{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Ball_Aerospace_Ultimate_Jupyter_Notebook_AF.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "_MW1hOPu3OyK"
},
"source": [
"# **Toward Satellite Coverage Optimization for the Contiguous United States**\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YY-W06tDBQD3"
},
"source": [
"#Group Member Participation\n",
"\n",
"* Diego Lopez Fleming: \n",
"Wrote intro and methods. Code analysis. Wrote angularEarthCoord, arcCrossing, arcCoverage functions, arcLongInterval, deg2rad function. Wrote code calling these functions.\n",
" \n",
"* Kirsten Soules: \n",
"Wrote Project Proposal Tables, edited & assembled Project Proposal (updated table portion). Code analysis. Ran meetings and took meeting minutes, assigned tasks as necessary.\n",
"Wrote the following functions: timeSinceStart, convertDateToSecSinceStart, daytimeFunction, callingDaytime, daytimeArcCrossings, daySwath, callDaySwath, dayCoverageConcat, ratioDaySwath. Wrote code calling these functions. Modified multiple other functions and function calls to accommodate time. \n",
"Edited & encapsulated ground tracking visualization function from last semester's code to work with this semester's code. Wrote the following functions for graphs: groundtrackingViz, dayGroundtrackingViz, locationOfDaytimeCrossings, zoomedInlocationOfDaytimeCrossings, coverageRatioViz. Made additional graphs (not in the final notebook) to validate accuracy of functions. Edited choice of variables description and wrote justification for choices. Wrote and generated graphs for Appendices B & C.\n",
"\n",
"* Marisa Bowens: wrote abstract for project proposal, math analysis (defining Kepler elements, Keplerian equations, swath equation, key contiguous U.S. data points organized into documents for review as well as assisted with catching group up on key equations we would use in the project) wrote function to set Keplerian elements of a satellite as well as the following functions: c3d2, merge_intervals_order_helper, merge_intervals, sumarc. Final Project Abstract, Captioned all graphs and conclusion. Wrote Appendix A.\n",
"\n",
"* Shiro Criszia: Code analysis. Helped Diego edit Introduction portion of final proposal. Made diagrams and wrote captions for all diagrams that were uploaded to Google Colab. Chose end points of arc. Included Required Files section. Wrote table with different combinations of variables and the description that goes with it, as well as uploaded all graphs for this section. Checked for grammatical and spelling errors.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-CXUAKk0HhgN"
},
"source": [
"#Required Files\r\n",
"\r\n",
"Linked below are images of graphs that we use throughout the notebook. All images are stored in the sp2020 / Ball / Final Notebook Images folder in Google Drive.\r\n",
"\r\n",
"[Diagrams](https://drive.google.com/drive/folders/16qam6SiqUYfyqrtED5FfmpfZAi_DCC4z?usp=sharing)\r\n",
"\r\n",
"[Result Graphs](https://drive.google.com/drive/folders/1tN3SU5uq_I-W4rK1-9SQVbzAsuSO9BoN?usp=sharing)\r\n",
"\r\n",
"[Appendix B](https://drive.google.com/drive/folders/1fl7y4uIAPz_3wdee11N32L8wGZZFB8xg?usp=sharing)\r\n",
"\r\n",
"[Appendix C](https://drive.google.com/drive/folders/1BgZyslte4-phn9M_JTBzzksD3g8Br7tK?usp=sharing)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lb79Rt7M3jsb"
},
"source": [
"#Abstract\n",
" Ball Aerospace is using the CIRiS (Compact Infrared Radiometer in Space) technology to examine evapotranspiration on the Earth’s surface and provide full coverage of the Earth within a 24-hour period by tracking Earth's surface temperatures. This data will help scientists and decision makers evaluate drought conditions and climate models. This project will estimate satellite coverage of the contiguous United States and optimize the global coverage that was explored in previous projects. This project could lead to better visualization and optimization of more finite areas of the globe, such as the coastal regions, to more accurately depict extreme weather patterns.\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tGXgwuV9lD4k"
},
"source": [
"#Introduction\n",
"\n",
"Keplerian elements will be used to define this problem. These elements consist of orbital inclination, semi-major axis, the argument of periapsis, longitude of the ascending node, and true anomaly. These variables will be used in Kepler’s Equation, an equation that relates the geometric properties of the orbit of a body subject to a central force. In this case, Ball satellites are the bodies subject to the central force of the Earth. The satellite optimization parameters will be encapsulated in functions.\n",
"\n",
"Ball is focused on optimizing daytime satellite coverage. The optimization of satellite coverage is important because Ball’s satellites are equipped with CIRiS (Compact Infrared Radiometer in Space). One capability of CIRiS that is of particular interest is tracking evapotranspiration levels of the Earth. Evapotranspiration is a scientific variable that combines evaporation from the Earth’s surface and the transpiration of water vapor from Earth’s plants. Our goal is to achieve complete satellite coverage of the contiguous U.S. in one day using as few satellites as possible. If Ball Aerospace’s satellites can provide complete coverage of the United States, then valuable data on the evapotranspiration levels of the U.S. could be used in commercial and scientific fields. Achieving complete coverage with fewer satellites would also benefit Ball Aerospace in saving satellite resources.\n",
"\n",
"This project is also a continuation of Ball sponsored projects from previous semesters. The project in Fall 2019 projected the swath onto the Earth to evaluate coverage (ground tracking), focusing on equatorial coverage. The project in Spring 2020 incorporated the ground tracking code from the prior semester and added additional constraints that the coverage needed to be obtained during daylight hours. This project expands on both of the previous semesters and focuses on encapsulating calculations into functions as well as limiting the coverage to the continental United States. The final papers from Fall 2019 and Spring 2020 can be found at the CU Denver Math Clinic website: https://clas.ucdenver.edu/math-clinic/projects-table.\n",
"\n",
"Several assumptions about Ball Aerospace’s satellites will be made during calculations. They will be in sun-synchronous orbit, meaning they cross the equator at the same local time on Earth every day, but it is important to note that the precession correction has not been applied yet. The satellite’s orbits will also be in a near-polar orbit where the angle between the poles and the orbit is approximately 8 degrees. Each satellite is equipped with two CIRiS instruments that each provide a 15-degree field of view, for a total of 30 degrees. Field of view is the angle at which the instrument can observe the Earth at any instant in time. Using these assumptions, along with tools like Kepler’s equation, we hope to optimize the number of satellites that it takes to achieve full coverage of the contiguous United States.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R_Mpny3Qk_ho"
},
"source": [
"#Methods\n",
"\n",
"\n",
"In the research paper \"A Study into Satellite Coverage and Orbital Equations,\" the Keplerian elements involved in an ECEF (Earth centered Earth fixed) orbit are explained extensively and briefly discussed below. There are six parameters that are necessary to describe the motion of one celestial body in relation to another for a two-body problem. In our case, these parameters are important for calculating satellite coverage on Earth. A brief overview of these elements is listed below: \n",
"\n",
"1. Semimajor axis ($a$)- half of the length of the line segment that runs through the center and both foci, with ends at the widest points of the perimeter. \n",
"2. Eccentricity ($e$)- parameter that determines the amount by which its orbit around another body deviates from a perfect circle (0 being perfectly circular and 1 being a parabolic escape orbit). \n",
"3. Inclination ($i$)- measurement of the satellite orbit’s tilt around from the Earth’s equatorial plane. \n",
"4. Longitude of ascending node ($\\Omega$)- the angle between the reference direction and the upward crossing of the orbit on the reference plane. \n",
"5. Argument of Periapsis ($\\omega$)- the angle between the ascending node and the periapsis, and is measured in the direction of the satellite’s motion. \n",
"6. True Anomaly ($\\nu$)- the position of the orbiting body along the trajectory, measured from periapsis. \n",
"\n",
"\n",
"The objective of the Spring 2020 project was to set up a fully functional simulation of equatorial coverage given the input orbital parameters above and to increase the flexibility of this simulation with regard to time. Our goal is to set up a fully functional simulation of the coverage of the contiguous U.S. while continuing to refine the time variable. We decided our approach would be to encapsulate last semester’s code into functions, making it easier to use, and use an arc to estimate the boundary of the contiguous U.S. that the satellites are crossing over. Reviewing the code from last semester’s project, we identified a few aspects of the code that would be helpful to our project goals. We then made a code outline to discuss what functions would be necessary and what they should be able to accomplish. Taking useful cells from last semester’s project, we encapsulated some code cells into functions, such as the conversion of 3D Cartesian coordinates to spherical Earth coordinates. Some functions, such as the calculation of swath and the creation of the 3D satellite coordinates, were preserved. Prof. Fournier then provided assistance by writing a function that creates an arc given two coordinate points, as well as parameters that associate the arc with the longitudinal and latitudinal coordinates of the satellites. One of these parameters was the angular displacement to the endpoints of the arc. When there is a sign change in this parameter, we know that our satellite has crossed the latitude of our arc. Knowing the before and after longitudinal and latitudinal coordinates of the satellites, an interpolated line was used to find the exact crossing of the satellite over the arc latitude. The coverage of the arc was then computed using the mathematical coverage calculations done by the prior semester’s group. Another goal of ours was to use Python packages to help with finding the coordinates of satellites in the daytime. We utilized the Ephem package (https://pypi.org/project/ephem/) to give us information as to whether satellite ground tracking corresponded to daytime on Earth by calculating the angle of the sun above the horizon from the point of reference (the point of reference being the ground tracking of the satellite). It's preferable that we only find coverage during the daytime because we are gathering information on evapotranspiration, which relies in part on the ground temperature. We also found a use for the Ephem package in setting the orbital parameters of our satellites. Another important aspect of this approach was establishing a universal time that all of the satellites start from. \n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3IHTGlUX9POr"
},
"source": [
"##Packages"
]
},
{
"cell_type": "code",
"metadata": {
"id": "8ngPfbkII3cP",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 17
},
"outputId": "1df67443-a810-4ddb-dc1a-9d0161941f95"
},
"source": [
"from IPython.display import HTML, display\n",
"display(HTML(\"\"))\n",
"from scipy.optimize import fsolve\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import cm\n",
"import numpy as np \n",
"import ephem #https://pypi.org/project/ephem/\n",
"import datetime\n",
"from datetime import time\n",
"%matplotlib inline\n",
" # %matplotlib inline needed for jupyter notebook, displays plot in result of code cell\n",
"from IPython.display import Javascript\n",
" # used to show all graphs in one cell without internal scroll bar"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p42xCkq0iTE4"
},
"source": [
"##Function Definitions"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SIs8Oxbt8ieE"
},
"source": [
"###Creating 3D Orbit Coordinates\n",
"\n",
"Professor Fournier wrote this function. This function creates the 3D Cartesian coordinates for satellites using Keplerian elements. There are six Keplerian elements necessary to describe the motion of one celestial body in relation to another. \n",
"* This function accepts time, orbital inclination, semi-major and minor axis, longitude of the ascending node, eccentricity, argument of perigee, and angular momentum.\n",
"* This function outputs 3D orbit coordinates of the satellites.\n",
"\n",
"![image.png]()\n",
"\n",
"\n",
"\n",
"\n",
"* The variables shown on the picture were explained on the cell above this, under \"Methods\" section.\n",
"\n",
"\n",
"Source for Keplerian elements picture: https://en.wikipedia.org/wiki/Orbital_elements"
]
},
{
"cell_type": "code",
"metadata": {
"id": "M8Cxi7x0BWja"
},
"source": [
"# Eq. 25, https://en.wikipedia.org/wiki/Kepler_orbit#Properties_of_trajectory_equation\n",
"# Note eq. 24 implies a unique E for all t and 0 < e < 1.\n",
"## keep in mind capital omega for seasonal changes\n",
"def sat3D(t, i, ω, Ω,\n",
" a, b, H, E) : # create 3D orbit coordinates (q[0],q[1],q[2])\n",
" o = [np.cos(Ω), # longitude of the ascending node\n",
" np.sin(Ω)] # ... converted to its cosine and sine\n",
" s = np.sin(i) # sine of inclination angle, radians\n",
" j= 0\n",
" l = t[j:] # shift time between plane rotation and E ***j assigned to 0 bc no shift\n",
" l = 2*np.pi*l/24/3600 # convert l to orbital plane normal-vector azimuth (radian)\n",
" ν = np.array([np.cos(l)*s, # unit normal vector of orbital plane\n",
" np.sin(l)*s,\n",
" np.array([np.cos(i)]*len(l))]).transpose()\n",
" λ = np.cross([0, 0, 1], ν) # vector orthogonal to ν and to reference North Pole\n",
" λ = np.diag(np.sum(λ*λ, # normalize λ\n",
" axis=1)**-.5)@λ\n",
" μ = np.cross(ν, λ) # unit vector orthogonal to λ and to ν\n",
" E = E - ω + np.pi/2 # eq. 39 implies E ≈ θ when 0 < e << 1\n",
" x = a*np.cos(E) # eq. 20, x-coordinate list (shifted to ellipse center)\n",
" y = b*np.sin(E) # eq. 21, y-coordinate list\n",
"\n",
" \n",
" orbit3D = (np.diag(x)@λ + np.diag(y)@μ)@np.array([[o[0], -o[1], 0],\n",
" [o[1], o[0], 0],\n",
" [ 0, 0, 1]])\n",
" return orbit3D"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "TF5yLiOd84Na"
},
"source": [
"### Swath Width Function\n",
"This function gives the swath width that the satellite detects across its ground track using the mathematical equation for the calculation of swath.\n",
"* This function accepts the variable thetaSat (angle of the camera) and $h$ (altitude of satellites).\n",
"* This function outputs a numeric value of swath."
]
},
{
"cell_type": "code",
"metadata": {
"id": "VHhnPWpnBbq5"
},
"source": [
"def swath_coverage(thetaSat, h):\n",
" swath = (2 * h * np.tan( ( (np.pi / 180) / 2 ) * thetaSat)) \n",
" return swath"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "BXpU6Idz_89d"
},
"source": [
"This function takes in an angle in degrees and outputs that angle in radians."
]
},
{
"cell_type": "code",
"metadata": {
"id": "tdi19XRV_-hJ"
},
"source": [
"def deg2rad(degrees):\n",
" radians = degrees * np.pi / 180\n",
" return radians"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "qGRfYU3M849j"
},
"source": [
"###Global Variables\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "pfCqKLb_Bfp2"
},
"source": [
"# ***Anomaly; Prof. FOURNIER WROTE\n",
"# Eq. 25, https://en.wikipedia.org/wiki/Kepler_orbit#Properties_of_trajectory_equation\n",
"# Note eq. 24 implies a unique E for all t and 0 < e < 1.\n",
"t2E = lambda e, t : fsolve(lambda E : E - e*np.sin(E) - t, t/(1 - e))\n",
"# number of days we want to simulate\n",
"num_days = 1\n",
"# number of satellites we wish to simulate -- << 13\n",
"satellites = 9\n",
"# altitude in meters\n",
"h = 525000\n",
"# eccentricity\n",
"e = .01 \n",
"# np.sin takes radians ==> 84°\n",
"inclination = deg2rad(84)\n",
"# mean earth radius, m https://en.wikipedia.org/wiki/Earth_radius\n",
"# can be changed to 6378.1343e3 --> This value will convert to exactly\n",
"# 40,075 km when evaluating coverage. The mean Earth radius will yield \n",
"# a maximum of 40,035 km\n",
"\n",
"R = 6371.0088e3 \n",
"G = 6.67430e-11 # gravitational constant, m³/(kg s²) https://en.wikipedia.org/wiki/Gravitational_constant\n",
"\n",
"m = [1e3, 5.9722e24] # masses of satellite, Earth, kg https://en.wikipedia.org/wiki/Earth_mass\n",
"N = 350 # nu. plot points\n",
"\n",
"α = G*sum(m) # gravitational parameter, eq. 1, m³/s²\n",
"a = (R + h)/(1 - e) # eq. 35, R + minimum altitude solved for semi-major axis, m\n",
"p = a*(1 - e*e) # eqs. 13--14, r(θ=π/2), θ being the true anomaly\n",
"b = a*(1 - e*e)**.5 # eq. 15, semi-minor axis\n",
"H = (α*p)**.5 # eq. 26, specific relative angular-momentum magnitude, m²/s\n",
"P = 2*np.pi*a**1.5/α**.5 # eq. 43, orbital period for an elliptic orbit, s\n",
"# orbital period\n",
"opd = (24*60*60) / P # roughly 16 orbits in one day -- exactly for a period of 1.5 hours\n",
"\n",
"orbits = (num_days)*opd # number of orbits we will simulate\n",
"thetaSat = 30 \n",
"swath = swath_coverage(thetaSat,h) # swath based on calculation of altitude \n",
"halfSwath = swath/2 \n",
"\n",
"\n",
"sun_day = -6 #Angle of sun is 6 degrees below horizon (civil sunrise/sunset)\n",
"hours2seconds = 60 * 60 # number of seconds in 1 hour\n",
"HOURS = 14 # Sets the number of hours past 00:00:00 UTC\n",
"satellite_start = datetime.datetime(2020, 3, 19, HOURS, 0) # sets starting time to '2020/03/19: HH:00:00'\n",
"float_sat_start = float(satellite_start.timestamp()) # turns datetime start time object into float\n",
"# Use equinox for satellite start date, as the equinox ensures both northern and\n",
"# southern hemispheres get same amount of sunlight. Hence this is a good model for\n",
"# an average amount of sunlight over the year.\n",
"# Equinox is on 3/19/2020 \n",
"# https://en.wikipedia.org/wiki/Equinox#:~:text=This%20occurs%20twice%20each%20year,is%20directly%20above%20the%20equator.\n",
"\n",
"#sec_to_hrs = 3600 #this is a global variable that returns values in hours\n",
"seconds= 240 # seconds and radm for sunrise/sunset lines in graph\n",
"radm = (np.pi/180)*(1/seconds) #longitude moves 1 degree every 240 second and 1 degree is np.pi/180.\n",
"\n",
"arc_latitude = deg2rad(39.7392) # Latitude of Denver: 39.7392°, approx 0.69 radians\n",
"# Latitude of Denver is a rough approximation for the latitude of the geographic center of the contiguous US\n",
"# Future semesters may wish to use the latitude of the geographic center: (39.8283° N, 98.5795° W)\n",
"# https://en.wikipedia.org/wiki/Geographic_center_of_the_contiguous_United_States\n",
"\n",
"Global_longitude = 111320 #1°longitude = cos(latitude) *111.32 km\n",
"rad = 57.2958 # 1 rad = 57.2958°\n",
"m2r = (1/Global_longitude) * (1/rad)\n",
"\n",
"#arc_latitude is assigned for y1 and y2 to keep the arc level across the US\n",
"# (x1)= longitude of Madawaska, Maine\n",
"y1 = arc_latitude\n",
"x1 = deg2rad(-68.3217)## long\n",
"\n",
"# (x2)= longitude of Blaine, Washington\n",
"y2 = arc_latitude\n",
"x2 = deg2rad(-122.7471)## long\n",
"\n",
"# Arc west of Mississippi: Wickliffe, Kentucky (36.966600°N 89.086822°W)\n",
" # https://en.wikipedia.org/wiki/Wickliffe,_Kentucky\n",
"#y1 = arc_latitude\n",
"#x1 = deg2rad(-89.086822) ## longitude of Wickliffe, Kentucky\n",
"\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7Qi7mWjt87Ko"
},
"source": [
"### Converting 3d Cartesian Coordinates to Spherical Longitude and Latitude Coordinates\n",
"\n",
"This function takes an array of satellite 3D Cartesian coordinates and returns the variables phi and psi of the 3D spherical coordinates. Phi and psi represent longitude and latitude, respectively.\n",
"\n",
"Uses mathematical trigonometric conversions from 3D Cartesian coordinates to spherical coordinates.\n",
"* Accepts variable orbit3d, which is an array of 3D satellite coordinates.\n",
"* Returns phi and psi of the 3D Cartesian coordinates.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "B3D2U2foxn8d"
},
"source": [
"def angularEarthCoord(orbit3D):\n",
" phi = [0]*satellites\n",
" psi = [0]*satellites\n",
" # filling previous two arrays\n",
" for i in range(0,satellites):\n",
" # signed angle between (1,0) and (q[i][:,0],q[i][:,1]), # x-coordinate for ground tracking,longitude \n",
" phi[i] = np.arctan2(orbit3D[i][:,1], orbit3D[i][:,0]) \n",
" # creating array of zeroes the size of q[i][:,2]\n",
" qq = np.zeros(np.size(orbit3D[i][:,2]))\n",
" for j in range(0,np.size(orbit3D[i][:,2])):\n",
" # qq is manipulating third array of q, latiture\n",
" qq[j] = orbit3D[i][j,2] / np.sqrt( orbit3D[i][j,0]**2 + orbit3D[i][j,1]**2 + orbit3D[i][j,2]**2 )\n",
" psi[i] = np.arcsin( qq ) \n",
" return phi,psi"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "2xk7kQezZLXz"
},
"source": [
"### Arc Display Function\n",
"This function tests if the ground tracking is in the arc's longitude limits or not. \n",
"* This function accepts 2D (long, lat) pairs $p$, $q$, and $r$. The variable $r$ is the longitude and latitude of the satellite. The variables $q$ and $p$ are the longitudes and latitudes of the endpoints in the US that create our arc. We chose Blaine, Washington, and Madawaska, Maine to represent our longitudinal endpoint as they are on the far west and far east coasts of the contiguous United States. The arc is set at the latitude of Denver, Colorado which is a rough approximation of the latitude of the geographic center of the contiguous United States.\n",
"* This function outputs $c$, $e$, $s$, and $d$. The variable $c$ represents the angular distance from $p$ to $q$. The variable $e$ represents the angular distance from $p$ to $s$. The variable $s$ is a vector that points to where $r$ would cross the arc if the satellite was traveling directly towards the arc. The variable $d$ represents the angle of the arc to the ground tracking point.\n",
"This function was written by Professor Fournier as a means to visualize the crossing of the arc. Note this function is used to determine if a crossing of the arc has happened and not the exact location of that particular crossing. It is also important to note that there are cases in which the ground tracking point is in the sector, but the satellite crosses the arc outside of the sector. There are also cases in which the ground tracking point is outside of the sector, but the satellite crosses the arc inside the sector. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uLKhDY53Jq8c"
},
"source": [
"\n",
"\n",
"* $p_0$ and $q_0$ are the longitude interval (which is what we defined as our \"sector\"). In this case, $p_0$ and $q_0$ will cover the contiguous US.\n",
"* $d$ tells us if it is before or after arcLatitude. The arcLatitude is a continuous latitude line that we selected to intersect the contiguous US.\n",
"\n",
"* This drawing shows 3 different situations that could happen ($r_s$, $r_t$, and $r_u$). The variables $r_s$ and $r_u$ implies that $e$ is less than zero or above $c$, so the point is outside the desired sector. If $e$ is in between 0 and $c$, then it is in the sector that we want. \n",
" "
]
},
{
"cell_type": "code",
"metadata": {
"id": "WVH6cQEHG4wd"
},
"source": [
"def dispArc(p, q, r) : # angular displacement of r from an arc through p and q\n",
" u = np.zeros((3,3))\n",
" x = (p, q, r)\n",
" for i in range(3) : # loop over 3 (lon,lat) pairs x:\n",
" u[i,:2] = np.array([np.cos(x[i][0]), np.sin(x[i][0])]\n",
" )*np.cos(x[i][1]) # equatorial-plane Cartesian coordinates ...\n",
" u[i,2] = np.sin(x[i][1]) # ... becomes unit vector to x\n",
" v = np.cross(u[0], u[1]) # vector normal to disk D containing {u[0],u[1]}\n",
" c = np.sqrt(np.dot(v, v)) # norm of v\n",
" v /= c # normalize v\n",
" c = np.arccos(np.dot(u[0], u[1])) # angular distance from p to q i.e., u[0] to u[1]\n",
" d = np.arcsin(np.dot(v, u[2])) # angle from D to u[2]\n",
" s = u[2] - v*np.dot(v, u[2]) # projection of u[2] onto plane containing D\n",
" s /= np.sqrt(np.dot(s, s)) # unit vector to where r would cross arc between p and q\n",
" e = np.arccos(np.dot(u[0], s)) # angular distance from u[0] to s\n",
" #print(d, s, e, c, u, sep='\\n') # comment this out when satisfied with correctness\n",
" return d, s, e # e < c ensures r lies in the sector containing {u[0],u[1]}"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7h383NWmj6M4"
},
"source": [
"### Arc Crossing Detection Function\n",
"This function checks for a sign change in the angle of the arc to the ground tracking of the satellite. The angle of the arc to the satellite is given in the return of the dispArc function in the d variable. A positive $d$ value indicates that the coordinate of the satellite is still before the latitude of the arc. A negative $d$ value indicates that the satellite coordinate is past the latitude of the arc. This function then fills longB4Af and latB4Af variable with the coordinates of longitude and latitude before and after crossing the latitude of the arc. These are in radians. The first element of each variable corresponds to the coordinate before crossing while the second element corresponds to the coordinate after crossing. This is done by inputting the corresponding index of the latitudes and longitudes from the indexPosNeg array into the j values of longCoord and latCoord variables.\n",
"* This function accepts dd. dd is a list of the $d$ values for each satellite given by the dispArc function, longCoord, and latCoord.\n",
"* This function returns longB4Af, latB4Af, and t_B4Af. These are the times, latitudes, and longitudes of the satellites before and after crossing."
]
},
{
"cell_type": "code",
"metadata": {
"id": "XSn6jC8b7zta"
},
"source": [
"#arcCrossing function checks all the d values that come out of the dispArc function\n",
"#looking via for loop for a sign change in the d values\n",
"def arcCrossing(dd,longCoord,latCoord):\n",
" #creating variable that will store the index of the index of the longitude and latitude right before crossing\n",
" #indexPosNeg stores the index of the longitude and latitude \n",
" #as the andgle from the arc to the point of crossing changes sign,signaling an arc crossing\n",
" indexPosNeg = ['']*satellites\n",
" for i in range(0,satellites):\n",
" indexPosNeg[i]=[];\n",
" #checking for sign change\n",
" #if there is a sign change, the index\n",
" #of the latitude before crossing is stored in \n",
" #indexPosNeg\n",
" for j in range(0,np.size(dd[i])-1): \n",
" if( dd[i][j] > 0 and dd[i][j+1] < 0 ) or ( dd[i][j] < 0 and dd[i][j+1] > 0 ):\n",
" indexPosNeg[i].append(j)\n",
"#creating arrays of 2d vectors latB4Af and longB4Af\n",
"#first element of latB4Af is the latitude before crossing of arc\n",
"#second element of latB4Af is the latitude after crossing of arc\n",
"#first element of longB4Af is the longitude before crossing of arc\n",
"#second element of longB4Af is the longitude after crossing of arc\n",
" longB4Af = ['']*satellites\n",
" latB4Af = ['']*satellites\n",
" t_B4Af = ['']*satellites\n",
" for i in range(0,satellites):\n",
" longB4Af[i] = [];\n",
" latB4Af[i] = [];\n",
" t_B4Af[i]=[];\n",
" for j in range(0,np.size(indexPosNeg[i])-1):\n",
" #appending before after latitude and longitude points\n",
" #the j index of longCoord and latCoord variables are given by the index value in indexNegPos\n",
" #the second element being appended are the latitude and longitude coordinates of the index directly after\n",
" #the index before crossing, again the index of latCoord and longCoord before crossing is given by indexNegPos\n",
" longB4Af[i].append([longCoord[i][indexPosNeg[i][j]],longCoord[i][indexPosNeg[i][j]+1]])\n",
" latB4Af[i].append([latCoord[i][indexPosNeg[i][j]],latCoord[i][indexPosNeg[i][j]+1]])\n",
" t_B4Af[i].append([t[i][indexPosNeg[i][j]],t[i][indexPosNeg[i][j]+1]])\n",
"\n",
" return longB4Af, latB4Af, t_B4Af"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "BTeoqQomj_EP"
},
"source": [
"### Arc Coverage Function\n",
"This function returns the longitude points at which the satellites cross the arc as well as the coverage of each satellite as it crosses over the arc. The longitude points of the crossing of the arc are calculated with an interpolated line. The swath intervals are calculated by adding and subtracting swath width from the longitudinal points of crossing. Since the projection along the track to the arc is θ-dependent, in general, the projection is not perpendicular to the arc. The outputs are in radians.\n",
"* This function accepts longB4Af, latB4Af, and halfSwath. longB4Af and latB4Af are lists of 2d vectors where the first element is the coordinate before crossing and the second element is the coordinate after crossing.\n",
"* This function returns the interLine variable (longitudinal coordinate of each satellite crossing) and the swathInterval variable (list of intervals that represent the swath coverage of the arc).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Bt1H50alvnr"
},
"source": [
"\n",
"\n",
"\n",
"* \"The swath approaches the equator at an angle, so we incorporate this thought when calculating the swath projection. To do this, we first take two points straddling the equator and interpolate a line crossing the equator. The swath is imposed onto the equator its center at a point on the interpolated line crossing the equator. The line that intersects the equator at angle theta allows us to impose the additional measurement across the equator. From this, we can construct a triangle on both sides that give us the two endpoints of the swath coverage.\" - Fall 2019 Math Clinic Ball Final Write Up\n",
"\n",
"\n",
"\n",
"Sources: [A Study into Satellite Coverage and Orbital Equations](https://clas.ucdenver.edu/math-clinic/sites/default/files/attached-files/ball_final_report.pdf)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Lcp2A0L5Jx1x"
},
"source": [
"\n",
"\n",
"We are trying to find the linear interpolation using this method, shown in the picture. Which will give us interSlope. \n",
"\n",
"\"If the two known points are given by the coordinates ($\\varphi_0$, $\\psi_0$) and ($\\varphi_1$, $\\psi_1$) the linear interpolant is the straight line between these points.\" - Linear Interpolation (listed in Sources).\n",
"\n",
"* $\\varphi$ - phi (latitude)\n",
"* $\\psi$- psi (longitude)\n",
"* interSlope is $m_\\psi$\n",
"\n",
"Sources: [Linear Interpolation](https://en.wikipedia.org/wiki/Linear_interpolation)"
]
},
{
"cell_type": "code",
"metadata": {
"id": "XrLjBowQgIbe"
},
"source": [
"def arcCoverage(longB4Af,latB4Af,halfSwath,t_B4Af,y1):\n",
"#creating array to hold the slope at which the satellite \n",
"#crosses the arc stored in interSlope\n",
"#this is calculated by dividing latitude difference over longitude distance\n",
" interSlope = ['']*satellites\n",
" interLine = ['']*satellites\n",
" interLat = ['']*satellites\n",
" inter_t = ['']*satellites\n",
" for i in range(0,satellites):\n",
" interSlope[i] = [];\n",
" interLine[i] = [];\n",
" interLat[i] = [];\n",
" inter_t[i] = [];\n",
" for j in range(0,len(latB4Af[i])-1):\n",
" m = ((latB4Af[i][j][1]-latB4Af[i][j][0])/(longB4Af[i][j][1]-longB4Af[i][j][0]))\n",
" interSlope[i].append(m)\n",
" interLine[i].append((longB4Af[i][j][0]+((longB4Af[i][j][1]-longB4Af[i][j][0]) / (latB4Af[i][j][1]-latB4Af[i][j][0])) *(y1 - latB4Af[i][j][0]))) \n",
" interLat[i].append( arc_latitude )\n",
" for j in range(0,len(latB4Af[i])-1):\n",
" inter_t[i].append((t_B4Af[i][j][0]+((t_B4Af[i][j][1]-t_B4Af[i][j][0]) / (latB4Af[i][j][1]-latB4Af[i][j][0])) *(y1 - latB4Af[i][j][0]))) \n",
"\n",
" swathWidth= ['']*satellites;\n",
" for i in range(0,satellites):\n",
" swathWidth[i]=[];\n",
" for j in range(0,np.size(interSlope[i])-1):\n",
" #calculating the width of the swaths of each satellites path crossing the arc\n",
" swathWidth[i].append(m2r*(halfSwath/np.sin(np.arctan(interSlope[i][j]))))\n",
"#creating variable that will hold the swath intervals of every satellite crossing of arc\n",
" swathInterval = ['']*satellites; \n",
" for i in range(0, satellites):\n",
" swathInterval[i]=[]; \n",
" for j in range(0,len(interLine[i])-1):\n",
" #adding and subtracting swath width to the longitude coordinate of the crossing of the arc\n",
" #in order to create interval\n",
" swathInterval[i].append([interLine[i][j]+swathWidth[i][j],interLine[i][j]-swathWidth[i][j]]) \n",
" \n",
" return swathInterval, interLine, interLat, inter_t\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ar9rNsPR3In5"
},
"source": [
"### Arc Interval Function\n",
"This function sorts through the interLine variable (longitudinal crossings of arc latitude) and checks if the interLine value falls between the longitudes of interest. The outputs are in radians for the variables that do not deal with time. The timeCrossings is in seconds.\n",
"\n",
"\n",
"* This function accepts interLine, $x1$, and $x2$. The variable interLine is an array of longitudinal crossings of the arc, and $x1$ and $x2$ represent the longitudes of interest for our arc.\n",
"* This function returns the variable arcCrossings. arcCrossings are the longitudinal crossings of the arc latitude that fall between $x1$ and $x2$.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "_lgR6Ks_2Vpr"
},
"source": [
"# x1 must be greater value in radians\n",
"# x2 must be lesser value in radians\n",
"def arcLongInterval(interLine, x1, x2, inter_t, swathInterval):\n",
" #creating variable for the longitudinal crossings of arc\n",
" #that fall between x1 and x2\n",
" arcCrossings = ['']*satellites\n",
" latCrossings = ['']*satellites\n",
" timeCrossings = ['']*satellites\n",
" swathInArc= ['']*satellites\n",
" for i in range(0,satellites):\n",
" arcCrossings[i] = [];\n",
" latCrossings[i] = [];\n",
" timeCrossings[i] = [];\n",
" swathInArc[i]= [];\n",
" for j in range(0,np.size(interLine[i])-1):\n",
" if(interLine[i][j] < x1 and interLine[i][j] > x2):\n",
" # appending values that fall in our interval\n",
" arcCrossings[i].append(interLine[i][j])\n",
" latCrossings[i].append(arc_latitude)\n",
" timeCrossings[i].append(inter_t[i][j])\n",
" swathInArc[i].append(swathInterval[i][j])\n",
" return arcCrossings, latCrossings, timeCrossings, swathInArc"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "60mtBDIKjhne"
},
"source": [
"###Time to Date & Time\n",
"\n",
"This function takes in the time array ($t$) in seconds and outputs an array of date & time in seconds since the epoch (01-01-1970 00:00:00)."
]
},
{
"cell_type": "code",
"metadata": {
"id": "QlmR1XAqjiOI"
},
"source": [
"def timeSinceStart(t):\n",
" dtInSec = []\n",
" for i in range(0, satellites):\n",
" columnArray = []\n",
" for j in range(0, len(t[i])):\n",
" addTime = satellite_start.timestamp() + t[i][j] \n",
" #adds time at satellite i and index j to the start time\n",
" columnArray.append(addTime) #appends sum to array for one satellite\n",
" dtInSec.append(columnArray) #appends array for one satellite to list of arrays\n",
" return dtInSec"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "E_W66JrQBd_9"
},
"source": [
"This function converts an input of date & time in seconds since the epoch into time in hours since the first satellite started. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "9j6fkkF2anV-"
},
"source": [
"def convertDateToSecSinceStart(timeInput):\n",
" timeResult = (timeInput - float_sat_start) / hours2seconds\n",
" return timeResult"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "HZZxF6z6C8LD"
},
"source": [
"###Daytime\n",
"\n",
"This function determines whether the crossing of equator/arc happens during the daytime and returns only the daytime coordinates.\n",
"\n",
"Daytime is determined by the angle of the sun. If the sun is more than 6 degrees below the horizon from the longitude/latitude pair, it is twilight. (Civil definition of twilight). https://www.timeanddate.com/astronomy/different-types-twilight.html\n",
"\n",
"(Astronomical definition: If the sun is more than 18 degrees below the horizon from the longitude/latitude pair, it is twilight.)\n",
"\n",
"Uses vernal equinox in 2020 for satellite start date (assigned as a global variable), as the equinox ensures both northern and southern hemispheres get the same amount of sunlight. Hence this is a good model for an average amount of sunlight over the year.\n",
"\n",
"Utilizes Ephem package (https://pypi.org/project/ephem/) to calculate the angle of the sun. Accepts time in UTC based off of a pre-determined date, adds time t calculated by t2q function to determine the time of crossing in UTC (\"absolute time\").\n",
"\n",
"Accepts inputs phi (latitude), psi (longitude), time, and altitude of satellite\n",
"Returns coordinates of equatorial/arc coverage during the daytime.\n",
"\n",
"Source for the backbone of function: https://stackoverflow.com/questions/43299500/pandas-convert-datetime-timestamp-to-whether-its-day-or-night"
]
},
{
"cell_type": "code",
"metadata": {
"id": "rcT_RjlhIa6D"
},
"source": [
"def daytimeFunction(longCoord, latCoord, dt):\n",
" \n",
" earthCoordinates = [longCoord, latCoord, dt] \n",
" sun = ephem.Sun() \n",
" location = ephem.Observer() #sets the location of the observation point\n",
" location.lon = ephem.degrees(longCoord) #Pulls latitude coordinate, changes from radian to angle\n",
" location.lat = ephem.degrees(latCoord) #Pulls longitude coordinate, changes from radian to angle\n",
" location.elevation = h #sets the elevation of the observation point to the altitude of the satellite\n",
" #takes in time in seconds, will be supplied by time array\n",
" datetimeInSec = datetime.datetime.utcfromtimestamp(dt) \n",
" #changes the datetime object to a format read by ephem (YYYY/MM/DD HH:MM:SS)\n",
" location.date = datetime.datetime.strftime(datetimeInSec, \"%Y/%m/%d %H:%M:%S\") \n",
" sun.compute(location) #Determines location of sun at the observation point\n",
" altitudeOfSun = sun.alt #Calculates altitude of sun with respect to the observation point. \n",
" #if below a certain point, it is nighttime\n",
" #Note that ephem presents angles in radians\n",
" sunDegrees = (altitudeOfSun*180/np.pi) #Transforms angle of sun in radians into degrees\n",
" if (sunDegrees >= sun_day): \n",
" daytimeCoordinates = earthCoordinates \n",
" return daytimeCoordinates"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "L67k1Hm67uWr"
},
"source": [
"####Helper Function to call Daytime function\n",
"\n",
"Daytime function accepts & returns a single set of points; the helper function accepts and returns arrays of points."
]
},
{
"cell_type": "code",
"metadata": {
"id": "6qq9sPH_NKh-"
},
"source": [
"def callingDaytime(longCoord, latCoord, dtInSec):\n",
" filledArray = []\n",
"\n",
" for i in range(0, satellites):\n",
" columnArray = []\n",
" for j in range(0, len(longCoord[i])):\n",
" #call daytimeFunction (input to daytimeFunction is current ordered pair set) \n",
" daytimeCoords = daytimeFunction(longCoord[i][j],latCoord[i][j], dtInSec[i][j])\n",
" if not daytimeCoords: # don't append 'None' values to array \n",
" continue\n",
" columnArray.append(daytimeCoords)\n",
" filledArray.append(columnArray) #append returned values from daytimeFunction onto array\n",
" \n",
" return filledArray #return array of daytime ordered pairs"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ejfVhTNSB5Xj"
},
"source": [
"####Returns result of helper function with time in hours\n",
"This function accepts an ordered triplet of longitude, latitude, and date & time values and returns the same triplet, but with time changed to hours since the first satellite started."
]
},
{
"cell_type": "code",
"metadata": {
"id": "QIGNqQ4ValYI"
},
"source": [
"def daytimeArcCrossings(longitude, latitude, dateTimeInSeconds):\n",
" # assigns result of calling callingDaytime (returns array of ordered triples)\n",
" daytimeCrossings = callingDaytime(longitude,latitude, dateTimeInSeconds)\n",
" \n",
" for i in range(0, satellites):\n",
" for j in range(0, len(daytimeCrossings[i])):\n",
" # assigns the time in hours since first satellite start to the third value in the ordered triplet\n",
" daytimeCrossings[i][j][2] = convertDateToSecSinceStart(daytimeCrossings[i][j][2])\n",
" return daytimeCrossings # returns altered daytimeCrossings array"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "nQs0rVtb6tkE"
},
"source": [
"###Daytime Swath\n",
"This function works the same as Daytime function, but only returns swath. Two separate functions are needed because swath intervals are initiated later in the code than arc crossing points, so the Daytime function will not work if swath intervals are taken as an argument. \n",
"\n",
"This function determines whether the crossing of equator/arc happens during daytime and returns only the swath interval around each daytime arc crossing point. \n",
"\n",
"Daytime is determined by the angle of the sun. If the sun is more than 6 degrees below the horizon from the longitude/latitude pair, it is twilight. (Civil definition of twilight) https://www.timeanddate.com/astronomy/different-types-twilight.html\n",
"\n",
"Utilizes Ephem package to calculate the angle of the sun. Accepts time in UTC based off of a pre-determined date, adds time t calculated by t2q function to determine the time of crossing in UTC (\"absolute time\").\n",
"* Accepts inputs latitude, longitude, date & time, and swath interval\n",
"* Returns swath interval if satellite crossed the arc at that point during the day\n",
"\n",
"\n",
"Source for the backbone of function: https://stackoverflow.com/questions/43299500/pandas-convert-datetime-timestamp-to-whether-its-day-or-night "
]
},
{
"cell_type": "code",
"metadata": {
"id": "Xlk62aqD6xYh"
},
"source": [
"def daySwath(long_point, lat_point, dt_point, swathInterval_point):\n",
" \n",
" earthCoordinates = [long_point, lat_point, dt_point, swathInterval_point] \n",
" sun = ephem.Sun()\n",
" location = ephem.Observer() #sets the location of the observation point\n",
" location.lon = ephem.degrees(long_point) #Pulls latitude coordinate, changes from radian to angle\n",
" location.lat = ephem.degrees(lat_point) #Pulls longitude coordinate, changes from radian to angle\n",
" location.elevation = h #sets the elevation of the observation point to the altitude of the satellite\n",
" ##takes in time in seconds, will be supplied by time array\n",
" datetimeInSec = datetime.datetime.utcfromtimestamp(dt_point) \n",
" # #changes the datetime object to a format read by ephem (YYYY/MM/DD HH:MM:SS)\n",
" location.date = datetime.datetime.strftime(datetimeInSec, \"%Y/%m/%d %H:%M:%S\") \n",
" sun.compute(location) #Determine location of sun at the observation point\n",
" altitudeOfSun = sun.alt #Calculates altitude of sun with respect to the observation point. \n",
" #if below a certain point, it is nighttime\n",
" #Note that ephem presents angles in radians\n",
" sunDegrees = (altitudeOfSun*180/np.pi) #Transforms angle of sun in radians into degrees\n",
" if (sunDegrees >= sun_day): \n",
" # If the angle of the sun is greater than the angle for nighttime\n",
" # Assign the swath Interval to the variable daytimeSwath\n",
" daytimeSwath = earthCoordinates[3] \n",
" return daytimeSwath"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "v9lfQAFvCXK6"
},
"source": [
"####Helper Function to call Day Swath\n",
"\n",
"Daytime function accepts a single set of points and returns a single swath interval; the helper function accepts arrays of points and returns an array of swath intervals."
