with any station of interest. To do this, replace 'Average
Storms Across Stations' with the station name of
interest.

X4 = list(dfTemp['Air Temp Avg'])

X4 = sm.add_constant(X4)

modeld = sm.OLS(Y4, X4).fit()
predictions4 = model4d.predict(X4)

© WV oW NOU e WN

fun

print_model4 = model4.summary()

X5 = list(dfTemp['Air Temp Avg'])
Y5 = dfIntensity['Average Storm Duration']
X5 = sm.add_constant(X5)

model5 = sm.OLS(Y5, X5).fit()
predictions5 = model5.predict(X5)

W N oUW N

print_model5 = model5.summary ()

Enter station name between the quotes on next line
Y4 = dfStorms['Average Storms Across Stations']

. . AR.6 0.1851 +1.60227
Results and Discussion AR.7 ~1.5693 -0.54763
AR.8 -1.5693 +0.54767
AR.9 -0.8711 -1.3925j
AR.10 -0.8711 +1.3925j
Autoregression CGEEEE——

. . 1 df['Average SWE'].plot(ylabel='SWE (in)', title='Average Daily SWE Over Time');
The autoregressions served as our first look at trends in t g 1-plot(y (an) ', g Y)

the data without consideration to other variables. The Average Daily SWE Over Time
ten coefficients are the lags of the regression, that is,
365 days plus 1, 2, 3, ..., 10 days. The highest correlation 20
for all variables was the first level of the regression. They .
were also all statistically significant and were slightly £
L. L
positively correlated. =
5
1 print(res.summary())
v}
AutoReg Model Re
1 153 0 xe] 1] O
A Ol i L
Dep. Variable: Average SWE No. Date
Model: AutoReg(10) Log
Method: Conditional MLE S.D.
Date: Mon, 16 May 2022 AIC These (t-365) scatter plots show the correlation between
Time: 22:05:42 BIC .
Sample: 10 HOIC a given measurement and its value a year before.
5832
coef std err 1 plt.scatter(df['Average SWE'], df['Average SWE'].shift(365), marker='.'
2 plt.ylabel('Average SWE (t-365)")
const 0.1870 0.026 7 3 plt.xlabel('Average SWE (t)')
Average SWE.L1 0.9923 0.013 75
Average SWE.L2 -0.0040 0.018 -0 Text (0.5, 0, 'Average SWE (t)')
Average SWE.L3 -0.0016 0.018 -0
Average SWE.L4 -0.0009 0.018 -0 I I
Average SWE.L5 0.0009 0.018 0 20
Average SWE.L6 0.0018 0.018 0 =
Average SWE.L7 -0.0006 0.018 -0 ® s
Average SWE.L8 -0.0006 0.018 -0 =
Average SWE.L9 0.0011 0.018 0 £
Average SWE.L10 -0.0156 0.013 -1 Yo
Roots o
g
Real Imaginary T 3
AR.1 1.0335 -0.0000j 0
AR.2 1.3716 -0.0000j 0 < 0 s 20
AR.3 1.0880 -1.06907 Average SWE (t)
AR.4 1.0880 +1.06907
AR.5 0.1851 -1.6022j

1 print(res2.summary())

Daily Change in SWE Over Time

AutoReg Model 1
Dep. Variable: Average SWE Difference @
Model: AutoReg(10) é o
Method: Conditional MLE @
Date: Mon, 16 May 2022 E
Time: 22:05:42 1 plt.scatter(df['Average SWE Difference'], df['Average SWE Difference'].shift(365),
Sample: 10 2 plt.ylabel('Average SWE Change(t-365)")
5832 3 plt.xlabel('Average SWE Change (t)')
coef std Text(0.5, 0, 'Average SWE Change (t)')
const 0.0379 0 10
Average SWE Difference.Ll 0.4386 0 @ ’
Average SWE Difference.L2 -0.0114 0 m 05
Average SWE Difference.L3 0.0473 0 T 0o
Average SWE Difference.L4 0.0040 0 <
Average SWE Difference.L5 0.0138 0 5 °°
Average SWE Difference.L6 0.0266 0 W 19
Average SWE Difference.L7 0.0122 0 %
Average SWE Difference.L8 -0.0015 0 g s
Average SWE Difference.L9 0.0045 0 g -2.0
Average SWE Difference.L10 0.0214 0 E e
Roots -
. -04 -02 00 02 0.4 0.6 0.8 10 1
Real Imaginary Average SWE Change (t)
AR.1 1.2320 -0.00007
AR.2 1.1859 -0.823973 .
AR.3 1.1859 +0.82397 1 print(res3.summary())
AR.4 0.5599 -1.3535]j
AR.5 0.5599 +1.35355 AutoReg Model Re
AR.6 -0.4213 -1.407673
AR.7 ~0.4213 +1.40767 Dep. Variable: Average Air Temp No.
AR.8 -1.2475 -0.94963 Model: AutoReg(10) Log
AR.9 _1.2475 +0.94967 Method: Conditional MLE S.D.
AR.10 ~1.5944 -0.0000j Date: Mon, 16 May 2022 AIC
Time: 22:05:43 BIC
Sample: 10 HQIC
G 5832
coef std err
1 df['Average SWE Difference'].plot(ylabel='SWE Difference',
2 title='Daily Change in SWE Over Time'); const 2.0529 0.216
Average Air Temp.Ll 0.8980 0.013
Average Air Temp.L2 -0.2024 0.018
Average Air Temp.L3 0.0703 0.018
Average Air Temp.L4 0.0249 0.018
Average Air Temp.L5 0.0292 0.018
Average Air Temp.L6 0.0293 0.018
Average Air Temp.L7 0.0081 0.018
Average Air Temp.L8 0.0076 0.018
Average Air Temp.L9 0.0140 0.018
Average Air Temp.L10 0.0414 0.013