]
},
{
"cell_type": "code",
"metadata": {
"id": "vtqd4oXM7E0y"
},
"source": [
"def callDaySwath(long_array, lat_array, dt_array, swath_array):\n",
" filledArray = []\n",
" \n",
" #increment through pairs \n",
" for i in range(0, satellites):\n",
" columnArray = []\n",
" for j in range(0, len(long_array[i])):\n",
" #call daySwath (input is current pair set) \n",
" daytimeCoords = daySwath(long_array[i][j],lat_array[i][j], dt_array[i][j], swath_array[i][j])\n",
" if not daytimeCoords: # don't append 'None' values to array \n",
" continue\n",
" columnArray.append(daytimeCoords)\n",
" #append returned values from daySwath onto array\n",
" filledArray.append(columnArray)\n",
" #return array of daytime pairs\n",
" return filledArray"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "LeAU-00PIevM"
},
"source": [
"###Functions for Swath Coverage of the Arc"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fhoOPGgUIngm"
},
"source": [
"####Converting 3D array to 2D Array\n",
"This function was necessary as our swathInArc was a multidimensional array, which contained an array of satellites as well as an array of order pairs of longitudes (radians) associated with each satellite. In order to perform the calculation of arc coverage, the array of satellites was not needed only the pairs of longitudes thus they were appended to a new array. An example of Global_swathInArc prior to and after the function is provided in Appendix A. The longitudinal orders are retained just at a new index. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "mNaCcq2ez9yK"
},
"source": [
"# converting 3d array to 2d array (Original array was a list of arrays that contained\n",
"#pairs of longitude points associated with each satellite. Now contains only pairs of longitudes.)\n",
"def c3d2(input_array):\n",
" empty=[]\n",
" for i in range(0, len(input_array)):\n",
" for j in range(0, len(input_array[i])):\n",
" empty.append(input_array[i][j])\n",
" return empty"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "uCYhjWrGI-WK"
},
"source": [
"####Helper Function to Call Merge Interval Function\n",
"This function takes the array of pairs of longitudes (radians) and ensures that they are all ordered from smallest to largest in all cases, i.e. (3,1) converts to (1,3) and (-1, -4) converts to (-4, -1). An example of Global_swathInArc prior to and after the function is provided in Appendix A. This was to ensure that our \"lower\" limit is not greater than our \"upper limit.\""
]
},
{
"cell_type": "code",
"metadata": {
"id": "HlSmDcnr05Iq"
},
"source": [
"#Function makes sure longitude intervals are ordered from smallest to largest in all cases.\n",
"def merge_intervals_order_helper(input_array):\n",
" for i in range(0, len(input_array)):\n",
" if input_array[i][0]>input_array[i][1]:\n",
" temp=input_array[i][0]\n",
" input_array[i][0]=input_array[i][1]\n",
" input_array[i][1]=temp\n",
" return input_array"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "v0HT69JvJU6n"
},
"source": [
"####Merged Intervals of Longitudinal Coverage Function\n",
"This function takes the sorted array of ordered pairs of longitudes and finds the unions for the entire set of points. And creates a new array which contains ordered pairs of the unions, i.e. ((1,3), (3,6)) convert to (1,6). It also outputs those ordered pairs that lay outside the union, i.e. (8,9). \n",
"\n",
"This code was taken from an example on stack overflow: https://stackoverflow.com/questions/49071081/merging-overlapping-intervals-in-python/49076157"
]
},
{
"cell_type": "code",
"metadata": {
"id": "f4gFIXqB1QiW"
},
"source": [
"\n",
"#merges intervals of longitudes to calculate swath overlap between satellites \n",
"def merge_intervals(intervals):\n",
" intervals=merge_intervals_order_helper(intervals)\n",
" sorted_intervals = sorted(intervals, key=lambda x: x[0])\n",
" interval_index = 0\n",
" \n",
" for i in sorted_intervals:\n",
" \n",
" \n",
" #modified from original stack overflow \n",
" if i[0] > sorted_intervals[interval_index][1]:\n",
" interval_index += 1 \n",
" sorted_intervals[interval_index] = i\n",
" \n",
" else:\n",
" sorted_intervals[interval_index] = [sorted_intervals[interval_index][0],i[1]]\n",
" \n",
" return sorted_intervals[:interval_index+1]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLyzRY1RJraA"
},
"source": [
"####Summation of Distance Covered by Satellites\n",
"The function takes the array of merged intervals and calculates the distance between each ordered pair in a for loop and outputs the total distance in radians covered by all the satellites. Note that the distance calculated ignores the sphericity of the Earth."
]
},
{
"cell_type": "code",
"metadata": {
"id": "irSn5xkt16yU"
},
"source": [
"#summation of merged arc intervals\n",
"def sumarc(interval_array):\n",
" sum=0\n",
" for i in range(0, len(interval_array)):\n",
" sum+=abs(interval_array[i][0]-interval_array[i][1])\n",
" return sum"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "gpKTB5OlDlhP"
},
"source": [
"####Concatenation of Swath Interval Array\n",
"This function takes an input array of swath intervals and returns the first $i + 1$ swath intervals from the input array to index $i$ of the returned array."
]
},
{
"cell_type": "code",
"metadata": {
"id": "cIlr0KM67jJ2"
},
"source": [
"def dayCoverageConcat(input_array): \n",
" array_of_inputs = []\n",
" coverage_ratio_array = []\n",
" \n",
" for i in range(0, len(input_array)):\n",
" # append the first (i+1) intervals to the coverage ratio array\n",
" coverage_ratio_array.append(merge_intervals(input_array[:i+1]))\n",
" return coverage_ratio_array"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "G1NtaEW51o5D"
},
"source": [
"#### Ratio of Coverage of the Arc\r\n",
"This function takes as input the concatenated array and returns an array of ratios for each input."
]
},
{
"cell_type": "code",
"metadata": {
"id": "Y9LSVwgZ7tp-"
},
"source": [
"def ratioDaySwath(concat_array):\n",
" totarc = abs(x1-x2) # assigns the absolute value of the endpoints of the arc (length of arc)\n",
" return_array=[]\n",
" for i in range(0, len(concat_array)):\n",
" # takes the sum of the coverage of the index i of the concatenated array\n",
" # and divides by the total length of the arc to determine coverage with i crossing points\n",
" sat_cov = (sumarc(concat_array[i]) / totarc)\n",
" return_array.append(sat_cov)\n",
" return return_array"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "2yI94S7jRrZf"
},
"source": [
"##Graphing"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BgUxHm-T6jPc"
},
"source": [
"###Ground Tracking Visualization\n",
"This figure shows the ground tracking generated as (longitude, latitude) points in radians by each satellite mapped on a flat representation of the Earth. Here the solid black line at approximately 0.69 radians represents the latitude of the arc through Denver, Colorado which is a rough approximation of the latitude of the geographic center of the contiguous United States. Thus points on either side of the line represent the satellite crossing over the arc.\n",
"\n",
"Source for the backbone of this code: Spring 2020 Ball Aerospace final Jupyter Notebook\n",
"\n",
"Source for changing colormap to assign colors for satellites: https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html"
]
},
{
"cell_type": "code",
"metadata": {
"id": "TJfEsVxOGkls"
},
"source": [
"def groundtrackingViz(longCoord, latCoord, satellites):\n",
" arcLine = [arc_latitude, arc_latitude] \n",
"\n",
" f = plt.figure(figsize=(10,8))\n",
" ax = f.add_subplot(1,1,1)\n",
"\n",
" colors = cm.viridis(np.linspace(0, 1, satellites)) # sets colormap to a value equal to the nubmer of satellites in viridis \n",
" for i in range(0,satellites): \n",
" title = \"sat\" + str(i+1)\n",
" # plots logitude values with respect to latitude values\n",
" plt.plot(longCoord[i], latCoord[i],'.', label=title, c=colors[i])\n",
" plt.plot([-np.pi,np.pi], arcLine,'-',label = \"Arc Latitude\", c='k') # plots the arc\n",
" #plt.axis([x2, x1, 0.5, 1.0]) #plt.axis([min_x, max_x, min_y, max_y]) sets min/max for axes\n",
" plt.title('Ground Tracking Projection For ' + str(i+1) + ' satellites in 24 hours')\n",
" plt.legend(loc='lower right')\n",
" plt.xlabel('Longitude of Earth in radians (-π to +π)')\n",
" plt.ylabel('Latitude of Earth in radians (-π/2 to +π/2)')\n",
" txt=\" This figure shows the ground tracking generated as (longitude, latitude) points in radians by each satellite \\n mapped on a flat representation of the Earth. Here the solid black line represents the latitude of the arc. \\n Thus points on either side of the line represent the satellite crossing over the arc.\"\n",
" plt.figtext(.5, .001, txt, ha='center')\n",
"\n",
" return"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "1donwJip93gm"
},
"source": [
"###Daytime Ground Tracking Visualization\n",
"This figure shows the ground tracking generated as (longitude, latitude) points in radians by each satellite mapped on a flat representation of the Earth during **daytime** hours. Here the solid black line at approximately 0.69 radians represents the latitude of the arc through Denver, Colorado which is a rough approximation of the latitude of the geographic center of the contiguous United States. Thus points on either side of the line represent the satellite crossing over the arc. Note the date chosen was an equinox to ensure equal amounts of sunlight on the northern and southern hemispheres.\n",
"\n",
"\n",
"Source for the backbone of this code: Spring 2020 Ball Aerospace final Jupyter Notebook\n",
"\n",
"Source for code to prevent repeated labels in legend: https://stackoverflow.com/questions/19385639/duplicate-items-in-legend-in-matplotlib"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0i7cSLfN-RQm"
},
"source": [
"def dayGroundtrackingViz(coordinates, satellites):\n",
" arcLine = [arc_latitude, arc_latitude] \n",
" \n",
" f = plt.figure(figsize=(10,8))\n",
" ax = f.add_subplot(1,1,1)\n",
" \n",
" colors = cm.viridis(np.linspace(0, 1, satellites)) \n",
" for i in range(0,satellites): \n",
" for j in range(0, len(coordinates[i])):\n",
" title = \"sat\" + str(i+1) if j == 0 else \"_nolegend_\"\n",
" # plots longitude values with respect to latitude values\n",
" plt.plot(coordinates[i][j][0], coordinates[i][j][1],'.', label = title, c=colors[i])\n",
" plt.plot([-np.pi,np.pi], arcLine,'-', label = \"Arc Latitude\", c='k') #plots the arc\n",
" #plt.axis([x2, x1, 0.5, 1]) #plt.axis([min_x, max_x, min_y, max_y]) sets min/max for axes\n",
" plt.title('Daytime Ground Tracking Projection For ' + str(i+1) + ' satellites in 24 hours')\n",
" plt.legend(loc='lower right')\n",
" plt.xlabel('Longitude of Earth in radians (-π to +π)')\n",
" plt.ylabel('Latitude of Earth in radians (-π/2 to +π/2)')\n",
" txt=\" This figure shows the ground tracking generated as (longitude, latitude) points in radians by each satellite \\n mapped on a flat representation of the Earth during daytime hours. Here the solid black line represents the \\n latitude of the arc. Thus points on either side of the line represent the satellite crossing over the arc. Note the\\n date chosen was an equinox to ensure equal amounts of sunlight on the northern and southern hemisphere. \"\n",
" plt.figtext(.5, .00000001, txt, ha='center')\n",
" return\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "vleqHgvGa0y8"
},
"source": [
"###Location of Daytime Arc Crossing Visualization\n",
"\n",
"This figure shows the arc longitude at which each satellite crosses the arc during daytime as related to the time since the first satellite was launched. The orange line represents sunrise and the blue represents sunset. The distance between the black dashed horizontal lines represents the length of the arc.\n",
"\n",
"Source for the backbone of this code and the sunrise/sunset lines: Spring 2020 Ball Aerospace final Jupyter Notebook"
]
},
{
"cell_type": "code",
"metadata": {
"id": "FCy42F6uayRi"
},
"source": [
"def locationOfDaytimeCrossings(coordinates_time, satellites):\n",
" l_i = 0 #Initial longitude location\n",
" t_i = HOURS*hours2seconds #Time that the satellites start in hours, transformed to seconds\n",
" psi_r = (l_i + ((np.pi/2)-(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial sunrise longitude\n",
" psi_s = (l_i + ((3*np.pi/2)+(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial sunset longitude\n",
"\n",
" f = plt.figure(figsize=(10,8))\n",
" ax = f.add_subplot(1,1,1)\n",
" for i in range(0,satellites): \n",
" plt.plot(t[i]/3600, (psi_r-t[i]*radm)%(2*np.pi), '.', label=\"sunrise\" if i == 0 else \"_nolegend_\", color = 'orange') # Plots the sunrise line\n",
" plt.plot(t[i]/3600, (psi_s-t[i]*radm)%(2*np.pi), '.', label=\"sunset\" if i == 0 else \"_nolegend_\", color='blue') # This plots the sunset line\n",
"\n",
" colors = cm.viridis(np.linspace(0, 1, satellites))\n",
" k=0\n",
" for i in range(0,satellites): \n",
" for j in range(0, len(coordinates_time[i])):\n",
" title = \"sat\" + str(i+1) if j == 0 else \"_nolegend_\"\n",
" # plots time values with respect to longitude values (from 0 to 2*pi)\n",
" plt.plot(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), '.', label = title, c=colors[i])\n",
" k+=k\n",
" eastern_boundary = (x1 % (2*np.pi))\n",
" western_boundary = (x2 % (2*np.pi))\n",
"\n",
" title1=\"Boundary of Arc Longitudes\"\n",
" #https://matplotlib.org/3.1.0/gallery/subplots_axes_and_figures/axhspan_demo.html#sphx-glr-gallery-subplots-axes-and-figures-axhspan-demo-py\n",
" plt.axhline(y=eastern_boundary, linestyle='--', color='black', label=title1)\n",
" plt.axhline(y=western_boundary, linestyle='--', color='black') \n",
" \n",
" plt.xlim([0, 24])\n",
" plt.ylim([0, 2*np.pi])\n",
" plt.xlabel('Time since Satellite 1 started in hours') \n",
" plt.ylabel('Arc Longitude in radians (0 to 2π)') \n",
" ax.set_title('Location of Daytime Arc Crossings for ' + str(i+1) + ' Satellites')\n",
" ax.legend(loc='lower right')\n",
" txt=\" This figure shows the arc longitude at which each satellite crosses the arc during daytime as related to \\n the time since the first satellite was launched. The orange line represents sunrise and the blue sunset.\\n The distance between the black dashed horizontal lines represents the length of the arc.\"\n",
" plt.figtext(.5, .0000001, txt, ha='center')\n",
" return"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "mP6KJUYocG8f"
},
"source": [
"###Location of Daytime Arc Crossing Visualization, Bounded by Arc Endpoint Longitudes\n",
"\n",
"This is the same code as the function locationOfDaytimeCrossings, but the graph is bounded by the endpoint longitudes of the arc to better show the coverage of the arc.\n",
"\n",
"This figure shows the arc longitude at which each satellite crosses the arc during daytime as related to the time since the first satellite was launched. The black error bars show the swath coverage at each crossing point. The orange line represents sunrise and the blue represents sunset. \n",
"\n",
"Source for the backbone of this code as well as the sunrise/sunset lines: Spring 2020 Ball Aerospace final Jupyter Notebook"
]
},
{
"cell_type": "code",
"metadata": {
"id": "qShoeX6CcKOX"
},
"source": [
"def zoomedInlocationOfDaytimeCrossings(coordinates_time, satellites):\n",
" l_i = 0 #Initial longitude location\n",
" t_i = HOURS*hours2seconds #Time that the satellites start in hours, transformed to seconds\n",
" psi_r = (l_i + ((np.pi/2)-(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial sunrise longitude\n",
" psi_s = (l_i + ((3*np.pi/2)+(deg2rad(abs(sun_day))))-t_i*radm)%(2*np.pi) #initial sunset longitude\n",
"\n",
" f = plt.figure(figsize=(10,8)) #Sets size of figure\n",
" ax = f.add_subplot(1,1,1) \n",
" for i in range(0,satellites): #Iterates through satellites\n",
" plt.plot(t[i]/3600, (psi_r-t[i]*radm)%(2*np.pi),'.', label=\"sunrise\" if i == 0 else \"_nolegend_\", color = 'orange') #Plots the sunrise line \n",
" plt.plot(t[i]/3600, (psi_s-t[i]*radm)%(2*np.pi),'.', label=\"sunset\" if i == 0 else \"_nolegend_\", color='blue') #Plots the sunset line\n",
" colors = cm.viridis(np.linspace(0, 1, satellites))\n",
" k=0\n",
" for i in range(0,satellites): \n",
" for j in range(0, len(coordinates_time[i])):\n",
" title = \"sat\" + str(i+1) if j == 0 else \"_nolegend_\"\n",
" # plots swath coverage of arc\n",
" plt.errorbar(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), yerr=(Global_SortedSwathDiff[k] / 2), fmt='', c='black', elinewidth=1, capsize=0 )\n",
" # plots time with respect to longitude (from 0 to 2*pi)\n",
" plt.plot(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), 'o', label = title, c=colors[i])\n",
" k += k\n",
" plt.xlim([0, 24]) \n",
" plt.ylim([x2%(2*np.pi), x1%(2*np.pi)]) # graph is bounded by arc endpoint longitudes\n",
" plt.xlabel('Time since Satellite 1 started in hours') \n",
" plt.ylabel('Arc Longitude in radians (0 to 2π) \\n Bounded by Arc Endpoints') \n",
" ax.set_title('Location of Daytime Arc Crossings for ' + str(i+1) + ' Satellites\\n Bounded by Arc Longitudes')\n",
" ax.legend(loc='lower right')\n",
" txt=\" This figure shows the longitude (bounded by arc) at which each satellite crosses the arc during daytime as related \\n to the time since the first satellite was launched. The error bars show the swath coverage at each crossing point.\"\n",
" plt.figtext(.5, .0000001, txt, ha='center')\n",
" return"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "j39u-5rKBVs7"
},
"source": [
"### Visualization for Coverage Ratio\n",
"\n",
"This figure shows the arc longitude at which each satellite crosses the arc during daytime as related to the time since the first satellite was launched.\n",
"The right axis shows the accumulated coverage of the arc by the swath intervals (as a percentage) over the 24 hour period. The black error bars show the swath coverage at each crossing point.\n",
"\n",
"The purple dashed line in the upper right corner represents full coverage of the arc by the swath intervals.\n",
"\n",
"Source for the backbone of this code: Spring 2020 Ball Aerospace final Jupyter Notebook"
]
},
{
"cell_type": "code",
"metadata": {
"id": "EqVVgEHt_UOz"
},
"source": [
"def coverageRatioViz(coordinates_time, satellites, ratio_array):\n",
" f = plt.figure(figsize=(10,8))\n",
" ax1 = f.add_subplot(1,1,1)\n",
" k=0\n",
" colors = cm.viridis(np.linspace(0, 1, satellites))\n",
" x_array = []\n",
" for i in range(0,satellites): \n",
" #title = \"sat\" + str(i+1) + \"-orbit\" \n",
" for j in range(0, len(coordinates_time[i])):\n",
" x_array.append(coordinates_time[i][j][2])\n",
" #only prints the first entry for each satellite in the legend\n",
" title = \"sat\" + str(i+1) if j == 0 else \"_nolegend_\"\n",
" # plots swath coverage of arc\n",
" plt.errorbar(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), yerr=(Global_SortedSwathDiff[k] / 2), fmt='', c='black', elinewidth=1, capsize=0 )\n",
" # plots time values with respect to longitude (from 0 to 2*pi)\n",
" plt.plot(coordinates_time[i][j][2], (coordinates_time[i][j][0] % (2*np.pi)), 'o',label=title, c=colors[i])\n",
" k +=k\n",
" x_array.sort()\n",
" ax1.legend(loc= 'lower right')\n",
" plt.xlabel('Time since Satellite 1 started in hours') \n",
" plt.ylabel('Arc Longitude in radians (0 to 2π) \\n Bounded by Arc Endpoints') \n",
" ax2 = ax1.twinx()\n",
" title1 = \"Cumulative Coverage of All Satellites\"\n",
" title2 = \"Full Arc Coverage during Daytime (righthand y-axis)\"\n",
" title3 = \"Cumulative coverage\"\n",
" \n",
" # plots the ratio of coverage for each successive swath interval\n",
" ax2.plot(x_array, ratio_array, color='blue', label = title3) \n",
" ax2.yaxis.label.set_color('blue')\n",
" ax2.hlines(y=(1), xmin=10, xmax=24, color='purple', linestyles='--', lw=2, label =title2)\n",
" ax2.legend(loc='upper right')\n",
" \n",
" plt.ylim((0, 1.2))\n",
" plt.ylabel('Cumulative Arc coverage in percentage') \n",
" ax1.set_title('Daytime Coverage of Arc Crossings within 24 hours with ' + str(i+1) + ' Satellites')\n",
" ax2.spines['right'].set_color('blue')\n",
" txt=\" This figure shows the arc longitude at which each satellite crosses the arc during daytime as related to the time \\n since the first satellite was launched. The right axis shows the accumulated coverage of the arc by the swath \\n intervals (as a percentage) over the 24 hour period. The error bars show the swath coverage at each crossing point.\"\n",
" plt.figtext(.5,.0000001, txt, ha='center')\n",
" return"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "1JbSkkjclgbw"
},
"source": [
"#Results & Discussion"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q9npM0WEUq5t"
},
"source": [
"##Main\n",
"\n",
"Contains some global variables and function calls."
]
},
{
"cell_type": "code",
"metadata": {
"id": "B8ABaiX4NHgp"
},
"source": [
"## calling code\n",
"Global_orbit3D = [0]*satellites # Creating empty lists for the x,y,z cordinates, their relative times and their eccentric anomolies\n",
"t = [0]*satellites \n",
"E = [0]*satellites \n",
"# Ω, the longitude of the ascending node will rotate by one degree every day. \n",
"# This ensures that the orbital plane passes through the same time on each\n",
"# day at each latitude.\n",
"\n",
"Ω = (np.pi/4) - 0.25\n",
"ω = 0\n",
"\n",
"#spacer=.1021569 #value used in Spring 2020 \n",
"spacer = 1 / satellites\n",
"\n",
"for i in range(0,satellites): # Creating individual times lists for each of the satellies, and getting their x,y,z coordinates\n",
" t[i]= np.linspace((i*(spacer*P)), ((orbits*P)+(i*(spacer*P))), 4*N) #***in linspace, index i used to change the time of the linspace\n",
" E[i] = t2E(e, H*t[0]/a/b)\n",
" Global_orbit3D[i] = sat3D(t[i], inclination, ω, Ω, a, b, H, E[i])"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "nS1Xd1xcUqnB",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 2726
},
"outputId": "1e34188c-7829-4fbc-b253-05bee51cf323"
},
"source": [
"# displays all graphs without scroll bar \n",
"#https://stackoverflow.com/questions/55546869/google-colaboratory-is-there-any-way-to-expand-the-height-of-the-result-cell-of\n",
"display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 5000})'''))\n",
"\n",
"\n",
"longCoord, latCoord = angularEarthCoord(Global_orbit3D)\n",
"# r is an array of the long and lat Coordinates of the satellites, r will be used in the dispArc function\n",
"r = ['']*satellites\n",
"for i in range(0, satellites):\n",
" r[i]=[]\n",
" for j in range(0, np.size(latCoord[i])-1):\n",
" r[i].append([longCoord[i][j],latCoord[i][j]])\n",
"\n",
"#creating variable to hold values of s, d\n",
"ss = ['']*satellites\n",
"dd = ['']*satellites\n",
"# running a for loop in order to call dispArc function\n",
"for i in range(0,satellites):\n",
" ss[i]=[]\n",
" dd[i]=[]\n",
" for j in range(0, np.size(latCoord[i])-1):\n",
" d, s, e = dispArc([x1,y1],[x2,y1],r[i][j])\n",
" # appending d values to dd\n",
" # appending s values to ss\n",
" dd[i].append(d)\n",
" ss[i].append(s)\n",
" #arcLength = c\n",
" \n",
"# Function calls assigned to variables\n",
"Global_longB4Af, Global_latB4Af, Global_t_B4Af = arcCrossing(dd,longCoord,latCoord)\n",
"Global_swathInterval, Global_interLine, Global_interLat, Global_inter_t = arcCoverage(Global_longB4Af,Global_latB4Af,halfSwath,Global_t_B4Af,y1)\n",
"Global_arcCrossings, Global_latCrossings, Global_timeCrossings, Global_swathInArc = arcLongInterval(Global_interLine, x1, x2, Global_inter_t, Global_swathInterval)\n",
"Global_ratio_array = ratioDaySwath(dayCoverageConcat(c3d2(callDaySwath(Global_arcCrossings, Global_latCrossings, timeSinceStart(Global_timeCrossings), Global_swathInArc))))\n",
"Global_SortedSwath = c3d2(callDaySwath(Global_arcCrossings, Global_latCrossings, timeSinceStart(Global_timeCrossings), Global_swathInArc))\n",
"Global_SortedSwathDiff = [qqq[1]-qqq[0] for qqq in Global_SortedSwath]\n",
"\n",
"# Plots\n",
"groundtrackingViz(longCoord, latCoord, satellites)\n",
"dayGroundtrackingViz(callingDaytime(longCoord, latCoord, timeSinceStart(t)), satellites)\n",
"locationOfDaytimeCrossings(daytimeArcCrossings(Global_arcCrossings, Global_latCrossings, timeSinceStart(Global_timeCrossings)), satellites)\n",
"zoomedInlocationOfDaytimeCrossings(daytimeArcCrossings(Global_arcCrossings, Global_latCrossings, timeSinceStart(Global_timeCrossings)), satellites)\n",
"coverageRatioViz(daytimeArcCrossings(Global_arcCrossings, Global_latCrossings, timeSinceStart(Global_timeCrossings)), satellites, Global_ratio_array)\n",
"\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"application/javascript": [
"google.colab.output.setIframeHeight(0, true, {maxHeight: 5000})"
],
"text/plain": [
""
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAIaCAYAAAB7x9q9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3wd1Zn3v8/M3Cbdq94tyUW2ZctFlruNwQab0CEECLDJJtmE5YW0Tdvk3UZJT3Y3b9pmAym0EEJIgNACweCGG+7dcrdlS7aa1aV778yc948ZXV3JkhsOmN35fj76fO7cmXvmnPObc85znvOckSil8PDw8PDw8PDwuLjQ3usMeHh4eHh4eHh4nIpnpHl4eHh4eHh4XIR4RpqHh4eHh4eHx0WIZ6R5eHh4eHh4eFyEeEaah4eHh4eHh8dFiGekeXh4eHh4eHhchHhGmofHBUBERoiIEhHjPbr/AhE5OsS5S0Wk+t3O07kiIjtEZMH7Jd3/bYjIUhG5y/38CRF5K+lch4iM+ivf/6J4jgeW3cPjr4lnpHm8bxCRO0RkrYh0iki9+/nTIiLvdd5OhzuA9f7ZItKddPyRv/b9lVIrlFLlf4203YG7xy1Lo4g8KyKF55OWUmqCUmrpO8zPoyLyzQud7hD3Si5779+cC5T2XSKyz03zVREpuhDpDrjHIRFZdCHSUkqFlVIH3HRP0eAC3eO8n2MRuU5E3hKRFhE5LiK/FJHIINdliUiDZ4R5XCx4RprH+wIR+TLwI+DfgQIgH7gHuATwD/Eb/V3L4GlwB7CwUioMHAFuSPruyd7r3isv3AXgs27ZxgIZwP8beMH7uGxn4rPJ+iqlVp/LjwerF9fr923gJiALOAg8dSEy+7+YdOCbQBEwHhiG05cM5HvArncxX0PyP7jNeJwDnpHmcdEjIunA14FPK6X+oJRqVw6blFIfUUpF3eseFZH/FpFXRKQTuFxExrsejxZ32evGpHQTyzfu8cAlHCUi94jIXvf3/9XrtRMRXUT+w/UeHQCuO49yLRCRoyLyNRE5DjwiIpki8pI7mz/pfi5O+k2WiDwiIrXu+eeHSPvzIrJTRIoHLoW6HpSviMhWEWkVkadFJJh0/qsiUufe4y63HkafqTxKqWbgj8DEpPt8TUS2Ap0iYojIja4OLW79jx+Qr0XuZ01E/q+I7BeRJhH5vYhkJV07T0RWuenUuNrdDXwE+KrrgXpxkHQDIvJDt2y17ufAAD2+LI6ntk5E/u5stBxQ95qI/KuIHHbTedx9hpOXxT8lIkeANwdJ4nrgGaXUDqVUDPgGcJmIlA1xv0+IyAERaReRg+J6Z0WkTETedOuvUUSeFJEM99wTQCnwoltXX3W/n51Ur1vkLJeJe5+R02hQJCJ/dJ/rgyLy+aTfzhSR9SLSJiInROQHQ9zjnJ7jZJRSv1VKvaqU6lJKnQR+gTPBS05/Ls6z+8hZlvk/3DZ4UESuSfq+SEReEJFmcbyhf590rp+XcYgyDWwzXxORY66+1SKy8Gzy5/E/A89I83g/MAcIAH86i2v/BvgWEAHWAi8CfwHygM8BT4rIuSyZXA/MACYDHwaucr//e/dcFTAduPUc0kymAMdbMhy4G6dNPuIelwLdwE+Trn8CSAEm4JRpMK/VfcAngPlKqUHj1NyyXA2MdMv2Cfe3VwNfAhYBo4EFZ1sQEckBbgE2JX19J44BmwGMwvEIfQHIBV7BMRIG84R+DvggMB/H+3ES+C/3PsOBPwM/cdOZAmxWSj0MPAl83/Vq3TBIuv8CzHZ/UwnMBP416XwBjtdlGPAp4L9EJPNs68DlE+7f5W6Zw/TXELdc4+l7ngYig3yeeMpFIqnAj4FrlFIRYC6wOel336HPe1QCPACglPpb+nt1vy8iw4CXcTxOWcBXgD+KSO5ZlBk33VM0EBENpx1uwanXhcAXRKS37D8CfqSUSgPKgN+f7f0Y4jk+Cy4DdvQeiON1/ynwWeBs/lfiLKAayAG+D/xKJBF28TvgKE693wp8W0SuOMt8Qf82U+bmaYar71XAoXNIy+N9jmekebwfyAEalVJm7xdJs/1uEbks6do/KaVWKqVsnIE4DHxXKRVTSr0JvITTCZ4t31VKtSiljgBL3DTBGRx+qJSqcT1I3znPstnA/UqpqFKqWynVpJT6ozvjb8cxOOe7ZS4ErgHuUUqdVErFlVLLktIS1wvxAeBypVTDae77Y6VUrZv3FweU6xHXi9OFO6ifgR+LSAvOIFyHY+Ql36dGKdUN3A68rJR6XSkVB/4DCOEYFgO5B/gXpdRR11P6AHCrOEtAfwMsVko95dZBk1Jq8yBpDMZHgK8rperd+nkQ+Nuk83H3fFwp9QrQAZzOqP+x+xy2iMjGpHv8QCl1QCnVAfwTcIf0X756QCnV6dbLQF4FPiwik0UkBNyHYzikDJEHG5goIiGlVJ1SageAUmqfW9dRt6w/wH2WhuCjwCtKqVeUUrZS6nVgPXDtaX5zNswAcpVSX3fb4QEcT9Yd7vk4MFpEcpRSHUqpNeeQ9lDP8ZCIyJXAx3HqtZfPA2uVUhvO8r6HlVK/UEpZwGNAIZAvIiU4HrqvKaV63Ofyl8DHzr5I/dqMhTNBrRARn1LqkFJq/zmk5fE+xzPSPN4PNAE5yYOcUmquUirDPZf8HNckfS4CalyDrZfDOLP5s+V40ucuHKMvkfaAdM+HBqVUT++BiKSIyEPuUlkbsBzIcGf6JUCzu1wzGBk43rjvKKVaz3Dfsy1X8ueh+LxSKkMpNcxdfk42DgfqkagnV5caBtdjOPBcrwGEEydk4cQilgDnO1D1y4P7OTkovyl5MkD/uhmM3rJnKKWmnuYehpv3XoasV6XUYuB+nKXjQ+5fO453ZuC1nTjG7z1AnYi8LCLjAEQkX0R+5y6VtQG/wZnwDMVw4LYko7MFmIdjgLwThgNFA9L9Z/rq41M48Yy7RWSdiFx/DmkP9RwPiojMBn4L3KqU2uN+V4RjpP3L+dzXnczg3rsIp422J117rn1O4tlQSu3D8Tw/ANS7el7wTSQeFy+ekebxfmA1EMUJpD4TyUsVtUCJu9zSSylwzP3cSX/vRME55KkOx1hITvd8GLi08mUcz80sd/mn10soOJ13Vm9c0SCcxFmCfURELhnimjNRBxQnHZcMdeFZMlCP4b0H7vJQCX16JFODs4SXkfQXVEodc88NGp/FmZeq+uUBR7faM/zmXBnsHiZwIum70+ZTKfVfSqkxSql8HGPNALYPce1rSqkrcYyp3TheKnA2HyhgkvssfZT+y6gD81ADPDGgzlOVUt89XV4Hy9Ig6R4ckG5EKXWtm/+9Sqk7cZbvvwf8wV3GvaCISBXwAvBJpdQbSadm4tTdTnFiQ38EzBRnF+i5bj6qxWmjyTtHz7XP6Vd/yomnm4fzTCmcOvL4X4JnpHlc9CilWnCWpX4mIreKSESc4OwpwOk687U4s+uviojPDYK+ASdmBJzYnQ+53qvRODP6s+X3wOfFCczPBP7vORZrKCI4cWgt4gTK3997QilVhxOL9TNxNhj4Biz1opxXTXwEeFZEZp7H/X8P/J04Gy5SgH87z3IMlfZ1IrJQRHw4BmkUWDXItT8HvuXGnyEiuSLSa6Q/CSwSkQ+7gdXZ7rMAjiF0uvd1PQX8q5teDs6S12/eedFOuccXRWSkiIRxjKWnB3johkREgiIyURxKgYdxYrZO8aC63rKbXKMmirM82+s5jrjHrW682T8O+PnAuvoNcIOIXCXOxpigOIHtxZwbA9N9G2h3A+BDbtoTRWSGW4aPikiu61ltcX9jcwERkYk4y8ifU0q9OOD0n4EROEulU3CeiU3AFHc586xRStXgPM/fcetvMk6/0vuMbQauFWcDUAGOl+x0+S4XkSvE2dzSg9M3XNC68bi48Yw0j/cFSqnv48Q6fRVnEDgBPAR8jcEHeZSzM+4GnDiuRuBnwMeUUrvdS/4fEHPTegxn8D9bfgG8hhOHtRF49txKNCQ/xInTagTW4AwsyfwtTgzPbqCeQTp5N5bokzhB+VMHnj8dSqk/4wSiLwH2uXkAxwB4RyilqnG8OT/BKd8NOIHrsUEu/xGO1+MvItLu5mOWm84RnDipLwPNOANfpfu7X+HE77TI4Dtfv4kTZ7UV2Iaj3YV+p9evcTZ4LMd5fUYPzkaIsyWIsyTXgWPgrGZoY1nDaRe1OHUxH7jXPfcgMBVoxdkQMPAZ/Q6OwdoiIl9xDYybcJYiG3A8YP/IuY8T/TRwDZ3rcQyggzja/xJngwY4gf87RKQDR/c7hojVeyd8GWeTya+k7512vbF7UaXU8d4/nPqKu5/PhztxjL5a4DmcmNPF7rkncPqMQzgbmp4+Q1oB4Ls4dXYcx9v4T+eZL4/3IaLU2Wxk8fDw+N+IOK/I2A4EztYT9A7udQT4qFJq+V/zPh4eHh7vFzxPmoeHRz9E5GZx3ieWiRP/8uK7YKDl4ng6Dv017+Ph4eHxfsIz0jw8PAbyf3CWUvfj7Ki89/SXvzPc2KS9wE/cpUwPDw8PD7zlTg8PDw8PDw+PixLPk+bh4eHh4eHhcRHyP/IfuObk5KgRI0a819nw8PDw8PDw8DgjGzZsaFRKnfIv2P5HGmkjRoxg/fr173U2PDw8PDw8PDzOiIgM+l9rvOVODw8PDw8PD4+LEM9I8/Dw8PDw8PC4CPGMNA8PDw8PDw+PixDPSPPw8PDw8PDwuAjxjDQPDw8PDw8Pj4sQz0jz8PDw8PDw8LgI8Yw0Dw8PDw8PD4+LEM9I8/Dw8PDw8PC4CPGMNA8PDw8PDw+PixDPSPPw8PDw8PDwuAh5T400Efm1iNSLyPYhzi8QkVYR2ez+3fdu59HDw8PDw8PD473gvf7fnY8CPwUeP801K5RS17872fHw8PDw8PDwuDh4Tz1pSqnlQPN7mQcPDw8PDw8Pj4uR90NM2hwR2SIifxaRCe91Zjw8PDw8PDw83g3e6+XOM7ERGK6U6hCRa4HngTGDXSgidwN3A5SWlr57OfTw8PDw8PDw+CtwUXvSlFJtSqkO9/MrgE9Ecoa49mGl1HSl1PTc3Nx3NZ8eHh4eHh4eHhca/YEHHnhPM/Dggw9mAH/zwAMP/GzgOREpePDBBzsfeOABRGQmcDvw7TPl+eGHH37g7rvv/qvk938DO1dXs/g3K9ANjdySHHZuOcIbL21G0zVyC9LZXl3La8t3omsatR3tvLRhF5omFGRE2FhXy3O7nXOFkQibmmp4sWYrmmgUpqSzr30fK5tWo6ORFciiqWcLNe0vI6ITsuug+0+AjuiFF7wsDc1dQ5YjLyfC5kO1Z12WTqthyHKkGAWo2KYLVpYLVYbjsZaz1uJCl2FgOc70XA0sS213+0XxXL1bbUOpmr+qFgPL8n5sG+/keXo/t42Lvc+9WMr6brShC8mDDz5Y98ADDzw88Pv3dLlTRJ4CFgA5InIUuB/wASilfg7cCtwrIibQDdyhlFLvUXbPyM7V1bz++DIArvzYfEgJsfiFTQCMrCqhJRYnPRKktb2H1JwQzfEe0lOCtHb1EMkMsq3lBAAfGj8B8Vv86cgWAGbkZWHLSSJ6Ku1WJ6VBCMpxfFoGcbuFfF+ENMt5i4mEbkb8Ve+oDF+54kHMWBzD7+Ozv/g0//3D14nHLXw+nbsfuIkf/GYZZtxCpep0F+iYtoUmGh/5QBW/3ruJmGmiaRp3zZrCk7UridsWPk3n29Ov4NnaxzCViSEGny+7kYMtX8dWcbJ1YV4wimACGipyP1rq7e9Yi9ceWYJl2ejZGVCQh1IKf8DHNfdcxlOvbsK2bfw+gxtvn8ajKzdi2TZaisac6SNYcvQgpm3jCyoWVpSwonEPpm1TEO6kNL0ZhY1P83FXaSW17b9CYaOLnyuybyW1+9eABQQg67Hz1iRZDz0tjDGqFNOy0TThprsv4+ll24nFnfq+7dbpPLZxi1P/rh6/3LORuGXhCyoC+T2Yto0mwmcqprKh7UXitnPtncPm0tXzcywVQ9CZmXknhbFfA3HAB1lPvKPn6uVfvM5PPvMrp74DPm6+7w6efXodtmWfooek6Ey9rIwVew5h2jZWBKJZNrZSBAyDT86dyGOHVmEpm4Bu8IWJFSxregVb2eT6ergubxgtPUuxsRhpWGQEogj2BdHiq4u+TiwaR9M1bv2XW3nxpR3EYmZCj6eWbjvrtvFU3SpilnWKHlm+Lual7QPMJC0eBWJciLYxUA8jJ/Os20bAZ3Db1ZX8cvsGLNvGH+I9aRu9WsRjJrqhM/NDc9iwu/Gc2kZCj6BNIC+Krc6lbVw4Pc61bbTna1i2jU/Xuf3aKQktztQ2Buox0rAvWNtI1mXL0p1ULqigYk45O7ccYeu6g0yeMZKKylJe/ONqfvTAM3CiheA3/8B1P/hbnnptE77GGPLscirunMiG5YfQW2ziw2w6R9ioVp3g6wE+ddtYnjm8nObWED9dF+GBRUUsb3yBfe1ZvHUM/mlcKs83HmRPTyo5vm7mpu1DYaKLj/l5XyKt45uuZv4LUtZ3C7mIbZ7zZvr06Wr9+vXv6j17B9N4NA6AkZaKPqoU07Sxgjrdw8KILigFVgA68nVEAwXYfkV3gQJx0vIHFb68bkxlE/ZHGZddj6YBKLKMDuam7UMXBSgyNZt5wW406f25H3kHA+qP7n2Ylx56PXFcOHci9W3xxHHe7FIONLUB0JMuRDP7VszNdEUsQ9H7RBmZUfRw328vKbSIa8cSx9dkx/GzDYAxvhgV/nhvFQA6kvXbd9SBx3piKAWEgmijShFxUrdDOj0ladjus28FoKvIwFYKy6/oyVeJQADxW/hyuxH3OOyPMi7nBJqb0Syjk0vT9wI2AJma4rJQj9vxAWhI+AtI+J5zLgf010NystAK+pby49lBYtlBeptwNEOIZmiJ+o9lKeIR50iPxDAyYonfDgu3MSy9FdyrxwaPMz61LnE82R9jpC9JD/8itKxTnN1nxc7V1Xxpwf1YccspR2oIfVRpIt/JepgB6MzX6K1gy6/oSWobut/Cn9+D7eYz4o9SkVuPQpFpdHBJ2l63bUCmZnFpsAdJtI13psVT33mOR/7tKZTtpK/lZaPl5/TVf16IeHoAOLVtxNMV8eS2kRbDSI8ljpP1GBM8zviUWtzHlTG+uNs2eq/WIPLgeRsGL//idX507y+ccgxoG/F0H7G81L5nKAw9OXri2Ey1ieU4T4n4LXx53Yl85qa0MyLjZOJ4eKCRKeEaep+p4YbJlECsXznOV4+nvvMcj973O2zLaWeSk4WWn0PvzWNZTtvoJerq0XvnZD30SAw9PZbId1G4jeL0lsRvxwSPU5HUNi6kHjtXV/PFy+7rK8eAtjFQj85cwUx1nivLr4gW9j1Tut/Cl99D7zd5Ke2MyDyZuFeyHhe6bfSWpddw9vkNPv3QvTz04zcSx3fddwP/+egSTMsG20bbU0PrNWXYSmG7/a7SBbEVGTUWXXN7nH7YhvSjQvnsGpTY2LbQcizMxytXgphkiOKSUA9+UcSV8O/1k9C0LipSa92cacxLqyLHWoGj4Tsv618DEdmglJo+8PuLOibt/cLO1dU8/uAzxGNxCAWRnCyscDhhoMWygiCgFJgB6M4QEKcpWX5FNMNpVOK30CMx7GA0YaAVRVqQXoPM6GBsqA4Nm96GNs4XRYMk4yaO6n4O1fFzx737DjlxtP8bUto6o4nPRk9/A1+6IfmbgROA+mj/tOJ2a+Jzo6XT/3IL1f3ceeX59ceX9TPQJC87UT9WUCeaGUwYaGYAejIkkVczVSVXJlpKPHEc9kcZFmlJnM40OigP9XXevXr0HjuqCUoyL4geqrOrX51qnfF+daZ3q371byedtKP967c1FiBZrQYzTH+17H5HxJacd/5ff3wZlmn15TsjPZEXK6gTzerTI5Yq/erfTO2fKy3VTBhoTvtoTQxKJYFmtKRSlBgmQnJyGvhnnVcZACoXVCSMGQC7vbNfnSZ/NnpUvy+07v7nrR4dewg9Gl0tek83WhpKJWtrQ/uD56XHztXV/OQzv0oYmpKR1r9t5KT0GWQB6M7qq1HLr4hm9eVLS+mbgIX9UYan9xkEmUYHk1OPkNw2Jvv72oabwnnrUbmgAp+/byFIdXb1S1nvivercL1H9W87SXrYUd1Jwz1uiwX6adNohvsfX0A9Xn98WcJAA0ePfm1jgB5mqO/5M1P7t3dJNRNtIeyPUnoaPU5tG/KO2gbAlqU7icdMbMsmHjN569WtzrGtiMdNlq2sxlLKmYBpGtFRWU4vowlmCJQ7kCmB6DCLRAYFUos6QGzHqNQU5fm1aGKhC+QbcXxio4nCEJtxwVaiSk/KmQ2SRd+zZ6Mk8x2V9d3EM9LeIb2zh42Lt0IwiDayBMnPQctIwwpodA8LY6U4nYnpV3Tma1jBJC9BvsIO9nls9PQYWqpJqi9KeXY96QHHKMrQO5ibtpdcXzsAmWJxSbCHXN1p4ModExQadD+L6vghqvnj59xxXPmx+Wh60mORNLgCpKUGEp+NKJSkRhLHekwoDaQlju0uX/J4S9xKbjjg09ITn0/aOm1Sck55HYydq6t57ZElCQNNH1mCFgmDyJB6mEFJGMxmuC8t8VnoqU5n1qtHWiCKSJ8eOb42QCXpYQEqoce+mIFq/8YZ9di5upqnvvMcO1dXO8dbjvC7Xy5jzCUVqJwI8bFFWCED2juIphu0jwhiBoSitFRiadBeAnbA0UNFTOziKIbYpIW7KC5qJOyPYnfrlKQ0c1nuHjKNTlKkkDJ/G9el1ZCl2ZiMSuSnxvSh+qmnILb2vPXo7R+1cAp6TgZAwsNspfic4wDEw5LwhqggWBH6vGgBGz3VMQzC/t720QM4g1BpoDFxbZamKDWsxLFC44S+kGbbebZVbNNpDefB9Ni64zgTFlU6ec0KEy/JIi03lNBDYSFALA2688DX49SgiphIXoxAj40AkXAXw3JOkqKcspSkNDM1/TCFviBl/jbmppykKZaTKPhJW2dLLDBAD/u89NiydCe2nWSAC4n6tkJGwoMJOP1U0rEd4pQRo/dsxO96ZdwvcowOkuxZcnS7n1GgkHPSAwZokhLiA1++meHTRifyHtXjWEGnjzEDgmlYWG53ZQcAn+OxGahH2B8l3+gg7HP62kyjkzxpJdPoACBLs0lTITI1p94upB4DyS/t85SfSY/k+gUYFunriyP+nuRLyTE6+h07CSR99l9+zqsWA9tIekkuel42WjgFyUtDG5kNYT+aLlhZAVRxCDsgYCtiYZtouoUKKLAVuu44KMRnkRbuYlhaq6OHDSWhZiamHCNT78JWUOZrZ5KvmwxRWApOmD7iSsNSgqk0dvekExArqYAaqGb6Hl4NUScHKdHFycX+Co6Lmo11tTy8ciVthUEwdGIzcwk1agSOgq8sTmBiJ3aLQbQuhcLSBgrHHWdvSxFH6/OYXHicqWXHWNVZyKbmArSgM6D0NrywxNBEIa4HLiI9aCg09zgkBoLTZm0FLbbQYhtkBSaQYW/F8YTEnY5jQOM7bdzAnHI+9K07efrRpWgNbRhdXcRG59KVrpPSbjP9A2PYvnoTRrNNSqdGScCiJiuGatHwdfqp9IHkNHGyNUR3V5irfIqejK0c6MzhZHeYS7KOMzZ4kj09mZxovYyS9N2ACRis7FjINeEn0TCxMVjdmU+hto/RkdE09WyhsXs9OaHpZGluh+ifdUrHsmXpTqzepYNwCu46MQCm4VoKvcueuuo3SCldgajEsSGW81EgLdCT0IPB9ND669Fg6eyO+8jRlaMD6rR6DLVMQNhP/LIJTplsG1VTT9O0NJTjjGXulGI2nNyD0hQdtnD52HwOdh8DDcJGlIr8BhTOEkFHfZg7R61EEwtb6RSFbmGGtg1dbKw0jRr/59jRVoOt4rSqEN2hj7nxQzbgP6+Zdj89RCifP5F9Nc5yuZVi9PWjtsLW6T9w0N9TYGAljp1BSCU81BF6kowAQVc+hC7HSEI4HDfY3LkKvX3dGeNTTqeHrmtISS6xKcNB0ziWqtOeE0rocWlZCa+aR1AaiA0Lhw1jhbYrsWxzffYImoIr0DSFrYSuTj8fLl2LITbZujAn0IkuCktp7NNvY2/HqyhsjlqpjA19/B3rUbmgAn/A58TVaRq33n05f3rBiaPzRW1ilk3vQz6vpJg3Wo+jXE1ST0A84ng8NBH8JwLYKSZo0BkLYas2ZwlQQZp+Gab9DJpYoIS1HUWMzjiCgY2IxrZokIPm2ekxUBMjkoo2ssSJNdX9/fRQhobW0k3ThBSUBoamoXdYnCx38m0ELfTsriH16Oz0c3vp227bNzjaXcjdWXswxAYxWNkdoNnWLpgeV35sPq89sgQzbmH4dO64dyH//cPXMeMWgbiNMnRMy0LTND5+tRtX58bZfXzmtL6YU13nnop5fHvXy8Rti+54CobWiaWcmMdZObe5cXVxBCGUeheSFHMq4b8/p3wP1UZUThaU5NFTmsby3UfRh4WZPbmEv7TWsvjgIfRhBr49DTRNSUdpmRg6RA720FUedz4HOinPOoFoijxb6Dyawu1lq9A1G6V0ttWN4avF2zDERqHzk7qx/KpxOI9qis+N1FnSdZwDsVSyDB/QANgIOmtbR3FVyho04thonDCH0b7lCNuq36RoYjNBvZLdO8LMndzGqIL97G0qY/m+dKaXFTNlRNE563oh8Yy082RjXS0ffe4ZYn4T/mEMvrxu0IU2G0rf7Cbzo82gK9LsTqylqdz0oZXousUl9g7WrJrKt658C0O3uMfW+NjS69nclosRATQwNJ3OlnTsrBY0TaGLwe7WEiZGjqFjoYuPdZ2FVAaqwV382RYL0aaCzM+8FTp2kwj4HtBxnE3cwO83HSJeUYyOcPP1k/j1zt3ELYuOkPCz41swhyu0Ug1jSQ0rytJQhqCVaOSuauHk2OOUGFA6TCO+JsLssuXohsUCpbNmwxS+VLkVv24Ti9TwsaXDaedK7poZ4rFDzRzsMHkmfVFSAOgmDG0bnx11A4davoGl4uTocElig8GpHXrvMkg8ZmLE42g+Hcu20TUNVddIPD8Mtobh0wk0RunJMVCi8Bk6KXZOaYEAACAASURBVE2KxmynM/dpGoEWP/GcGGjQ1hPEjrShcWY9RHzsNYOctCURO+gESp+qB5xhmcAnzlKgJoimU/rBSppbm5yYIIG6YAzRHUNEdOFgzwkn1lEgLdTj5gd0Ha4Z6XjXREAXRaG9E0N3DE1NIBTvoqH1C5Rln6Ay73L2dWZxuCObGWn12P4KNjfWMj4SIbbdYuu21xg2q5uK8qs5UZ3Jsb2LmVRZT6dMY9XWNKomlDCxvIjQpEK6ZhVjHG4htbmHsR+ayLrlmwgei+Fvs+jMNjELFMZxIXggjpRrhPM76WwIkxdvJ3fUcfY3F1DTmkeV1si0osOsa8vnQDQ9YRQoJWw7WcSEyFF0bASNjV15TA+24QygwmHTAGwsZRLr/guOQTD4ROZ0eiA2ZddOZXt9CwqIBRTK9TyLQHeuhtS7MVu60KK3ORMtAU0XdF8juuYYl4bAVfk2hjga5OjxxGcBMuw0Gtu+NKgeRRkfYH80wq7GlxkfKe+nSYpWRXP1USZV1pM//Cp2HMxn044aR5M55dz19Od4Y+0uFs4azwevn03mgjJe31FNxpEuVi55m57KdIJbWgmlhhkmjegTYkQPpdDTkEZJZgPDxtUjdgUrtvqYEG5nxqhjNNiT+fOuEJFIJ+3tqfhKS6g1L2F4aiMddggjqKiNpTM+2EZeSglN5qaz1mOgJqbfj7jxjQP1UEDp/JE0nawH93jkjAJOdh53rg84RiUCokN6VgctPc6xDlydb2OI7XqdFIsiAXyuJqAY4V/E4eYwYzLnEUlfSHVsIi2dS8lIXUC5v4p97fvY1V5N8HCIpm3bB20jAzW5+w//kNDj2utn012ayus7qrlyQjnl+fm8uGMrZr7NJeNGMm/maN48uJ5wXidXlBZxxcTRbDi+zH1GNKZkTk/kRw+OZld7NeMj5e5Etyox0c0OVqJilw852T0TQ7URpcAMGVhWb1CCTVtEME86G38EGH7NWBqjDYmlzbIFBWy3apw+K9CD1jt5tm0mxPZjaDaiKWzTZFb0OIbYGJrCtCxmG2N5ojqHYyc1PvdGgE/ddjU1R5ezpTXEDv/IpLElzrPhOVxdeIjdsXQOx17E+MMrLPrk25wwbCzrt1QfrOKW6Sux2m2KNY1lm2/kodeH8Yt7bnlPDTXPSDtP1hytIWZZ2IARVuDT3IYvlNwQIe7vHUgV0y9tw+dTrqfM5vZpDQQMGxGFoLinQtHM1VQ31GGnW1RG09lTfYSTacMZOdbHqK5SNh9u4ligghHpzXTXlDG2ZCTr2UBurJZ9DemkZvmZV3Q5B07mcrD+q8zKq2NY9iI2t+ewrnEFM3JGEPFHefbgCzDGxt5qk1XRzr7Ox8kc4ef47gzKyo6jRX/BmOIw2w/kY2uws60d03YaXNxvE7eV2xkqOscFUIaALti2wjemC3ScIHvbZsSoo+i6haaBsm3mlxzG0PpiB2bm1vKL6qn8+UgBBztsbBQbW7N5qiGbmmg9Noq4ZbJq6zPkF8dBbDIljlK9Qb5xjtcuZvHGGFUTSjADsL6rlbue/hzd2+rwTy9kW08rKbUm18+eRHVLDc9t3UyBns3HFl5GXddBXt+/Fj8F3Dp9AfHoLjbULaZVlXHTuOFEzM28eiifGl8p47MKOdRSQ0Z6JwuLZtAeC7CpcQkjw41Mzl7IyXgq69tfY7y/hezItUywtUSHqJ3G8wf9DUuf32De1ZPZsaeBeNwkEFfYhmNo+gydmxZMYecry4ibFj5D56qxY1jTfJS4ZaEj1D60GT6ZDYbQ1hXATnH0MDSdVX8Oce2NGrpuo4nBw0vDPHC5jqFbgME/Lm9mXYOOX9e5f5HNd3c/TsyyyAjGGZfzEray0JSO/KSBK//5ECd8ioYjf2T30+P44t3rMHwWadbjrFx9HY8+M4zP3HsF33lrHbFZxWizSrhpTgU/q99FrCqAXhXktoxing3scIKFJ0L20h5KFzQihiLHOMzs8B403cKytqO33My1w17B0C1MW+O5+i/zw22ppIbb6exJIRYWHjswj7JIM1eVXMX2lrf4z/oUxofamJx9A23dTwAmuhj4Qx+AjrcZaiJzOj18PoNrr5vKnieXEzctQnENW+/T53R66JpG9e+ayL4D0EHXdFa9nMK1N2qg2zTiJ66Z6GJj2hpfXtHEhqZT9fDrOt+c1s3zdQ9h2uYpmmTIU8yb2YOh25gNv+Hnj1zP1v25+Ay9TxPTYs1b64gWpfDg9uXELAtjhIV8MR90ofPyIOn+MLl59aArmNcCb3Vw3U3LnTYtO0lhKg9cvsx9frZxsPUG1tfl4tN1rioZz3d3H+RoVzbpwTjjQvUcjGVQY2bz2bwbaGnZjqXOTo+BmhixWGLyNVAPn6Fz02WT+rWRW6smsWNNI3HLQosaEO8BXcBUpO6PoPIcPbBg5UspXHeTo4cmOo8ty0lqIzr/tMJgXUMEv76d+xdl8d3dG4hZKfj1DXxzWhrP1z1O3DJJl3YumbeXE/qpbSRZE0IanQU6pm2fosfy7Se4v+Ayfm9sIFZv8WzTJr457XJ2RV7B7DRZV72Mz466gbz0H9ESj7Pj+BPOBDZogvUKEniM0ZHrEnV4YlOQLUuzqFwQJHsO7NqVzdZ145k8I5uKStheXdtnzJcXsflQLev3H2V6WTF2wBnzZheXMLWwiODcPDpuycW3tYPw4TjjPljAvhH76NnlQzsRIG9kM0Uj66g7XMits0sZP2wTbx8qZFfDMG6ZOYXta5YkPIC3jK9i7+464pZFt5mC2G3YykKZcPQFH5Ona4htYVsaa1eVcvm4OtBtTEtj9fYCOKKBUsTF4u29HRxuyMZWig5J6Te2HFYRXu4odTeBWRRPa0QzbDQdwGbW5IP4dMsZnzTF1JJjbKsrYP3+o56R9n5kdnEJfl13OmPTj1+3EtuiPzjlcp6vexzTtjAMnQVjb+BQyy4sZWLoBuPK7kQ6vgnE0TUfiyZ+BPFPBiY7nq5r+zxdlz10Lz/98eLE0lf3sDCWXYvPOMFn7r2CL72yjJhp4Td0vvJh4cE1z7gduZ/7FzFgoK3HKrPI+nEI/afNXHPfUYzgUQouFaofG89XPr0Bn19x+QyNL/3kOvYeHcbCKWN4u7aWuGmhxzWUprCUjS5CZGMHzVMCKMCn6bA9BBPbUIChGRzbVUzlmAOAjW1rrNg7ig8MP4YmNnFbY11DUaJD37T7YKLRzsqpoq5uG3HLxI7avP2zFq65T2EENU5EDUaLia4pRHS+9fMmtu5/q19n59TFfP5tzZLEoDY8VMR3Dy8lVmzh11uYHy7l+fYnMEtNDG0PkpZObcs3yCuJU6HDGIkiPpO/G+NHsh5j14YU7KUWlQumEuvxU73uALNnLKCivDSpc7uZnKLkzu0asjOL2FhXy5qjVcwuzkf8NaxrPMSMnBFUZZewr30f+4fv4x8Wf4rGpa2MXWQQHl3NfZVz2Ls2wMy53YRStrF5TyElw69gYnkRo0pzEp3nlBFFjCnMYc3RGtrfPMCbS9agHWkjNiuXUEMKLf5s/ONjFGeVs2l9F384vpDS0fX4I1N4baviWEMaM0tqaQ9Xsa7B2WwQtyxeq9nlTkIUIaMLU5kA2Mqk9IpOdJ9CM0BZJlWzjmD4LHQdFBaVo2vZeaiANzbvJWY6ExkR2Gq2JyY2IlA7zETatITXadxHcmnyOTPsbH8buuF4/TRRzCs7SMB0Jja6KBYGj3P0eBndo9O48YoqDh+pZfHenSzMqOCGkun420aztnYz4aIpjMmZTVP7OPY1v8Xo7HlkhBeyuz2Tk61LyUxfQHfSRKYquwT/RJ2b3/gA0Q0WC6ZeQn5VD5GpEWq3ZzGp/ArGj29i+sR4QhMzwJn1mBSmsrCcmrdinDw6tCa/bqhjaskx1jYXsj6Wi+JUPeKWxdrGTZi2s4lioCZ5ehzDsNE1sOw4E0cdZfPeHOKm1aeJUsRNi9f27HXSVQo7YKInJpsanaPa0aK9XkFYdKOF4bPdCZLF3Qs68BvOpAss/nmcxn8dzeDKygpuGVuF/6TF4r07WVRUwaRxGTy3+nWOrolyZEIW8657iOXbXuTtTSmoUWMYN+E/qal7jWN1Y5g+Op94Tg1/2rsNrVXnxvJJHCs8yejnppG+P8TtU65gt38z+1pXMDr9Uq6fJIwd38Bbx3WKM67lqgmTKSppYF+To/esYRaXFMZYW1/Ivld1/vyj1+geHyK0q5vWqfm0dGVjjInSfTxMR0cGfzhx7m0kWRMlipxAO5pPORPUAW0kWZOozyZuucEQA/Q4k+6mbXGwfRm2igM2mZrJUKEVQ62gOMvewk2fmMvTa6qJxU10EW774FQe3badmGliB4RYgdPva6Jx9/QpPNm6iujtuchteSxKL2NFxl8IlZiErhcu9w0nPf0xbOJkaZu5NOVPXFZicvccjT3xLzFx+GQqC08k2t+4wirGZuck+sXGPXt56JFH6VkXh72phP7mH1i941WObc2k/lg+/9idz6SyY2w/UMwV1y7Cv23wSWvy2BKzLNo7/aiQAt0Zn45vyGdi5WHAxrI01m4dycLyWkRzJkmbaobhM3SmlxW/e4bFIHhG2nkytbCI39x8W2J2IX6r3+BbnpbXz9VcnFKc8KxkBCtR/jGDelfOtPQVdwP543HT6XDjJjYQM02ngZu9x/0beLB3oBWQgDD50xGMICAKwy/ceEc3Pr/T4fp9cPetfqyMSaTlreMnJRVsPxDhstGtpPg3s7a+kJF5VxCc3s5La9YRm5jKdVOnEyhTLNvxNv7yKPPHzqInI4UtB2dQOOoE/sAk2ksjHLVvZUxkPzXtZVw+No1/cmdmyY20t/5+9+JzrPn+RqJbfbx0sJjpdxWw8Q0/L4lJ5ZQG2lNmsXW/jm2rv2pnd2Lfy3x10a5T4mF6l4d/8MRSTNPGMDQ+95lFfOulpYlO4qt3LOD+VW8674pLflcZwmfLpvF29E+YyjHmP/9/buTAya9jN8XRUnxcfceXCXd8HVScKyf70LMm0NTTQCh9PTdfMp3sYBEqtomqyFqqKmexy5zKCv9LsD9KpP4k2sgwlh3ArE1l0X2z2L5xOSeO5tF8vJDP3Hs5i3cuY0ddIXsaivnKh+fjP7TklM6td3ZrSIf7HimNujdTmTjbiVvSxGDT2lIWVJ5AKRvT1tmyrwifofcz8E/XgfYeLxw5h+fr9mLaFi1WOpo0oLDQNcfbIq63RSmdf797HdvXbsPnN5j5UDqPukv2j/oPYtyn8YMnVmGaNkuMVXR+JoVvvbSDuJWGT9/BV+/I5f5VO4jbWfiCWwjkrz1VE83CmKlzSVk+y499Hdsfxz/NR1F+Clbz18kN9GnSbGuE0reREwoARVRln6AqsomDeiErvm7A/ihpNRY3PTSNh9a8Qfwwp9VkW10BhARfvjMwnm4i0/setmRN6i0fYzQLpSlEfGw/UIymyRk10eP9J5vJ9zA0nUkFH+BQy9qEBywn6wa0ji1AHNvWefSz2zm4dh+P+N8g9JDZT5PrPjKTPy1pBxE2bFzBlftH88faFJTA8/vfJL5TMFUhYneQvfRJeuZGiSsLbHjllbcZXXUYLV3ROEVYlSFEjF8yMt0iIm9hNsUYlWJSOlLjh417KWhu4oT6BimZcWLyAnZzlCIxuTnfz6Erv8GKr8cJ7O12vKT/PJkdP26g56AfSfVjDNPPq40MnFw29kSw/cdBP7WNJGtyOk/smXQ3