Roots

Real Imaginary
AR.1 1.0409 -0.00007
AR.2 1.0869 -0.69713
AR.3 1.0869 +0.69713
AR.4 0.5423 -1.22387j
AR.5 0.5423 +1.22383
AR.6 -0.3419 -1.404073
AR.7 -0.3419 +1.404073
AR.8 -1.5605 -0.00007
AR.9 -1.1960 -0.97647
AR.10 -1.1960 +0.97647
D

1 df['Average Air Temp'].plot(ylabel='Average Air Temp (degF)',
2 title='Daily Average Air Temperature (degF) Over Time'

Daily Average Air Temperature (degF) Over Time

Average Air Temp (degF)
=}

o

o @y ot g @ e @O

Date

1 plt.scatter(df['Average Air Temp'], df['Average Air Temp'].shift(365), marker='.'
(t-365)")

2 plt.ylabel('Average Air Temp (degF)
3 plt.xlabel('Average Air Temp (degF)

(£)")

Text (0.5, 0,

100

' {t-365)

an

'Average Air Temp (degF) (t)')

-
-
LAY

’?EéiSi}"

1 print(res4.summary())

AutoReg Model

Dep. Variable: Average Storm Duration
Model: AutoReg(10)
Method: Conditional MLE
Date: Mon, 16 May 2022
Time: 22:05:44
Sample: 10
5832
coef std
const 0.2002 0
Average Storm Duration.Ll 1.0278 0
Average Storm Duration.L2 -0.1609 0
Average Storm Duration.L3 -0.0043 0
Average Storm Duration.L4 -0.0181 0
Average Storm Duration.L5 -0.0117 0
Average Storm Duration.L6 0.0030 0
Average Storm Duration.L7 0.0182 0
Average Storm Duration.L8 0.0109 0
Average Storm Duration.L9 -0.0174 0
Average Storm Duration.Ll0 0.0044 0
Roots
Real Imaginary
AR.1 -1.7083 -0.00007
AR.2 -1.2353 -1.13293
AR.3 -1.2353 +1.13293
AR.4 -0.0941 -1.598273
AR.5 -0.0941 +1.59827
AR.6 1.2208 -0.00007
AR.7 1.2492 -1.077673
AR.8 1.2492 +1.07767
AR.9 2.3003 -0.509073
AR.10 2.3003 +0.509073
CGED

1 df['Average Storm Duration'].plot(ylabel='Average Storm Duration (Days)',

2

title='Average Storm Duration Over Time');

Average Storm Duration Over Time

Average Storm Duration (Days)

1 plt.scatter(df['Average Storm Duration'], df['Average Storm Duration'].shift(365),
2 plt.ylabel('Average Storm Duration (t-365)"')
3 plt.xlabel('Average Storm Duration (t)')

Text (0.5, 0, 'Average Storm Duration (t)')

Average Storm Duration (t-365)

Average Storm Duration (£}

Linear Regression

First, we print the results of our regressions using
temperature as predictor of each variable, plot the
denisty of the residuals, and visualize the correlation
using a scatter plot matrix. The diagonal of this matrix
shows the denisty of each variable.

1 print(print_model)

OLS Regression R

Dep. Variable: Average SWE R-sq
Model: OLS Adj.