NJ2RkfkcalmOpUxO2hpDhVYMNq7Eos7ucNO0efo3K4iVZqEA07Z58qV1RIt8zpK+3yLuRA1g2za/3rIW8k0UYIvizZ6tlNim+8YCxS71JrPEeUVJth4DFXcmW1iI/JSWjnTGyjchIwa8iIo9RlV2FVXZ7saxOSUMYxhbRvXFTY8aOZ+t+U7ctB002LSjhnvml5x20jp7wNiSe1yjbms1gWk68ydcQizkZ9v2N8l3Y9JiI8PUxT7MqKz9HG0q47Ip6XzJi0l7fyN+CyMthvgtqrJLiPij7GrfSqQ9Sqavk7Gh42T6HCs8S7PJ8sXB3SEk/qpT4i7g9Est/qhF1A3stZUir0dQVl/wdGGPH+VualFKkdsTwXbPt3UHkDQdGwvbFpa1ZnPnMA0NC1sJbbnTMdUOdJwdM5GyIna2/Qs1zXF08XHrrL7g3pvz/UjWBKSwioo55X2Zz4aKyqT/m1oOE8vvTBzOHtn76UrGhWGc+9Lnnaur2b10J/MWVFBRXuJuZDjG1OAc1uzdjMqJUNtTQrDnSuqaNrAvIuxaXMxnv7gIa/syOsM2gR7Bp+vEU2OoTJuK4VmsaT5KINROVno3MwvHUW+3UBI6QU13PrNyFhFqeovR/mb2xbIYGfngkJ3d1lXhQeNh4nGTV17eSDxmgSbEYxa/e+VtYqYJIsTiJk+s3EDMdjaFWL44MctyOzvFM3uXUVRsIgJx22T1iRfJ8cXQBEwV41jL7xmrx9AFLBWjrvVx1rWvxlLxQV/QOH7aY3x/8X2JTSGkhPq9SHLkmIJ+yxmn69yCh9q5c//whAHeeOQIbx/ZxMzSKoZ9Locli18kMPoElWOuRrsii5+9sZirprUTCl9K6VTIvwJGjMnhF/fcwgvV27DTLcYOz+Q3hbfxes16MtI7mVYY4WfpM9nXupzR6XOYkz+XyalNtHe9SSTlRlKCpYNObN78XQ/b164ecqv/xaLJiCI/P17xDda+ZicGmxGTSs9ak4FLTINNZHongrHPWWxd9Rr5bkzaW1v7YtLu+bv8s9b9fCebZ9Jk+ao9uG5RsOGtPUdQEdzXLyhM5fZjougqNLFU3ysYUgrb0DSVeP3C8Z6VpEf6Xr8gmG7MmM1of/NpJ1wjx9b1ayMDNdm/7xjLlu1i/vzxlKVncHvRKKJZPq6bNxEjCh/NrCCaATdNmYAWhZsD07HTLW4aMwkV0xltX0tGRidGfZBNW7cyY6zF/IpbiNzWwdP7S5hbYjNmxIf5+N81s7/hLcpy5+ELjOdw7RKml9RSlG8xpvC2s9Z9oCZDhVYMNq5s2VGHadqgFHL8JFKa5bymRIG/MYoU+VBKoXdDvHcjvgJp0iFPnGhoBSdPplKS24zC2XyxpzWPGRmHAIt6y6AcE5TCBuotIfcsYhAr5pQnxpbkjW4A21fsZdqMkVSUF7G9upZtO2qYPaGEiSOcVYyN+48yt6wE/6F2vvf4U463fW4Vh1tq2ZFusEgqGB0ZzWvGGqoze8hQc7m0fDaW/w1WN62iQZ+HPziezJw3yQksQ8UWvacvvvWMtPNkU1MNn1yZHCPSu8RpvqO3HVfMKR+yEzmx6wgvPrEEMyuC0dxONBwm90g7PRk6wVaLaKiDnBPQk6YItgkdegzjZCp2mkm0LRWZPIrD9n5aWlPo1gx+feASRqQ2cqQzhxkFaSxTkxkbbGFPTwYTMw8nOrqzDe49H860keHGb3+U367YiYXiNxt20zE1gmnbdOs6XUUGTZVC3IYeTeOuaZN47PhbWCiebFjF5xdUsbbjeRQ2+6NP8slRe1HKRJN9XJI+m6v0baDiIMfQw0UUpzw0aGdXPCEFn3/doPEwuZqAssHWQNkEaruQLGewEQWheitxrLp1JE0SHWFrUyoFRU2IplC2sKe5gIw8HR0LS+lsaM9jVLqzDc1UGnu727HOoEnFnHv6Gc4VlaWJrfKVCyr42w/NSrzeY/KMkdy1cCbbq2t54tm1VE0o4dMzZvH8S2v4z+8+g3G4BQnrNHwpxo7n9uCvjbFs5GImfGIc6/eBrCwgMHINWnkXbfUp/O53ufzjne0cyXiZPY15PPPcTn50VQEZWc+xpiWXT650Ymr2aa9gtprs63qJuWn7SNVN6jtfp6XjJMN6vglaDHreQFIeIzvzU4my9E5siidUJ/QYLGbsYtJk5Ng6Rk29p58eZ6vJpo01XDahhImFzuDzypKt+GvaCFyZx8YRtbywfj8ptWBOaaEhq5vsGZdyaH+MvHLF4fEhth2t4ApfPiXDG6gPrWZ10wFidfOpKjpBbsoS1rXloZoWMbWwhLRwF7vaNzHeX84tw9No7P4LTT3TGR2ppCzQDrHFqFg72cEqsoOV56zJZXPHcmjJNqdalGLe2FL+WHsIZSuMblBZgqkUooSUOoOekZbjSVPQVZeGXXAyoUlB8BJstQuwOGH6GO9XWMrEVBr7Yllcm3d671KyATBQk4c+9lPiMZNdv3mrn8d8ckYOP0yKe6tMzec7SaEm4z9czINueIUvqPDndWMGhFePBgjkd/K89QRmxGRlm8FnO2qp9X0Df2GcWvkz83O+xOTg94AYqvkJqrIfY2phnxesKrukz8sEjI6MZnRkdOI4O1jZT5PB+uXBxhWAn37tt1jtnQQtkw9fNoE/vLAJOmOEbOG2qVN4YulmtC6F1Sq0FwlaN4RsP7cXTudXe97G7NGIWn7mRKbzbN2btPYEiFkpBAJfYHvr0zTEwuzq6uLytIM0WBptKnhWMYiDjQ+DrWIka/KZe69IaGJoQsrK/dTeXIw6ovFUw0707C5USLHk8EGqm/exI20xElHsbVlP3ZqthDIfJphucTj2Iiu3T+M7VcvxKRur6XH07MffM0PNM9LOk3WNh4ZcPsvQW1Hu7O18DJzTdSKv//xV4ic7+zrCH79BoCaKz2cw/5JyNj15gkC71be08UotsTYdDaHSKmVtfScx00T329R15XCsKxtdNKjJ4GBeJvtj6WhoZB4dTlGB4b77SWf1ibFcl70WkTiW0jjYPYLyMIndTL2zug3rXmT/0aWUFS9g2owbOLDzVdpOLCEt/3JGVVx9SnDqy69vpHlyHr4jLXSHNB7esoG2dEXghKI93+QVOUA010Kv15DiDrJHddNen0pPcyprjy3h0lFb2NeYT45uMzylmklhg00dOcQti9r4QZzdr44mYCKiUFjEuv+ChuOiBwtia8kO3zNoZ1cxhyE9VHR18/at/0E0LZVAWyd3fu/j1D+ylM6IkNqu+NgXF1D7J8fbl9rh47Y7ZvDIjnWokxpx08fuwEjCkQ46OyLcMOcanjjUlvD23VtxKz9sPJnw9l1bfPM5B1yfzW7egR3dN5aswZwxDGtuIdF8xaGuo8iiEPkbTFpuUtRYu2E+5G1VFFx9FNEVeeOFru1pSOhxFo42WVCm89buqVwaeoj5xSafKtL5+52LLkg7Od1E5n+qJt96aQmxuAWWzQtfWU397SOJ2xaaz8J/ZD3UgjKhYBsU59cgukIFhLWLl/PhBSuwVYxIqs5j65cxcfpb5BLjypDOvVs2c3v57e94gnkmTSoqSykszkh4qW64ZQ6Vizfxxvo9LJw+ltIJ+fxp8w4CLXDjtROI51h9MWnTJ3GMI6yq38zcwilcN2I2q0/8f/beMz6q80z//z7PmaoZ9S4QSDQhUUVvNphi3Evc4k3iOHE2m7bOFsfZ3ewm9jrZbMt+UvxLYm9iO04cx47jjhvGBoxNR1SJIkAgod7baE57/i/OaFSQhAQCsv8P9xv7MIIZzX3Oc7frvq6JlLZsJhh/Na7EFBra3qIknMBduWuH3V3qb4NtkHYTsRqm5XQGz4Hts9w6hu3QxZwLWnExC+CBfNQ7rtzw2WXkTEzt47NlK6b18dnyeXnR87o/9nJlTh6vf1KEv7SVq1smkh5M4/2qYlZP7oULbdjLlKzZZKb5qav8kKbKdMrkMmZl/YYzDe870Bk1MFa3pO0I5XtqMHST1BkdjFnVSVWZn9ojiWctuZ3lE0vRMjXB2bzWBLbXcNiYpFOQFXUcwpuonCUCpagyPmayjCy5YXN11gnc0tkitdXF88lw7EqSdp42PyUnujjQHyvQaMShrBqEdDha9u3K4ZrZ25HCxFYu1n8SJHt85VkbNLNzukHmPa3uooaemzd2hIDm6XlZyNbOaFfk/V/u5GuPf5bnNhfhq9BxB4XTFVlfzsaaagLZ41h+RwZvfVzHrlqD3Kxr+cxaH7/a28nxRhfPZ17H4vGn2d6cRkmoZ5vJtE1c0sUdagGt/seRBYrjxoeE3j/I3MnPkj3FwjRf56MPm3nkyeo+wecP7bXoi7KxrhpDOF1xxm1CZpCMonaabhZUu+tRmZHgs9YJPhm2QC9OYGm+E3zuzlMs9YXxSMWNKYIvFa+mJJTRxyfNVjyCCMZpmMG0tw2UOHfb/7z00JDBqf9Ia8XEPHYdryAlZHPk0ElCsXHMyM3C2NzKAzP+grqEEKs7gzRu15mT9030uAZmdSSzs0gyfcIPSEwso6Ejh9+XBFk59kfkxR7naCiHTSfbmZ9SHhm7O4nzvo3FJBW0kTGvg+pdAba8s5+JE6uZPqOWgwfSBgw+Ng7lhxUjUBHuMiWhM1+LcMkBEvyTOxBa5KBDMTm3EikjwHLbZtXYsh46A2mzKKGOiSn3jopPBitkRtMnt1xbiK/WZPmZFYRzJKtTxpy3T/oHnpH6xLDsCJGpoGVqAoZyroXfcpjacXzimdjexyc548pRGGiRjeurs44jMNAiPikMVA2aOJuWTmPVq8QGdYSwna1qfTsHT6YPugV47z/ezp6qSn6+czuLxmaTd/sEttSXEW4Q3HzHYvKvTaWk7QilbaXctrqQq5b1bEE/ev0ah8xWfx08CylcdAPgJLWtG6v4zIprKMhxeB1P7fQwd/5fUjCle3FnNYXTsmnX4Vc7dkTO0wfYU1XJCxXlLBp7y1nnaW+f5MfmMWW1i7lVzVRs9dJwXCd/RhPTpldTUpzJVUvzKCqriZ5d58L2ueXg2L7eOLKR3Pd9xn79oAxDbWYOGVem5DB/+gxK2o7gadMomDWJ9Lwm6kPraeiax/S8WUzLrYn6ZHbOgujn8ZW1seu+32PoJptj10e7XN240B8/tw3DtNjk2hbpcmnoZg0e15946O7lPLrNg27V4vY973QebfusqZScp5F9l8GaY1myNAAAIABJREFUf6pEcytsq3J4S25SEHO4mY78IAqJDLsQto5SCmELCmOncciqAuV0ZzPdS7HsQxFOScnHlRO4Pr0CsJHi3PHhYtqVJO08rTA5m6eW3ncWVmDToY954+vrqSOTMVeZ1FROpPpwmPUzlnP/N5P4+Us6+4/X4Ha92Kc9272R+GivjcTvrb6afz/8Vp/tTFtauBa6WDohnS2Vj2F5DXzz3GSlxaAav0+6T2ftTAczBlmEDlQRs73CwYpoksoNJ0k8GMK2FbJeoG2zETUOhUZHuY/y3Qm01LZhK0VZZTJvH8jmeOMpbKXY057E/gpHskZjgAqxczOpcc6GGSiE3IjLFdn6UzatjZswzEl9go9pOwmBHZDgdug9pEsQvyaVZncDNgrpEky8yoXpJsoPdtMyAyFMNAEZLhOvdDb/vJrkm5MDeGLvOwu/0XK4hOMVGxk/dgUJE27mxOm4ni5fRmGfg65/1ThU8ly4OA/PdC160KXndVA4rpQUfwIwjmm5NUwbUwQeD5DF7JwsPFVtPHxLTxt/91lt/E19ktl/HeQ+eXyw+0RZTuK8egE33VyBdCtso4ms6hbmTnb8Ypoau04sp6hMOyv46IaJJyxBc3qRmktjdWYe67VjznavJlmQNJszcjMWDnh9Wc4tWPKnWMpACo2JaXchxc9Q6IDG2pz7yUtdct4+ORctwFA+6R98puXaQ/qkeyGhN6nwhjHHogDvkfikf+BJWtTJTddUILXh+2RbRUWkk6aIP9xMeFai060JaYhYwyFVt0E/HkRNagKc4FN2OpsFE8qwbKcDvqVyIjdnVWEqA8OWFHVkcs/YvsUMqhbbMrAM+P2PW/n7fxZoLoFlCXbtTOCRJ18ccMTU/3uIjv0GCL4u6erDfzhY165kd8ywu44DbXgPdp4OCFFJKmXegyZzvy4p6FrD5LQnQekgjqIlP0Du5LsvOrZvoG5f8dYjrH92E+8+sxHLtNCSEyAjzTkLgx5m3zCNrftPOaTRfsmcqyfw0bFTmJaN8AsWzRvPxooyTNvG7VOsLMhmS/1RTNsmI9jBuHgHT5bqDnFj2hiaw5uwlUmKBvPjFuHVN8EAvJSXovOIsFn97Uxc3jKEBKnBLZ8O4fEohLDxRpbcPAl3n+UTz+1tvLF5D6HcCCYtsgG+enIBty+cx7uHctheuZeFWbNZO20R205OjG4ET56Xzzu1H0SprK5g0v6PWn+sgH7Q4tij5XQW6XTYXmqqxyES4wHF3mMpPPa/WVQ0tKKUIiQtnt60y9nGVBCSJk8W7YxuZxqazlOlH0dHqnHe1igNQqxs4UTLMyilA4o40YXW8SsGapmfi/Np+WhWiIHFtBr7AYVtCJS9AtM8jVLOinNc0nLcruoB30szJciebbbPL1rCvx9+K9qpvL1gBa9WnXbeS9OYmdazadakZIRq3kLgZkHWPQhPdtQn7Rt1jqSc5Bd/8wcMzYUW+zZ3PAiv/2kPIeGH4B4+9Rkvf1y/j5C0MN6VmHESw23DVsF9y+bwTHERhqbjKrZ5YNY8nju9DbfWyUsVYT6Tu5Qtje8SK5spbWpivK+RRGlgtik88Z8jEHqW/uOi0TrghqLLMG2LrvTDuAyHDl9qgimzjuMxHRC2lIpl85v5SdbgwWfIRCg5m9K2hf0IM6f1I8ych9C3Iz0LyYscdN2YmuKtR/je6j9E7s0/8LUnEnnip9sxdA9uz3a+9N20QTEnwi/oSleYyj5nAO6fEAxGiHyuzWrTtKLbwyPxSf/Ak+RuRfNEcPQj8Mm6D4vwlLdy43/fTFdOLK/vOkBMpcnkcenUJYRI7gzSqemkJShOcZL22gArV88jO+Nz7Kv9kOMN6Xx+3nLcyTVUNr/Hzo40/nbW6rOSiF3Pv0XRvjc4s9VLXeVY6tvGMnNWHQcPpCFz1CUd++3bmH5OPcjuz3MhG97RDqJQCJcgOWsf0jIicAgT9O1Mz/sK0/N6Nv1m52T12fybk5nFnMye65HgyAZbJOsejetdhoOb9PsgJRlhK0dWLdXH5t0nnOfdCx3Jig0lzrXlUXQlK947dTzyHhYqKcQHtSVAt/ZtPTaOrNqC2GM0dhUDjtbqIm8Xmr6+16fpO/brji162EB0duFySWyl0DRJjHJ4AcEhEg/YLlxSYloWQggKklPZ1ljhLPToLjRhoZTzs7oZRAoNlI0UAjs2G6l2oTARQpAyfilCPwboCCGZPX0mMpB1tk9y6NNtn5OZxe0Le/TL105bxNppi6LXi3JXsSh3Va+f/+xZ/rgcdiVJGyWLPkxhA2UrZMCPiHd0LC2fRigzQGe9I4djewVtaZL25haHGNYLnWk2ZR0Oa7bmsXGldFIedkSDYz06KQFHRy7R1c7iuNKIQLIiUSqW+TqR6hTO8STp3TIfDlZkJFt/56oQd+9M5fixCCZt9c2cKC6MdkauuuY6fpJVOSrbbMPBnfTG/ggpsD0exLgxWELw0u+3Y/k0OrOCIOD3b+3B8Cja0yQIheWy6EpzRntP7t8FHhNXSggl4OmTHxPj6WJKci1SKD6sX0eiq41FccfQcITvl/q6HGLz0K/ollofLHnuv4wwksR5KLqMs0Yr/agsRKSNPz0v65zBp9tGCmIeKvg8++gfnefF68WIDfDOn3Zh6CaGRxIOaLz5/n4M00J3K0J+i1e2H0Q3LQy3jRFUWLYTeExfmJdO7kG3LGI8XcR7wmyu/QjTNol3tZHq6uBE62soZZAoDSa7DBwgOYP6RHNpeJSFpjn6Tp6whSkcjVe3SyM/I5VPyisgcl2QnMqWutPOtaYxNS6TnW3HQXFW4Gm04kDU4AQwN4ZWgLI+cb4v4UGJRKaNeZ1puQsRnl7B5wt9qQDm3DwANUD0q14E07r/P4uV42axclzP9Zi0Qsak9fy1SbGT0A9a7Nx4gLiUfA49sx1DcyETPRw7mkDxqQwIePjUmgyKymoISQszRjJlXBo7KisJSRMzBqZmOMHX0HQ0F2hCEuPuIt4XZmLsDKqMA8TKFlI97WT651Dd7iZOdJGmGfg9UyHUd+w3a0VMnyJzwpQ09h2qQkiB2+1iyvhUdpVWghB4DYnRy0dD+cStaWT5cygP70Pg+ERRg8BGEy4MrQDb+iSyYOp2BLnbf3le7PwXYt2FQ7c4vAjGIHprrfaSUbN8vXQFAdtHn9el1+qj9xkX0VuFiNYqPSJsKZrdLcwQMUH/UWzB4jy++uP7+dk3fo3d2Ykqq2DhXyxn17YT7HrnEP5eXb5tH5fijZVYSQJb2bywYR/3X1fIrw7uxu4Cs84f7fC9cfoUCb40bs/JoqR9Lx/Ul5Ljy2JGoByFza7mF1mZ3Euyru0HKPeUy9rtupgmup3//yebN2+e2rVr1yV9z+d/+ArPfPcP2JaNkIIxCwuobndkMvQkL3qyH3CeoZQpSZzQW7CVk1KlT4jnhNWEjXOdmx1DJXXOqA9YkKGhtDIUism+avIDVZEHSlLoT2OcPIno/tueJYjgXw96w14UXENEzaBvR2Vfv45K0XlLkIyGT6QUiJRkVGoSQgiEAD3JRzjRC5HrcLwkFO84SY9TGAkRlQjAFWcg4hxxdQFkxbaSFdscuRZM9leT5z+DFDDZrZPvNhxdTwQCDSdJcyN6jQu6fRGXEqT0cDUi4Gf1HQ7m4933DmDHuFi7egYAb24txvRB3vg0Wjq7iE300WCFSPT7aQqFSI730KLaiffEUN5ZRqw3zKp059861LyeVHc7eQnXAtDe8Ropmo3fne8IDV/iwNOnoPF6kbnZCCFwuTUsn0Zbeowjm+TSML2ClhRHT9WlSWyvoi0lonPrtXCnhhDC0WgMesJMSqpGCIVLaiS62lkUexiBQhNukqTJYl87GkT8KgHPWT5Z/+wm3n36QyzLxhUbYEEk8IQ1AUEPn/rM4mjX1Y6R3HvjPH63bS8haUJMv85rwMQVNLGVIsFncHtuFiVtRcRrraR6OliZdgPV7b+JJCqKcf06r2KITfCL4ZPuZOi2b9/OK6/sc6SwAm46s4LYKDxuF7ffPodf7yzCVjYel4t7Vs3iycO7o9f3z5/Jb89swVaKOK9OXkotYOOWLu7OWkRb6OcQkVObl3A36fqvENgIPBD7nbPuyd7PyS/+5plINzzAHQ9eH+mGK6x4L2aCF8Otzu0TX99ueFpMB2mBThJcf14+6e8XTZMsuGMJuw/XY1oWtt9NODvW6V5JyfzFE9hQeSoqg7d49njebzzpwBOk5JrJ4/gkVBx9/fqx2dTZn2ApiyR3B8vijgM2Ekl+7GIm2RsQOEoL+D+F8N9+1u/d54zVJHPvWc7eg1UOnEYTFFxXwI7SSqfTmSAIJzjk1ZoQzJmXzeY6B0qjCcFVBRlsby114BUIPjUhmdNdRSjhxL2CQBXOGF9SqOWTE7OLbqL0Ov0BMnO+NXw4RD884p9DzBJC7FZKzev/51c6aedp/R2esiKe2Pu9EZZkyR3fmtiHJTl/Ul0PS/J11/LDXrIlDyyex6O9ZDK+NG1Rn1HfneN6FAxarAQk9VGwdWLcF6LqBY5Q7tAJ2vmsMw8HLzclqcbBQQkXD06+hRON/4qtDKRwc03G3xNseyz6GbXkZ9lXmT5oAti/W3e+D1P/Ue9tX1vlBB4FHo+L2+9ZxO83ONdut8Y9a7uDj8JnCmzhyGF5XBr3T5sTDTweTePOcSvZ3vwaKhJ8FiTfGQ0+jbYPhLNVOljggZ5WfO/gOGlKRh/MzZTxqX0wN6/0x9xs7ueTAz0jv7H+HF6u+A2mMh2/eAqifknWBMv8f6SbmuBcPjnXIZfo7hj2ARftDtgKGYxBSAf5bitFzpxxHKxyJNVspZhYkEFRfY3Ti1SKyRNTKWqrdg56rxUByDuvLUxLpMmuil7PjU9Ci9SgCptJMVPQVFG0wBmooClYnBcVhbctG7Otg3BzB5ZpI3WF1C1Kjzkje2krXLrN0dO1zghWgabD4eo6Z6xmSoQXhHLuo5YuN61hG8u2aVABGo0g+aGT2LZBkxA0WRqp+mFiVF+g/t5efrmQwJM0xJZj/1HviaO1KOXwLxpeDVup6BixpLrOUShQznVxg1NQ2jhjzcOtVc7rKALuECrStTRtiw6jOHLPOSNOt1WMxKZ7xClUEyL4lT6frXtJ5PkfvhL5jDqEujh+oBxDN5G2wopxOYmCxTl9gq5R3FCDbll0WR7iPF1YWDSYAZrMWMcnyqBJCZpsF6n6YQJDbF/2LnwLFudFeB6HV/yey58DqV8Un9gQXRbzBo7Q0rCR+OQVTJy0ZhiF9fx+98vS83qGBztjh4LTjJS4d3xrFmVqN7igrjOI8msoZWKb8IenJd/6uguFgWkJfvDLBlbesL8PHCKUZjs4PCl5dO0K/q3YEZ93S41vZM/hE+NVlHTO71vjrybMjxHSKR5yPQ+QJ3+CS5gIMTRt1sW2K0naediAHGnuFwl+yUPsF73c41pMOPn/MXe6wZy7NAqsLzI54UWcJGUfWvI9TBh3x7BYkgca9fV+mM4FOu1tFwsH5XN1YiknYBqmwc4jr5GQrCM1sCyditMvkRevo2nOxljJkdf4y+eSLxrYuPs7GGjUu+TWBX0O0CXXFPQ5QJctmDToAbpmwqQ+PlndljeogLF2Hmv/o4252XD8Ywy3gdDEWX5JkmGUcrb+BvPJ9z7egBE55P6qYCZPtXyCLZwk9WtjCqOHXKo7xOLYYyhMJylP75uUH3f9F5saAwMWNOq0QXpBC+kF9dQdSeOG62ahbXmR6RMqnIJm6RqK32qIFg93zZpBcUSHUTM9eHphJNdk9igWuKTGtITrKWveFd2iCwQ+hWgv5lwFzcXEcfYOPMpUtB8aiyfHAUTbFhw+NpV5Yz/BpSlMS7K9OJmHX/7TBQeeFA0We7sinREnKXd0fZ37edaKAvyz3cgZYB+AJXfGIvI/jhaZU3sXmbPXjM74fYQbvSPRuB01iMA5PuP50KmMGFcpzUGXxeLavw/BHub+2TmF58TJnQuu0G2DQRV620jhNINJqA0U9w4/uYvGF0K4Z0sa90rSrruBdv9RzhxMor40iWD6dDz+/RQdzaTkVCqqd8xy2dGNaN20+N2Oreh+C6SjxvOn4o2kTbYQgG6ZbCl7nXk5BgIwbYPjtX9kaobhUDZFiqUrFBz/h2wwjjQlFEITdKUdxjYdQXChCZITdzkgVGy6Qaizc75y3g+TU7mNXCg3ZUYmxqR42sbFEKwyCLo1OrJsjAkuchanUlRWg0xrIzA+RGHhdHZUaqQnVzFhbC3L8scRoo45yeXsachmbfY10UOuo8uH8jmaaJhQsT2BuBuddTPbkmzbNZ4JKw6gcERx39kf1ycB/NOOvYQNEyXAcusOGzygR75bwzZRKAzbZH/te8S4dIRwuLXqm98gqOlI4VS5lc3vsa6pvU8lGhzvwROrAZCe1xTdvFR6A9PGbD8b+zNKeKzhPNQXsxKNOxpD/RSnq9TfLzWWm8ma7Ug5DeIT3bRAcw6532z9BDPfAiEIWyYvF28kNXLIxWvN2DjjXdM2OF3zMlP9Oi6pMG2dd8qe5smKaYMWNKHEJyJd1xNclbGU6+euY7gFzWhu0XXbxcRx9g48xl6b4ukuKvXFZBTUU12SQsqEMfzevJFZkyrZV5qFli1HJfAkCgOiPtI5VPkKX9zv7ZMQJD8ewFTOpqOR8Dhzp5ujUmT2h0Kcj0+G45duuaDh+GS0PuNIiqz+xa/ptjFsFV2sGIl03cXgVxtJR7BPsrU4j66cWDZWlNNVVcmcWeMIjxVR6pXCvGx8WRGy5Ng8bs/wUh96m4aueczJnEVhskPxofSFfeShvCs6ee77ks5DztlY+NAanvipjJ6NuRNX8+PnPAMWS3SBEVQoBcKyCRzoQsx1rrEFXUdjUBMaHbUFBMdOZlGYXer0g5Xkg4ocrk0rx9ltd+G5QsHxf8uG4kg7n2pxJDix3mzwge+/xHW9eM/intzImn9eyrNFu9CqJQlbjCjvWUutj+xxdUz6kUlpnY/K1vF8b26Qam09O1vT+XVoO197qKc7sl2+wvceuJowv41U4kU8u7y7Et+Hlnw3U5Lvi2qi/ebvfhGtwhd88xZe/kGY1Lxa6o6kceu99/Lwz7We7kgvUVxNCqp+uwtuHwuaRHS5EAHdYYO3IaYyGSsOhATbhtc3u7jzaonUbKTQ+FlRgH8rFLilAKHxjwcr2d3y4Xlv+F2InS/e7z/f/66zKj4pjowlE/jhjHGsK9pLOEcydkYqD+cuiq6KpwfGsbdiE+OzapiZpZiceRcno6viRH0yPyUH79FO/unBrQP6pep4Oq9meAcVKs5uUOz2OqhIYStiSkz0KQ4RpEDSdSwQPeTqw3FY3hqUdJLyD8tzmThlH2BjKMm25tQhCxpl9iMZFiMvaLqtf+JcU+Q7r4Jm3sSx5N2/cFiBx9fWyeycSWRn1EWDT2GyTWGsQ/EhPIMHnmUPzeSJn9ZReywRt9vFHZ/L48fP1VBcluF0Xm4encBTa7qZ6LJQwsawJW9UBtCtcB+/2MLB+iW5W3s2HYdRZBZvPcKRjcWsWFFAQWYWxftOc2TnSZbNz6UgOZuDRyppPpRC17QY9nor2XU8TEpoGqEDJ/DMC3Ggq4WYymxuWpRMeGw5bx4+gKtGcvO0mfiyOvng9E7aawMsyQmQOLWM8dk5bKxqRlatJ3/icbSsHDY1nmJ+Sg6L1yQP6pOhEoLue6fbhrsAcyFdV82QKDk8fdbz6fCNZAQ7VFxxr9sY5dMUNQJvbldUZeSJ9XF8694xfFDpqIw8vjODn6zNoKTRURn5xZGM81bjuZBiKSVk89NvPUXbuBhiT3dy33fu48fPb6B9jIWvxoWScVS3agTGh7hp/nKeOHGU37b4nIZEwQ18WFHO/W0JLE6v5oZpn2PqZVxKuLI4cJ42WiDEkeLEHnvtA0zbBssmdnsZdZ/OxRIKYUNGUTvNt0psoQi6wkxNrXW4mCxBx4E47l6xGU068jZbDs/hv+dtQQoTw3bY4CelTaU8XBRZWJDcmp6IbW4AbCa7TQo8egTPoyGC3+yDHTlfXEbTx8d5/7FX6cyOoWtyPIW5EymtqCU0XuA/rZgzvYB9naV4x3bQ2hSgORxkTHodE8bU4I2byetlFrOSqliUVkU4MIPna8J9gKeX4vcxvbDuwyI2PvYasrwFPT+FUGEW/kqDuBbRJ3GOafZw79fyeenYR7TU+En3dvUiDE5mfmod/7DIzY9OtLC7Jfks3rNzjXv7g5qH+j36dx56Jyieqja+8cUf9eq6pkS7rvesWsorzx+Mdl1vmr+cN3duYUx6JWdqsrh3xV28evR55iSXs7slkxJ3fHTc13NgO4Gn5/dxAk/P7xMZSQ6waHFegaexq2/g6UXkLGoEgeyuswqaMZOqOdaQRnVb38BTEsoYUQEwEp8M9az0DzwPfec+fvyn3oEnFldGe0/gWXe0pxNecAOvlOyMdsJvm3N3H9xrb7+kuDsjgdQalk9GzGNmWSjDIri9jJq7x6M0gbAha38nLbcKDNsGG8YcEmRffwZLmSRqHSyJK8WlKQxb8NHhOfznnC14NRvddgisT5kJF/SsnK9dTEza+cSV81IZGSSuSLeznINLgOWojIyLqIwo21EZ+fSKj0CYw4orU3w15AcqIXLuLoubTYq1BacAOPscvlh+GersGwjLdylssMWBK0naBdpINiIHAsT/4Y1X2PafewjvN8m8xkPWVRaVh5KpL03iuvtje83cM5hxVQ5bTp3GBrAVWlsLbTPjnMVpWxHfESJc4ICUMwMtjI1rQURILjNb25mfexQpwbIFrrYUbs48jRQ2phL8sqKQiVkPDhpAUzQVCTwOpmU0D7gBD5RIJTrQIe9sJwlWxCewLq4RC4UmJDf5M1mfHCFbFZJbXbmcSXPIVoWS3JG0AktzyFYThWKZP4wmbGxcvNn+d4xPdDij1m/9gCeeeoaunQap/i5u/8EMXv91C5WH4pg+o6kXKXFq9DMZkcAT2HqCuk/nRgNP78QZ21FOGHd9BUrY0cCjaTamLfmopJD/nLsFj2aj25IHildRj5cx8c0AZyWal/KQu5BN4NFYBLkUgUe6Lk1BM1o+udDAMxqLIOe73YetEC1NtM+Mj4iuK+LaOwkXRBQtbBjf0U56XiMImOStJj+mMnp+idZkbsk87YzUleBnp2fyduu4y/asjNQuZmL38//3FO/v/oCuXSZWieLqv58axXKluGxW3QlvbHPklKQUQ8YVLRjGFe+QJXf7JG1KYzSuZLV1MD/3GELYw4orIykA/hz9cjFtsCRNe+SRRy7qG18Oe/LJJx/58pe/fNHf5+CRSr75yIvs3H+K9zaXEJsWw8PPv83Wo6d5a89h4pP8fPP9dWwpP8WrJw7wRsMuttae5M2KA2QHXfy67BfUJ9Thu9ZFQnsHN/7HccbMrmfy8jMEQx6+ef87zJlSzpoFx9h/PJtVV61g64lybNtJQu6/Zi77Qo3Yto1LSB6YM59DZiW2UkgEacEuhz5CaEzVFhAfexCHFMLFpPjPka7tRkVm7slJ32ZxxjUUxE4l1ZfKbVm3UJCwiFT/fILuMeQkfpWYmNsR2lhE8Buj9iClZqcwe+V0MnPT+dx372TJjXOYtWACGWOS+MxXrmHZ1VOZO2McWekJfOmOJdy8uAB3h07NLz+i7vWDBI63seyqWYTfqKJxQxUxpwSLCqfS8H4npz7uoKMqQIfl5czBVD7carNwyvW8X9bGK0dmsb48jykZM/iHo1n87rQR9csLLb/FNVuQdbPOyrtPoBKOMmFZOd5WjX/+9iekJhxk1dyj7D6SRbkeQPc6dSFCYCZI9AxfRMIHtHgLM11FCYdS4joIpIQQEsZ6G0nztnb/KBO8OvlxzbikQ2xa2RXL/o5M0gIhAFxSY23GtbSGt0TW2F1MTPgsXv1johQfwW8gtMxR882Mq/JJzU4hNSOe6XNySM2IByAtJZZZ+WNJS4kFICMhljkTxtBYUsn7v/uIsQnx5PgSKd54nDGxCVw3bSYN5R28u7mYVH8KV+XO5XRVF2/uLiHoyWR65nIO19m8crgYlzuLGibxRmUtUkgyY+L54+uvcyqpDNtQmDU23kmtxBccwbKgvd5LyvgzzJxchGkJapoCdHhtTrW0oITDHWUlSMKZDt2KDBhIv+0EHiAltoNgaii6KTo+poHspHpHSgmY5NPJj21GE45fqvU4ZqTfxtGOA9i2IzMzO1SIHbMXpRyKgHFuhRACW7l4b/dKwmYKle1tvLm7BCkFGQmx7Kmq5JXDxWhSkhkbS1FDOW+U74/+zqVtpXzcsBUNiVLllLetIy07jQXXrCAlvRxCr5GakcSM+YtIzYgflk9uWDiLphNNbHhz74B+iRWZfHKwZkCfZCVfw95ms89nrHZVcUAdBAsyxodZ81CAyopW2ht8TJ/exBe+0MHp6jZqmwO4pcSK0yIYSZtgUTUdBfEOHYoNKSUGxlTp0H7YEDzqJWFyB7ayUUow1tOMFAJTSTafLGBlRgWaAMOWPFExk3ozNvqsSCVJ2ptOYMwxHNoGjWDHjaT49zjk2raLU833kpQ0kb1llYP6pVpvHtQnSd4kGrr2Ud62DiE0YlwZTjIbeg3QBn0OuwuOPe/v54PnPiJhfDr/8c8vU7S1lA/f2k8wM45HfvbWgHHltQPFvHD6EB9XnOa1IyWkxHv5VtFLfFJ7Inp+fRBch2uOIOY6N0mhTpb87R4yZ9SycNVpvnB9KVNyylg9r5SiY1k0t8dzz83zBo0rGhJPrINzdEuNVYF8OoLlKBQSjesy1yK0XZFN9qHjiqoVxO7IYVrS9YwdU4Cv4TZ2vBtPIOUaElOncrLx06z7yIUm5QU9K/394rerzumT4fhl1oIJ0fPvYtijjz5a9cgjjzzZ/8+vYNIuwIrdxcBWAAAgAElEQVQOlV8w+7YSCumVLPhaAi5vuYMDEfDpL9lomgkohFB85yvJZObMPAsMe3XV9D5V1YqGKUNwly0bFht8N6mlvsKiYPEsao4ksj5ard8SqfBGrj06WLWeXjiPexffjtKLUO2/JD9/IQWzlke/5/5kqyXV29lc3oJt2bhLWwhsasBTqWPbCleZ2UfqqrnBR7g4JpLUWLxTothcNw1bKcqF4CfHM9gd4ebp9ouSToBN8bQh3Y4OokSx4KozuNwWmgSl2RROqaJkS1YUzK+5JSsmTGSd1ogZ4Sa6b9ESnu3Yhm5ZSCH4VMEKdqjXMWyTJjMeSR3gbJVJ7xqk+C1gIoWL3OTreXzSamI9YTYd+pjwTgu3MYllhU9E1/Ar8xYRn/8bqivfj2i2pjM9j4ve2RrIRoviZaAN393zthOc4yF4vwfPL5vJ/+Lb2BgUmpLS303jq3fuAQyM6yQP//zW6AaibphIKfn8dUt5srYE3TSRuhu3dADaveWtbGyklIwLXI0myyLbqoPLW3lOd0U7ro8f28BXnvs6Ow69w5l9ibztpY8MHP4XLkyy6DxEz/v75KLIKkWWQMZ92WBZ4hlMcZobH3URPHYz18zehBQGP/6mm/UHvk32+JVRwHlKyCaUORHPzMwIJs3kpr+dQXis6MGk3dsXkzY+JUBigqORWpAZpFy7i7zY45SHclgxLhA98zYd+pg3/no9L+3dT9aSHDJXa1QeSOLZshoe+o9/4vDxdew+ksGxikN8/avpF1XWaiC/XOxlA1tYCM0hdLzm25mgnXL4OF0mbrcTT4aSU+ofV84+L0auMqIftHhl9XsYuslb/e7D558cPXmvC8Een8sv+3eevOjdtIHsSpJ2AVY4LRv8krDbxm9IJk5OZVNrOXSC29YoGJ/E1nApZpdEMzzEezsIuEOEzBgWphQSqv2EBK2FZiue1ROXoHcWUWsJWoWbpLRboH0/YCClm4ys1cDwpEguBAw72KGuhw1sv4vwuDgnIRGCu26bwzMHDjqBT0g+t7KQX50sil5/ed5snqv7JJqgfH3KXHZ3OglKkquTZfGlECFLnBH/eSaaT6DQUUjag4+QELx7wAThYm5EdoN1DcukyYhHinocZngNl3s1Qr4AmEjpYnzOdfx8+cqz1so/0y9R7Z04FyZnc03blCHGSmtA347mWchtGT2jvp4DbkPEJ23o4UakPM6t9y/hhW1udKMaTTw/tF+8Nt70MHZEcqW3TwSST2VejW08jqWMQf0SP4xNt9HW8hss8JxvQXPuwHPugqZ+Ywttz4Sjo75PXmpj78EJ2LaiVhM89ad89h+vHD3JItSIt/ouJsVL70Iz2dsGwvGBEhaz5pVFlw2kMLluSTsi2LNBDcBNzn/u6H+uLs3ucz1p2qRe6glAIiwZ232xhrwg5KX2vLzzwwOE9hrYlk3lkWSqmlIAkJrJa+8pdpTOdsax8uLLWl3WZQOXxvTsGyhr3n22fJ5wU1h455Bb7aMpcTXQfaiHDYfsXXfuQ91wyN/Drp77MGyYvFR0IOqTsGny0rG90ftwIAaA3n5JlM5WMygUYUKdrxHwFKL0ImpK17H/kyBjp11PweI84rNT0dKSoa0Dt2WSMz+XXVXN0KHjtQUz5+ee5ctLYVeStAsw00sEjwS6X/Dk8T2YcRYyXnL/vOk8V/cJMs7CF+8Ew50dr0WIRdsZ62+KVMcGSbKKCeY+8JjkIWkP/pOToAxzNX00bciHyaNhmg4Ng2nbPPfmTsJZbod41LZ4+qNdhDNU5NrmqX3bId1EAZatePHEJrLTnIM80dUSoV0AW9lUtDzHhEAYgUIpmzONPwAYsDK9mNw8Q3HSJU+ahdJvjCZR11/b45OLyU00lE9M0+aF332EPi4JBef0i/CYmLazxdffJ7ay2FLzKgsT9cj12X5pbPpXYt0MWJmOltTVkBqx/QKPS3NdUEEzlE/O5ZfBgq2umwhgSkaC8zsbFp4usKTEUk6Xdnp8t3ahhUBQEJNJUcdJ9Ii2YZY7lyrjAIZt0mDGAbU4BY2kRRSSwo5I4ixoJ4kEOK/Akzs9gy311chOG+kRmAkgQ2cXmW7Lw4LMBCpopaXLi27FMD8pHn9LDXV6kDipMcVtUmdJWtXI+M9G2y7JfXiB25Zfe+KrbHlnP8uum8m4+RO4+vMdyE6TtdfOQI93cc2t03F1wU2LC9Dj4LpVU9G6BLfNKOCIXsO75SWszc7nnimFBAMhttcXsTClkEXJARK1idQZQaYlrGGit41J8jrqLUkwcOuA8nmX2ifd8l579lY4cATTJlnTUJYDC9E6FVqShmkrlFKc3lWDViAcQmUFxcUNWBOcn7WVQrOSsXqgjLSZY/FFrmtNF1M9NkI5yfXu5jeY6Sog2PqvJMfpLFsl+JfPfciqr3yLJ366AZWShCstmVvuX8IL246gJ3rQkrz89eevuSxdNLiSpF2Q7TpegWk7QH3D09OGFiiKO6ui2b5QUGmcxFZOZ8FWNifbNqFwgmOy5mT7IiIiFE8jMDwywdG2gQLPvkNVmKaN1mlg2F4Hy6PAUx9GZLkdjIkCb4MilCGi16JBgzSBjXPd1BQgO7URhaJOjyXP76BRbQT7O5NZFtOIiDCX11qC1F6VqW2HqS9dR0ZBoQPmPFTNrBvm9oBsj1dReNVkdC/8asMO5k0cy+c+tbBnzFeQzezI+HVXaxmLJ+RQmJxFaVspFeEjrMzKY1JsNg1d+7DMXSxJmkeSbAN9O0mBhQjPrD9Ln6AUoroJMS4p+r0P5Rc7pKHiIv9wP5/YSnC0JY35CWWANaBfnLs90jFROvvfexpPcoyzWHComq898VVayusITsngaHXrsAOPirW4y56M3SVZNDaBCvMEbWEvqzIWMC7QOGTgGQnX1mjaQMUCwOPf/j1mWwev/9MJ7vm3z/LS60XQruNrcNM+NgYtZLHu2T186b45PLV7D3QqXnjtIJ+5dQm/ProDvUvy08pjPLjiFl6u+oDirnROtyQxJ+UU9UaAt5sO8HDOX6F3Pul03jv/h+Uw4sBza3fHNR7sNA09w+nQyISBisxp7O58naxYkzGxPR3XPL/BooDiKr+zVDT1MheZA/ml/9LLaGoVD4dPbaiR896yBkJv7Ix2+scvzOaHz/eMX3NnpvHohp5RX35ecnTUV3T4JMFAKDrqC9V+gt7VMxZPEcmoxu/jRycbD2XFs3jvXZtZK665pFuoSdImf8Z2fvrR3Wx/12bWigL2bSxGnT6D8vmgq4u2srHEVHZg+jRiwhbjxueyr6keLaTwGIK5Kp09LTXIENh+gVnnR3gt0F2cSrA50pVO0BOiQ/eT69NotyaT5Gqj0YzD5QqQxDbqLUmTLSIdTwPN5XBIFsxrjnaYI0cmR6ubMUwLpcAW0Kwbl+z+7W9XkrQLsHkTx+JxaRfMedNkR7KeyOYknoXnpet406ICAF49UIzlUxRkplPcXIn02dyW6/zshuodQ+o6Bqa8xi93p3LmoI/xBUHSJwWAtTz+7d9DWweB+iDWhCxkp4HfFtw1Zza/3bgX2WnjtzX+YnJP4PHbHu7JnMevj+7A7JKELQ+LY+fxctUHHOnKoLItJRJ4grTZ8ZS5r+sJPMqHx38tdus2bFvHNOC/vryTVV/ZMrqYmhFgGUp2x5wf2eMIsXr9D7n8uTa/2pnfp0MCTjJgtXXgs0zuvnqakwx06Ofwi0S2augZBlZY6+OT7g6J1/s3HGx5gTr9bL9oQiPXHUYpE71L8fRjJyg99h9D4s+GFXg+7pEYq6zroVFYI3wOy3oE99M/8Ah5M3B5kmfokSzqtpbyOqzaBqfrqUnKdp7E1RDCjkgXeZoi4zNpcfxYHVozjrySsCg+1YjR6sZ2iNDYUdXMmdY4bBTNHi9HQo4iusTiUMcpbNNFN3fZ+QSe4obGyKgPTK+NqYYuMs3ISEmgsOz90ZFSimYiMP8sisxu6++X3l2Q/hjXyzHqi46c3QLTtKIj5pEovYxkLK6UzubnfszzP007S5vV43Vz4xeX8vsN+7CUwqVpUR1Q07bBB51pjsxdf21Wj6bxV1Nn95HI663PmiwVS/0hBIqcLA85D34HoT7E583kue+bGE3NvbrQGzBaddxuF7deNYOTvc6QO2fP4Nhbjc457xIoU2IZfWNtbbs3GmtfrTpAU1csLqmRELyZE80H+3Y8jW2Ypo5pCop3JbDqK0OPnAun9R3BX0q7kqRdgM3OyeJ/v3LHoNXGUGO0/lVY7zZ0ye6YAQWo331jP7a/R4D69U2HsHyClmRHgPpPuw9h+xRtyREB6uM9AtQvV+wm6AkzMaka2a7Y3riRRLcjQF0ZVlR3vEiyZrPY24aMh8xljgC1anyR6+/+DTkTvzloZbp8Xl6fCmxl/qQ+CcrKnLw+38vC9BlDLje4QruYGalM3/tDJeUHX2HfxwGO7PXhzRl9TM1AGJNEadKNZQCDmtJ1PLy65OIBsM+RLKYlmay+yYNIchYqbvjsMnImpvZJGpetmDZsv/S/V3v7pDA5m/yERQP6pfte3ffe0zz92AmKd/qRaaMnMeZ3dWIqE2DYuJ/iSPIclxKktb6d+OxUSk82AJBbmE2zbhAf66OlrYtAip9Go4v4GN+wherzYrNoszoY5wOfqMYtEzDsZtLdscTTiBKJUW3WyypdNMLAM1rEqucqMrt90tplEZcQQ2tzJ4GM2HP65UBzDQAzxqZEfdKidzImqGGLJmK1wKB+ibMOAgwoCn6p7WLdE/390mzFI6iL0lv0Hr9alqRoSwDbstHDBi/9wumwCiEIhw1eeGEbZqKz/WyYFh/uL0VPcDBsulthKWd+GDZNfn1oOyLORggIWyYvnf6ArFgLIUC3DXY0vESe34GyJGk6KOc1RRjR9igKm5wsDz/96LFoZ22kqh4XEmu7O571EWjAA/91/bDe/3LZFZ60P0PrzT0kUpIQ6SkI4fA06Ele9CSfg5gGwvGCrgQRvTbiFHpCZLYfq6PF690vkRVsYUxcS/R6sq+aqTGVUQqIyW6DfLeOFEQqavhz4BM6Hx41d6/kqPtA606OBiLwPBcv3PtvfpEffXWrAxKXgqyFBVS3O10KIQXJMzI5Fep0gK/xgq5Eh79BCkF6bhwnrCZsQCLIzfZTSV2EY0uwIEOitLJIl0KwNMEiWduPw7llRDi3YDBR8MthA25yRnA/g21ydl8P5Zf4KHmvPSyy27LKx3jwqhedgsZWiIAfOX4sSInl0wiNCSI0gVJgeaE9XXM4ngDbowilq+i19ESKGgkBT5i85FpkZNs6ydXucNoJBSgSpc0yXwgpRIQPTQBexDk6rhfCZXZ2QXP2Fm5/TNqlHGkNWGT28onQpNPF82t0Zp3DLxnOGSYiPpGR14KeMFNTaiNnlhrCL93nlweR9NvL8rz04RkE1r+0Y8CJyOQpGWclqofqa7F8itunOxsTrxzfP6yJSIZ/woAFxMmjmTx41YsYuulQw3g9iPFjHUoaKbB8LjqzAs6XJoSDt06XIAWWR9EVoRGSQiA8JlpqyIkxQhDwhJmSXIMUCikEia52FscdRaJI1iyW+rocthshI6w3l5+n7s/RrpDZjqKN9sE6GIahfydNc2l9OmmaS+vTSXNpsm8nzdvTSXNJSdATZlJSNUIoXEKLdtIECilcPZ00nJxPIBlNZu6R2vlU4wdrax3Q9oS0QTsk51ONdwceI2w43FhDBB7DEzngnC9xyGSgd+DRhLOD5ASeY2hCkSgtlvm6BkwGLleiNpBfujtXq28pxPa5eGfjIRQwMT992J2rbr/U6aUAFMYnn7Nz9YcflUULGqBPUaMnetGTewqarnhBuFdBo8cpjIQeDrveRU1mMEIGPWhBo5PvNqLXkX/hSuChb5EJnF1ojsAv/QvN4filwG1EXweBCP7tJffJJRFeHyYVSPdZ0fu5/cXfPIOhudBiA9zx4PW8/qc9hKTCivNiJXidkbtfMufqCXx07BRhzYIYwX3L5vBMcRGGpuPy2Twwax7Pnd6GR+sk3hfmM7lL2dL4LrGyhWxfAzneZhKkTpqmGBf/OQKhZzmXmsiFEGcPJ/4WH3mHM9v9zJyxlvy5ndScepcD+9IYM3n1gO93qWywJO3KuHOEtreskr/85Z8G5NXp/0CNVNJnoO3FS41Jq+p4jRTNxu/OjwbCy5WgXdAhV31w1A45/LdHffLso39kz/v7UR0h1OkzZC0qoKqmDRmyiKnqIHlWFhUNrQRqbMIJAtMvkbogplaQPjGOso5mbF3DrI9hQraf8nAD7bqXo/XpLMqQtFiVNJpByruSyfHX02RrbOmKYV5MGgF1iu7xa+/1/kt9wD31d9uo3OVh+sIu/vLfC3jqiTYOHkjE7XGRW5jdt7N5vOS8ucHi7bO5wVS/Z2XWihhnlBRJngmFEMopWrSQ6SywSFAK3F2KsJKR0Qu4u8BwfhQFENYQkes23YetWpE4nbQGMxbVvTGDot5yo9xGpPepcLZpejb6LodUUHtpGkffN1m4VhITWzJk4LmYhWZ0vNfPJ0I6nTNXl4l+Lr9EzgE7rKH18lG77kPRGvGEGtAvtttwCk3gQjQtLwRXuv/Au0y7v5YzW73UHQhwquQdbru9hH17Uzl6NPWyCK/3xunlTh/X53tYfN2sYXd7V+dN6vM9rMruSzG0NHXGgNvxsb5ZKP+qIRcrLoRfcTjx90Tjv2L5dMQSwcv/vY5v/6CC5BiDZfM0vvcve7jqni/2eb+fPHL3ZR11wpUkbcS263jFRcXXdAfe/sDX3tZ/Fbj/TdQbBAsz+7zWGwQLfXnUoC8dRH+7VAdcoruDg9XPklTQRtVuLxOntyD1XzFxop/iQ8mjQvh4vofcfd+7i4MfRbBplsmd9y2Njl+9tuAvbp7Hj5/bjDAsPO2SjmBk/GprfLlwfs+Yz/LwxUlLo2M+3Yrh2oye8WuVkUauvxWFRatyYQW+BL3GfL2TgUt1wJU1P4YZo3Pd/0LJvyXy8A8qcHsO8+hjkn/89vKzgs+l4AbrX9BcSkxaxwCdve6OxSXvotgGpl9x9FAyt326HJfHHjTwjMZ9MFShWbC4cECfXCpMWscgmLSLTuzbq8BYvPIY85cbzPmq4Nh/p/Klr70CGHz6Xo3v/csqrrpMwuvdNtBiRf/lim47H27O3nGlpsjHexuLmbXCR8HiQopLkiNx4zQFs8bx7pt76BiXiqhrAZcHPcbpgvtaLF7ecYCGDAtPs4J2i5eL9xFK74AWDaMd3jm1g9T0appbYujsCLC99n0WJRVzvCMFW7oY725kqq+Fo10J0XNeugAUc65tAkw0DZSyyS+oOiuuFB0qv5Kk/V+z7o1O3XS4kGbGJLNN6+E7mu7JZLc4gaEsOnQ/LtGOpSxAoNmzEWIzljJQSlJjzY/yHdlKUm2OIeY82d5HywbrytAZ4u/u/G/CcQG8j7/Fg//xeX7y9EY6goLA8x/xjb+9gX9/bRMdQRvveoEZ60IP6MhDNp+bP58Xjm4lJtjG08WxPLT4en576rdk+2t4/XQ6Xy24k/0NP2OSp4G3G/2M9VfjmmFy09OKkn9P5uHHTuP2HmP5Ksl3/mEFx49nXDQQ9LkOucvB0dZemsbbL5gsXPsYuVOqOHk6hx1vtjJz/mn2bSymK+DFzE7BsgQuwyIc76I12cVrHx2g3W/RFafwtTqJbJc/jB1nolpdvHv0GF5/GymxHbS1BXi3vIR0by3jA/W0235MpZjoaSXf10pz+ytYykBIheaGBTe14Xar6AE3a3YdJ09mjgqR8LlA0AP5ZLCC5sJs7rB+SvS7vtiM8gMWGMJGumH+9c243PaQgediL3L079qcr91zQX/77rP+5FIQ+3YXGAgT6XK6hX/xnWQ07RQAQij+7rtjyZg8h9zJGbz79h5kXRtT3V6+s3oZG3YdZdW8KYybls5rew/hbYZpKp2nlt7Ha8cOIFs0xhg5fDvvITZU7qS5JYAVLiQt8BilLZuZFH81CcE1lJt+2jo/IDZmJdmewvNWEblQG05i/HppFcbUMZCXiTpdS8PcOJSAZo+iPKUBMxmELUiutNmffsqJpzYkVGkwpoTxyiQ7S9BeFc/SjI9QGCxXGvsapvJw2gE0YWPFSco9yzlouLFMHcsQ7HkvkTXLOzBNE8uUlBRnsvyePHafqELZCk2Ky7rV2W1XkrQR2uycLL6zehn/8/N3cNfrfLh5E195+Gp+s7UIV5PNqzv3IibFIGN1wh2xzL/+Kv54ajONLX62h+p4ZPXfs7n+dUrbkqgJ1/P43Ieobv89JaE4WtQfzlv+ZTRsqK7MrPljaZ8/CYTEUDbPv7eHqhkxKAGtCp7dvofqAhslnX1/X0cYldcJEl5seJ+8PAdYatt1bK97jc/mbEYTFpY6QkNrF3+TUoRLOJxpn3T5aLIlLp/ktr/24/EJhLDxeBT3fTkOT9IXLsn2z2CH2HCq0P6VaLedTxX6vYhPnvv+2YfcjZ9ZQNeSqQ7YVyk8nToNBTEoCTtcTXTMACUF7TYEJ3owQx0gwbbDjB9joVOGlArbFixJSCHW9TFSWNhKUhMew18mHcUlbISo4BPbR72loWkabvdKhHwDsJCai7GTb+SH/7saOkPcNCEdOzWWtdfPobS8Jhp4bpszE82Ad0uOsjZ/CndOmYkwYP2pw6wZP5VMmc4k+wYS4jtYlTWfus6Tww48SZeBpHOwznJ8dipuj4uugBcrPYGc+bnsrmqkI1YQaFMsX5rH1vpqOoI2gXbJqtmT2dp6Ciug4w67UVLDH2gnKT7Egsyp1NrNZPtrKA+lszBlNf6GLUzyNFKqJ5Ebe5tTYNgGtqHY+XYC1yxpQ6EGDTyrZk9mW8UZh7BVSqbHp7Kl7jQAbk2jICaTna3HAQiZMUjasbGQQpIbu5wTTZuwlSOZ5fFfi92+DZQJQqOdJGqafn3Zisyh7FIolfQvMByy5dug/SDdZMvp49cCIBvb+PA7z2PoJu//Yn30vD398mG+9N2b2fLcISepfv0QX//qSta9dRzdtHjjw6M8dPdyfrKtFt2yeGbfsYh8lRuPtoPvzw3watW6SLd1Hd+YIM9Lvmo0bDiJsWUrkAKBxrjbZtHY0uDsCgfAIoIZ1SDn6hQOmeUO3lqDefNjaMHZHNU0+NR0EyEiOqMoHhgH7ojIghQwyaeRNPbJKCbtU3+1FldqDybt/oec88u7pQTiAnhbO5CNbRflexmJXUnSzsO6yloJnuh0bjRNcHp3NYHTCttWhBJs/j/23js+rqtO/3+fc++MZtR7l5tkyZZsq1juju04drpJIJAQIJAQwga2UH5sWBYWliWUBbJAgGUTNoQkhFDSSGKn2Y573ItcZFm2LFm9l5FG0sy99/z+uCPZkiVLsiQ7333581fuS4mimefc8+nPY7VLRHsQlhDsLe2kojHGZkYWJm9V+tnTMdPWDcTkpTP1NDtTQEKmqx5L+RFCYVp+fN3voJQPIWyeG+Hbw+GahAnfxup7QS8l69NoBYZIpABL0pscjPJ1gBAoS9Edr6Es+od/VbRJ32BIWFB3/5aclIrMyDp0YQaGfU3mhzWgCwtNAEoRpylaLQ1N6kzN+RQi0OYTwkHuso8jnHZAJFs86CU1yKRIThw5x8l9Z1m6YDrZ05I5VlJDWCU4w4EkEB4NWRWECNIgBjo6g6msjiUlNZhDvkr2NXWwIPZGYlx931sNs8PWkOG8fC3LibCRLrlTdW0I3V5ekEKQtmI6Ta0NNm5BFmj27xGaoNHlQfpscmGpCczgRvReu1qgaxAbXIZl2ItEmoAPxYbhUCqAk8X8yHVUqbQL1Bfu7ldfWPvRi9t8s2MjeToQUJ57+SRaj+I3gXZS2dtVyC/ATzbswGeY7HM3DGjzRa7x8KOTe/GZIzuesejzTZSNVCH40A8+xR+3n8BE8YcDJ+ksCMOwLLo1DW+yTnOuwG9BjxT4E03MOV4sZaIJgy9nFrCn81UUFmd6n+ezM0pRykCK0yyLWMxN2lFQfhDVaKHJpAY/0V9xNXMMalvPz6QN5Xhc6xYSe6CDrlBBUC+8XnGAqBALI0rwyTX5vPC3I+B2o0dZfHjBdfy52K6CezvDOBmRzHMVy/qDRqcrlaLmuWQ4m6kz3KR2PXbVksyR7GoplQyX9E2mjJrftOW6/GZAJsmyq62m5ael6XVCg3xIYVc/a+o38uYp/+TOJ45SAuuOVXmcCGyCa34JF3RE7srKo/RkTX9gvDZtMa/WnurviOTG3kh52x5biUTqxIZ/CBFQIhGB6nuMM5frcnPhgqmexJn5JM60//mFH76CauhAr21DaZIjW05MUpV+9HYtSLsMm7dgun3wxpmBaUhO/uwksV9RoEOzLxzTUWtXNkw4WTqLwtRd6JrCMCV7TsTwyMsv4fMbWE7wJduZhi4kt7uTeDemFENZ6EJyhz6d6vhtdgaMRoF/HsmJz6IwiJawNKgbTVgo4eCNzq8yNWoNuauycec5kHPBLPFh9WjEZDSTMq+VhYvncvLJDrLSainIqmVm7h187UWv/bkcOvctm893dm3Gb9mf88G8Ap6p24GFoscIQRNdWJg4pMaShHWUtR7CUga60EmJvBvReRJLGQihkxr9LRx+z6hZvCdazPvV2mfxmwbCEtyjL6E35klMy4+yNLLNzzIz8tf0td20mGc5ckHgfLki8xN2ya2YO+CSG0/bNzL0DmTn0f7PGhx8R79uJVxM3Hml2nw+w8+xyg24Q2zHEyXO6/NZlo/Gmo0kTcuf1OH40QTPlgBlQY/DwrACTGKWxdun7PdUAaayeLuyeMBzjf8strZDoHWGgRAKhYmv+x0kBogAL5lvDzGhD9uzpAtg/oI+NO4Y1vHseKsIrbmX0EaFP8aFYZg42iHIA2dKG/EZJnRoCI/OifgWWjtcNLcHoQnB25XFnGd1mE4AACAASURBVO2M5ExnBBqCPU2HqOwN4WRPMJmu+lHNEV5Nu5JV8LHIik2kfNXUjmTK1QHQQRmKzuOpOKeB1MAyBU//LZhvfEyga3ZJ6lsvt3Kwche6FKyKiGR9eAvGEH4l3OkjK6YBpIU2yKcIdGT3XdwW8xxS+LEI+JXMNfx447fZcnAnQfM1MnMS+XbuEs7UbiM9aQnz5xaQPauZ9uYtRMSsIj1j3hXriAxlg+/bPvqUq2nXgrTLsOzcKfzwtw+MOwNr21DBpjeO0nRG4CrUiYvOY8O5aBKzm6grjiV2Rgp/NG4jN6OGI6eT0dKkHaABviALv2mXiX2mwcbaEpsfTYLPNNnbcZj4WAMhwbQMKrq2kWD5kVIRLf0IYSAEmMpHWfObfPdEDY/Ov56YX4UE9EV1PubOoMv1JkKaIM/w6+8/SIb7d2jSQIgiXvj7x9h2OmLYz3lDc8awTvBSL1OkM5/IC77vkVi8JysLtZTFrqK/kLfSB8LWriwv+wsZeT40TWGYPopL/sZDz8fg8xtIBJ9Zks2TDcX4DAMNwcM5ufze874dvEqNHyxYzcvVz2Aok1iHl+URZ1AYKKUx0/UQc/RfovBhKo2z+mNkL7mZL218kD1nD7Bo+nwK8sMIKwij5lg0c7NWM3t2M4Vz/Bw+lUTa1NVXtO072CZbOLq6qgjT9IMB7/2miRu/bjueelNnlkOhlIFhCr7/P82svrXIDswvwOV/6k704/DdG1fygxPr8VsmEUF+suMbMZWJUJK7oldhao8HZkeHxiV2VQRh9wfRs88PpZKlHw1DzN5JdVEUrWfjuONGQVb6YQ6UJHKiPvmKzOZdDi4TQaZaXVWEpQxa/OH236oMlCVpbiokNmovSvkwLY3KunTSM+DVN3azaU8xNyyazZT5U3ht/1GCawxuXzyX3lTBGyePotdL1uXMw5XsZfO5fXQ2hLB6eiFevZjS1h3MjFrO0tQbKGl8i7auLUSGrCIr7uZLdg8+aO3XyZKvOvnkflr+3I0jT+I/bHFijk6NbwmJ2U2cq0yisi2Fhtpw8jNr8YQUcLBSYimFz2/xbtkZfHPCQbvYr7gdXizsdqJ/kE8xLD+y910s5bPHWgb5lUOOvRiWwcnT77A0/DR6ukGV2Eh6ZxvTQx+FUB/wOsr3DHnT8i8KjvtsNIHxSMHxWDC52lU0uMaTNm4bT5VkLEStfRWh7/1tM4ZlYTosehMU6BJMRcIBD213CJQuwIT4IsWUm6uQusIyBV1Hw7ln5TY03SJCWCxz9aILC7+SPHjiBo51xvORGTFU9h4KkKxK7kiIwjI20Uc+uDw8j1hzBx8EMsKJIlPVA5W0viz00fnX8+K5pzGViTJA/1ULt/5HFUKYWKbk2F/m8i+f3YOuWRim5NfbH+IPBwUWgKXQPO145oXblA6WIry7h97MQOvXghWxQXQHlSIkZATVkR1SG2hvC3RPLOuSziGFhaEE/1OVT3ryPw3YGrvUzOLV5E7rs8mknvjvX/+OjQc207PfwGyIJOE6jeScZuqKYylYOgWnu4hDp5Iorkhk7nXT2FFxrh8X2eXBkx0SaNcrchLDOO2oAwlJIe2kRbRDoPKV7OliwfRShLCGxOWp2jnsN2MxLXPYamtW1H8HghOdyu6f4dFzJq3aOl5cxkOwG3TKy7/+0/eQc8E6Cp/75k28f/wtqo9E0Voex9f+M4uTZ9ZzoCSR0qoUPnJTNk8cLEJpEsth4U+VGJaFsCC5yEv7HQK/ZYEFKccFabdUYyoDZQm8JRF8bNnWwCyrRqx2L0td/4suTQxL4xDf4Pe1u8bMH3a1z/3g73iwXuhYA89L+RVCnHSnhPYH5X13Y6/fQPlNQt4vo/GeaeDQLvIroVovs+IaEFKhrIE+xbAk24vz+fH8HTg1C581tF/JdNUzO6QGu648+T5lIhkJJtuu8aRNgh1qruSzO58ddg17pCWAC1fVRyuNITu8PPajv6JXtCFCNeZ+9QaOv3IKZ61FqFcn5/5Z7N9ciaoXNHVNZ+VdiWzY2UhHg4sXum7hkze5+OlhL0/iZ3FyDYetGI51xkzYavd4bCx8X76kMJb86hM4Kzu4bW0BxX4v7x4vYW1OFqk5sayKyhyQjT8UE9ufjaclNhIXqzjTnMT8xJWE6EUXZONLcZ7r4Ymnfx+okoTg/sSXbMdTFEVDdQL/3J3A3PRqjpWlsvrWNciDm7EsC0yL4KPNdOWEYwqFsMBZDr19iZ4FXedCEekCUDT5wrCCG0CZmEqytWoatyRWIVH4LcnutjianGOnpZgsTEbjfHxJYXQtTMGXFGZfcr5aFt82k+w+5045C1ZOY05A3L7SWcKqhVlkhCXT3HOEENcxYt0uIJm8sCbygo6DMxRIY1XBMjY8sgnTp9DDfLSWpdF0OhqHQ2f6fWv4+fPOAVW6XRWV/biEnO6ic1aIrepgQVA5kG5/Rk+3CxXuAWWhLEHp2WTmTz0DQg2Jy4nucAyHERhgFvTEn8Qy7Nar0AQxUfvBtGdJdc1kRuIZROjaCW2dnehXNQgenfPxtlN47yKy+5zPIFy6c3z4Y+1qdGiMlwRnI6Fh0QFM9nPP3EJiXMko3yHygvaQN30RwpnGC1teofuwH+uAhdQku170cPjYDCxLITWDv72j2Hs6z36WJpsOn0Zp9myrEWwvuyAFCoUnA/zKIkBLjz7Dg4XdDQDFjKmVaMJEk4BlIY3N6NJEF4C06OrcjGHpY6bWGS/P4Gu7DrHtW3/DcbodMzuU3H+9nqN/OoNLeHm53M+ttWt47plTxCbXUVTfyJLW2/jhq9XMiqump62WRs/tfGl7zSXHL0bN6TgKvzI4KJ8xJZb17x1iy/f+hqxsJ7jTGNqvvFtJnebGNaOb1u4wOpvc/T7l6cNeylpiaOmO5V8WO3isrH1IvzLayvBEJHsJbYqn7/wlnVMd+I9s4pNnb+Htn+9HpV6My+GmBko9yVTUxlKQ1sCXb3Hyk4O97GuMw6lp/OHDH7sigdpQdi1IG4ftayqfEJ6nscxI3Hn7YjJjogYe4IWDDvCsgQf45pSBF0t69PkMYfWgrG2ie/yjtfHMmE0J6uW7h7bhM022llTjbO3u5zeaFxrOqyWBSy5M54ZwrV+wOz7CwYwwzb7kXD4wN6B8CaxdspoUUjgy4/x3PGP6SooSBl5yD6+8OHAOaenhE5G38fy2Q7iqfbi9Gg4tmN44A3ezg4/cvYKf7+jEFd1BeUs4y266m8016yltiqfWk8j2nBsobnmF3W1xFHcn8smrdMEtTk3DVe7hnx7+MZ2ZQYT+6Q2++s8P8L+vb0BM9/KXd4N54L6P8sK2F0maWsubu5N46KP5HK98gz3lSfxqS9KEsqYP5XxGag9diEtwl8LtDKUzXhLWpPjMF1fz47c20x3jx9Ucwop7VvJi6XY66t3428NRi5YPi0uFETlAumq0ycxEVbNGwuUzn89jx6m3OXc6jt++msCM/AbyU6r4xbE0br7u42Pi+xop0Rx7izuD0weLUEh0r0JFn6+khZ0GK0f2V9KMsjBkVgemZVfSyirSmJ9aBpaFqSSWvhrDKgNpV3JCglejt+8aU5I5EbOtvX4DHswgbn0ZHX+XQLV+htD7e5gV24SQ8J56haR5Iay7cweaZmJSxHVZBXxvzXYcmoml9pMdcRsHmxOGHL8YL3HtcH6lz/KmJZP3QDIfnpUxar8yuOp0oU/JTUrmK2GVl71UMVE8g5oF0YvDaX8oHqUL/lvtJ7XAS/ynmkAbhItustAsYveu+Xx/7XYcusn/Lpd8euvtFLUksbuq8lqQ9v+iLYidhlPTJm2WZDi7nOHXobL4PqexfFU22VlpAadRzbwFc8lI7nPmPeTn3EJMv+PwU5j+IfKmJfPSu7t598gJ1uZmM6MghfVHjxBUbnFbfh7OGT62lO2juzKE62cWkjS1kaKa96ioSSAvdSW5yfVUN29kT0MS0+NXs3H3PppujcB5tBN3mxNnWjeuLB/G6SC27iwhNrmO5Ol11JxNZNPhUmbFVVOQVs2hypQRZ8wm+5IbKnBeXZBzycx1/5kqCtfYF1xG/OIBZfXYyKW4msr556t4wTk1jVv8YdR8IxWlCzoMxSunthH6j/X2xqjpYW/Ja9zxwDtomkkEh1gS8irLUk0eWKjx4Prb2edLmFTW9D5chjv3g3EZKagrTJs7wPEMh8tYZyxHwoXQoVtQw5HNXgqXKFmLL/IdFqWZFK7SOLA5n+98aCcOzcQwD/BfR2PxmUwYoXD2kofH3A1IiQ0feibtK4Nm0u4dNJN2fSFe/dZBM2k5/VXwZXE3kxC+dEy4HNnyyrhnW5UANEn3okh73ERCmLsXodkL8SjFtDm1aJqJ1ABlsSrzLA7NRJcKS5ksTajjSEviRUsAV7K7MVFLFSfeL+HkiH5lDvk5cVQGDfQpB2treHLnTjqSXASVddA51cFTZ3fjiTdwnlOoNC9vNr6FjDdJkJ1MyWhgX7nAZyjmJNVSMLOaXZ4kDjUngoDuhQFMNIGlwFHgB82m8BiAiwSFxcrMs+iaiSYUDmmxOL6W4vZUFqdePb60a0HaZVrfQfz20lU0JlrEtbnxvNnF3fPvoye5DWdrDE2lZ0mbUU/OlOspr4ujoubrFKbV4NHz2HzEx+LUmgmhzrjcv/9ynblT1/hkYRa/LD+C0gQbT27B7fFjKAsRrNjy290k3NeMoQxUlGD/q1u44yM7sfDjjpX8cds2stdsJx4/N8dIHtx5hBPTwvGnxSPuimPqy7VE/VMLaArMTnKNdhYkbLSzUPMY8T0JLIp9DV0zMUyNnW3z2b1dG3LT6UpdchPJ4B10ykvYliaCVsXDEvCVOenaF4pvgZOY3AxqK+LYcLyS/JwajKAE9p8poDA9gbxp8Pq2g9Qvj8NV2k5wpZe/7T1A40KToDKg1mBj8R6C59fjrXDjrwthX/l7LJxbRFl1AhHhBgUzatjTmERRSxKVqRZK2RecAvSFit7ABaeAKbl1/Y4nQTPQpWHTdSiTJQl1HK5OnlTW9MvF5UJMLheXjCVZ+Mqc7N9wFt8CJ5Yrrt/xxGQR2PgdHS6yW6DFewiZ4qW3aiAmtQ3xlNZt5IGZB9ndMDIusUGdSM0KMOFYrJhd3h8MgMm6jA7+WB41oUsLl9MNuPP2xee/53UDKxT5ywapouRkQE7fUzJLU2/o/1lW3M0Qd/P5f3eMg+QTtmGpS9YkZbJRq8HEotsfjMQDKByaztL0O+gWPwdlokkHM1I/BvwiQK3i5Nac+3BFhJPQpjhz7DS+OSHcVlBIUJWi4NQanFm9pLrSKdoimJXzfcLjy2ltm8aLe8JYkfEYM2POUOJJH9avXI6G9OXYhKg6OA3Uw7OIf7OM9ofiaXB2QZbOlM1eIj/VTJejmeycTpaGn0aTJlKcwKSAf79+K7pm8rClcf/W2znensJnVq7kd117sQCnrnFn7mp2qNdQWBfhoksd3bUGKZ4DDKTQmRF/M3+Ys/qqVdHgWpB2WTb0QVw/4CD+eECAI/jhhpcC1QonPQnHL6sNNJF8UOOhS7CzyNMot+0oRIiFgT1LohQwpxtTGf1ZZMrsKizsLSCFxdIZZxDCjyYUYFEYX0VR8yybnEsKZv/DTFqcJShsxxOWVoblt0kNpVTkxB4nyLAQQqEJizXTm/lD7Md4bdch3Kc7yMycwnHVSlC5xfSmVL6e9bX+qp4Wls/yqU/0V/XK5XJyk585X9VTCQjn6IPmid4YG+8l93RwHb6bUxFrk0l65xzvr+rArzTECsX0bT48Kw4TpQwilwjkjnAWLLGD5zuxWO7uRZMWfkvyuR13cufc6yk5XodfmTg0ndvnXs/L1ecwlO3QF85YR1mLTaXSYgXZ+orKAKFzS8F9XLc4px+Tuc3B/G7Zp/urraPBxRX0GK3tW4iKWMUsZ/6YkpkrictoKmGXwmXKzm7i7q5HaIooWU5hVBkKgxWm5MDeBTyStx3w88XZI+PSZkYgRRNKGQihMWPK3UjxuC2HIxzMm3YHf/hwwqhxSQ0OodNxdNh3pSDp0stTk5VkDsbmcmfKeqaFUfjsJ+x7Y/H5e6OvG3BvWsKAbkBUqjmgG7AsydffDRg5MMoZdD4L+7+LWc58rPISHrnz/BkreCJu0BlrGPKMPTFJGtKXYxOi6gBIpyTq3iw6gtrtZ4cgbV0YfmczCkWcy4Ou9yUjJp9f1YlTt5ABn/DV+Q6CIuw5slXNOQPO50rPrOFxSc9F+db28z/elXR1F7HgWpB2WTauAEe38Jl2wOE3TV4qPkSvaaACzxvP7cYnbR4kwzIpaniHYN2HEIoo6Q+Q2wL4qWl7h/WtnZfltMZDl2BnkRmcKj9iyxp3SfRIiWHasyUcc6PlezECsyTVxakUzq6wWdFNya6ydG6dUYOh/Pgtyf6GVByOC2gA0pfxau2Zoass0s7oRSCjF8LO6F3lHvZ/+o/4fQbbLpgt2eE8xOe+vY4Xnrc/y6t6WeCC0/AZ9Tj1lwIXnBOf2YDD9cK4B3fH43zGe8kZqECwq5H8d3m0ihqbclsIsj4eQ6toQAibc3jtOhOkgUSRqBs4NTvwlULxk5XRpCblj4myQwYcsHQuIjPQ4uvDZLvzDb74xBfY9/gB+3ONgItw/zXQeo3BqZ3gO2tixz3TNmm4OASGYfbjMFRb7FK4ZH8smhZHPQqIc3kQ0kCgEELx+VWd6NIARo/LxdughQMCI1f56HH5a38icPG74tT+etWSzD6bML7EaIWz7Yz93kdrZMfGnp9lTdRZEXd+ljUq2cG0WA3V8ijJwseHE5yI6BwgecgFkD4bqao3njP20t7D9obmEH7Fpdt3MYKLfIqpDJraXidUu4Dc9gK/MpnktSNxin5mxYp+bWOHpnFn3nlt43Yz0k5GAlXe2Oh1yM4j9PmExTM+inDa1a/Jpu2YbLsWpF2GXW6A4/MbaF0WIlShpEBqktpXquBWe8NJaoKjb3eStDbQMxeSN3Y4+MhyidQs6vw66ZqJLiwQGt84VsOB9vfQkXy4OYrKuUVYwiavXVI3m5jsF1DCQCgdd81drJkZIBpUDkrVv/C5P/8jJcfP0p0RTuLSGfxw7hTWHzpM7zRJ6tw4fjHzbt4r3Y87rYt5M4L57ZS7OFy1lanJ9cxLTiBt+3Wcrn6XW/N6cKZcx1+PGwSVW9z20KCZtDsLSUr7jF0lqU/gEytW4ogNzKQ1J/HIstUXrZ2PdYFh3LMlhs0/Z+rnZ9p6DYNNZ9/HcAZIVE2Do3XvEBzUNzs1tCrEIU/sFSGvveQlp2vcNXc+pSfr+59vmL6EV2tL7eBX05ibeJ6hu1UF9FMwkcJBSvQaYOwX3GSQ2/b6DV46egCftGen+nDxOw0UCr9lDJppGxmXiXQ+Y+IaGwGXdjMSge18dGk7HwLOZ6y49Nl4SIfHo2E5eNYwShr0kQ4Pt105VpqEAW1krxNfgkXPdIH7nP05ZLyH8NQueqtC2HS4lPiYWqYm13GuJnFAG/moP3pCZlnHY5d7xjQpqH1uP3w4FTR5kV/p8AZhhQiEVBf5FCk0fnkohB/kCxxSDPAr4U4fWdH1IO2W7V3OZXS5fomQJoKLfcr6s//C1OTr+fHGb/P6toOj8ivJwdNpqD8b8CmKmUkf42zDZhbF15ISA5kxnx6XqsP/BbsWpF2GjVVepG9Y/Kmn3ubY73dgOCx6ZkaQPz2dqsN+9AbonSGYnZRG6fFWapqnEDy1m5TodA6e7OT3LTcyJb2W0q4EojSTxfG19IbM5UB7b3/wsLftCLGWgdAEpmlwrmsbkZYPqYFp+TF876IsH2g20WB51Vs8fbTQrlbU1PKXV07znTUr+GP0UXytJi/tPMKj86+nKHEDRq/BnpKt/MOMdUQl/4JW5WdHzZ+4YclX+XDnXwEfmK/zzaXPIFadfzkycjMukN9I5voZuTDj/HNqUj6pSee/1/FkO+OZLZmnh7HVZ9nDpZ0CLcLeOMNSlPypmYT7NJug04S33tRYd5sdUFuWoKgxhyXhu3BIm55hV30Ujxx/Fp9pIC3Bl+PnsivoLQxlb8stjzhj/y6lMVs8xKzQX9p8Wkqn3P8zspes5YFX/7F/IePWtYvpneliY+kJ1szMZnZ2+IAWTKezmNPNO8iIWc7i6fPITao/3yK8zErYRF1y4yW3tYRlt3VNi5onDqM9nIBlKbAUJ/7aQtzd9mC2ZUFbbQbuqM1IOTwuXyt6Br8aRF5rSe4Jvo7e0F/bPGfD4NIzLae/LbZuRQG9mcEsSJ1PX2usUq9hT81hFiXncVPOPJLTGi8bl8l2PhORCPgMA2nBXH80B4TEb9k6oIti86muLsJSF2t9NptOIEA6rDTOetIpPrCTn/7mBRxFnYQ++iJ3P3MXbxzeQc8JBy88Gcxnfzj7kpuqF7aREzdX03q/htKg3RTEhgkSwysQmkKZTSzQElgR9Q6aNIkQipUhflAGX5wteXD37RTLiKsysN9nI/mV4RaQWneeYePeXSTXei7yK105DmRHBDVO10U+ZUZKPUHh81hfblLVEXaRX3E7vFjCbin6TYP3i19lbr7fJkE3h/Ypj77WwtfuXskzYQ34RuFXYq1uliadplUZ7Kj5Eyvjv0qe+DHgQ7U8R170M+THXNf/HY1V1eH/gl0L0i7T+oZlT3tO83rNembPyOLjuStp7jlCSeu7JE0tJGe6E3yvoXyLyJuWzxduXcoj/7URv88got7Hnfd9lCcOboJag/AmjTu/ncfPj23DXxeCtymcG7+wkAOntlLbEE+tJ4GeBEWlsihuT+U7a1bgbNpAr2GAofBv6YWFml0NMaFqdyxzcitsridTsuvQVFZnVoGwMEyNvZXJ9DrMUUvxXKlscjx4XC57d/ELe0h56iTeGaEEl3Uy+9Z5HLWaCSpTqFqNsKl5lIlzeCvcdHhDaDFvZFqKnY3Hp03hf8zbWRhXw77GZMISTXymXZWzlMXLB94hZpGB0CBSa+/XZlWW4uy5v5KZHWgzWH7e2f8HDjUn8N3SPfiCTLaV7sGYGsSP6t/GF2JyuKWUWScDsyWBFkx92/cIjvJTr96krbOZTPEoRJ5n786Pyb/sSthEYzLaZKYPl7f/vJUXN+/pH7bPmTWzHxd/t5taawquvmH79BjKe2/sr5IMxkW4PPiUAZrA7Tjf/rGUyfvFr5I7P6AqMQQubx58jt9UF9hzpGEa02K8/Gjni3aLr681VvssRoRBZfdhEluaqVfjx6XPJtr5jFfDUm/28pOf/QXnqXY2thwjbnka3imK0GqwdBc1m6egJ3di1IRy5s40nt1/IykJNVTXJ+NfO4+j9a+zqz6R494itOguzI/GIu6Mwfl8BZuTNuBKUbhuBsdLOr7UN1iUZgy7qWpAfxs55cG5tMkamwtPCrzJzWgBbVopITLhdL82baLDQBNGf3v/p8viaXR+fEzV/LJTQXTUbCI8+QZmJOZPDEFw5jQWzJlLsacEp0cjOzeDhKxWmrrfJcFdyJysRSjfIVTna+QmLyJv2kJOBEew9T/fILjSe5FfcXcIulOc+C39Ip/S1JLE1+5eyVuV71HUknSRX/F0OVFuZW9DKkHV7lhy5pYD1rA+ZazV1sngfhwv791wpMJXy64FaeOw057T/GfJT0c9f3E55LUjSfysP7ifLV97A3mih456B8v/fSm7nq2i55TGO03Luf0fYnn5lW6qzsbwSHMsf/dJF/+12cfx2niC3GJc2o7jzSYnkg36UHMl+6IbWPD5QrIDLcaQuE6cYT6ae47giN/PrVPPE3Lmxu4hN3kRwpmMc1U24Y++iLuiE4dT546F86m7QPlhzexF/Pz5Xruy4JbUNyVS0xCPQ9e474aZfHd3FUdaEnFoGt9ZMJt9R09jKQthKPx7BBTajqKpJxTLJW0me1Py/uGp3JBVjRQKv6WxtzwJ3T/8BefWvRjKAJjUoHki2el7M4PxRMfSGxvMac9pzsSVUHhPFhlhU0bGZUUB2//jjf6Kz4W4EKLobgijoy7ErsLdNZMfbqihun5oXG5pkhxLUCgFni4nhAqUUOcTmrxzCGEOicv79YkDWmFXK5mZUOcz6F0ZGZeD4HQAyfj21xLxbrU9WhAfg15uEl4OUlNs3VlCV6ULqyIIKQWbDpdytiaGM9XRaELwwnHJtsY8LKXQw+3A2CazBeeqIJRu2gsoQOriJjTNDLThR9hUHdxGHuH+arUCjLkXtPdTnWkEnfJy5OX9BK3ykj1ogzc7N7d/szpSvc/j/7yeroQQQurX85X/iOG//vgenlhB8Os7wBVMT7Qf86jFJ5Yv4vl3j6FHdPBiRTd35l7H43tOkhhWR1FTA6s9N/NG1Q7yQmr5TV0MZrA1piH/yyGvHUm2sM+vtIpuXAscfOimO3lp51E21CwhKb+N8qYpVFdc7FMmS/ZstHeSbPHwpU8+RldCCMG/34Q7NIbOaEHPzp3ce9sS/vbSEbyRvmFxeeXkNqZE1fBqWQL1rlByguvp6Wgk2Lrf3iS+CnZNFmoc9nrNel6uemVIGaWZDoNspw8RkL+YTAmlyZTiGcsyQnE/C/rIzv3VN3YPIIC9+Vefsglgq3yEtwvWfmsZzx7aj1YnCQ3zI7O8dDQEY7SH88/3prC5Zj2nmuKp8yTyi5sSBxDAjoWQs08aZiIDxle2nm/hhNRJnKvjkTN7UGUDiUabahL51ldSOF75BnvLkyhuTBkgWeW4YEvLb5pE9G9p2SSq5y9wO2g+/9nsC26ozzaSc78ULiJS4slxotdLgtuc3PvF2bxYup32eveIuJwngB2d8xkNLpdNAHuql0//2212W63Ygagc2FYbjEtRm03M25fMXIiJY8CwvDlqXC71royEC1EuuvOTcdf4L3pXRsKltieWwhnnyA+t5XBXEvdk3TOmBYy+v30iJdkMy0Ja7ohOZgAAIABJREFU8OX4uex2v43fMoZtQ2eGPN7/PWoxz3KoOeGy76/Bm6Zj2aw2HdARhy0zZlrkmE72pftQEoQFkVUm3iU9IEEiCKuCmQvOIaRCIGmuCuVT87ajCZNoCUvc3ejCwlCSnzbM5Ywv/KpL802WlNiEyScOsVm9cFoUb3Q1gibBUoSVd1G/MhglQUMQXmniXdw9JC7Rupcl4aXIgOzY+/XZ/GDGPhzSBBw4Yv4wqbNuw8lCXQvSxmHnK2kXX86xmgpU0myAPwi6ijAJ1athNPw+/6WHefnNvxKX2UBtWQIhiUEXSCl9ol+DFNMibE85jR+f3i+llHiok7Y7JJZQhOoD9eK8x8L5+KrtIAxMpbHjZAE/LdyBFAZ+S+OhE2vIiJ911bTihvqex1P1GC/f0Vi334bDRTpMHPE9/RqkiUdhyi1VKGGNCpd/KV9Mh8OuXlwt5/NBSmbGylE4QLM30V48GvyujAaXneVz+VHObhzSxG9pPN9+F+931o1Zr3eyWkpXUyD9hR++wu+//Scs05a4mn/PSg4fqw1IXAmyb85m7+kae6EiQtATIfq1YKelhXNctvU/h1h+jKk+COzjpJheklKbAhJXgnifh4UJp9AkzNT9zHL60AQYSvBa+3TWd6SNKRG72jaZ5+FPr7/C7h8fpLfIIGl+L4WfS+TgJid1JyPJWOxhzvwmDpUmU1yRyPS5cRxsberHQbP8dEzX7MU8INj04Z8yNC4zXXXMCq4JxN0Chy+SW6Or0AX22xH65UnVqr6m3TkJlhGWwdezvkaxpwRXhZsTT7STueabeENKqTkWTcWcRKZPKaesLp1du3zk59Rc1UtrQogGh5GTuaMhkvDHnPaJMmDvnte48Zs7kLpFBMX9HFyGeYBfb4/HInDBIfHOjcHSAGwNP+8sDaVZAIS5e+zsM6DfN3N6DVIG+HEsixtSy9GFFfhVFosjG0mPvfeKKD9cysZKouqs9XDkhT04V2VTsCQLV4NB0fpSXAsMHC4d93EnjhyNjKwMOpuD2bK3is70GvKm5VLRGsem05UBEst8e4uxupwFsZWc3HICZloE5+n4z+pExTf1i5Jv3VnCzNRqcjNqOHI6mU2HS7FQQ+Ii3AGR+ECXyDWzC6QK0MGMjEu2u4P9ZuyYpZQmG5PR4pK7KptVwUn9mOTnTsHRpHFoayWOHI05Y8Clbffx85gcttjxVhFR0xpJzG4aERczWKAk/XqXF74ro8Hl+rgqHBfoXV4XabHHo2Ep4/ygf8vWwLOG030jlmcPKD8IHc25yL6/AlqgPX3B65j0WW0t0GhZD77zOqBwdekRxrRQYUhM3V4wcjg0PrVqId/ZtRm/ZeLQdR7Inc/TjTuwUDg1jY+mr2R396s2iarUWZFyBz7z54BJqwoCoQLLFg4WJf49QeFygE8JzWigsyqNt/4UxMKlP77Ir4wloR5rJWskmzAalGF0S/3pBtGPu9F+1cIt365Cd1WReJ2g5JnZfO2LB9B1C78peeS/72D1qrUce+M9/KaNy33LC/hN+UFMFE5d5/78gmFxsWk9GlGBan96zD2gHkdhInBOmq8Yya4FaeO0jLAMfMfM84f0J32HtJU/Oism5JBOFBfUZK7ed2R6wWELTisUqcvbkLoVYKP321IbEsDi5nkd/OVoDD6/gZSSz9y8jCcbivEZBpqUfHrxUp7t2o3PNPH63GiyC4W9LbZ82ocw5eOYyo8UGunxH0OKX6LwARo3Tbu/XyR9z9kDLJo+n4LZMZwo20TNsWhqshbTHPIY7c1biIhZRXpi/qRWskZjEykZNDh4/ofl2UQvc4MOUbKdZRGnkZqFZZSS2DaNwtT1ODQTv6mxp24he2v0IXGRPoet5IBCCsFHslexV72G3zJGhcvqtIdY68pg6/Gd9O4zcfgzSA39D87UbmNq0goiQ2/kTF3UqHG5EhWYiXI+g3EJz/SR8atgmxLBgOxOg7xp7yP1kXFx9krQwFTWRe/KaHDJiBtIbhtUu4jmf/hroALeS/WXIlj/5mLiMhtoPBWPfm8Gb++4jTkzqgJVcO0CYm5x2fqs4+FMG09F9JLnaEkWX9r4YP+9sXbJchJyvZyp3UZ60hLmzy0ge1Zz/xn16DmXnO26vjljwBm9wZM5LImqfkHrNc2Zj6f4gjvh0YF3wgtPji+hHqs+60i4XOhXLlda61KSfkooZJBk4Rcj0V2VICx0p+BDH+/G6bT5BIVQfPPhGJKmzbto5m5Fbeaocbk4YF141Wk9rgVpE2AjHVKf30Ap+3nT4VJ8fnv7z2cYw3N0mQbvVu7GL0fggsKHsIk4EL49HDhSxZmqLaSnrqIgN5X6irc5eiSelJlryF2VjYgPxwgPIaiji+U3z+NAbQtdYYIQj2Llsizeb6qjK9QiqEcgIxRGmA/Z5eSmzJkc7S0hJNRDV2cYN6XNpqFiP2nueiq7E7ghfQ2HGw4w09VCaU80C6beR1nLESzLoEW4EAIsy0RKB3Oy7uC3DycMepHmDHiRVjVnjom5WwRIVLMCLb5frHkKv89gt/Nw4ILz4Pe1QmhlIOiJxqEf5++/kDBq5zpZzN3jJUq9VPBcEV6D7JEooYhzdaI57CqLlDBr5sl+5QYpLVZlN/Pb+LuGxWVwYHT9JZzOcLi8suYd/D6D9WE7AkGPwOF8n899O5afP38cvzEyLpOdzIz2vR6t8xmMS4izG+kAhEBogtCpVVh+AooaI+MyuPV64bsyWlz6HM+ep8vpPuzHOmC3+Ha8VUTN8XCqjoYhNcHWnSUUnYnjcGksUgrUMFx2E8WZNpKNV85uxHPk+AtGhkGFPEN8SzdVId9DT/dTJTaS3tnG9NBHIdTe0hXRz5A3bWH/3zZYRmyyOQb7/Eqvfj6h7vUbvHSgqN+n+IyBuPgCuPgt269EaG3925WG5aep4zXC5ECf0mzJUXMIjkta61KSfprG0nkfprztZD+p+dSZ9yACrV8pHSQm2xyCI8m7jYdj8GrYtSBtAuxShzQzMZLdxZUgBJZSxPcIVEBxQClI6nGiTGw6gG4NGSkxlYWyYPfBLjLybS4oZUGTdwZh+uZAu11Q0pvOArkDTYCp4NCZRirdTyKzFa1qI0ajn5hgg+WFGt/5t4Ncd89n6V0+G8OwQJf0TAmnaX44ftOkW9PwJus05wr8FvS4LBzxPVjKxBQGoQmdzDMrMJSJLlqYFVvDg9rOQEZ+mmURi7lJOxZoi9SghSaTGvxk/8utDRrSzZs2vEAvDP0i9dmEMXf7Df7w8g582vmg+feb9+Bznr/gnj6wG5/LvuBcelc/dYPfMthW9RopIeeD5rKmP5PrOn/BnWx6FmdY2LgIbMdElDrCJtUAlu5hlBtGc8FdiMnl4nLJoGcEXAzdB5b93/pMk5dObcEKOZ/MXAoXS/lo82wgNiZ/TAS