Method: Least Squares F-st

Date: Mon, 16 May 2022 Prob
Time: 22:05:41 Log-
No. Observations: 5832 AIC:
Df Residuals: 5830 BIC:
Df Model: 1
Covariance Type: nonrobust

coef std err
const 9.4734 0.154
Average Air Temp -0.1012 0.005 -1
Omnibus: 483.479 Durb
Prob(Omnibus) : 0.000 Jarq
Skew: 0.711 Prob
Kurtosis: 2.556 Cond
Notes:
[1] Standard Errors assume that the covarian

Here, we see a negative relationship between air
temperature and average SWE, as expected.

1 sns.distplot(model.resid, fit=stats.norm, axlabel='Model Residual (Air Temp vs SWE

/usr/local/lib/python3.7/dist-packages/seabo
warnings.warn(msg, FutureWarning)

0.14

-10 =5 a 5 10 15 20
Model Residual (Air Temp vs SWE)

1 sm.ggplot(model.resid, line='s');

20 This relationship is also negative, but the relationship is
not as strong. This tells us that air temperature is not a

10 nraat nradintar af dAaili chanaa in QWE

1 sns.distplot(model2.resid, fit=stats.norm, axlabel='Model Residual (Air Temp vs Che

/usr/local/lib/python3.7/dist-packages/seabo

Sample Quantiles
=

-5 warnings.warn(msg, FutureWarning)
—10 ®
-15 6
20 5
-3 -2 -1 o 1 2 3
Theoretical Quantiles o4
The above plots show how closely our model residuals § 3
follow a normal distribution. The closer they are to the 5
black and red lines, repsectively, the closer they follow it.
For these variables, we can see that they are not quite '
normally distributed. ° > o 0 L
Model Residual (Air Temp vs Change in SWE}
1 print(print_model2) - ﬁ;?grg)g;mer

It's surprising the anticorrelation with T

OLS Regression .
s g is so weak.

1 sm.ggplot(model2.resid, line='s');

Dep. Variable:

Average SWE Difference

Model: OLS
Method: Least Squares 1o s
Date: Mon, 16 May 2022 0.5
Time: 22:05:41 v 00
No. Observations: 5832 %
Df Residuals: 5830 g 05
Df Model: 1 < 10
Covariance Type: nonrobust E’—ls
L]
coef std err “ 20
25
const 0.1673 0.004 4 30 °
Average Air Temp -0.0032 0.000 -2 3) -1 o 1 2 3

Omnibus: 2443.523 Durb
Prob(Omnibus) : 0.000 Jarqg
Skew: 0.984 Prob
Kurtosis: 38.741 Cond 1 print (print_model3)
OLS Regression
Notes:

[1] Standard Errors assume that the covarian

Theoretical Quantiles

Dep. Variable:

Average Storm Duration

Model: OLS
— Method: Least Squares
Date: Mon, 16 May 2022
Time: 22:05:41
No. Observations: 5832

Df Residuals: 5830

20
Df Model: 1
Covariance Type: nonrobust 15 S
w10
coef std err o
S 5
[
const 2.3187 0.037 6 g o
Average Air Temp -0.0377 0.001 -2 -% -
5 .
Omnibus: 1669.045 Durb " -10
Prob(Omnibus) : 0.000 Jarqg
Skew: 1.551 Prob The following cells visualize these relationships using a
Kurtosis: 5-866 Cond correlation matrix, heat map, and scatter plot matrix with
density plots along the diagonal.
Notes:
[1] Standard Errors assume that the covarian
1 dfAverages.corr()
Average Aver:
. . . Average
Here, we get a higher R-squared, but a small coefficient. Air SWE SWE
. i o Temp Diffe
This relationship is more interesting when visualized.
Station
1 sns.distplot(model2.resid, fit=stats.norm, axlabel='Model Residual (Air Temp vs Stc Name
. . Station
/usr/local/lib/python3.7/dist-packages/seabo
N . Name
warnings.warn(msg, FutureWarning)
Average
. Air Temo 1.000000 -0.241135 -0.
5
§~4 1 sns.heatmap(dfAverages.corr());
g
g3
2
1
0
-3 -2 -1 0 1
Model Residual (Air Temp vs Storm Duration)

1 sm.ggplot(model.resid, line='s');

-10

Average Air Temp-- | o8

06
Average SWE-—

1 scatter_matrix(dfAverages, alpha = 0.5, figsize = (24, 18), diagonal = 'kde', grid=

ion Name

Average SWE
=

0 20 40 &0 80 100
Average Air Temp

1 sns.regplot(x='Average Air Temp', y='Average SWE Difference', data=df, marker='.');

i

Average SWE Difference

o 20 40 60 80 100
Average Air Temp

1 sns.regplot(x='Average Air Temp', y='Average Storm Duration',6 data=df, marker='.');

Average Storm Duration

o 20 40 &0 80 100
Average Air Temp

1 sns.regplot(x='Average Air Temp', y='Average SWE', data=df, marker='.');

Next are the results of our prediction of frequency and
duration. The bands around the regression lines indicate

QR% ~rnanfidanca intarvale

1 print(print_model4)

OLS Regres

Dep. Variable: Average Storms Across Sta
Model:
Method: Least Sqgq
Date: Mon, 16 May
Time: 22:
No. Observations:
Df Residuals:
Df Model:
Covariance Type: nonr

coef std err t
const 7.4442 2.479 3.002
x1 -0.1454 0.070 -2.079
Omnibus: 3.293 Durb
Prob(Omnibus) : 0.193 Jarqg
Skew: 0.634 Prob
Kurtosis: 3.244 Cond
Notes:
[1] Standard Errors assume that the covarian

The coefficient and R-squared value here indicates that
average air temperature somewhat negatively predicts
frequency of storms. In future analysis, other variables
may be included.

1 sns.regplot(x=dfTemp['Air Temp Avg'],
2 y=dfStorms['Average Storms Across Stations']);

cross Stations

4.0

35

3.0

““""N“- *®

Here, we see a negative correlation between air

temperature and frequency of storms.

1 sns.distplot(modeléd.resid,

fit=stats.norm,

axlabel='Model Residual (Temp vs Storms

/usr/local/lib/python3.7/dist-packages/seabo
warnings.warn(msg, FutureWarning)

05

01

0.0

-2

-1 o 1 2
Madel Residual (Temp vs Storms)

1 sm.ggplot(model4d.resid, line='s');

Sample Quantiles

20

-10 -05 00 0s 10
Theoretical Quantiles

1 print(print_model5)

15

OLS Regression

Dep. Variable: Average Storm Duration

Model: OLS
Method: Least Squares
Date: Mon, 16 May 2022
Time: 22:05:42
No. Observations: 32
Df Residuals: 30
Df Model: 1
Covariance Type: nonrobust
coef std err t
const 7.8246 1.305 5.997
x1 -0.1111 0.037 -3.019
Omnibus: 1.562 Durb
Prob(Omnibus) : 0.458 Jarq
Skew: 0.406 Prob
Kurtosis: 3.112 Cond
Notes:

[1] Standard Errors assume that the covarian

Air temperature appears to be a better predictor of
average storm duration and frequency.

1 sns.regplot(x=dfTemp['Air Temp Avg'],
2 y=dfIntensity['Average Storm Duration']);

4.25

4.00

375

350

Average Storm Duration

3.25

3.00

31 32 33

34 35 36 37

Air Temp Avg

We also see a negative relationship between average

yearly storm duration and air temperature.

1 sns.distplot(model5.resid, fit=stats.norm, axlabel='Model Residual (Temp vs Storms

/usr/local/lib/python3.7/dist-packages/seabo

warnings.warn(msg, FutureWarning)

1o

-1.0 -0.5 0.0 05 10 15
Model Residual {Temp vs Storms)

1 sm.ggplot(model5.resid, line='s');

1.00

075

0.00

Sample Quantiles

-0.25

-0.50

-0.75

-15 -10 -05 0.0 05 10 15
Theoretical Quantiles

Additional Visualizations

Aimé Fournier

May 19, 2022

The time axis should have run from
Oct. through Mar., not had a spurious
jump in the middle

1 dfStorms['Average Storms Across Stations'].plot(ylabel='Average Storms per Station

2
3

title='Average Storms per Station i
marker='o')

<matplotlib.axes._subplots.AxesSubplot at 0x
Average Storms per Station per Year

4.0

3.5

3.0

25

2.0

15

Average Storms per Station

Lo

Professor Fournier recommended that we do not use
year as a predictor variable, but the following plots show
the trend of both frequency and duration versus year.

1 sns.regplot(x='Year', y='Average Storms Across

W e
n o

w
=]

M
=]
*
L]
L]
L]
L]

Average Storms Across Stations
(= M
n n
L]
.
@
.
[}
L]

-

=]
.
*

1990 1995 2000 2005 2010 2015 2020
Year

1 sns.regplot(x='Year', y='Average Storm Duration'

Aimé Fournier

May 19, 2022

What about cleaning the T data of
bogus values?