243E+g3HpNoLRZafd+tVGp6gxFC6XeldGi0vuquBRt/g0KQiv7USXAsNS6D0CS9inXROSiEYXusu+vzQhMRojkeEaYCGFpKJ5KlMidBQGTYYDy2mhYWGh8X6HSZI6je+YSdHRt0lZ1E121s3Ul0RRXbqRubkNJEy9ibffOEnXlDhEYzs+t+TpbQfpdIGjR9ERqXjy8H463SaOdoU30sdTZ3bR4+6FDg1HRAdvNrxJkNtPj8dNSnQNGTF1lHXFEistHN4nmap7KfWFXXXKoZFarxf6Fa1LoUVrGKYFCqo3nUMtCgr4GEVcTxhWwOdYSqF54zCw/UpDbxizgxux8GMqwVPn4DtT6PcplT0mJzr+zl7eMCXZPZ8mK+G3NoegpVHV/hhW9Dyu//69yEYPN91ewKkuL5v2n+KGwkzWrcmnN07n7eJT3DQ7k48smocRY/JuxUnWTp3F3TnzCI32sqvhMEvj84h2ezjdvo2MiCUsSVjKvJBmPN7NhAWvJi3ythFJzf8v2rXFgQmy4QYnj2w4wFM/ex0jOgy9xcPCGwvZc66RnkgNV7tJ/tJMttfX0BOucHUIZi6M53B3NbRrmFIjKLWL8HAvHk8I+VNmUGPsYWpIE+e6YlmQmIlTbSXT1capnkhi2oKJSzqC1CFD85Ht9CMlGIbg+efmcLzjo/2Dr1IK5l43jR3nKu0XVwgKCtPY1ljRvx6vR/j6dlP5yIyY/mH8q711NBoshsy2/QaEBNqHpollWMhT52hbMw0cGpj2NlDdCjdCFygzsKW1uBs0+pcYpAamCW3VYXxq3nYcUmEowft19jaQUyoMBT9tmEe7crAkrDQgpOxglv8B0sN/iSZNhHBytvMxdhWFE6ksOk/V4Z6bRJNbEqsc9JR34MgMp6iriaA2yJoVS3NwJ5FGKB11fpKnWJghzUhfDBWNgrykTmJCymnxTeFom4uV0V1kusupMlI47JUTMn8yUbgMuxXoNy6Ji5IC6TRxxHfbQu8mRFQLZi44h9QvgUv6PhzCxFCSnzflk9+7lq7w3yA0C006yOy9f0Rcjrd1ENTiZ3peMvVuH/GWm+7qboKnO8eMS4w8QHFvJElhN13xAfmhcBmpffj2mwd59yd/QzV0YM6Iozc7GWezHxEqyb53Dge2laO1WagERcG6qWzfV4nZJomI7+Gm1XG8erye1g4XM+IbmJlaxZnOGOId8I1ZIbzadJZTPSFIpSF+0cjafy1HcyikcHDy97P4yuf3oTtMwMmXH7+VI6fiMJwKb6IGurTPR0UXdde5QRdwwXsr9EufET1AbLvc3YND2Oflpw3zqDCir/rQ/qVwGexXMm4r4FhLO44WP1LX8Uxz0RsBrg5BYd40trWexQo30Dp0CrOmc6i7mLCwLjyeEK6fGUQ3hznTFYsldVbEnWOWq51TPZHMiZqG5d8EwsIyIPSgkzUr25BS2X7lz7k8u3fJZY9jXM4m/v9Vu7Y4MIE21PyLNms/N+YXEuPKQvkOMTu9GJzh4M3G9eiL+Fu7zmdEj28iqLL3fKb6fD1BHjsD/0h2LiUb2vAbJrpb0OMNo6srpD8b/9HJs1R5Y/qrJK/WHuVMRwS61CgMWUiHvwhQNPh1ZjsUhmFiGpLiE0msvGeCSs/jGPy+Iht2c2yyzvMZeRizChbRUf8e4QnL8Grz+P2v3+Lwn3YgmjzEeLqJvSWXlpOtONr8OL0moSuSaSjz4GiXKNz0plp0twdzJiiEzHyd47V+2j1uftu9ltWzu9jeLKjwRtPQE8H90zzs7bIz8pmuOrvaKME0fFSU/pmM+TZrt6V8bN7yLM+9ndd/wX1/0AX3bxe2Zs4NbM28UvssRmugxZduO5S6XrvFd3eKfcGpTh8pOEmNfQbhtKsrV6ucPxrC4UvhgqbRlebE2S7RXG6iF4Zz7lwnXR0aZ7zTL4mLKTWui6nmZE8EZb0hdB/7C/OWGzZ7uuXn3Ok/k1EwMi7CLegpKh0wh/XoIKczGlwwfSyTTkTQ0n5MriYuIy1UHH15D6qhA8u00NoNQs54AZAegfNED1qbZSd/9QKjRGK2SSyl6GhwceZ0JK0d7VhKUd4dQVWDGwVUIXihMYbK3gYsFJYymLK6yw7QdFCmQf6ic+gOEy2gnDI3vYYjp+MxQyRKD2wL64LwZYnU6x22GLcmiCsMo1LvsZNKTZA9T8fSQaHQNcFNmV6cWoDYVjdwBuaaHELwkfgUnGF/f+UIbIcZ5r/Yp+xh9uxFCOcU8HYP8CsfuiGP2sc34febEKJheTVcnRdU3zfU4Pfo5+/53VV0dgbbd3v8Cn500tdP81Phj+asLxJdaqwLW8npxvdQWJh+wZ714axa5kFKE8OQHChJGtc4xkQR207WNv3VJLHts2tB2hhtMIHtI9Pm4vM+SYMpONnquij6nz3/mQknsL0UK/aBfXGcKd1CVOoq9BnnZ9Lu/9qaEf9fg4dfx6unOdjGM08y5iHlrHW4E/5Io/JzvO4vLIvuRUQbwJuI6Gf47L3LeOSpTfg1SUhLDw+sKOCJw5vwa4LwNsHn8gr5+fFt+KVJaKMDEZDG8fe4uCV+JXvL3kMTJrWeRDLCV/BizQY0TIq7E/EH30tF+7NITFp6w7H0WtAUpiHZsz2ZFfPqUMrCUpIDJYnjGqqdKALVyaJmGex8EvJ7KJjVQqy7hxhXFrNnN4NvA8q3iDlZ+ZfEJaLeDl5Ny8LR4+TB9KX8sGQrfmHibw+/JC4HO1LxOp02ybAFlW+7yFkksGWKBHu3p3Dd3JFxGc8c1kTjMp6gYDzapZM1dySFpHZzCHMW27hIoXNozxRW5dajlIUQDo6VpSKlwG0MlKu6f/WiAfyCD8xfPIDL7q7MVbxae64/yVyRuo7ytiMX6dYKHMyO/TTCmRH47svIXbWcmCVZbPjDDn719bcxPV2IsDco/GwPB987BZ0+ehNddKYGo3VbuP+qcdunC/jdgYPgVbjf1bnnjjk8dWovRo/Esc/JP62aycu1m2nrCeK1c908lBnGjpbTNPndFAQ3cn34WRpNOaRPmSwC2+HOhnHG4qXnfkXV+0G0nAjj4D2fpLR4PUcOxVJWGYueMjHjGJdDbEuwm40v7eXtX23A8HRBSizmjGRklx/3k1u48UsreG7LYaR3ZFwiT/i5Mz+ODdXnaOtxMD20jf8vO5V5MTcMnB28wnat3TlGu5DAdqbTw9cTiuxZF2BnTzA5oYUfmLbf1bShMpv64nNsePwN/BHBqLgIcvLSKStuoDtMwx/jYFZWKqfKmugJVfgiBdnTEznaWosVbmCZGj6nJDTUS1SEl+nRU9jb1khKcDPpIU1MjUinpLuG6c52Zrs6iA9Oo9l/iEsRC1+JwMRV4eaPX/0l8QWdNByLpqlzFjMzG8jNb2LGgrv49yfrxkT82efcJpJANdyl8d9/9xt6QoIgIZK7P7eW9c/vpdMF/lgn99y1mD9uOdy/UGKE6fhCfMgoi/sWLOB3h4oIcnuIjujmY7OW8cTpQyQENZAR1sJNaTfxWv0Opuot5Ac3EuLooMXiihDYDheYuCrc/GLNU0Rne0hd0svS1Z/itz8oIz29bkRcCCQLV4LYdihcXnrtAF2hgqBesCKC8YZYGFGCT64p5IWtR+hx946Iy+yIBmSQIEoYzHZ3MC9mHSc6nhsTsfBkcaONNJN2/GzChCQLl0Ns++vH3sYwLMwgjZ7U0H7CVK2jm5Z5oXagpyDIq2jLsWeQUeDusmB2NyaBZ69gXmYlCotIrYtlEaXoQmEBVd3JfDG2FA31gfIpH0Ri276RCb/fRFkW/tZmfAvSbQohBXpnD63zQvtxuBQuoQ57lEUTClMJOrscfHzKPhzCQpdOlic/MemB2jUy2wmyCwlsb4+o5M6IswgUloISv5uU6G9+4MgGJ21lfZiL70TJW/zu4d3U7HeSs9xk3k1QdCSO0lPx+Jqb6MqbAkKiOzS0jm4aZ7lREhyahqPTpClT2c8uCxnr7b/8QroFs9LPIaVCEzqeLgcfTd2NLmx+oeruJD4XXYIu7Kx7V4+LJlNcdWLhDwLx56UIVIWA3qYmegqmgZRIKZDt3bTMCUEJUC7wxiuQCpTA1WWhsrz9rN3OLsjJsHERSNo7HXx8yh40YSHQqO5O5PMxp3GIvmTGRavlvKpzjP8vENsOxsVyCzzxfVUfcHZZtM7GJuoUgiCPiTUKXHRhESktlrt60IQCJDt6XLRagg/afOnVsqGIbQ8drbG3KSOD8Me6sPWrFIbToivZ0f+MC7yJdrUVBa4gPyT0orB/nOz0khbfDCgyXHXMDhCoWgqicXNdSBNa4PmD6lPg6gRu7/ysjN2vPsXcRR0cPZlCSV26/ccoRa/Twj8lOhCkKawgRWeyI4DDpXFJCm0nNby9H8JE2cbCqDKb5xGNnOgvkBX14KR+nx/ImTQhxO+A24EGpdScIX4ugF8AtwJe4H6l1MEr+1cOtAsJbPOCLUTPN20uKCFJif4mNUdz2Xv8s8xb2klCxm0UF8dQtG/rpF/+gzPBPpv0lfUhqA+MYB83/xaKfxDFI9+vxuG0uPvjGt/6xiq6I+dzrKENhb1pNHX5NBpbGyDwPKUwgaauOgBUkNFPniqFYFlWKG39OYXFh9IkDgJEnVisiw3FoVTgxbKYH7mOKpVGrLsQOcz3cyVsOGLbE++XcHTLCeavyiY7K5kTR85xct9Zli6YTva0ZI6V1HD8eCUrctKYk2SfFVkVhAjSOOirYXdVM4tT88kI6zsrHSyIvZEYV99ZqWF22BoynBkUHX2cnPsbqH4/iBgHSN//kp7u5sTxGIQUqMQom/8hoKPoiwtCCUAKDJeycbC/aFR0gNhW2DM+UVFeOxAIEKhmRTSgCQst8DwvuOU8sa2CWE3Roa4csfBoMRkLLmGV9sjp4d4aDpypZWF6Onkxfc5ndLhEWV0cq3uS6GwPtQeCSJ/Tfklc/C5xHgel8MVIO3AO4KBiRoeLFBCvGehC9RUdiNcUrZaOUBpHtsRx/TIdKU0spfPeW05SZp67ohWTq23DbVf6fAZOn4nSNXvhSmpcNzeNd9prbHkrKbnvunz+9+whfIaJlILP5i7i+cZdNpedFNw9YyUHvDaXXasRgRSNgIUmNPSgGxDiFRRGv0+JDL17wCxcz//P3nuH11Vdef+fvc85t+qqN8ty7za2ccMVbMB0CBBqQkJCwkv6TN5M6qQACTPJZDJ5M5lkEhgSWhhSSOjFgMHGuPcmWbZsyZYtW71e3XtP278/ztVVsdwtyTM/9vPwmOOrcn3WuXutvdZ3fVbN6fuU/uI+9ifb8WTNBBdffw+33L0P3VDYVi3f/142JSXZaFLjknnDWVXfguN4jXF33DiTJ3fuStrh5HbpMINoIgp4NhwWvgxNHE6VXnODx8VOA7YGW5P2JPAr4OkTvH4dMC7531zgN8k/B3V1b3FXZjEi+RBXH3cqXsKjv3y5fzRXpwmGPBOA7fnSRQmp0Ay45MY2DMNF00Apl+kz6smePJO93e7BzZdNpaRbie/2GVPZva4+pV/xddOvXF00jxeP7k2VkqZnX0Nl84ZUKSkz7WZk+046nX4odDPO5hBvpU57n0+e9gYvaO5cA6rPG30T/iueZc5ik6Vfcb1ONmMfi6+UfPfbS9i/v5Bb71nAf68qwUVhGDofvXE6j2/d7qFHbA0lXexkie+zF8/kqWNd1O47Ry9mfXsXTX1RwS2YiV8CDpowKE6/B6z/9MjdQic9fAfFB2bwxp9s5l7zI0aNP0rFoZFseLWVaXMOnVcN3JkGA/05laMv56NPtbnxCUXpT3L45o8OYfhPbJegLXG0JOVe17nnsov5bflmXKXw6RqfmX76dml0A15gh4vAx9Ds79K4vyKZAT/Am3PH8H9+MpnfP9rGrp0VkPZUvzne0+XYDaQ+T5u4iYdX3M3ed2zmXiMZNX4XE2fOZcOaYJ+/765ev2/J0bE9ft+VvQCq5ScFqH409Yxmpkp8f06W+F5CjtpyXqDK58J97E+248maCXKKtuOzhccQ1ODrDw1jxcr5J9zPF1ZOOG27HP8cLOlhl8FagxqkKaXeF0KMPMmX3Aw8rbya7DohRKYQYohS6uiAvMHTWN27sLaveKHHg/vmn9aSiFuAx4J6/c3tmKadZHQ5PPPmJg86qMAyXEzXSxNZjsNfyreRcOxUQPT20bWYbvJnuTYb6p8nR+sEQ1qgzGQZxELFXgBzPRV7h1B7qA7NQ/2jR8L4M8NousTWBW7Yx9hxhWytrCEmHeyQZPzwfDZUVxOTNnYIJhbmecJPzUTTQRMSpRQZAYt0v0SakiytjTxfO0OCMznWbpAu4uQFXKLZcxByDUrZIDQuvfGzjJ48c8CaF85mRmJ/B82d61yC57MRrythI3Uo1B18PhBC4fMp7n0gHV/2fUyePpwF107vucEtnHDCgLW301l6HEB1ai/HsyBll+jmEA8m7fLsI/0fCJ1JMNCfUzn6dD5CoQckt3wliC8gEMI9qV16B6ynCgZOZpfulPtM3wwOv/4C1Zu24Douu9YHePq3w9iVnF3Zn473dJop+itzc9JAJcfguq90dUmPzPYx6t6nvO5KOG6EWH8BVHvwBQ2jB1+wh0+xHV5avYuE1XX9l+07SdjetWk7PL57HSad3MeOFPfRdh12N79BQJkpu0SjfyNCIqnlNVHt/wFpXxlQtmNfzQTdGYIFI67h7vu77lVfo93OF49zsNZgZ9JOtYYCVd2uDyf/7rggTQjxAPAAwPDhw3u/PCCr+4Or6Rr7Vu1GFRchhEAKSeWWQ6iCkAcVBI5VNuIWaAgJMgakk6SOC3YdboAcr7IhpGB9bRNjsgVSKBCKkvYOFqSDJgT1jsQxkpUPIRGxv+EqmyFZigNbxoFIZ/6di9i8p571H5SjQjqJojRcFH95ezu33jqT323ciqtc/rBuG3ddOZ3H9mzGVQ5Plmzl03Om8cyRD3CVQgrJdcOGU+euYXfrUbKNDhaklyNwOdb+FLMz76TAfByBi7h4HUS+j1BNSN9cRg/1Pkxn80HqXGcC6uwdNHd3uGbC4vXXtnSbBtHpeLqC5s5AKGHbPL9vW8rpJBybt6rXYam+p0FkSYtOmroiQazjJcK+GT2yOGcyJ7D3RqdZEiW7xOsn2+R641J6dLIJg+kL7+7hdE5ll+42OZ92MRMWSoFpnpym/vzWnalgoLddTkZTd5RJc/tLpCeDgfNhl6DVs8PwrJ2P1Bkx5RMpevrp2OVkn5Wzpdz39W/fWVqDUg6+hOM5XsdFApNzstlQXe0daITgoow81tRXYSkHTUiuGTaJzaUHsFwHTUrm5s7gSPUOXOXQ6KQn/+02IGkRM8hlAwoThaCdbDLMrdSUv8aONWkUT7mOt5/fgBWJ4LZFsUyT11/bSntIQ+LiGoK45mCFBb6E9zmOSRsronASiuf3bccOdaDiGpYFbx5ZR3awkVbTT1BPENGaydXbabTTqWhbSYaIk6tb1DvOgAK7XPNnAAAgAElEQVRsT7RSdklYuO0dyDy3T58ihWR/SQ0qV3nTLKRg3/46VC6ezxGKipo2jDxvFnKr6cdRAolCSMHmlkbmRbztQROS8o695AVUssLuIszVOPUbePf1+ymech0/fecHvP38BkQ4yMipw/nxf93Hsrd24oZ0xo0vpKUtTjg3SKMV55s3L2Z3fS1OQDFuSC5/uPUOXti/AxlwGZ+Ty+8X3svyYxuI+BNMSM/nW+lfZ3fz2+QZ7RQGP4rlNlNgRMigERX5LkI1XTCl8f5eF3qQdtpLKfUY8Bh4jQOD8R66c6BqD9Xx+uPLcSuqkJEwo+dPpLyigeCRdsycAE7IQEtApNYlZ2IWB5tbCNSACsLkUflsb65B1QXRAg4XDcmnpOMIZQ35DI20kBGI02insbZ1PJdm2TS5+1kdD5CrKYYGJpHp7kAIF82AqXNb2bMljCm8DdZ1FZbf01N0nrZKj9XhKq/5wbIdShrqPG4RXqZmT+tR73UUjuvi09txE55jzNZak4J87/RlOCVIXDo3NaGaBk10fCKn4zpeoLb/nZ2oi4q9DcxV5Em/B7IXCtkBWpZXWlIKynY2IidKXNfBVbBmfxsTR3pBtAu02cUEPHkQtbbORJ+LUF7mYHPzK0zTJ5PW+kM6S7GTZj3DFx/9Ah+8uYNF107j+k8swskMsXJ1GYsXTmDYRYVcfvNF6HG4cf5kzHS49sqJaHHBLVMnU2bWsKyqlGuGTeKu8TNIC8dYX7+VubkzmJcTJksbQ52VxpTMqxjjb2OsvJZ6R5IWvnlQ9Xl92WX0+Hy2bDuMEgJslxxNS03l0DqSNHVXoZTi0KYatMleh5ZSUFLSgDO6G03dySH5rdRZERS1KOVlEl6pb+cLuRoo97TtMnzOaC77VBTZYXPN1VMxM/QedtkdrWfZ3n1cM34cd82cBmlOyi6zhkT4vBxFW8LPlYWXMDzc2MMuuWILZuwtfMGryUy7c9Dp6cdx7AC3ogrX50M3TT521x08//JWaDd569/f59MpvIHDi89txj9cgE8QsAS0a5i1QRzDRFk+2qNB9tTnE9A7KLeHsCT3ena1/Ik6M8wbTTv55sjPpVBGWvxfWOCLk5NusehKwfc+8wF7WyYj8nKQudnQ3sIux8LO9kOWH92yaS/QQCgSShApCNLhul6GyLAp9VWiGS4yApG4hHAZQ5VNkRI4psbC5CFTcYyxgbFMcDu8XiXDIu6bCLHB0U32tsvTD/+FLe/s6NOnuGGDsdOLKT3SQLhG4QQFEycWsKOmlkCNwMpUOEFwTQ27PsToYUGqEg2UNeST4UswKzefWmsfq1vHkadHmZxeRIOzmdXxABMNi3zd2+Nd16Rq1wv88u838sVHv8C7qw5gmTbL39zN/T+4iVe37PMOlh+UnrAy8dd9JTy49DJebdyM6Ti8XL2VR2ZdTlnsbeyozabm9/ny6JvAeopjpkVdR1cWXJ3haLf/DetCD9KOAN1pcsXJv7sgVl8apEmz5jJ5/q2UrC3j7adXYpkmRpvLtbfN5tFfLgfLxmiziaUHcFwXv6tx3+LZ/Pj1lUjLwVAad06ZSum6eiwLdNfP7aNm8pM9x4iZAeqiGjnBWlzl0uZmMDrDS883uZJWpTMsdDu07/HGdliKnevTBzwdfSq2zUB1Ak2eP51frrqzCz45cxH7tlbw+rOrcduiyEiY4JF2nKCOnnBoP9JGpNbF9IMvASOLCtjSUoOMgbQk4xIj2B47jBPXaAk47GnIJ+KLEzWDjApotDvjyNbbaLTT0fUw2ayj3pE0uYLGoy8SDnolY9s2Kd/wZx79ZQDLtNm9tw4nM5Qq8W04cozo+10lvlHT8nl4eVe5ZtKEnFS5ZuueCtLCsVSJL1a7BjPeVeLLFTmoxkcIYjIMH0LeNOjz6HoHA9tXlKAOHUEFAhCP01ZZTKg6ih3QCCUcho8YxfamerSYwmcJZqkuu7hBgV0XRPgdMHUOZrqUxQtI88UoMwsZ4huPozZTZ6fRYqez2sw7bbtsq2wg9srG1OdkxNxh/Pi5rjLaqGn5qTLausbDkOak7FK2v5SJLV1ltKtEgA+qu/Q+uSKnq/TavgHlGzfodum0TWdDxXM/fgG7LYrrtGFrksqNFegNMe+gpwkqdh3Dl4TYxjJdVExixAQIxbK9+7DiAjfmQwnBsqpSmuMGLuloCDY2tlCVKEhOMHHYHT2Ia+t4yBwThIWme2ONpsxvp+RVF4RASsHI62awu77FyxYJGDFvOE3NtbjKe71WxZAy2ZsadDxAkvCa/haMD9OqHK9CIeCqIn+ywcVb+fIoUslk0CZJ09Ig+6luWb0QhPq3O74vDeWkWXO598E72LWqtG+fEnW4cek0yp99H5J+5Na5F7Hn9ZUIC3ztgng4mX13fHxm7EJ+sud1YqbAdsJcln8pLx6toMVOJ+pmcWP6TVQ276DJFeyzDfL1BK5rYVuwfXV4QCQap+ILlpwAXdMfeuPBXBd6kPYy8GUhxB/xGgZaLhQ92oGWv7K9/scoXHI1wcJALIV4IPuZAYUN9qXLEuZ6jh4dwrxbXD73i/P7+3trw7oHRn1BbQerE2hx/tcYWfQIFJnACpQ5nKtuv4S3f/tmEsppIB1wWs0epSw9Of3h9ounsu/1xq6mhnHT2b2uEeU4aJqGaYeoNQM9pj80xSPoUiMz7SYONO9KNTXs3zaCwtmbUcobp/LeG1r/ap1OU+/TX6TuU3WNTZrVwaSpNeAbCUzGeOR5rKbmbgeK5VhJu9x86VQqumkHu9sFXaBsiWP1LP3WtvsxNI2p2Zfz4tHaVOn3jOxyDjqsoN6BrWyAM4baDjQy50SNFQNV+j2uJO96w4ptx8K2BbvXpmF0g+def8PJm496wHPtnvDcUzUf9dA8JQ+Zrz9Vz398aReu62Kk74ARxbiui25oPPDQzfz8mZXYjjcE/CtfupJ/enVF6t951/UX8/iuzV4FIgh6XocXKEmNf559BX+rfhJHOWhC4+/G3ExF08O42Eh0rsy9k3Ds94AD+AccjN7dr0jpUlP+Gv/6wEbKtgUGVKLR1+G/Yu8Qvn75Q9iWg25ofPnxL/GbX7yduu5tl1s+NpsnV2/BcV1kSNKR76bey8NXLeafS1/Dcp0+7fKdid8c1EBtUDlpQojngCVALlADPAgYAEqp3yYRHL8CrsVDcNynlDolAK2/Z3c2xLfz/pH7k5oKmOZLMMqwSR3IgncjM37Yb7//f9IqWVuWStMrVyHTQgydN5mjte3YPpkq/QK4AUHOxCwOtbTgKlB+KBiTzsFos3cq9ruMHhbkcKKRkC9Ohi/BzNx86qx9ZOhtTAweI9/XBiiypGJ2KJ+wOkRv3tNgcMtqtgb43Te+yeTZzZRsyuTKz38jNU+0x+zKbmL5TofXHWp7KoBqblIj2JnZPNG8wc5M77InV+AYBjIrAy0nE9dVkObj4uunsHbHQRzHhaBk5mWjWbXvILbjIoKCebNHsOJwJY5uoQdcPjt9Ns8eWoehdZAXilKQ1oFSLrlGjBvyh9KcWImrbHI1mJM+D7+5EpKNFScDuvZ3F+7J7JKa89rrANEXbLi3XTJSgnT3jKC2KZvYDnokzCUfX8ymdQdwbPfM7RK20dNsXKXIDFjcOrKI0vZtuMrpF7ucb7hsd03aYPIFv7bkQZykWF8U5SOzs1L7W/684RxoaE1dF0zPZW9LEwCOT5EYkuRyAXpmHC1ip772ymJJm6pMXV+bY+FnJwBZ0uHSYAKZ+m6JSPvqoPPqLhS+4C//fiOvPvp26n2NXDqTqmPR1HV3u9h+6Biipe5kIsvFTu/6N00cHabCqkld97bL5XmL+fSoe/vlfnZfH8Jsz+Mqa/oduxt/DUmzT/eZjDSsCy5IG6wPVGfpt2LvEP7u0j97onBXIcNBxIhikBInoBEbmqR0C4HrF7QVSIT07qryQ0e+m7rWfC56XgdCQtiXYEJOLVIodKGRZbQzL7IHgcd9ypKKRYEOpBDJziTJhTCgd6BGL50utduMW6iAHzlqWLJ0JLrs4sHmsP0QLZCpa8eniBd43DThczDyYp52TAjCvgTjc2qQwmNzZentLEzflwSmeo5nYSCOJuj6rFwAsNQLYfRSZyeyGbdQSkEwgBw1DCG9zuyztYsQkOZLMDGnFimTdvgfYpcLYT334xd44vvPoZKd99rQQsjKSL1+siDNTFdYWV3+1chKINOs1HXvYOC6HAtfMkgbZ5hM9nXzKeiI7GcvCB3WYGXfTxqkXTmLqpr21HV3u8QzBIksmXrNzFZYkS67XOhBmvbQQw/1+y8f6PXYY4899MADD/TbzxdC43D7GygUAo0R6fcScXbgZWx8iPR/pHRDK+/8YRWaLskblkvJ9kMsf3UbUpPkFWawq6yaZe+XoElJfm6EbZXVvLq5FCkF1bE2XtjjvTYkEmFrQxWvVO1ACsmQUAblbeWsbliLhiTbn01DfDtVba8hhEZIL0SZW6kp+x2/+runeOsPe3j32VVkjijgX773N7auLee913eQNiSdh/7jdTbuOMhb75cSyQ/xzefeYO3eQ7y0s4Q/HdrN6sOHeKmslNwMP9/Y+jxrag/w6uGdDEvT+V3lb9jdUsLaxnWMCAh21H2Dmth6oh0vMcz6C5hrSAu+x6YVQeqO6AgpGDprPFHb+3DY6T6csJHSleSPyaZZJVIh1ZARGTQTT12PKgrTLjpQQG4wSmYg7ulKECzKjuCjKgntlEwKFJIpW7oCNN8CRMaPB32DyxuWy9RLJ1F3uIF3/rCKwqFZXH7zLOpqWlj+6jYKCzJYevkUahva2L6jijljh+Hq8OrmUoamp3PTlEkcbfeejeJwJjeOvIhjsVZeqdpBrj+XxQWzaTQb2dpSQX5wFkHN8p4LfSih0I3gHIPYS2x7bw8fvHwI5SpEZjoiLYxIgmrtdB9OSE+Ba600gR3sotw7YXCCeIFZyEYGnM4vJTcUJd0fT10P8zWSZ7R1XesO+ZrTGVd4PwQfIu3LCG3IQJigz3Uyu+xcu58ZFw1D6ZJl75cwNDuDa+dM5Fhz2yntsrrmMJPSJzAlcxTlbeUntUv1rsc4uOcYdUc8BYrISkemhVN2OCe7BKOkB87MLq6rs/yFaSQSWafcv6rb21J7V2FmhC1Hq097/1Kq6ri9i9hLgJZ6JkrWlqX20rrGjtPeR0/1XqJO3Sn30bz81ZRvPUTdER2pa9z+1evZV16HchWGT+Pez13Bht2HUEphGBr337GQNfsP4boKQ5MQkSgFmpTcf/EcStoPe1w7qfH5CVdS1r4TFxdd6NxYdBstiQ88dp0wGK6TGmVH5EFkcGmPe9HbLjUt0X69F8ReomLXEb52+X+y5Z0dLH9+A8vf38+29ftP6VNe37KHjOwgf//Oa3xQdfA4v/JuzUb2dLxNSevxPuVw++sUGun4W74G5mqIvULB+JtY9lSpZwe/wae+fxtbNlb0aRdd01DpXiZNk5JPXzaL7U01nh00ja9espA1DeUntMs9w+8m25/dn1sQAA8//PDRhx566LHef3+ha9IuyJUTmM6iokd7RfmXDzqfqzsLKjczwY+egW/fOYaybZEBE3lmSZtO/ISmwYxFUfZsCWP4dO74wtJUKSlgg+rWvPDJa2f3KCV9dv7sHqWk+6d0DUyO22F0GU2VkqZkXkdl86ZUKSkr/b4UzgAMRNpXkmWbFwZd53Mmz0Z/McKuuF5n2dwx7FofQJoJhOYVVXRdcsm8cayqOIrjumhSsmDaaJZXH0xdLx43gncaK3CUi2YZ6MLDXfg0jduHX8H65pdQuGhCMiLtUjT1AgoHicQXuAzhLsfT2GgQ/CiV+2ex/olKpi8JDUq290LQTaa3P8LUWSY/+aPi23ePY9/2CJcsvYjNe+q9+66dvV10KZmTPZ06dw2ucpFCnNIuTa1X8s+fqWTX+rUYvo2DyrHr/nnpnNU4kCDX/GyTf/mznsJOTJ4/gQU3X3LWOrCrenHsTqUDG4hn9EygtsX5GmMuGkXJxiC2z9eD2XYmYPRz1XCOGn+Un7374Gnr83pXJq64aOwZ6fMGc30YpJ3lOhkH6u2nH8OMmx5/S9N5/unVHnDQVcSk4r9f2ZTiQMWkwxMru6C2ZsALkMALkJ6v3JKC2vq0Dt469kaKAxWRLRxoeRKVBBCmizha9HHAREqFbsD0hVHKd2bgU44HtRXeph9SAk1KwNvkw66OLqUntExIXOEhNzQp8TsBdClTDsG005DCQxlIIWhzsklDR2HT4GgodI+TJjRu+tw0iiaNSm1wA9k80T0wOhORaW/x7zfvXsKDa9/1rgMKIz922uLfJQVfJ729C/FwePf9AwtL7aOBQEqHbzw2h/demnLedXlL2yb0CoyuOy8Ba3/DhrevqBwUgnqnXYRw8QUk931/NL6cL/XDQWLhadvlrScq2bX+j4P6jHY2U2xfUdAFch2koEBKh6vuDiDSvK7X7iPEoH/5gt2bSZ5++C8p6Uhvv5IISC9o5nifEpM2j23d6F0Dlmby+/LVqXuR7m/tcS8OtL7Up08Bt8fBWzdNZLeGjpM1DpyqmSRmh9BFe+rgfarGAXxzTzra7UR26W6TM7HLYK4Pg7TzvErWlrHsifdQCggGEMOHUn2sDQA3qNMxJExHvVcrd/3ewOT25paUDssKd9XKNb/Lno5qFJ6uZHxOLc2O93q2HmV++r6kVkJ16bDUQUiW+aTUScu7HMRe1v75A/RImLlJIfKmN3cT7CZEXre6HH9E4mQLZEIRrJUpEfLbZZUYgSBXTB7GB/V7eeXQQTID+Skh8rv15YwMFDE1XEWjK1kTD6REyFnpy1h6ow+RvRjo+4PUuc4nHbp30GyZ3iZkmTYvPL0Ky0xu9qbDX17elNrgLNvh2RVbMB3v2nQcntyyOXXtBBII5XqvuQ5vVC/HVt5rtnIoafoTfjzdiYuF2f403gYHYDLzsoqBh6X2sckVjL2Bj32nq/x7pk7nfMGGO52OmbB6QW2tHlBb07JZvm1fF01d75rQYdo2y6pKU4cZ07GTUFvL+9oUbNhzPB5suMsmmOuZvuTyQSOo042gPv3q+xC+sw8Gzoddpi8JoWkS5So0TXp8wT01KMs76C1eOIHNB46hlIPflNjdDnDXjB/HmoYqr7NSnghqux2l3B5QWwFY2mRw1uE9o1qywzSEpmuepjWRQNMljuN2vY8K731omuTKi8ex7sgRr5tQO/69TM4pYGPbflAQs0Noog1HOUghGRVZTEWzF6hJoSXt0vO9DNZKaUi7a3t7+RUr4gOSWsVePqUj36Uy2tyl7c3toCrhSUciPpPccJeWK9uIopx9eJ8Th0WBeA+fIoSPy+75Ki0dnoZr3MLJtMYd0jNDtB5r46v3XEazaZERCdBSH+M71y+m0YqTEQrQ0hTnwXmX0+DEyAoGaWiJ8e2J11Ma9ahac/KzcUUTES3MoXiUkZnfJyCOYchMaqxmSPueB7MVWWCuR8GgS1gGYn0YpJ3ntX1Fidd5BYi0kDccGRAS8sfnczDWgfKA0BSMzCJqep2MEigYmsEBpwkXT2pyUXEOpQlv4EK6L54S/goEk9OCqQHWIBnpz0eKCgQunTosLe0ruLISxy71TqJtURLNURzbYxvJqInZluiC3AoXV3mlLy2mMGMOtut6JdC4IBa3vWsULXGDVtPFVd5pTMc7hYKi3pG0OQn82AwmqfuES4lTf033Lz+Drz3uJ4uePyC7IIMv/OJGVv11PZfeNpfrP7EIAn4+eHs3i66awvU3zkT5NVas3ceS+eNIpAne2VHO0mljuWPmNFwfvFm+l2vHjueu8dPAcHm7uoSriiZzw9BZhHWTjU1bmJM1k+GBBqqj71AUXkpm2m24QkFiGfivuSA2t/TctJQgW7mKjJwwnX1MyoWsjFDXtYKscLDrVjpdN9UFsv3h1GsuEDEiqETye1EEZBYdya8wexjURYksJs+fwBd+8ekT2sXO8KVs8pHLpuEYnLZdJqRnsNBcAMCi3AVId/sFbRcgqX1TKQ0c9PocdD7Xotffnd4PR6FotiMURT5NddvvUTjsb32WwoA6/sd0ewiO63NTp/izcxk2zxxc65WDheSTY+axseWl5O/q9pB1/zP5v47jcHjXIeJazqBIJDqzvMr1JgMUTRvNsXbv8NLbrzgBAbLTK/T0KRIYWZBGNbEkBQ6mZAdRQiT11YJZGdnehw/I1VykoKe2N+0rxCtCvP20N0vUeHqllwH/6es9M+C/f69nBvylXqXX973SqxFQ+PJj2K7LS1VeBvzZqp4Z8D0NXgZ8T2fpte3/X1DbD4O0c1y9O+e6s4V0y+qRDr7rrnk9yjen0mHdMfZifrKnukuHJbp0WJfk3kplc+lJdVje+wkNauZGKRPHkRzeO4TRMxkQiG3vTe6qexez7MkV2KaN7tO59VOLepQ77/jIbH7+h5XYtoOua9yzZCb/9NqKlF3umzkrVe7U4n70dDdV7ryu6Ar+Vv0UtrLRhc6krI9S0VyWPJEb+ML3QrdyZ+X+Wfzmq09imTa7VpUigsFUiW/31oM4AY1/Tz4jm8qrUnqfLRVHcP3wo6SuZGP1EaTP4Sd73sR0HDY3HCLNl+DFo3/Edm1qY5tTep+G+FayNYf09n/CyxxtQhnjB31za61vR0jhZQekoKUhmroWUtDU0oEQnqOUQtAUjSEFuArQu6JfiaAxEaULQSpos9oQdDmfuNtEZ2Th6xEFSIRqomRt2Qntsm13VUrvs730MLZf8NNk2fVUdilt3dtD7zMjI4fK5n/FUdYFa5ftK0pwbMdz+rbDB2/u8BAgChzHZeXqMhzHRQEJw8XxXsJxXJbt3edN6QAc12VZVWmP6/X1W3GTmWdXuRyNVaCShzsvw2mT/GmpcqfjuCilcAMBVPIAnHofyYkgjuuyfFuv393tvbg+C8v1StZKKapjlbgq+ZpSXqY1OTnFxcWMvYVSNkJ472Xln37F395ZcFZ6uO6ByJnoiju1eXOv+RHPPtK1h3fX9vb2K0G75x5+Mm2voWncPrwL39Nb39vkdnZEevzPTp9ysnF7Z1qGdgwzZZfThdoq5ckDlDIR5npKSk8/eD5XDMhgrA+DtHNYytyK2/hJOh2wzH6GSbPg8Y2TTsj3OZPh4ueiw+rc6HvT3c9UYHkuUNsDe/28/+wv2PpBmP27/swXH80ZUDF25yY3adZTZyQy7c+h7+ufOIn2aQD1PjXlr/HeS5WD2kY/fclkfH7jrOeXcrbzS3s5Hy9bcZLB6gMIta0pf40//cdGoFcpqbmDcGGkq5TUbS5iRihAS0ecSFaAnc1eGWpqcS4tqp0MX4gWs4OhaVqqlNTmRBkeIFVK6jEXUWRx+c372PRanF3rTw0tPe8Q284ALWmX7ofMc9FAaVZPqO3pwFOd5rWAi20Jtm3NxUrq4XrPl+0999fsfCaSGjBHNzHdLvlE9/myvef+OsryAhHM5JHDZOSYzT18Sn/u4adqXoC+x+2d7uf2XO3SUD2dSPoqNAMcS7F1U4AfP/Q7LMvBMDQeeDipL04euLvri7vrWA2p8fDVfUFsuw7cfzfmIxxo+iEqCTa+bOhjgxKofchJO4cVbX4If+y/U6d7y38VfnMVncHBYHO5Bns99+MXePIHngBZSkHR3MmpNL2Z7cfMCQJeliRnfBYHOku/QlAwKr1bml4waliQaupSmZJLCiVKq0ShGBc4xqTw0VRafkYwn+GyZ+m38xQ42OuEHVoDCLV1XY1v3Zns7kwLIUYUe63qhsaMpZO6ugg1yZx5Xheh7brommTB9BG83ViBrVx0Kbl83HDWxEqwXZeIL8GkvHrAQQqNJTmjSFMvoLCRQmdSeB5j1fKkYF/v6u5c5g4ay++UnXMDCLV1XY1v3j6anev8EAygjRrmdd4qcIMaHUVpCE14mSM/tBdoKY6g61PECpXHRkty0mTytTRfgom5tUnEhiJbb2dBenmSk6bIki6LArFuXEGB6xo9OhoHEmLbOygYDPh0TmA6B7a8lDpk7i3LRRUXoYRAKMXiWy7mtd0HU2XfpVdO4q/794FQoAQ3zJvAn4+WevYwHIyCJLdOwd2jJlBuvZPK816dO42AeiqVB54UuZ4J7p9SFWUpjOQ0mwvHpwzWVIy3/t8B1r34O6bObWXn+nRU/mL2VjbTmXIvnFVMeWt76nrIlFz2RJtBJLl1mSpls4kj0qhwj6WuFw3xk5D7Utn7yzI1MrWNKf9elPZxFhR+o9/u6Yk4aR9m0s5h1TuSIQDKOwfH7Dr8JxnBM1DrQqFCp05cCQvXVRzZcQCZhNlqHTZkKYTmDcs+VtmIm3Q6rlIcOdyMW+BpLlwUFTVtGHkqdb2rsYOJuR68tt5Ow1UeUBVcKhPVFAfcpNNxwVyNatx0QegXBjOz2ZnRe/ePcXatX4vruCjDh3BchBBYpsMH6/ZhZQc8wLDr8N6OcsxMj8dl2g5v79uPmdzoTMfhnSNl6BkOCAj5YjjK9obOK5uD7auYGDKTm5yJmViOMsykzMmE2J8YWfQio/7hqXMSy3eus+2cOx27DEQnsmeX1QCIcMgbOJ88Q9sBHUSXXMoKeB6/U8FlB7r+WdLv2aPz+B3xxZPBV/I+6O3JA4y3cjVPuN/1NeqsOhq72+R82aXTNr27+E72Ps5XM8XomTcTT0zEn1vC6EN1vP7s6j7nyx4/91fRVhMjVCux/Ap0HVv2PV+2r7m/hpGgzg2Rq1kEBYwyOkvAg6vt7e1XOgNmQkHcgI6VHcANeCGF7YdEhsD2e9/r+r0gyU1eC5+Dnm4ifA4RX4IhkVYiPk9EmmVEGR88RpZRDEC2dMk2LJDeYe7ZRzJSWKfZtwRQ3bSEsjWefPAVKDDaHC8yxtNZW50cYgUqqqECXdetHQGMsECiUEpQncggI+T5J4Wgzkrr3xt8gld+iYkAACAASURBVPUhzPYcliMz2dryJu1KUG6HKMx4AL+5Gu8pMRBpXx5wqO3m3U/x6688SV3pJtz2F+gw4eGvr+h3iG1fwMG8MTcy46ql1FY1cKyiFmVaCMNABANIW6EnHApH5dIWSyBsb6j5kOJMWuIJhCMwEoLiggxarDjKkWDqjMxOp9WJYTo6fukQ9pnEXR8NVgYjQpmgmogrQZ1jkOcbio+WpD0UQitG+I47qAzY6gRRFo7M44qPLUqBOQuGZnH59dNTMMoh+RlcdekkqtvbegTPL+wpoTg9g49MmMQxs5lXqnYwNJTJjcOmpmCUef5c5ufOQ6mqntmJ2EugFSOCN5FIZPHus6u8IE15QFvAA9oqsCO+HoJxKyy6rhXYYXqIxGXYTr4syAl2pKCoChjmb+x5rdtJCHHn+p9hl+5B86ubSynKTuf6mRNTn9GT2aV70FzV9hoho4hhkesIukePs8s7f/DsglLIzHRE8uYJAVbE13UNmGGZMotUYKWRurFayE7dd4EgJ+RN4Oj8m2H+pm52kQzXLYQQyW9PTug4xf51LvDU04Ha1pT9jjUvbekTqDsQ4FbQyB95EVMvnUR6ThrvPvUebrQDQ8Jt//dGtq+vQMYs/FLjo59cwOYdVWhxhV9o3HXTbNbtrULGwRASN6ShTA0Dg8/OmM37dZW0JfyAn3vHzmdHWxkNVho2Qa4pvJqa+BrqHQ0HneF6ZyhupMDPAw34PbjrCN+94td0NK49zq+89c4uXt68j007+x9i2+lThowq4JM/uJ0pl4xh+aPLcBMmenMLn/7ajWx/vxxMh3CbzX33LmbLpoNgKcJRidAkwoZwu85XLl3EygOHcW2Q0SBfmHY5y6oPE7c06jqyuWvUTaxuqiDq+NgfL+a6os/2K9T2Q5htP6ycwHSmFP6e+tgmppyAzzXQHCg7ZPLxJ7zWaV1XOO5PGTNmMSW7c/oVYnsiztHk+Z/n3gfvYNeqUk9X0tGBLMjBcV38ruDjN81O3QO/q3Hf4m7NFK7GAzPmdJWSHB+fGbswVUpqSaQzJBLHVS5tbgajM7pKSa1KxwnfD92aKfDNHbQsY0tJJRue90onzz6SMahMsMnzZ/DTd37gzYl84j2cQ0eQWRnI7Eyk5WLUxT00y/aDSMvF1yCYedkYVu2txElez589kvcOV+BYAtESRMuK02H6qWgawq2jiiht20qLnc6GtknejMj4CppcjXUJg9np8wiYK+muPRqskVkHtrx02nbpb3Dr5Pkz+Nm7D/L20yuBgdWkRbtp0oRqOuX+1d+a0rTWH5KTbrLoSsH3P/le10zVAQS3du8ePNMM+Pkebn6i0vxAAX5VumTOrZl840eHMIxefmUANZudPqV7ZvVfX/vWgFQmBoub9mGQdo6re4rcczSVTF9yOZPnT+Dt55/BikRw26LEwwb//cpmYkIhXUV7EJ54fzMx6SSvHR7btpGYtBEK7AwLJ2yjEhp+fwdv1LyBoXUQd3wU+mupaHmCiGyjwQ0zQm9E6/gv0kWcJikoMGx0n8Jj17pMn1HPnj25aFISau1ASx6hNSlJb/Oo5LbroidEF8RWSELRALqQXtu6lMTbM5G+ToitpCo6lGK/B7EFSYuYQS4bUJgoBO1kkwlMmtUxqM0UnYOaLVXPf37rOWyfD/1fX+FLv/wMv/rteyR0gf/J9/nCt2/gX/+8kpjhEnxR8tX7r+SHb79H3HDQP5DYOeAYFnqJN1D8haMrCOgdPHUgxD9Ou44Vtb8mU2vm/ZpMPjHi47S0/oAsmeBQq86UApN7/q/NnV8WfOfucYMyAaJ7uaSzhHTVvYsHXO8TuoCmMBTnP8w9/9c6Lbv0N7i1u13Odt111t/pre6Nryft4ut3wK+FpnudmJNnNw9aI0f38uLZwFPPtTRfsraMt1aUpHxKyfZD/OHXy7E0HdcxSeSk46bpaDEbLJuXVu2kNeSgxRSJQE+fkggm+P3+NViaiWtL/MG2Hn5lZPgoo/xHqbfTyJWqy6cogdBg7g2tGIZC03v6lXPhCJ4NxLb3+t8Otf0wSDtPqy/h8TsryhF5OajifOLFaRy0LVRRGL09TuOUMHVOOypf4u9waZoI9TSj8iEYdWFUB5qADCPBxLxalIQJudDe7uPu4RswpEuBT1AdK+JzOfswpGKCpvggHqLR9er0SrlI6ePSGz9LS3s7y371Out37MGfn87szyxly3t72V62nczCAO3FIbSYi6iVXHz1GFbvqGRV5SG0zBCXLhzG8vJD/O1QDVnpI