, data=dfIntensity);

5.00
]
475]
1 dfAverages = dfAverages.reset_index()
Lo e e T R
1 dfAverages.groupby ([pd.Grouper (key='Date', freqg='Y')])['Average SWE']
<pandas.core.groupby.generic.SeriesGroupBy o
3.00 -
1 index = df.index
2 dfSwe = pd.DataFrame({'date': index, 'Average_SWE': dfAverages|['Average SWE']})
3 dfsweDiff = pd.DataFrame({'date': index, 'Average SWE_Difference': dfAverages]['Avei
4 dfAirTemp = pd.DataFrame({'date': index, 'Average_ Air_ Temp': dfAverages|['Average A!
5 dfStormDur = pd.DataFrame({'date': index, 'Average_Storm Duration': dfAverages| 'Ave

1 dfSwe['Year'] = dfSwe.date.dt.year

2 dfswe['Date'] = dfSwe.date.dt.strftime('%m-%d")

3 unstacked = dfSwe.set_index(['Year', 'Date']).A

4 Aimé Fournier

5 dfSweDiff['Year'] = dfSweDiff.date.dt.year May 19, 2022

6 dfsweDiff['Date'] = dfSweDiff.date.dt.strftime(| Allthe R?results are very small,

7 unstacked2 = dfsweDiff.set_index(['Year', 'Date| correct? So really none of the modelsis |(-
8 very good.

9 dfAirTemp['Year'] = dfAirTemp.date.dt.year

10 dfAirTemp['Date'] = dfAirTemp.date.dt.strftime('%m-%d")

11 unstacked3 = dfAirTemp.set_index(['Year', 'Date']).Average Air Temp.unstack(-2)

12

13 dfStormbur|['Year'] = dfStormDur.date.dt.year

14 dfStormDur['Date'] = dfStormDur.date.dt.strftime('%m-%d")

15 unstacked4 = dfStormDur.set_index(['Year',6 'Date']).Average_Storm Duration.unstack|

The following cells visualize each of our variables with
the day of year on the x-axis and each line representing a
different year. These show trends over time more clearly
visually. It appears that storm duration and average daily
SWE have decreased over the years, but average
temperature has increased (although data still needs
cleaning).

1 plt.rcParams|["figure.figsize"] = [15, 8]

1 nvalues = np.arange(1990,2021)
2

normalize = mcolors.Normalize(vmin=nValues.min(), vmax=nValues.max()) <matplotlib.colorbar.Colorbar at 0x7£90936ed
colormap = cm.jet Average Daily SWE Change Grouped By Year -
unstacked.plot(title='Average Daily SWE Grouped By Year',
ylabel='Average SWE', cmap='winter', legend=None)
scalarmappaple = cm.ScalarMappable(norm=normalize, cmap='winter')
scalarmappaple.set_array(nValues)

H O W oUW

Average SWE Change

o

2000

plt.colorbar(scalarmappaple) s

1005

<matplotlib.colorbar.Colorbar at 0x7£90940ef

Average Daily SWE Grouped By Year

- 2020

1990
o0l 026 220 0316 1010 104 129 1224
Date

Average SWE

1095

1 unstacked3.plot(title="'Average Daily Air Temperature Grouped By Year',
2 ylabel='Average Air Temp', cmap='winter', legend=None)
3 plt.colorbar(scalarmappaple)

- 1990
oo o026 220 0315 1010 1w0a 1129 1224
Date

1 unstacked2.plot(title='Average Daily SWE Change Grouped By Year',
2 ylabel='Average SWE Change', cmap='winter', legend=None)
3 plt.colorbar(scalarmappaple)

<matplotlib.colorbar.Colorbar at 0x7£90935a9

1 unstacked4.plot(title="'Average Storm Duration Grouped By Year',
2 ylabel='Average Storm Duration', cmap='winter',

3 plt.colorbar(scalarmappaple)

<matplotlib.colorbar.Colorbar at 0x7£9092c57

‘Average Storm Duration Grouped By Year

2020

- 1005

1990
oLo1 02 220 0316 1010 w08 129 1228
Date

Conclusion

In this study, we analyzed SWE and temperature data
from weather stations across the state of Colorado to
discover trends in frequency and intensity of winter
storms.

Our most meaningful takeaway thus far is that there is a
statistically significant negative relationship between
average air temperature, storm frequency, and storm
duration, as well as between air temperature and daily

legend=None)

SWE change. By statistically significant, we mean that
we can say with confidence that these trends exist. We
have also discovered slight trends from our
autoregressions, but they require further analysis before
we draw any meaningful conclusions. We plan to
formulate these conclusions by the we submit our final
notebook.

While we can assess the internal validity of our results,
we cannot determine whether they imply anything about
climate trends outside of Colorado. We encourage our
sponsors from the CAIC to further explore the
relationship between temperature and winter storms, as
this topic is highly relevant within the realm of climate
change.