7hlRh6vHznEusMtTMqcw8zcg9RbYd5o2sk3R34Os+Mxah1Ba8fPWQyp8SqdUFvhm3DOupLThdp6AYCXxROhbahhRSAEtlI8/9eNtOYFQEBCwXPvbKEpx2NDxZXiqQ1baM2xPf0VDkJ3MHJjKAF/PvJuapi4Ui1saXiBSyKlSTHwUZranmaBvw2vj9DsnCOPQjFjUZT8GWfWyajOqZOxZ8dc9zVYeh9vTFcB05eEvM5KTUdlpWHF43zw5g5iQmFn+LATDitXlxGTDmYElO4FSrZPYQZd/rx7J5ZmIoI2lqmzrKoUQ+sgK+jpfdbXbyUim8n2tRGSJgqLLGmTq5m4Hc+jac5p26U/4cKDCUvtvrpnNKcvmYweCXuHGtNk0bXT2FbZgGUINAS6rpHQXeyQZPzwfFbXHcY2XDTLA8mubavEMUw0y8c1wyZRtr+UoN5BzA4xN3cGsdo1ZGot2BgIDDJlgnzNIuibCNY6bNvEtgUlmzKZdHU+23cfRUiB31I4WhJqK5MQ28NHugC648expr4KSzlooidQN2oFkbTj0gWxPdC0MtnB50FsVTeIrfDNPQ6zNJC26OvwYiYsxPChqJYm4lOKQHoyBTdmssVtxsqQOHkuiYKePsWd0EGVFkXPhbQOwZSxh1Bal1/5yJCtaMIlS7osDMQxJCmf0qoMRky+B8VvUcrp4VdUNMboBWNpFpJMn0F0bxPfXbqIemGRbQSIVsb44azLqZUxcrQgbVVxvjPmenbHjuLGJfPyMnF9DUiVxfo6h6mZPyLbd4i4KmRVK1wc+ieK9SO0kE1NdAu5ruyzweR/6/owSDtPq68WfsdxPQF2mgHJ+YhSk2TPKKTJafd6DzVB7pRMmmn2rqWgeHyEw9IDDmYE4mhJiK0mBFcOsTCkp7HShODKLA1DeqJfKSRT0majRb6C0e0hHl04g7zgC9htUa/TsrYVt6IB2k1cV0FC4WvyTqbSdOGojYopXKUQzZKOGokV9wSUza0B9teFaY4buCiabT9lsXwAJA67owdxbR3vJHryk+lA20UG/J7uKqnNcTMC0NkJhMKKaBDtEkzZ4eRbT3b/aAFPkC0ERHwxpFDJH6UYEmhJ2sBrfBhmJJDQxfUSWlLgqnHZPV9l9MxFAHzw5g4WXTuN62+cCcDK1WUsXjiBUQW53DZxEnYAbpw3mbLGepbt3cc148d5sFRgWVUp1wybxA1Dvfu5vn4rc3NnEDbywfgUhUY7EzKvps0uw4y9hS94NZm+GYPmdDpXb+dzy7duRQwfCsnOucjIXDqiUS84VpA2NEJbXCYFwAICgnieCwJ2xarRcjuSnXMmI7IkllWTDJZbGZdWQEDtS3bOCbKkYmEgjgSEuxshdJSyT2iXkcNyuXHmONyQzjVLp7K3pp7l2/Zx5cXj+OjMpB1OYJeiQC4TglcR8Se4suASolYZFW0rGRlZTGbaDTTDBW2XLz76BeSoYQjL8dAXmSFiQ9NSeIPbbpvF7zZuxVUuT2zeQizfxVYKJRWkOfjyY0m8gUNaOMbE3Nok3qCd4mBTMqvp4Q0uybqLAvNxb5xc7GnI+D71B/exY00aV3xqCr/56pPYmo4WCXPbx67jr69s8zLgtsJotQkfc7wMuAVGOwRqBBiCgCWgXcOsDeIYJs0qyB4gZMSI2yEOF2WxpnUsmVozzU4mo7PCtMT9ZAmotwwKaz5gQsF/ebxHV+Nwy7/RoU0bEETNiUaVKQVC1yhcMJGDjpWCoxcvGkl9cx0IcIMCNC/7nvIpWhJiKwXTR+qgeYeTLr/iPQf5utOnT/He36LU+4tXhHjr35LPy2+TQeRP3uyZAX/83VNKOP664+QZ8JdPQ8LxvzlQ+zBIO4fVZydjH+yY3sPEP3Hj3B4t/PctmtOjhf8z0+f2HCbeDWJ7aeFNVDbvTKWDizM/noLYCgzyMr6E8CUzFt0e3JO9v35JV7sWyhE0VE8ntyAJtXUlhw+NZPRkBqyFvzdcWBgajuOiGzq33T63i6lj6HzsqlldMzt1jXvnzuTBNe96jkbT+MyUeTxz5ANcpYjbYTQRxcVj7MzJ/QgHmraj8LQtOekfR7QnGTvCQES+j1BNSN9cRhd7upL//NxvsEybHS94HX2PJ0t8JavKe2huJhfl87Pk5rZzWzUAD697H9NxWFdWB8BP9nglv+XVb/TUlfgOU9n8c09z07YrldnsrbkZyNX7QHNgby1C83gRQpM0OE4KNSGloM5NIDVwlUAKwbixeWxtO+a1g/jszqEeSCFwtAY0u4u4HtE9YbC3BOND49HU1mQnowvBO5BaUZ922f76ph56n/Ej8vh1suy6Z603CeREdll74GgPgGlxcCQvHn3F0w3WvcKX4YK3S+qgiQeHTcFjk9elx+pwlcJVYBuOF6ABjjo1xLaibWVSJqFQOBhOCRKXzsOcUE0UTv4ehZM9lI/3vkyIxdm/swraTQyvpZuVq8sg5uKPKpAe1FbFFEaH1wG7bO8+75AZ80G6SUvCoDlhoCFYX7+VeitIrRVAIr3ypw31wsB1IFHyB8blJbxpL0qx8o3f8/SG+QOih+sNse3NI7vrk5f20J/dfNlUSpJ+RbN7cgS7+xRD07hj9BJePHoolX3v7le6cwR7+5TeY93OFmp7ThIOYYGyQChc16T+4DIKx83oVxzLYK4Pg7SzXFXNr1AY+zZSOAh8FE39Ht9aM40j64NMm3oNk2Z1MHOun53bhzF03NIBGyZ+oo19IBED9n6Xvz7zKw6v9fNEyTr+8Y9fY1/pa2zfmsv+/eu5/wf550VjdCYi+RPprs5UD3fV6LHnxS6DBU9tPPoiaeGk08Gi5uAyVqxs7XeB/ukeaE4HhnnH9KmUrKtPwTB9ZwDDDIc/imgvITWZI3hrD9t0t8u5DPQ+U5J6X3b58zP7jy8lHWsjMDK9q5RUHyM4NMj21hq0uOCWqZNREYcXK3Z6paTirlLSkXaHqZnxVCnpUBwuDrlks5l6RzJ+6QyMR3TGXNTCjEVRxi8JsXuv3u8l+VOVfwcanlpe9x4KF8cSrH8tnSUL25DSwbYlm8uGdM35Tc6TNS0PWmvaNs9v3UnCtlN2f37fttRM2e6fzdOB2BaM3npSnzKQzQp9rXOxy9k8LwcaV+I4JscsjbFYaJrAsQU//+FhLr1rCz9/ZgW27aLrkq98aWnXgVvTuOfyi/lt+WZc5WIEQc+L4SgHQ2j885xOiK2DLrQUxLZzasxgQWw714cw27NY5W3lbK/+Mh9JP4AmvBb2PaafMkvv80R0oQAIB2r1gNhqkll3LWbbrqO4rlceHLlgJLvrWzwxdoYgnuWd3KQQDBkeobyz9ItgzJAQh/XaZLEKriqO0KpKcJPQzSuzQ6SJ1YDLOMNiss9KlrokDdqibmn6wS0l9V6DAU8VSmP3I5l87cFKdEMhhMF3v305O3dkIqXg5k8v4E/rPJK66xfEinQc5TWWXDZ+BG/EkxBbIVk6fDir3BJs5fHovjR+Fps7XsZybbL1DhZllOOdxHVy/FezQH8BiY1C57BxJ/UHZtCwfT/TFrRTMPYGSs9gtMv5nIvY+1nos3MuSbg/UedcX3bRk6OAOoOB7qDh07HLd765hF07MrH9GvHiNA9q6yr0tjiNF4VBEyiXlJ5VJaWHaXFQE2PYrkM4qWfVpFdyb2v38bGkntVRgurYED6Xsw9deIOZ1iUi5LV8mjE5v01q9XxUNv6UDWuCA85Y7MsuAwVP3bzxldQhs7Ekwj/+8arUIbP0YCFt+cEULPWqBWP5a3UlKgmqDcShYYJCSTCkxB91sca2g4QMv8XYnGMIoVCuYEnmbCL640jh4CqNouBtzJFPoQnPPusSaTS6XNA+ZSC75f/42C/Zuv0Vjqz1k5MbYfoSkx3b89i7N48R80aw81hTSl9SNCGLUrM1ZSf8EE3CnrWIiZ5hdkFs8/0kjC6I7YJ0g1xjPVJ4I4Jzg5/k8qFf6/d7eSKY7YdB2lmsV6pfY3vtU/xD/g504YUTH8QDNLkC0FiUfjG5zgd4qXsNkfb3lO68/IQP8/mcYdmyp5T9h1cwpngJQd90jux7h6nTaykYcQ27KwoGREvRV7feb/7f20k9hYL2FhKXjMG2HWwfdBRqxzkdvCZST/A6scObia4gEpdcNO4wjrJxlSAeC/Dx4RtwldVN8CpwlZsUvAb+R25w5/JMnMhWW/8S5YkvrWbCxW1MXxjFDF/Ky696G5NSCjugMIdno4B4OiSyZGe3A8rv0lFIamPz+UxEgZkCrBb5OhiW3wAoxgaOMSlUndLjZRPg0nADWvK61PLR5Pp7ZD0vFJvAwBPu+7LLS6947yWR6cfKDaScjW04RIt8SbG48iYNDCFlF7/PhKRdhqS1UJzeknI+BbKZS7IOpOyQRYDF4YaUnUotPwXBucftXSLt84NnjEFaJ/ps1pQe4pVn3sPOjqA3tnHJ1bNZf6iOeKaG5kqU30ciHcxMweRRhew+VIeTZkGGw6SioZR3HCQSidLWFmbG8NFU2+sZEa7nUDSXOYXj8amVjA800+E6pPub8Ar3ffuUgbLLQOFxzmQqSO8D1PQ5xbx7pN6jnyuXUelBtmfbnt8AfFGXpkmAEGgBFz2pY0XBND0Ho2AbQnrBc75bzCX5r6IJB0dpdLh/x2cm3Nvv9/nDiQPncU2KTODl6mz+rXYak4KtTMu5idbYM0DfqfuKvUMGhDeUrXUwN7wHOVmx336Pvc9M4R8+vwndcLDr/sBvn7iRHfvz+l1LMWnWU8eVVvdtreD1Z1fjtkWRpslF2kRKazsIdliEj0oy5hZx7FgrMq7I3SnIujiTw7WtiITErQjh5Ni4CY1mS4foxRyxy2k1/cTMAHtzr8VRm6mz01grFbfkmtRZlcmgefCbF+DEjv9j37mVXWXVPPO39cyYMoy771/c5fhnDuOizo2urop5k4ehfA6Pla1iTu5IvjhnLuVt5bxS/RqTIhN4YMKlqU1uQfZscgJjUeZWsu31ZIfn4kwNYfjWU7YtwoGSLL746LXI15dh2x48VRxrQgzP9kZExSCRAWiAUvgbFLF8gdLwtGONOuSbKbh3U1OYYXmNKBR1ZoTxQZnMaML2WA7zQ00IXFy8SR25mklfaJDBsklv59Npl627q5hx6TgmdwZkhz27mH74z43rmVc8jPuvvIStDVXH2aW0rYwriiYwNjKMhvh2HPv07WK86R1qtA4Ly/WnNHqBRouOIT4AlBIEmxTxgq5MmtHiQw1xsF2H1ngAN9KazPZDeWsBszMPognPLrtiuSwMNaLjZdKaXB/DTlB2HMjAtaTszR4lvpqDy9i5PT9V4huIUWGT58/oE+tQsraMt3/7JlZTtKvE98vl+KsSyQy4hmh3icQ1br91KvuqV2K1gxEPcPvi6Ty8rpH29lCqxPeTPRUc7shJlfhePLqT/a0Z3lg3f/tJu4EHIosVOBjk35f+juzJbew8mmBBzSf4r38+wJgxx0g01tPQeBsPPXZs0KUrdMTYcPvPSKSH8bdG+di/fIraJ1YQjQj8cXAzQug7XewswT1L5/KHzZswwya+qI+PXn8ZP9vZSjitjWh7hJvmX8czla0MC9ZQFSvgRzMvH8ht6bj1YZB2FmtsZCzfmvD1Hh/27LRFZzdU+zzyhrL0FqShkkJqxaz5VeiGg6aB41pcNPow2/blDgpw8KrbL/E2t2Sgev0NM6j65XIsy8VAct9ls7xSknRIi2k8cPEcr5QkHLQWHypgQFK/cO3QefxkT2Oq3Dc1eykvHq3Fdh2iUsMJ3URr8484UdB8qg3ufGY2s4woJWVv8vuvraN6k48pixymXQM7tufx3GOFZwSfNJIltE4x+sk2udMNngF+9a3/xmmLEnBs7rxsCs+/vBWiJhl1Ohd99CI2rq+AmCBQIrn46tGs3lEJMYW7Lw2z0MJJaCQcH/Mjs/nb0XcpixdyoKmI/zM+wgeN5dRbIX5RH+FTQwopj75PkytScyN7o0HOVzBwquzi5o2v8NfnvJLWs4/0LGmdyi7nAhc+XbuMnDqcd/664dw1aYU9NWnD029NadICcajrpkmbknVzn1rK8wVPPZ3n90DjD3ECJmKB4G8/e41v/dNhckIWi2ZrPPj9LVx612cGDPrcV2a3P7W9pzvWbSBB6SDIuyHKtT84jGYoYurfmb1kIv/wxc0YhoPj7mZc8Q3/H3vnHV9Hdeb97zkzc7t6b7Zsy0WyZVmu2BgwYLDpAQIsm5BNYZNAsslmE5IteUl2UzdtU95NQjYJJZuQAAFC6L0YsNx7L5Jlq9erq6t7587Mef+Yq2vJYFuyJdvkzfl8/MFj+WPm3t/Mec55zvN8f2w7UHBaHMHR8h1TegxBBv3gkS+MWJdLKitGpMvHk7qczfHXRdopjqEcKDewHKBm2VJyUgE/zOwFV1JVM4HQtBj2jBJo7cHoj1N2wWRWRXsxOk2cdEH/RInRowgNaEydmc0q9iO6JcaAl4VTQzR4Ounq9RMfSGNlmUGgYy/7+7LJM+DWvBiPd/SzJxai28rASTSDpnAswfq3y1hW04pSDkIYbDtQihSuhUxVehprdA3Tcn37ZgdyWK0ddl9iBLM8RWzUDmLaNhHTh0RHYQMCzZmDEK+7JGolabUXpCC2jpK0WCWUwbBdatXiGn78xs2Em14ivfhSJs9dOu7E7sEdeVN1DRnz7k/tyBOxfn76ie8RC3rhd29w8+2X8ccn1tMfEngfWYWTESAadLDeFHxg+XwefG0zMX8cud3htgUL+PXGLXj9ffyxcYCbZpzPk0depMzfyhOHCrij6v1s6fwJFZ5OnunyU+pvwQkkWPk/sPObWXzxG0cwPA43/43Gl/9l2bgWo49k8XzlB5dSPiVv2OS2dNnM4Yuj5ccsjhYcf0e+qKB6mC4zs48uWIvTKvCmbT43SOrp/8HcT1nUfFyw69s5zK35DgvmWtx088l1GS9njhMBOU823n/M9UgCy9FS6GsIDvnzoR18cOabKaQOoJh7eTdgoWmglENlVfMZhz6/2xgJPHVwnArzcXhcyaZmmY/WwPCY8tyTD9I/IQ/R3gu9UZ54aROdRTpGl4KIxaNrttJZaOPpURCxeXTHZgYK+qFXw58dJ6Own55wgGh/kLq2Fzkvewf7+3NpiuZwpPdpLg8dYGcsgwPxDCasiKEZytVFKRZecAQjufkX0mHe9BZ21BeeFkdwtHzHM63L2Rx/XaSd5jhuAfjQHc0jdZjTi9Gml3DF1dX8etduzEk+nBk+zCK3ZV0KyS1zari/+y2sMhtZJrh9ShXrzMcoK7WYUCq5IW8Zjvo+lxQkuLFQsTQQR8Pmrnydt507KEpbMawmbdatNaxad7QmbcWCGLueehhae3jmmQ189Ae38eBzGzE6TF55/TU++cULuf/tjejdDk+9tZm/u30J925fS393gN1pQXwTI3SHA9QNtPPV5Z/n9Y4n2NeXTWu8g/877wu0RH7HzoF0Gqyn+PRk+Y7sQXnx16HYBF5FmROoqqkdN2J360Yf/7l8S1KHuqQucRLmQYQ4SDw7ndjccpCS++q201cdSPHRPP22W78g4ad71+FNs3GmR0HCvc1v4E2DmRWHkFKxa+A33Fa+BykcbLWbznCMf8zdiC4cHARvxXx0I9EMWHh1H4bhpIJOTW0H2VVj25k2Wlo3nHmSeutGX5KiXkXV4k8mNzWv0brzELGgF6ssF9sW6AmbeIZOOEfnT29sJWHZxEKKcKbNI5u2Ylo2dijBQEaMR/ZuxrRtgsF+sjKiPHtkNQXeNiYGO4g4fiylmOIJU+kL0xN5DKE5KcbdoqvC6LqNlCPTZTw7Gc/mOF52OaMsD5GfjpUexDOQwDA0oiFJIsfDpFmFbKxvJeK3sbIEU6bmsaapibg/jspyqJqYzdb4bvcoKRbAlBrFvnampHWxIHsyza06E/UuKv1hZgbnsC1hYFsmdkKw4fksLruoH8uysC3Jzh1FTJufybq9TSBw8TQ52bx1qBEEeBMajnCwlIMmJFWBItaG9wNgaBrFxiQa45sRuE01mpyNrV5FCPeoV+GglA1CI0I2rd2/GlFTw3hpcaINyxP7mknMKIHpRagDR1iTY5HI8iMm+ck8HGN/XheJHBCOIKfJYUtBA7ayCeluM4mQijJHEGnO4PzCN1AkuEhprG2r5iNZawGTq9MlP+yopXb2zfTzM1AOmjSYUHELip+4UFvh4ZJlHyIciSPb+5i0eBIdfkmuMoht6OZrsy5kS38H3h6YqQr49fkf4k97tyJ7NUoS5Xxp+hd4qWktPb1B7HgtS4vvYUvnS+yL5FIQzCdHrmdnPJOieBoVHkbVbPKXMv66SDvNcUKUwpCdplLgSNgR7nN3foDlUym2kECxzWxO7fwEcEQdxHIsFAqBwpabcCx355erW8gkZ0hiszRdQ4QqYEEF8xZck7q/qpqPpn4f2fMY2q4j7r1qksY3DhA6EHXvVRMcWt9C8JByr6XN3u1dcMgDStEtfJhHvG4Zq7B5tjFBXXiqayGFzXMdfTTGS11YIqOzWznTuggpUIVZICVIQcInXKhWssLazHEZQyRJ9CrHTv7cvc7KiiKl26maa4TRhJM0q7aZl9aGLhw0AShFnqbodjQ0TcMwLkHIP7vwVKFxwdUfI9YbEWBj6gAAIABJREFU5OrJBTh5aay4Yi4yZnFL8WTi2QZXLZ2FHocPZlURz4Tr5sxkX1crLzTs4rKJMyiSBVQ4V5KZ0c+lxQvoM710Ju5kUqiD2TmX0pEIstX5BJXeHnLSrqTLkXScxcADJ97UqIBObMmMlCOEJ2rSWRVASdjg9GDkCjqnufVX60Ub3lwHu8JdPO+SDWRlK6ZPbkBKRZbRwMq03Ujh4ChJa7yEv8/egy4chDjMW46PDksikEys+iBSusDSkeqyr7WD53buYUXlNCo8uVzvnY+TYXPd1GqUqZ2yLmeLpH4iXQh5iJ1f6TLTdMm119byy42bcZTivq3buPVDc1N4g18e3MhHr5vN/S2rsFE81vMysyrbcHDxBu8rvAAz/gRC2DiJvXyx/DbKEz91UUbWPeQVfpmt+w9ypM7PDZ9YgZ53tCZt2Ypp/PQTP0MPeqEgk5tvv4ynfvQ62T5I5Hq45cbz+N2rm+gPgTfm8OChrRD0o2c5fGDBAn786ha8/glkZ7gZ8Ls3bqTAu5iKtC5WlK3gu21PMcXopNn0Uhb5HggboXRCe6/h4jl/QIoEjjJ4YeuXKJt4ybjVwwlP7Umzl7ajQAoEGhPeP59N4S53/tKgcMUEmmJt7qZTg/ILc9luuQvZdH/MxbwI0DS4YZaFEDYCMFDcMSmBJtzSFgH8fckscnM+Smds3jGLo0Wp+40fDPDKvx377Dzzjprrl57YzqfuuISnnt6Padn8+ZU9fOHmi/jR6jZM2+b+dQeTGfABTLueX/n2JjPgB9Hl1hH7rP6ljb8u0k5hjBXzaTztft5tnKl7lUrSviqD3EWur6dyJJ0d88nNGoTaajS2TGFKBeOGVjjZZ73+A0v43RsuysNvSWzN9S81dJ0PXDjI1FF4dI2P1szl/pZVOCg8msbNky+iLvI4CodeOxMp2lHKRhc6JZk3IyK7cJSFEDql2V/GSPS591hRgzJvBrMO6VlE7NDwupLK3MxhWdjZmbnDjvhqggV89+lVmJbNWn/bsLqSzOV9fHvXH4bUlfTzePPPhtTfNJ0TE9wJNzVeDbSjOJayCyfR0d0GuC4OE+YX0NHf4l6jmF6dzXYz4kJtlcOSaSF6ks3qOXoYPekIoQm4NjcNQ6nkYtphXuY1HFZlQ56dpYhR6PKzpC67X24cVixdeXPpsGPX0ehyNknqJ+P22fYgmFaxo7PrKHbWstnW246TbD5I2DY7os3Ja7ee1cFKauhgO1sQwmZw85ahNqIlryFBBl1cUPOloWexFE6tpXDqUaitGDCR3f3Urz3oahJTePssDm5rQetxCHUp4pnuvRDWEH06O/K7MG2bWJ+fSCTAmoweTNumIZrN4WgO2cFeDsWC7IoFqPA0JxlZYDsmlvkiyomDBo5j0lD/LN+7t2Nc6+GGQbhN03V8SHYyHjtPX7dsTgpia+gaN86bzbYhiJ4bp89h766mo3B0eRSOXpN7OfU9ddjKva/c9GshsgVwGWE5aVe679Mxtm4jhtqOEfMxYVu8teVhCkoTIBxsJ0HD3j8wq9BECAelTDZtfARPZsGY8h3PhfHXRdoohzI3orr+jsHgllb5Da5/6XLi620WLcwjVLGbu2sWs7fOy8IlA0yasIaqGTN5a0v6WQEODh0nK3odi7qw17a/yZ//4QUe2bSF4iXlFC3XaNqazQP1rXzhP/+VXfufYv3uQvYe3s6n7ig4o0Xyx37WJStrjts6vqy5YthnvbSzYthnXd43bUQFvpmeWjKHaHC2iN3bGp/GFzAR0jWx7mp7gpDvKDy1pelFXtxgjjuXbDTOF0MJ6oau8f7aarYnIbaGpvH+qXPYlww+hqZxefF5PN68J+WVKcVRr8zM0HXIyFYGjxgDgeuYPuSdOVVdTrdYeqguWdJKkdSVMhFmHdsOFvDcMxuQ7X2suHoue/qjvLRuD5fOn8aEmQX8adN2vD1w7dyZJHLt1FHStdOrCeVEU0dJl5XNJy63s6/3dSoyLuS8rFw6+552j5LSVlCzrIri+Sb5cyO0bQixdOVsLLGDyqpmtu4tYWP/pLNmoD04RrPJPJX6qMZDm3CUQ4eThuNpQejgWII1q0pYVtMKwsGyJRv3FJFIWPzvo6swNRdkmzAcTNvNUCVsmz/u3uRCbZPXLzSuxhQWCFf3zR3PE5QmQiiyZMLVWwAk6Ox7mv0T5/DZFz9Gx6u9TFuuEw3upWlbNtXTL6GyspP5sxJs2lOUyuidaTj6SHUZCzcb27Fx4g5rftrDFXcrdJ/EMuGJB/1M+5TA8EjMhOQXj5hsa/k9kXzXT8Rj6HxgSTU/q9+AjcKj69xePZt721fhCHfD/cnyWlYPPI4SDjlGlMVpe5HCQRMG+cGvsbXHl5rnztb4KydtlENFfo6K/BCSB3uP95bzZG8pucZA0ovOOqfhg+M9hoFs83MQ+bmA61FatbKKNfua3CNHYHJNPpvCXa5HKDBjRh4bBlpxAD3NRM80k0fBcHlRGr1yCMQ2M0hIc7lBSklqApVMlusA93irx3MbInj1OV2/cCKg7cngqSR37oOZzaFA22PhqVJJxI/auexf690CYGGw674ZfO7ja9F0t6nkcz+5ms37ctEQ3HR1NfftcqG2Ugj+7sI5/PzQJtcey6fwFsSwHAeJ4NNT5rHOdCG2gsG6yR8nm0o0poU+RiU/SS4+DLTs37Bh8+FU3eS8BddwYMezhFtfIb3g4tPyRRyN68GJ9B+NLoPYgcEgdCLQ8Ml0ydEFiw33KN22JesOfIW7f95EwrTdzuZDbXReWIIS4HgUiRL3WFg4kNPkEFsSJ6FscCCnWWPqokaXJ+gIIm0hbq1ahRQ2mUKxLGACFpZy646uLP0gB7qOUtYvLvw8ob6vgTJBeGjo/8GwjeZ4MRZP9l6OJ7Prhbdf5p5f30dsbYI8f4zrv1HNE7/qpWlHOrNmdfPhz2bz00dMtuzLxbEc5J5D9CwvB0PD1h1iBUmIraaRcciib6F7FG9IjfTDMGlePUIqNKnTfTjE38x6DU04ZEqH8/0xN/OLwffaq9kTC45oM3quxJXxZD7+/s+Psfo7G4hvsSiaF2f+7YVseMlDy65MqmZ2cun74c+rQ2w7UODyHTNl8igYpG0SLtdACiQQsE0SE0yQblwpsaMUlXYgJMP4jkpJXmmr4pXWqXg0jV+f/6FxX6j9FWY7RuNoJi2BrST/2TqTvWYa03ytVAabOFvwwTNJfj5V4ODtd1/DD37z6tGgc+AIvZdPJmE7CAVpLTFaFnlRAqTHxlcUx1bOuwed5gxum/0GDgnsZMHrtye7Ba+Wkvyyazql/pZzftF8JnRrfKyVP/3jc+RV91OyOE562hLefNZh2vR2aua00xdYxMNvSJQCHIVtR+ifmuky0ByFFBZ9E7V30rodKFVRiie4EFtHQWEiwnmFexFCYSvwJTJYmdmElqR3t+tXsbbv7fd00BkrgOe76dLZ0Mas6ja2bc1Hll9I3Z4jKR0SxIiWB0EKzDSHRBZJHRQBJ4FdflSXErufkomdrtm2ggK7l0X5+9EEVOgmVZ5Eiqj+eO8kDH8NjvUSg/PV2YSnns0xEt3v++9n2fT7VYiOPqySdHKvqKFrVzeWxyFWbFBVXsb+nR3Esy3sQocZRaVs3deJP7uf9Px+SnIm88bhMGUZbUwtbqLBziJL2ixKbyOYNo23Iy3JFIDkuoKss6rLmULijBaO/m6bJtO0SOgO/YXJRZkQhA5EaLnQj5KgIUhvtImeNwDSdbRJOwxTFxxCSEWm1s/5GfuQwv1uf3VgCQ3RbDQEn6m6mI9Pv2DcvmcYA5itECILKAYGgHqllDOG9/eeGcJTC9n3g1lHi1VCg/UUEvd4RXD0eGWs4YMnOnLy7onyr5/5GrIa/vDoH/n4Zz/Jo888TN60Nl58JZ/rbv07nlv1ELMmH+bn95ZyyZV/O261FCfzytz39m6eeLQO0d6L0Rtl4bxpbOvqxehKIHWdnC2KeAb4whpTF5azaeAI9GpEIgaULqDB2U9Pr9s6/mb+TQywKdU6Pj2rhCy5hp2xDDQ5gEq21J+NxoXBcTLNnew0rOnFONlprt4dLcxfPpWqQb3DjZy3uIxZg5NcvJ4Fc8qZk1PMvr59lJV0kB7KoTO2mYBcx40T55PjK0OZG5ki6piSu4idcyt42vMS7VuD9OzO4M57LmPNyy+xZ08eBw8Wcfvdy9HeeAXLccBxMPZ1IioyUUq5VjdtNpEyiRKgBjREunCdIxT0HQlCaRdO0upmZ0sxCwsOABa2kqzry2d5RgvgYCnJ3oE+7LPYUDISXRyfzsbmHmpvWHQUYnsSXZzSOCrNLe5OD0VPWZd7Xn6JXbty3eDzgemsP9Cc2tQEDvUwMDHo2kMNgMpOZtKUINCsE5tku5k0BbHWdGR5L7ayUI5gX3spC/LqAZtWy6DS474XlpLsM7O5Mv/kx5BnYuHqa/DTuXUbJYsGCMjaIWUj9RxomTLu2bzKeYuoWnx96jl5t07nj956Pl/81UskNEmwK8ZHLpzLPZteItHnkBm2ueHman6493XoAiOsccOlNeyuf41YVxA7nM7H5i6krvkVDvfm0xLPw5M/wBHHYfdAEV8vvRg9+sCoOoPHK4vVsWdvKrP4v9/1U3B5kILKjpPGlDMBR3+3Mp3nntnAC9/9E37pYE3M5G9vu4xnV9XheTZCrMTDrVct5k91m/G8DHahw98uXcRv125j/2saoeIoO1SA7dokpua2ccmUlbTG96DhZsAX5JaP+5x0vHHCRZoQIgP4FHAr4AHaAR9QIIRYDfxUKfXKuN/lOTYG61fKgC9Nrxx3+ODJ6rWua8sk/fseV00L1tQ9weX/tgqpOzjWHlrXefjOnU+iaw6WvZ7/fiMf05LjxhY6EXBwxdVzeemHT6Y+97WXzqH5xy+RSNgQ1HCiGr6Ie3R0Q1UNu5/uSX0nKycu5N9X9x+tI8m/mG/vMlPXJRlX8nhzB5Zjk2t4xnXRPJIs1mvb3+TPn3mBgU0JiuebR49Ptqczq9o9Pvn5IyZb9uedFq37ZEftI5nkiMf50VddPIuvP86t0ytdPEunideWaH4v0TRFMGJw098s4N7ta1HdEnvAy2JjEQ83vJ5i+Sm1hNfbn2B/XzZhJx2PVzLN2+0uBkqvp6dn21ldDBxPl3THZKC3k3Vtk9h6IP+0HUDGQpfB4CPb+1jxpfcdvybtymNq0uYfU5O2cD5xeRX7el8nlHEh+pCatJsmrThpbdJo5q9TfZYTtkWG6OP8pXtp1RSO/RB791Ry3WXrsfsURR7Jm29fxX0Pl4yrY8rJGjZOt7b32JqxY2s8T1SHPBpdTsfNJtOXYGpmC4GP6Phv09Hvi7HyC5tHFFPOBBz9eJigKxZNHabLRedVDdPlkurpw3RZNmX6cef0qTnD546zNU6WSXsEeAC4QCnVM/QHQoh5wG1CiMlKqV+N1w2e68PcZhN51cRcZpOzuIbW3Vm8sPYgsxccwvEVsHF7LbUzC9j6ah392T5ixWn4mvpY9ewWwhmK/kIvwVa3GDmaaWLmWXjadZ7ft4bMimb62oLEuoLUHXmF88s3sa+jgCNOBlWBFuant7I+XEh4mgcMXOsYFKVLe5C6g9QAHM6b34ChOWiaAhxWzg7z+81ZJGyFx5QoSbJGBqopYL04QMKx0aRkUW4tR45swVE2UkgmpV3Ege7XcJRFp+3BhVK4WZODA+Vo6sRF5JXzovxybSVb3gpROvOKcSN2+xr8dK49uiN/9vdeFi75TmpH/vjvj/DCd/+EagvjlGUw587lbHlmD1pnHLPYQ9Wts1j/ej2OnsDemtx1vbANPSPMQ4ejdKkAPX1+pmR3cvtCP/fXd3Ewksm8jE7+ZUaQxzsOsosA6d/3kPmTPlZ+pZGEp4HL/02w894ZfPFTG9A9Dt+5U/K5H1/Nhu7CUy5Az9R6T5o1PNkkd82Ni5lSnH3cCe5YXYZObnPKi1lYXH3MBHfeO7IYN51m0BmrxYBJ4h26/M1XXN9XXXO4xd7K5358NTsbCk/LAWQsdDmWUVcFvG/50QXEUEYdvBNiWzG9YshVMYsLLktd5ebUMvQA55Q7+MaomUIJRa63b4hrisP88w+7DDsBuqaoqWhiR/3odDmVRcHJsrljwRY8li84OIbGFBZD6+4stqytYPaCLHJqSHowv3tceXzVRlpmaPiaHHRbMJBpkiiw8bTrvLRpL3pGmIy8fqLtQZ7bs5fCtBYmZ7dwsKuQvR3Pc1vBZtaE8+nAi5IOQrgGl2UXnDymPLQ154w3k4yHLkM1OReAtidcpCmlLjvBz9YD68f8jt5D42RsoaG7mBtWVNF5fSVKk/TbDrKykEMDUZSETgcWTwjQo5Jn5XqEWOE+ipRNoSMwd2RyfuUbOMrk0gqNt/fX8q2qVejSxnK2sZF/4deH92E5FoZmsGDqtRzo2ozjWGhSp3TC+xF9O3GcBFIaBBO1ZD/yFP0FQYKt/Vz3f67nt69vxHfY5IWH3iI020c8z8LfaRDPDrF39SS82WHiXens0sv49c7lTMhq4lB3MYnzZrOz6zFW9+TRYL3JjNzHTrpjzc82WX61B5F9ETD2xG5zm31MXVwU23Z48BfD6xfUggrE7kP0XDaJZ5uOIKoDhA46tF7k50DXAWStjZE/AAL+p+cN0oqgIlm/kK8E3UdC3DZ7FUI4fLBc8nZLFd+cvBavcPjHXMF326rZ56RRliR2Cw0kLrFbN2w0CUpzqJ3WzM5VxadM6x7JUftIxniT1He8vZsHX30suQj8GDs2H+KFta8ld7mfdOt9HnyWWNCLGDDpz/Zx7+sbiPjAiCnCmYpfbFpHxG+DYRGb6GCbOqJPx8gI80zbM3j9CWJ9forSWtgXvpcCr6Ahmk2lvwUj+gsm6lH2OmmgM0yXfC2BrjuuJria7DtSMqputPHSZbzHSDKXTX4DkZ+OTG5qEnNysZu7MDWLWImHCfNcqG0000SVOEjHA2FJen6MKRU9bI3H6An7mJzdyRUTorTV91AfyWRuRmfKNWX3QJCOmNtZiaZwbMm6t0pZNqcVIRWWLdm8rxhNCtKbI+hSYDugSUl2m0KXEhsXZJvR7kP3SWzl0G/6EaoPRBJi68xJQWwFGnW9k7kiVIfEwkHj7bBNkdp32k0Op6rFaE5chsaVsOFwpDSB5fgQc3wU7ojRuzwGEqJOguJcm7D3YMpIfEkgj8sDL6AJm0ypuCiQABIkHI3P7VuGLXVsx92cL5n1fgbkPceNKbOmX8e/LY3zUt1OLl1UyfvmzkaP2LywfTeXzZzOjdNq0fvhxYM7WV5YSU1FGi8fWkukLYgK15Ln+QZ7u1cxNWspmaFL2T2QTk//q2QGlzHdUzuquui/tDGimjQhhKGUShzzZ7lKqY7xua33xjgZW2goH2ZHuA9haG5votRoylKIhEheQ0tWPzIscFCkB+IoYbuTiICrlyYQwkITIJXiH6pjeDW3I1LTFEtCUQrS7xpxirzuvnpkYy/B+m6kJml66SBZ2wbcXXCOjmwV+FoNhBS8tGkvvW0+nFYvmhA8t2cv+7ty2NuZjSYED9bb1IWrcFCUhMJjvmM9XV2OZ2OjcL94c0qOy+YSoAT0l3tcs2oBwj8cYptWEkVIhZCuDpUFTWjC3eVr2CzLbsSQyV0/ikpfmIZ4NhP8F6JpT7jBWmroxnKE/ANgIaXOxPKV3JUzhV3b6zHL0rnq4lo8vRYf1iqIlunMyi9iYNsAX550JZ2BCJlWiOZdCa6f8GHsYCfSzKGp+yBTclqpyb+Yg/3ZNEQ+x4L0NhxPFZs6mqhMSzsrQWdwjDT4mAkLtWRGqnOu07BhbhppDf20XOAHvQ8x38bIj7lF8sok44hgyoJDKB1mZkDPkTQ+OPsNDOlQkSFZ3VLFNyavxSMdLgwKvtc2m4Mqa5guXY4PpRRKOUhpMLF8JT/66iXIrj5uDuRilqUzs6w4RVFv9ZvkO/4R6+L3zuShIz4uyv4O0/z1HLZK3lO6JCwbbWkl503O4Xm7h+dbmmBxiIF8BwfFz9u2cPudNSm8gS4srgpNojX9dfY5+5hdpTFbm82EjBdRWHxsso6uruOK0MtIEinXlFhDJZ2rtlGUzIA7U70093+QSTn1NLdMYWpJnPrf/YkNj4bJHpIB3/F8O6VDMuDrew6SXuBj7jUTeWNtI7s1PxkFA7yv5gK+9MwuCtMuZWpBC4fJpL7f4uGMS/h0vuJ5s4V9iY0Y2lZu9JxPv+8nCGkj0PE33cjyqb9JQW2fOvjPTCy+eEyL5De/egKf53fB8gyNK3ZQYuNCbpFQck0xPc5htwlBCuLZ7WhxN8MpJeRm7cOx3MbBQsNCE65FoJSKr1SWM+C/8Zj7nnfCDPgvb/keCdPioOdFPPdYPJB8jh7w7MZzt+Knyedoj97Gp+64hP95ugPTauUB/8FkXXQaHm0bX1mezbd3rce0A3i09Xx9Xvppe66+l8fJatIuBn4D+IQQG4CPK6Xqkz9+Hpg7vrd3bo/x4sPEhqaDNY3Z+ccABzOvQUQ2AwlEckde4Xmn/c7xji5qlgXG5b77TT/CDoNU6JqGr7eaft+rCAma1OnoXUSmfzWatBDCYG/nFF6vWzPmHaYjBUFquuSCGVN43u7BdhSaoXFx6QSelIexlYOWMNBwHR88msb7p1zkMnWStjJlwYvQZQMqSVPXvZchxYOAhRAahenX8i8lK6hYVEFnbAgOpKIGZV4FZh2aZxET0wJ88fqjgbL2noxhGdnXRlVX4vDtXQ8MqcV5csxqcU5njMaZQ+qS3Mur6NXiOIDUBennF9Kqh92etiGLZ4mgaraOo7sLaV0TrJgWxaO5Bu6GUNxW1p/c1CgMIbghvwRP2qfeoYsx5Dm64vJ3diqvfoeX6MujqCGtw3IcfnYKzL9zQRfHcYN5uCiEdajbrWf1KGyO1rNuM5txhAuxtZWDnteDE3ePHFEOE3MacCwLF19ksyjjANJ2N3Ep15TFl8DiS1L3N6/66L1OqYDigcfcEgXbQTb2YmzqQOuM4zgKT7OJZ0cMrcfBcRSyVWDtltg9kogKMNAZZE0ggmnb1HfncthOR88wUSjW9+bwHxuPkL04hNAVCdvi7Z2PU12bQAiw7QSW+QLKMd0snzKpP/wsX3+ia0zr4Rat+Bq//fopAsct1yllEMtzY2Ute3c1jwKODmAjhUFx5uWIUcSU8WQ+vrT/TUxPAiQkHFeX/AIXapslhjPmmlpf5Jk9iTOOhhnPcbJM2neAFUqp7UKI9wMvCCFuU0qtJuV0+P/fSAk9rZzvvHg3r254E+88jWkzC/lW9UfYuvtlimd14dNms2t7iCWzw0wufItZE2fw+r6MswIcHDpOVvh6KnVhT21Yx6tfeJIOEcW3wODaFVfys+9sJat8ISU13Sw87zr+4ZdNTC29gnnTW6iYfS1ffHTXWekwPbao95ZjOp7+9gTg1kuHQGzdF3vpMS/2FanF1wVDdDnbxG7TSrCt8Wn8ITcoWnaCrrYnSA+4mU3HMWlvepFWCsaFSzZat4sP3rA0xYQzdI0PX7IoxR/TLA8e7aiH6Y3TlvF486FU8Lmw9Brqezanalwm596CiHydwU1NZe6HEJ6Kd9XlTBuLH0+XNP9Rkrow69jUdG7ocrY9TE/nfk/khSscMF+Noxa4Ti5CCQ6vzmVmdT3gYNuStzZO5JJph5NQW401jcWYCYv7nl2FGXKhtqZlcf/qtzDT3HfQp/djOZYLuXUsVjU8QVH64OlCgv0tDzMnmNQak/bst/nY03fSvG33u8aUqskak6beTGPDy8yZ1kxhsc3kCTeeFTj6WOlyoudIQ7Lrv3aR+zkFOihHsPaPkhV/D7pH0hLXqZA2mnRAaHz50W42NL6FLgXLMjJ5Kr3L9XJF8MmZNTzQvxrTtkkz4lTmdwA2Eo25idkUFz6AwkKgIwdu5KocN2t6tjN0J+SkCSE2K6VqhlzPBB4FvgTcrZQ6JzNp48lJ29jZyOUfuYXogWaEgEmhLDrMlqS/pqDEn0PMagClQAgyjTJ0uwH3iE+CMQNEaFzu7WyOtkMdtBxsS30PafmZRPrjKRhtIDtI38DRa1/IQ8RKuJY+Oij96HOYGfAStgdS/1aeTyemIqmfZ+kakl4ECr9UBIR79KsAoZUyQBZRO0pAC+DX/CScCAmnD0OmYQjACYNMP2d0iIaj7N/cgEr6ipZMK6bpSDfKUaBJbK8GSiGEoKQki4bOHhePIQRl+Zk0hLtJWvkxMSuTQ9FOlAJdOvj1ZPetAtFkkVMedw18lGCgNUhZcR8ksyH7mnLpczzu9yigLD+L+t7ulA7l2Zkc6u9MXRf70wjbHSAUhnDI0I5qlukpQ7PrSaqCMCrp7rMIx/pI96WRlZ5JX383MbMHnyeTtICBGe8mMuDB680iGPAQiZn0DcRJ83sJ+TxETJNwPEa61wdC0ZeIkWb4CBleBuyB42suQ6Aio9Z9mC66Bj6vq4MUFE3M5XDrUR1OpIuQCmk4qe91UiiLjrg7Z7ybLtGkLiL5bYbNcva3xwenlHHVJRTSicZ6iPfrhPxZBIKJE+qCJKVJyOMhkoifEV0iPVFCmQEC6QGikTiRvgFCaX4CIS/9UZNINEYo4Bvxc2SY0Ly1CfwKmSbJzc6lvTGC7kvgCVnEEj7MmE7Qn6C4QNLYrYjEDVAKLRzDzPO52V0Fnj4bKzdJzBSKgMdMzU9Ov05eRo9rEwz0RtOYHOpFCoVSsDuaRUzpBIzEey6mnI4ux3uOrK4Y3fs7EUGQGRpO3EDFBJ6ARShXEO6T6ChCARNbptEacb9XFAjbwg5qDH75mu2ggu5c59VsvJqV+pnHtknzDaTeOSydXG8cAdTM9PHD//rmuHMCT5WTlhBCFCqlWgCSGbVLgSeBKeNwn+f8WNtRj+Oo5AQr6Ev0JUM+RilFAAAgAElEQVScG+piVq/7MiUnYOV04b5MuP91wqCN7Qt1opdDSTHiCevYSVaTzogn2FBmACEFOCCkICM7SP+ACcmFR2ZGgEjMTE00sfY+VKYXEEjHhWoODo8lh32nwnLrxAYnuvaIID8EIEgogRJuhkMpCFsaLWbju05whoB06SBQYJ87k1sgPcCUmonDNPQFfcfV0Oc1hmkY8BjDNAzoRkrDcFs33ZFunD6F6hf0e7OxZRSz3yAxoKMZQYQWIRL10GcZOBpuDZ4DrT1hVwcBSila+8I44uh1e7QHr9fVSRcWCielUTzRTkAOLp4V0UQ7bSKB8itiDGBYNnGtAeFTOKILlXDwSEV2UIIRBDyEfO6vwRHyeAh5hlwb3tTv/Zofv+ZPXRsy5D6jg0OERv3eHasLUhsWdHx+z4h1OXZRGe+IHleXeMJD3DEI+U0iAx4c3cFxxl8XS0Sw4wMgFDJN4DE0SDTgkc5JdRmqyZnQJZAeOHod8hIIHf1/BgMegoEh9zSS5ygAgRpj2DuY5k877jtYqpk0N3fR39KLMC28CQc9N4gVsZAJBUriBATCBFP68GUIogMKO6HRamWTnubQExfELAPT0skPWnQkBH22gVezz+mYctwFl22Tlp+OI6GpL0y610d+USaRRJzmaC9pho+C3HQG7AE6zU4CRoAiX1oqruQF0zCECXYHIT2dkJFB1DLokV2ofoUTB3wSgcKKGfi1XDrjPZhKMRD3UlKShejvAeXGZxlJYAe01GfSogor4D75li3xaCDcr5SBAS8h7wAIt068N+4j2xNPev3Ks9rkc7JF2j8DBUDL4B8opQ4LIS4CPj2eN3aujgW55Uz4+NXvavOiS23IUZyb0j9ac+Cm9EX2/excHxgz+OBjr73J9372IPlbImRqFkvvWsJbDxwmtlsjf2YfuYvCNO7Pp6OpkC9/roTtjU9SV1/ErvYS7kjWUji2TVTTuCt5zKjbNt7j1lKEkp/rzuTnkoB50s81lG/Vsf4Az37ncWIqQGJCJrNnTGH34Q76C3WCrRbz5k3nzZ7GFI5kbuUUNvTvIpjXT280QBd+CjLbqchtJS29ipaBQ8xLb2F9uJCK/Bk0xje+K7F7qmFR5THdRRoaInT7/1+07oDOnd88vsWRbUA4LymprZhpe1g7xXQXyA7Ummlsn9KSyhikHxZMW+h2u2brURanu753tpK0hpdxe9FTGNIh4Uh+23vjcUnq71VdTsfD9ES6EBzeGb6wPIsn+9sZtG0YL13e3TVl0Pzc1WXn1ovHhS3o3RNNlY1cNPN8zAOeIUd8l9LckDfkiG85m4cc/55OPevp1B6lahYdC0Pq3Pmt42s41NLt3ezD7h5iH5aRmnudMYkpo9VlaEwJ7U5w8/038uSmVcR2GIjDAT76fypZtec5Du3LI8+AT3zAxw9eNtnQmI+VLF1xlPOOmGJrGncdt3QlRK6mkqUrgzHlv1IuNqN5X596ZSOvfu1PyFgvZjCXgdpi/M0J0nsEl335fB7YuA6tRZLpT3DRjYU8/WY74TYf5cWdfGCFj19uipLoyqE0r53vXpRNSc7ys1qTdrLjzl8AzwAvKqX6zthdneYYz+NO4LQmgbGGD35965+xlENIizEjtw1pCJQF+sMaKz65AU2zsW2NrU/X8uVb3kJKi4StccdD16KXLOD19gYcpdCE4IKqQurC+1KdmiUZLhpvrO1JzpRn5bET3NFJwGZwcjuVSWAki6m8Fsn9X/gZshrs3R6cWBk5UzpT9Xk//mUTU0uPDKnPaxkXMOdoJvBM5fDju+5NoVk+9x8f4ge/e4W+XEFah+Kzd17Fd559mYGcBEavjunx4s3qIz3ZNffYrtdTaJaPLng/Tx2+j9pgMxv7i7hl+i1nTZfjuXOcji7HAqVH2wwwms2a7Orjsx/4/rjrkmtEk/Bd+10XA/VNX+MzFzx0SkDuE9Wd6khKHjjo1h0ZoAsd/RGN5R9d47K5hMGmJ2v55xtfx9AclDD4xMPXsqEx/7TqWcfClmw8PSvHIqacii6DMUVYitLfNlD8zzqOVGCD8UedlZ/cgBAWGSiW+uPomkPC1vj7h65hQ38BZqZKHvUOjykaghsm54xiE33qlldjOaefqXGqx52/Aq4A/kkIYeJ2dD6rlNo8Dvf4nhm1OWV490TZ/Og6vMuiVC2ejnnAw7qnD2Iu8FBVU0NzQx5Pb2+kdmYTs6bXpgp/u9/cQMK0iJYFiE3N4PFVG+nLtxiYKNC7ANPGUxwlMHGA5/etwbRsivPbmFzSSt0RB9O2qclu5rz8ZvZ2xNyXB0Fa0EQYbus1GpQu7kDT7BR8cPGcBnTNRgoFymZheTOWSuPN5DGKoWlUU8BatR8EDFgBJJEUxFY35xAn2akpdFrii8iQq9GF26m5Z6Cc1468MaKFa+U854RA25MRu09UHOvdE6V2w0J3R17p7shjuz+Z2pHXH26jt/NVMnKWMaWwlsefXM33v/0wekMPPPiiu+tqSpD+i1eH7boCD3u49c5KHtn7Br2tfu55IZ27bi3h5aan2NORzxv74Z/PM/ivA72s780hTY8z9QcehAbYAv2RZlZ+Yj1SdzDVHhbPn8O/3rQKQ3Ow1QZm5F3DpqaCs0rrBt4BtD2RLsfS/geBtnfUDtflcxWjL1p+Vw/YYZ2VY+DOcRq6nKgZYCx1GRw/+u3nz4guJ3JNqbt3dHiIEXfwKRvO10C3EJrAdmxK53Wk4KmOY7Gw+gB6Ep5qOwnmFDWy7lDeaTmmjAUWaKzZgoNxpWZZFdcsvoodmw/x+yRL0PFdMeKYkjAtBoqhZ7LN45s3ue9KYX8qruTnNDOxuIV9vQXst3KZk9PyjpiiAM8yL0q3UzV0pee5cQUBBZqFriV5j9gsLGti+9biU24mcTtMFSQ3a6dzxHgi15vRgobP9jgZzLYOqAO+KoTIAS4HPi+EqAY24i7YHhr/2zy3xmiBg0ODiC4FgYUFNF1fitIkr/ljaJfqKKkQtkPR9ijFlx9CaIq46GKGk8YNS19F0xyE2IZNLd+sfc3FBYhN7IldyvreHKJxP5qIAAqpSSYELkSTR1DKxUFMmngTUvwEpUwQOtXZy/nu1fdTUOTDnJbBB2+6jBf+ZRV5+RaJKTq3XHoRT/2+Dr04QqwtxFfooDBvOVNK21hadSV/82YjVRlXsqSghepJV/HF7etH1Y2Zn22dFGg7WjL0sboU3TPlGF1sfvjb7SSsbAx9O5+6o4CvvbIaa0EJ9pIi4oUKJQWixkvhxgg/M9/CmaWgCnxbB3hDf4T8Koe8GYLotnSE/wEurbC4cZqbCTKkw8+mSz6241La8SIMgZBuXUnZ4qNBB+UumgeJ3ULZLCpvZmtz4VmldcOpEbuHanI8oO3QnW3F4opkxqGH2QsuIye1u3Up6pa3iV89/Rb92T70I2H6JqUTqzLwNycIdlo8vnkTvdMG0FokdHFCd4689DjnFR5mTbiAbZF8wtOiw9w5TlWXoZ2B49XJePZ0eXe6vb86TnRRKXpDD8GuGMWXTuIVowffEZP0HkH54jxe9zWgtUi8PR5qa0PsD3UQbvWTHYxSUtHCvs58mvsKubVcY07XDlb35LE9UgBv2rAwiVGROi3rC5hV4xbHS6GzZutkt7MSB4TBpuYyJKAPCJwsly+pCUl2vYaeI91MkBKUWZNolltJOBYogW7OwdZex1YJlJK0xBeRq69BYY7YNWW80AyjgaOfMKZoFvkxg84rHZQmWCuPkJ9QFF3mxpWA0cCHQnvQpM1Fjsabe+bxrdrX3xFTpBBcv3Alq7XnSDgWUkgWV76PuPxvbCdBp+1BCJXSqLx0JfctvJj9ew/xwuYdXFZTReVADn/bVU28XHJVdQ1Gh8bslivxl/WzbPICIp0Bups+y8TiVmYWXsze7ja6e18lK2MZA325rO0Y2cb/XEJmjPUYscG6UqoTeDD5a9AWauU43dc5PUbDFjp2R2k7UHTbfJri7W6hry+B0gEEQgpmrwzRlWRAgcPVS10Suvsy2PxDrct8ksnrb80q5qnuJe9MkS+soDN28TEP8XyEWYf0LKLpfndX7D0Qxt8QoSn7IAnTwnNI4TtiUR9op7/Rh9PgJZ4pSGTaHGrJ40hrPhGhMG2bDZ0FbO4q5AJhn7bf59nSxcFti7QDwoXYSjd4R2doKM1J/du+qf0gVZLHo5g6qQkpHYSAAt3CkDaaAEM6LEpv45Gu6WiiD8exMTSDxVXX089PQNlo0mDSxJtQ/AilLKTwcPn8D9IbNvE0hqmOe/nf62/iiXVbCTRZVA/k8OvzP8STu7ait0rmBjJp4GCK1r20+B42t73C/s4CDviXUptzP009z7M2nM9EI5faHEaMZDjbFPWU1ZNto66vJFRXT+vNJShNIBwfxVuiHK46QsJxYBaUbBfEZ+6hSFnvcOe4ebq7eNalTcLRuGP35Vw65RYeHeLOcTq6TC0sYJvVht4qmRgp50vTvzCMov4XqcuiUuSiMq5bXMVP23Zi1nrRan1cO7OGX/WvxpxtI6sFH504izr1GIWzLKpqoizN2AfC5nKlMdX398zSv8ElQZNPlmoc1L+PXXjT8Jo0v4et216mIJkBn3ZlHq/tOlqTdt2UOPsedjPgIqRR/U+Xsv2xPexo6iRnqkHfTA96q+T3PXu49c7rUxnwf+/t5K5bv5jKgLf0RfnRin8btWvKeDDsRgNHP1FMcYSi6PpSOu1G9xpF9YqjcSXHCKNr7twlpeIztdHjxpTanDIu6qs+ZnE0O/WcaskMuOZZxHVFbgb83vf9hIRp8eu0VcMy4DV3Fw9LXmTfEeVbTz8zJAMu+PfVOzDtHAzflhRb8FSOrf+SoLYjdRxYD3xuyB95gPuVUiXjclfn+DhdVs+NC+ewbZD5lPDgGbIjXz7hPB5v3pPakQ8F2WrCBdnKJMgWXOjgx/OPPoxjAbQ99jP4E/KklkXrtx8goWw08U6/T0//HAYM14al2/HgKCdZf6SjeRaddeaTmbDwxCVouBBbKfnQeUtSTB0pBDdULWONeiK1o1xafi22/DG2SqQ8TAd3lJNyruD/Vix/l7qS2e9YNA/eu7U+wNufdgPma//5JHfecwcbf7yahGnx5q/Wcfvd1/Dqb/eQsGyeSXlWtvKg3pA83hOYdjMe7eFkXY6FaTfi0R4Ylen3eExuo1k8D/V9lIZGxnVVtBkDbq+bhKLrS+lyDoN0cRTVK0L0HMedo1C38Mqjwehbs4opyV/yjmPXU9Xl1SHZjRf1XcMo6n/JuggBW6y+5MbMvd5Ka2qjJgQ06gex4i4IOscIg7AAF09S6K0D20TgoAvBNH89YvHKYZlCaqCq5sOpy5zpMGv6B1PXA1sfI1B32IXaapLga514mkwcRyE6JL6turugkTYbN0ZoPpSbrL21eXan4vX2malr1zWlEgcoDoWHcc0O9r2G47jgVNtJYA48n4SnHmXYbegsGJNmktOBow+NKe8Gsh0aV3rsDKQ4alc2kphyorgyXmxB03aPVc3kxj/huM/TSHRp6nyRJw6bZ7yZZDzGSDNpU4AvcBRgawH/NS539B4YgzDYJ1evxZwVpGjuRD49czlrDm1k4YRaLqudS+HUbva3r2JK3lIWTJ/NrImt9PS8RmbmRUybOHsYEPbYF/tEtTunC7I99jOcap3L0Pv31feR99WDRKZ5Ce2JI+5y6P5zDmJSlERjkO9areSXXsKEinYW117Fx+vWMaeokU3NZay8QOPfVz98UlPskQSyynn3j+oznazWbVnntGG6XPwOkO3MlC76kB3l+wpHv2geLwNr07Z5fO1zJIpcA+sMrQdHJRDCre2pb3iY6uyjk9u6nX/Ek1EwpoXNo1k8H7sh+PDKpcO64IYFH/2YTc0x7hzdg9yWIRT1QU3GRJfTAA2/13U52x6mY+n2Up3IZnXcAV0QjhguOkMqlA19ByfjKXgZTRPYtmD74Zksyn0LXSosR/LmwRz+4dU/kHAcDJ+DtzCO5ThIJfjHklpWa0+ScCyEI7kpfRlx749wVAIpDC4u+Dyhvq+lvofKeQ/wsafv5MVd21g+YxZXXnQ+xkyRiitFgUlsPvgaZZNbmTlBMWvijOPGlJOBbE9Ue3g6i5KRur2cTBcZ1yERA02gLIfg/jScfEBjRLp8/o1O1nesQlOCT06v4gHTLccZ1OUt8Wcs5TrFfKbiWg50/8dxddFyHjh3uztTf0mIjUqp90zucLy7O8Ht8Pzom0Ptd0bXcXe2V+djOR781mPcd/fvU7vaebdcxKZtzW4gy/FhZvvczIgUVF9QzqpDjamO0mkV2ayPt6OSPQ/TMn00pHUmu38Ei0M6VsYBFIqpvhYqA83Jo1+N2d5KyrW1SOH+7XWx9+FJ+9R7bqcEo+t4HTx6GgxCx7bzD13oqrhN6W8bKLxLIr2SDCKcn74XqTmprt9/velNPIaDaUk+8dC17GgtOkrrRqELydX+Il7I2YulHNI9JtNz2kA6GFLnuowLifPDlMfhUFq3g8GTkX9CHZlG7K02cpdlEJs4gK81k871FlMXxQmVNhJuK0+5c/i8m1jXWDwiX8TRWoaNpS6jxSwcTxcMQZaMcH76PnQDEglxTunS0dDMnGnN9Ik5wxxTxioDfqrv31h1Vu6+r457fvMnBir9+Jt00gr8GNNNrH1epk2bQ6O5meJJLTQdLCR34gLCibXMLTvCxsYSYsEq1g20gSbQQnH0zIS7MbAVFV1hsmvCINwFX2lnhLnT9yKlwnYE0+U0Zvg3JhcWgp3mLXx4i/eUnFbOpZgyFp2VfS8f4Jn7n3M12TnAkrkL2RZtQJ8aP6kudV1FrDUL3Oy7rUhv68Rc4EMldZnc3UdOdY9bL+zA+T4POcG64+rSJm6ntOiucf/eTrW7c3BkCCGu5xgrKKXUo2Nxc+/Fsbaj/rQ67saqDutcYD6d6q5Wk4Lm36yD60tBkygFvc+3o64VCAMcS7H/jQSlK1z/xvZ4GlO9rUjpIIXGTzYG+WatwJACSwl+tLefnQMPvCfrF8Yyszm4i/7lI0+z/Udvo3b109WoM+nDFRx83aRby6FgQS8NzSU0HcqjoyWTlZfF+OPWIJuaCsCxeeHAfsxZ6aAJTNvixebdmJkKJPiNKA42AjBti1X1TzC/PIEALCeBjL+Ao0ykcD0OD3Q+w296m/j6hy7moeYHsA4ndbkhqUtXAs0wuObyo7pcM9mDyK4Cik9Y+A6jO44Za11OxUJtmC7hLDznBejenUOvN4+a6zVWr/VzpD73nNAl1wuXz3YXAwV4mHrB/QiPq8Wp6DI4hmYrT0ebseis9C2rIvT1R/DuHUBPC4KZTazB62Z/PjKdH/62leZDeRi6xi3XTeVbTzelmkkujCnWe91NouoXyHS3Bkw4kNhgwCyBEgrlCPbvK6KmYj8KB8eWvNI4iSnTNgMus+7PTUFMO37Wa3tPtPg9Nq4cOw9taG5itd7DeR9eRFVy4f7/2Dvv+KiuM38/5947o1FHdVSRBEJCNEkgOgZsgyu4xLEdx4njje3ESbzJJrG9STbr/LJJ1tkk3jhlk3XiuDt24gI2BjcggAHTER2EAKEy6r3P3HvP7487GhXUK87m/YuR9GFm9B2d9z3nvO/zbXAotEdapYMjroVJwVU4giOobjuCf+gBbl2aQ4QjDuk+THbwXrIzF3JKn8tH//EOfmdbrZzyvTmc+HUlbRfsA+qCv0CN1NFNaxjPf18d+twYDGHp0n7KgZwhLOitKTifH8+kWUqfuuytjiUhdlR+tcOKQRdpwFq6F2kSyyLq/2TMj0zGrqrDnrgb8R9CcRHOOsmzt/yGpiQb7hPbCWgIxV5o4kg3WPzlFLa+U0GIaORoeSWLa2/k8fUlTI8qoa2ulMrGNXzjI9eoMJ8GumbsK5HV7jrH5n27iSttpC0zhoBGO/4VBn71gpDVMZSfasZToVBWn0TyFXb2ndXJU6cwJb4cv5A5bCwwKG4IZnFiMQfbI8htikRl7MfuB4qhaNuzeL7ru7dyqNTF7/bvZVFCIum3TmFnVQHt1YLs9EQccS2cajxMRnA69ycvoLrtCGdq3yUpLIe5sQuR7sPIprfJCl7I1+as5NGLO/CoCpxVuD7yWp4q3kKVx05VaQyt8UEoisnZ4niucVzF6crtCHSkYRJwtIrmjCAsBgIEnDJwpwmkEDS2OpBBDZZFEoKzF+LITsxHYgFTtxUnc52zGCGsRW5fQ/S44BDGUpf0exeyrbiItlIXczMn054g2Ond1Hz+UwvJb8xng2sjGRGX6pIdYQf320j3QrIjsrvpIo/peJpCMUyTWlsgqUFrece1A0UxLgtd+ioGRnNzuPHQAezHm1mzaD72WSrb8/biPuPHipkLcKbXcqLwbxSdd5KZsgK740SXK77Vo3LKmjFv4ZC8frsW4vbSRg5/8QkaJwcQXNjCp//9Zl7ZewDbeR2/8gCuvGUF60/upPmiP+21QbxsBJEYU0pJeRx3rbyd+3fC3IgiDlUncsvca7BXbRo2rmIkn+8OXd7efZgd338LU7jxHNnC3Reu5/0nDyATWnizwMMNpat48fk8IuPKyK2q4GxjHBdLI5mbWMG/XG/n54fa2V8ZNeGtK+fOFvLzX/4Ve149IaVtfP6+NT5d7LUOKswU7AlN6K4gbr1lLS9saife6epVl0dWXDVqa9BwYrDXnVdLKbeMw+sZlRiP605gXOCDvqkq07yEAaWaEP72WeofiEZqAmFC4uZWnPdUITSYpDSzJCQfVTGQaHy8ay4/WvURNtXAlBqf23Yjh6qdaCFutFB3B0KwX+DgSEG2XaNXFpa3f6E/oG3PqyTNW2R2DF9MpAuEo6CRrz/4M19/3rce+See3rAJkdKCvBDAF76U5aN19+YCMVHA1Eto3UX1eFJDfVNz9lI3erLGzHunc+DDIhxqK4FJrayZv4KnNubhjCglKamcPLeTgtpIcqIq+c4iG0+cr+dQfcRlp8s9/35jd4r64xl96nKsLnbYwNS+rqWGTVEfZ116Aw13Xb9GyrCzRbbgMQyELkn+SzEx/6qiSwMMcKy3c92XD2JKj3U1/+E8vnfrR2iqgW6o7Kr7oW+jOVq6DCdGY8M90qv8kQBtu+rS7tERihtbtNUPpkpBwpYWoj9XBSoIqWBsD2TtLTtRNQuUvmf3PH6y+iNsmoHbULhn+xqO1sT2C7Lt3d1i5DllsLoMFTQ8HjGi686OAk0IsVpK+eFov7hPWnQV/0uLr+DkkUIO7C9hzvzZpMZ1/FG2kT3zeiJ8HwAPOVNvwvSDP+x6j4ZYB37nG2hKsvGnC3tojLbwFzKxhXcr30OJNjCL/YlMLmdWegUXSmKIUk2Utj8yI9SfQ9VOCzq7YBJSE1aDJRJtrhtUQIFIv0YLaKsA0mRl2gVsqoGmSExpsMRZRm61E9GqoYXqPtaQejoQJUUFTBQUyvOTiE7SkMJAoLLvYhrXxe9F4EGXKhcapzI9aOhODBnzWrpBbYeyg+15lTSS4YvRdIG43hOM67sJSE3QoEvW5e0g6J/LQYUwpRT3pA9YmGiQs9LqB1sc90eWJuj80wLLBWIigalZyXFk/VMct05P7b64LeiRdKZ3LyJyEmf3OnyRGRvHN4OLLjtdDLWNLc5NOOIljussiro74R0WJuq96nLfxjW+HpehAlP7OokaMmxzAnXpCRruOkwx0gk+pGmtXRJYqmJgIFTrtxWTU45E9wG5LaCttX4hDeoad+A2UnodzBjP68LRYtid/PgMp7edZNnKGdAmeXWdBbFdm3kjx8+4ePHEXq+295Fb4GLduWJypt5EVnIcG3a8QvmyKBxn6wkoauGtfQepXGDgdx40/x45Ja6M/MbniI5wUFgWRUZUSbe8ogRK0AQoAlOCba7HKtBUQEqSZ5X68orEZEXaBQtqKyQ2xWRRdCmn6hPGfZhkOLp01eRyBdoOmpPmjf8C/k8XaSMB2fosOOwG8sHpRL97nvoHoqmwN0O6xuStLUz6XDXNtmpi0kDuCGLtrTtRVZNQTJb5t2NTJTdMVrh3+xpO1MfzhRUreKZ5HyagaSoLwjIpVD/GxKTOCAUqQJqoio0pCbdDFwZUtv9qIt87jD2vHnsgZH7vSo69eo69F87hSI/wXZm+XNRGQsrVfPozgTy/rY0LLjt/TV5DZnoxH1fEcrL+JD9YFTksO5bocLcPaivs6SMiQw/FBUL3c3Lg3Fxypjo5tW0vDbEOWqYEEXC+iZ3vHe3XBaKD1l3oiuH9vLPMCC1hQZSL/ZVxFDnSkLKjaAZtgaTdu8BF+jWhePlEfblARKVMHDC1I4aTdPoDDfeni+mI4vCJWWTPjCIiHa8n49jqEhzoBlX2SlHvTZfFzjJyS+IuS4r6+OgS56Pb50x1kblyBp7UUBonBxBU6iHIptIcZ+KZopG8OIoT7efR4qyrpKuzplGi5/qukq5Nu4pWDjA3ooiD9bGcFCHWSZohYZeBusxi5GFA2QEnWfOKMQ0dw1DYd2wKq1JLQBropsqk4OVoFOPxDiFdm5jBwZPn8ZgGqqKQqKdQZB5BKFYbSlfXlN5QQOM9+NA1Ruqw8WxAGe7rEhCr44j9oJCPVzbgkSpBq9tIiKymWeuSU27Zic0mSUoV7Ns9jx+t+gi7ZvryyrGmKFR0y3FAU7kl8yp2yreRmNhUjSVTb6ZVPAneQTnNsQpFvAjoKEJjSvR1/IhU3G8U8NiSlVTGmETV+dP4bjN3zPs8F22FtBYFkhAQSEh0AbV1yby+N5jlqU8wLeIcZxqnsvWIm0UJrhFNL090n/FoxVCLtP/zMRKQbVcLE8WuEHZXOg1+9ZiAYhMkrg3GY69GIlFtggWrWrFpEoQkRtOxqxbU1qHCt+bZ8Au93YuKmNljcVnWz+LSyYAqe7aA0A9LfFOZfhsa0C5Y76UtT1S51XUAACAASURBVKX8wyCaixowTUnxhQi27EzmgsuazNxfE8WuU5Fej7bxt2PpGcMCc3qvkO/OSafkwelIVVBrSJToSMoclUj1UheIrrRuw1SJMKJYHPIONi8wdXf7D3j4qIZHGthUjTWzr+TNkkJ02cEnqurTBeKanM+hu/z4QmM0rakh3LQkm4uFLjafPcmqaTO4MT4HrU5hryuXhXFZZIYvorXeQX7NTlIjlnG+MYMLFY+yMLqU+IhV5A6B2D3SKcjh6DLQadhY6dLqCUBTmjG8HL+uFPXedLl+7udJCAr2UdRvS8vGXmv0qYtsmNwnRX26PXtcp1PHQpeH71iB66sZeEyTRkXhyzPm8Ez9bkwhecW2nbTPeCfdRQ1TU4v4QvwHXrzBca50zua22Hfo2Eic037Oa7mtVk/ao5/FPrNLT9rnF+BM9PakXXTymWtXUGyeoK7G6kmLb5pM3O8+9PWDBYfNx/mGQVO8gaNc8GflDFpMou/694ev5xEd0emacs+p/V36weCnp18YVv/UaAwejZQvpiNBFaCoxH05i1rhAgEhAe0omgRBZ06xSRAmNk3h7iU1+GkmQphd8srdl9xMrGic3id+KGJqJtK92ocgyigI4NFben62Nl7y2Vrf47P11Cj7Fl8OA2GjEQMWaUKIZ/EyDIHJQohnOr4npfziGL62yzJGArJVPUo3X7MvLO9uDn5LVvfekKVT1lJQd+QS5pMQNhZN+bRvymq4U1VDAdr2915UBGHH29AmKxiY3a5MJQaYAntzFh6H147FVKhoWUik3z6kdPd5ZTqUXdORbYP3FezJGTuqNyLsivUhVwWueB3RYJ2E9XSB6EnrnhN+AoduFc+qMFnlrOW55V8YFJ+opwuE3uN6b8FToTznTZzP2S+gPabw5Mt78OgG27U9NH8lgMc3ncSthyL8j9PmPObtm7Lzg1V9J52B+nMuB4r6WOsyGNBwV12e9SadZ+1b8H9K71OXzf4f0xyzr0sPaSdF3a4O7cT5ctWloyiQAgwkxyjHFNI36W6ie0n3JhcatyPREUIiMXC3foAirM0a6KT5F/D91Q/C6s7XljovFeZ1PJrM8rRMSOt4HAdJ1g+/8ud12PLrmXSmFkVV2PneUbQLOiHnJJ4IBU+4gafYn3ZXAIe1Jtx6d9eU/ZVR7K2IREgwjh3ErVibzHZdZ8uFj9Ht1iazG8NOejhf8hqZIRbDzpRuyqo3kxA7suJ7tPhiNk3lttnzOHu6HI9h0KYHoinNvqG2rjlFFRpT4m9HNJ0BPL3mFZ8mE8AWbPfovNFFF4fW3A00vOvc28SEWUBb3fRQVbOBELu18R8tXS6HGMxJ2nNd/r0MeH5sXsonI3qO5LenBTA/YR5+BSY3Zmdhn+LmrkQnrUWBLJoWSEj0fn6TOIPj54NZnlpPgD2XvRWxpERfNSBwcKDekNF+L8OBv3ZMAx3PrydqRlC3K1NtZiRirqSl0J8nKir42jceZduFTZwrjqaiuo3/vPvfOVa+gd3lMZdcmQ5117Tw2h/x8o/HBszZH63b7n8NwnvFKIR1nZUdNLyieShA28EZWOuYWMTuLRc+xm2zGE66aXCs7AP87W6EkFZ/jvRYPKfLiKI+Hrp01WQ8QMNvHDtIu9CRwtLp702XsfaW7RojfQ+7KwtxGyYYJq6nclEfdGKaEkzJmVercX5eRUqdyrZg0uzlaJrEYwhe2h3O9FUKmirxmIJHdtawYNJ7VtuJIrGrGg85M60rQi+z7taA5bTankQIg0gNFvu1+YYx8vlvtmkh/NP6f8Z9oBTHkmhOyFp6yylXTsshNqmSsASDiy4nSxIjmRaxm8zYGWwtDukVZNtzQzIWcPTx0KWhxQ8zQKBoYOiwe4c/a28VKKrANAR/2B3Ej1dpgGdYuoSrsMSvFVWYCGHnjHyi2+90omLAIk1Kub3j30KIxq6P/69GR29IV6CtPVxlRmQk6894j8jjW0nQ8pE11hH5pxd2FhW3Ou2I8JlA3Lgyn/p7L77HQ+xzOZO3l4/z6zENE/VkU7cr02aXP+62DpCtwZZ9kp2FszrtWE4o7KjMwpQSIfveNbkNnWNlHxDgZ+3Ae9s12WPzhuQCYfPL4KLrb+QkuohzGkyLvf2yonWP9JS2K0Vd6ianX64k8m6sBmBF4cMNKjfcpKCqJlXYcSs6qjB9FPVvfPQabl1HtZn4xbRhIPukqHscv/aekKqk2x9ght9vvCekGkryL4dEUZ8y+bZPtC79bQBUBK6ncuGLEaAJFEXhzKvVRHxm8LoMhW4/UbqMV1EwUoZdwYcneH3rXl+z/czp0zhmVuN3XiJLVYKTsjgvCim56E+ZPZl5V7nZftJqtne1hzJ3iou9lbEcqY7k1JHt6PP8AEG7rrP+yFbCZncy63afe4usdA9CgTDhAelBUUA33Ww88QK/P51tXe/dtpz/6Dhp7ZFTtBiN5VEqO13WZnVKAkz1a0c26aQJO+mZz/d7u9IR/W1IRiPGTheNev8IEtaEcjbXoLXYn1daVxHnHawrrYgmJHIafrZD7KkYui7higeBjhBgSjebTrzI705lYVdVXrr19gkr1Ibak+Yek1fxCY2uQNuefViT1Hqkd3porHqwhsvE6Wl/NBJfs7HeNQlFIk34cIPKzZ/SMPD0uWu6ZW4Lr0y9iLvJ4N19h6yTuFiDAuM40TV1uGw/wh7rwSXeZUXkt5jj+C/Ajax5keyI55kb27mrH28wJ4zOyWZXinr0ixd9FHWzOZTa0gjsGW4SwtM5fKCF18uuZnJqBfbgLJ6pLPVR1LV4BbduncIJPw8e07AmvUyT9Ue2Ep6pg7AmhHefe4u5GdaVg4nkfPFrTJ/iRhEmQnrYePp5XmiYjh5tsru+CnuJYL3xInqsToFxnIei1hJk+xVV0sNO16usiP7k69IXaLhx63m2/m0PSmED7tlBZMamU7TTTW3x4HRpC2zFrRugCgybx+dteLnq0lWTsSoKRjLBt3a5BUztWLtuXjCPsi4uH6syFvLky+14dIMqLYTU4Kt4rXo7qjA4XRJPrm4Nk6gS/PfV4c6MtjakUlgg2xnePiEpKDgey+zUc4BJBTZSVQMpTTxSYXdFzIRPqHbEqGErFqfTnhbgZTwGEDzFTWBUE/ZgN6nBk4lNqqSq9V2q23LISs4kM67cxxLsTxdhC+D6qOs4U2GxBGsKnBS1xflyzLSYq/jhHotfOhRdJCblpubTxURld3mnLnuKiz4ZRZqUctFYvZBPYnQF2g5nxHi4hVZkq8mvH3nGaph94V0e/rd7ePKNLTTFGwRtVPnn+9byu63vosU18eedQTxwy1peOPAa8U4X60/EEBhpkBNVzM/PJXLL3DuGNZU5UpDtYHZNVVExaLN0WgoD8JQFsj/2szSoRzlf4rxk13S0Jgr/LgvcRLlAjLh47kHr3u+4yPxbpzDDWzxfCD7D4tXppAbHdSN2hyvl4LZo3cIedwlFXUkJx7joh+4KZNVjCzl+aAflxdHUlMXyta9cyeaT230U9YevnMau8ouYpolsFhCEBUjthaJecDyWzPTzVnFgKGzPS+Ga5BIUIS1ad30UHjkyjMh46zIYivrAuhwj0t8P6S7vTlG3vwPn2gkpMrj5qXk8tWcLnosMSpeh0O3HQ5eTo8Swm6gJvtHaFDnrJM9+7yB+pa145gRx903X8/6hA9RVRuLI8HDDslW8eDSPN6scPv/ir3r9iw9WJHACJ6oYvcnh4YKG7aWNPNQB5n3h3U4w7zkdx3N2jBwFe8KlOeWdIxYAdn3eK8yNKLokrwy1dWWoINu+NkVD0SUh3QLzvojOguRS0tPWcLLehSosHRYlJPb9QRrj+Md05wgiOyKRZ5beM6zrl5HAB02bpOX+aUhFUGOYvHBsH8V3SaSiUGdK1hXsIPK2CwhVIo1K9pa+zV03vIuiGkwSkqX+7WjCxGMe5JeFk0Y8lTlkFtcgd7M0+NHUFuHbJc1PvpLHNym+30nXXdNo9MaMNJF39OfZ8usxuvTnaRf0AV0gmhtc7G6N42B19IjBnIQ/z4zF2cOmqGclx6FVt/iI3bYwG22LnPgVmJdQ1M2KYNQrl7PtwibOF0dTXh3LRzmrOFa+gY/LYzje4uwGGh4ORmSku/uh6DISivpAuoyUoj4Uuv1Y63IhL3ZUGHYaghvNUDZPdqHT4T9aDoq8pGdICA1b7W1cF+/1H5U23qr4V19/73AQGhnzFjJj8a39rl2DwZpkbA7rpuvKmbO76ZqTktVd15hFHDhXzLcWXHqzMZI+5ZGgPJYHh3DxvlSkqlCrefgf+wHM5RKxVCVuTxuxt5X3mlNM4whlLp2nl63HplyaV4azYR5MThkMe24ouvRc01+KHH+gbW/xjyJthOFXLAnZb+I3X0IEtLkCqDsRSdvMAIr8AjhwbjY5U6OISIbD1U72FGezKMHJmW17aUqy0ZoRgv+pVna+dxSZ0ILDayB78OxWspadoDA/mvLiaM4VbeZzcw+zryiOg01OpGrBBiUKzbMdSLURFGtfZZ/eiq5KhAIgmZJagqqaKAo4NR2bYqB6mVBr45p5o8oy9RUmJDXEUeJ3FNOLJ0gJXsH5mu2Y6Cio2P2vwWzci7VYW3yhkXiA9gTajoY34nB6Y0bDBaLdo8N9qURtPE/Dl52UaOcQd0kSN7sJuqeK41o5aZ/pdIEwOMoV6Z0uEPebnbTuCQGmdlnoblu9iIygsD6LvL6STocuEZFLcYQW8d3LADQ8JF1UgwXG0W4U9aeXjZ4uw0k+Pl2S4bfPfHtYxcBo67L32X6mqYcwwec2TDaX5+GOd4AqvP6jZq89Q7rpQbRt7u4/WvEe/76rekQWRKMxNTuS3t6TH58hbJsLx8pJENt/TiEdisqiuuSVuC7DJC4279lP1Q2h2I814V9nx57YisNrFr991xki48p8puRbcs8yParEd51eFBiKbFVAFYhAiakAQiClxC+jDdFHTgGTK5MuYFNMCzTcJa+M9zDJaOjSEY6Cxm66TFT8o0gbQZw8Ush3H3h2yHZOdlXlgex0KlKSkJqgUZeE2oOYFF0NqiRMKWN2+N+Q0sOCq1ROvDePb1y5C/DwgKHy4Fs3s1dGo3uT0+cWLOY/T27EY1o7pLUZK3izpABdGtgUlUWT13C+9hCm1Kkx/QDpLcJszIm7lccutvCL37+C7WgTb5YVYL8qGiW1DXkhgMLPx/LajquJTSql9GIscs10NhxeS1ZsEbmliVx3hcoP97w2IhujrkBbGB4Z+uTHZ3jluXW9ukC0NWq90Lr3eRPXgxwqdQ3aBcKpNBE7s4L8mliKyi+ldaMqtC70ukAoIKUYtAsEDI7WPZbA1K4xkiKvqy5HvBT1GemJ3lOwkesSqLWjZrfirpJ4XAEDUtSHostwKerjoctoAG176jI4un13Xc6kufCkhvpOJ9vXhqA3V+JQWgic1UpTfTitJQ4SUqq5elkbJdvaKHBFkJ1YwTfm1tF6qJ195ZFgmPjvrcOT5fT6j/ohA61fW8+eIdP0XtsmFSMw8JgKeypices6z+/Yjjuic5p5fe5WPFE6cgCEhpRu9p5/Hb9Q54hsmUZiKTUadk4+m63kFjyJ0Yjbokh6s5Swr9eAKsFoIlOvZ75zM6pqYBjHiW5zsjDy7S42W/M4uk3FY5qoHht21bQGUxSFT825kt1iQ685RVM0Jjs/hdJ4wsvD68wrHYMps6c7ffw7m202cY6f+Ia4JgVdTV51WKcnqz17SHZZYwEa7qnLzzY/1u3vbjxj0EWaEMIJzPc+3CelrBjpkwshrgN+hbVUPi2l/GmP798L/Bwo8X7pt1LKp0f6vKMVR/dfGPYo/jFbDcKvgwGl0DylEaXd+vkoRyNC0RGAUCT33tqCpuiARBEmj98cTrl257CPyLUei0vb7nUEvVFpgRSjIzDyNMgLQlEF23edofhCBIXnwlEUwZbcsxwqiuZAYRSqEIhRtjEaTv/RSMGcP9zzN9x2fUAXiBkzm3ynLUuNY+z7uBdad00sq2LT2Ky6LGacpgzBBcI2IK27La4Oe20ER7cJps/8iY/Y/c75MnISXTRqWX3Suoc6FDLS04Wx0iVwjkF8ZDVCgWCzbnAU9SHoMhyK+ljqMtrsppHS7X1XlV/N8F1Vvsd5Qu73EBdRA4pkEk0saJxDdNIWpND5ws0dV5UbUISHF1fYeO7Yg/z5G0ew5dcTVOOxrqFfOke90nfPUGFpJF9rjOBfrrfz00PtHKmORLpNat/KRz4QbXH1dEnR+41Efw6ETVDZFsw0ezmqYmKYgpc+thAadg3aDYUnDno4Wf/aiFsMhqPNSODovdlsCUwv1FaQ8dA0auxnvDkGghPPY3ossK2iSGZGnsCvK0swpZo/R97Z561IT6DtQCfgf7rhF3jcOhftO/jqU1/h7V/n43HrbAg65f3bD8KmHeNrX4ni8U2nceuR2LXTPHyHs0+g7XidkvbU5ci2k5d3kSaEuAOrWNqGhVT9jRDiESnl68N9YiGECvwPFsawGNgvhHhbSnmyx4/+RUr50HCfZyxjzvwUa7JxFFhcXXfk9cYkBFVIrEbL8Mi10HQEsHYpcc5VxNu7WyKNBOUxEpDiHC2YXSbWH77bhiI9SAE2Ve3XlkUVGmXtCwlV9qAJHSk03inzIymsaMjFRL8g28FevTCwC0SUoxFN6wSm9k7rvrOPJDw4F4j+aN0dSfRnfdqO2WlznhiWEfhYXAONFJjaly4WRd37mVMZJEV9iLoMgaI+lrqMBdB2pHR7X1EgoHaWA73BmiANtLciFROwQLbO1IuYuo413mCwICkPxbA2aYrQuW+JypIe17cnpxcOqmcoMzmOR4Jd/OHl9zj5v7vwO9+AX2krEXfNonZvPRTaqKu0cA0ncw1cSlK3E/CqmjCuzarlzdIQDtc4UYXBG6cO0250Muw2F+7BrVgTsx5TZ+fFt4kN6bjK9ljsOgHgwVX3ARtrm4ZcdI8Eu3MJ4qWrjZymcvXUpawvPdd7n6HSO0uwp9XeRABt39iXS7unU4f+dOl+SqpTVbeBINWaYh5Il/5O4Hrqkrlyxoj+5kYSgz1J+zdgfsfpmRAiCtgMDLtIAxYA+VLK897/81XgZqBnkXbZRdej2Mf/+E9sPJxLe7JCwuwofjXtDv529gD+ic3EBaRQUX6BpLhy5sRJpsXezoWKrV7bHkiLGN7QwWiTkHtOOQ22yTyy1eTpO3+DM9ZB+4wIgtxBSM2DZ6rGnVcv5NVfHEeJ7tuW5TO7ipgRegOL41zkmhEcaijCrr4w5GKiP5DtUMGc/blA1BuTLFsn78TuQLTuiQTa9qR196SoD4Y9V1a9mUp75GUBTO2qS5segKZ09rgMlaL+SdKlg6mFtwdrOBT1/nQZEd1+FIZ1RmpO/vWlS3n0B1vwqApBFz3cl7KIpzZswaPqiKJOXEO5HkB5dQzNMSqqMDlRHsuFx1pw3RoFqkRRFUrXFcMNEhQLkHrs/SZiV1unUKYJW3MDuWOFQFMVyjwaU1UDTZggVL573MXB+q0opuBfomezx/99H7PuzoAraA+ybMfChOSKgHYUYWBKG2fld7j/L/9M67FS7DmxFEwS3POLmzh/vqjXnDJnSgB/nHwbucXbe80rzVoO22sCh9VnOJp5Zbh/+6oiKH3xANyaAKoyoC6V7cFM8ytHUUwUofKbw4H8Z7bApoh+dQlXWlg2KR+EgZAa/q7bWDWtcyClqy4dG4iJisEWaUqP681qQBnhc8cDRV0eFwO9NW3cJoRYDuQB35RSFvXyM+MWh0pdfG7da92OYv8cfgx3rcEbu47w43lXcjRmE3q7TqTZypLYfGql7mMNZYmf0cEaygp/nuyIK3z/93gwn/qK4fQfvfK4lbj8zjfg32RDRNsBcJToFARUWkmrH1sWt2FwqNrJUU8YaogbvF/bW3UYj2n1k3hMvRuF3ZA6VTUbCLJ17pbssXnkvPBZ/PMbWLt8bjcXiKzMCC4qhb3SurMSVpAZV87SWPegXSDGungeKdDWFKbVEzkARV0aA7PnHt5TwUn1OXRpYhMqX4/L6pPWrSo2pqr3kWb7FarQEcKOkvzEmOlyOVHUx1KXMrfFblIVswsP8DD/eWKj5Q87Ql3SFk0eNN3+ctRluAy72l3n2LxvN3GljbRNCyU7ZSrFuR60CmifIsiITeTsiVpc1ZOxpbVS1xhEc3UAL9Zfw+IFbWwp9CNM0VkUXUp74GwO1rdhAqY0WbfvPSKWGT5m3cen1pM5z1rfIlQPUloOE6Z0U1D8Hi8dWsDDd6zg37v0ltmjW9FrzUtyyt4z23loylrC4n5FbReGXUdewbCTlvI8wm5tRIZy+jWaMVyg7VB1yWsMIk+bwpT4cvxC5rCxwKC4IXhAXcJs9d7+OTBMD7r7Q6TpBlV20+WPD97GjC4bg4mIwRZp7wkh3gde8T6+E3h3bF5St9gAvCKlbBdCfBnLkuqq3n5QCPEl4EsAkydP7u1HRiX2FBd16y3rb9prrIC2EwWyHSu/OaVdA08bqBYdP/BcMGY0oII04IO3VW682aKwK0LlD9uC+H9XWrYsoPLIjhr2V57BHqySHNHCT3e9bvF5nB5O614+Tw9ad1icjeRIFVnzY+LE0F0gOmK8ad0DYRre/8v2QVHUWy76D8ieO+YORw1pB0XgNnTW5W4hfE7vtG7D9HC+9DXSUqyrhw5i90uurDHVpasmf6+6/ClE99Htj9ZEWT6TUgd1ZLrYwiX2unPWoM8AdPvLVZcObYZ6GncyIJTt//UOAUUthJa7ueXzn+apQ1ugVCekSuWWx7J48vgOPGWBeOqD8XhP4MqrY0kNXsHLjX+jyDA4VZ/AD1YtRyndgClNhC5xb2tHLNKs6UgDivdEMiurECEMyg2NaaoBmOiGyr6iuF57yyaqt3c4fLU+uXfhFcz/Ug52ezsbXBvJmJLOZzJX+HLKDUk5RDjikO7DZEbuJTNuIacC5g5Zl1IzkKqaWB6+YwXvFf2NozWxA+pS1RaEaVdAkxiGwu7DSVyVVmz5gHbR5cC54m6ntxMRgyrSpJSPCCE+heXdCfAHKeW6ET53CdCVEJdA54BAx/NWd3n4NPCzfl7jH4A/AOTk5MgRvrY+Y1FCYjeAbX+9ZWMBtF3/zh6e+OlraBfrEC+8y+xvXc2JdXnYXW70FI2Z907nwIdFiHJBYGIbK26LYdOuSuorHCROriQ+tYyz1dH8dn8Mv7o2hlM169hTF8Xvz8SMO4urK4n93V+9b9HxT7VSP9dJXUsE2rR2WsuCaGqaxOvlnRT2949KSipDWJDoojEom/2V9Fo0jzfQdsTA1D5o3dmZk7FPcXOq8Rj2Rjez0lO7Ebsz40wyIw+B3YZ9CBT1gdhzimZAQBsoIEyJ56AdZvZOUZco7MxL4erJxSCNS4jd/xd0iU1qxhZ9nEh/BxBHZlz5qOhS2ih8dHubqpJYrHDcKZFyZLqMRjEwVkDbsZ7gGy0XiY7Xbi/tnJC3X/Rw1Rdu4p3cnbSdsiGKArCvuZqdee9TmB/FWzb48t0O/nurmxOl0f33lo0TW3Dj3w6z7UdvoRTV486IpDU7Dn+Xh5A/bGP195fywuEDqGUKk3Z6uuWUlLhq7r7WwdO5LZyriWB+VCXfWWTjl+frOVgfMWEg24F0uXAqkmZHDGseiuTNda0UX4jg0erIS3TJmZow7HVntEJIOXA9I4T4Lynlvw70tSE9sRAa1hXm1VjF2X7gs1LKE11+JlZKWer9963Avw7G9SAnJ0ceOHBguC9twBitxWU4QNsfvbUV3TQxbCbtTonUFIQhcR5spO5mYSEGDIg+Kpl8XTGKJjENQfOxEO5YucPic0mVnafn8oucnShCx2OqPHByFanR0ylqP+xd2hVudoZh6lsAk2k2nRl2NwLr9EoEfQMR9OCo/D77nAL06BDY+xRgx++kY9qso0juaMr2GAahvgXC6pHpXCCsxa1zgbAWNxH+PKf6STr9JfRutO7Clu4uECXdXSDaKoKoIZiYqDJff966U/uZG1HEoeqhuUD0LJ6H+h76S57OOsnvH/4jTWl+BBaYBJhORHJb5+Td83lExpX5KOqPry8hI6rER+z+xkeuT5wu/s5WEmNKKSnvTlEfSJeBpsxGqkvXE3BHQSNff/BnI9ZF816rdRQDne/HGJQuBa4f8fUr/jrs6d0f7Npi+ZAqCj+8dmUnRkhReShxLrs965GKSZStlcXBZ5FYE9BXOr9NUOOPfK9DjXiB3Ma+eyfHAtHQ1zo2Gn93w+FNDjav9KVLu0dHegwCPz5P5WdSkKpAmBBzuIm6mxVMIQnS2pkeVYGiduaUO1fsQNUsb9mPTmXzs3k7sasmblPhvpNXU4Uf8aF1AJfkFFBZFpJFpLHT93g088po6TJeIYQ4KKXMueTrgyzSDkkp5/b42lEp5ZwRvqgbgCexEBzPSCl/IoT4D+CAlPJtIcTjwE2ADtQAX5FSnh7o/x3rIq0jhr0j9xZ2T7++iRO/+hjb6Wb85mik3JvKxR1uJqlNxM+uwS94Hlt3CzKSyshOK6UxcC4vHRIWCyjYxDPJaqbElIQ0tdCeIa1OQROSmpuITqtBKCBNiG1oYn5KHooChinQGiNZG1uIIkx0Kfjf4mwC2+5kp7YJqUhUobK4LIOIGa8ghUG4kCxxtKIKEyHs5Lc/wY780FFbYMrzN3YD2k6ExcxIgLbLg0NY71eOVBWEYTK/UuPovAakAsKERRWT8GQf9xK7Bc3HvQucahCmwGJHm9cFQuGXhffySnk7JhIVwaemRExI8QxjcAVyGesSpjSzJDQfRTEwDZUy12ruT+ugqPevS5qjnIxAF3h1GOvkM1q6jKQYePWJAp577FVMw0RRFebduYLc46XW8ESEA3e4w/JMVASzr0hmZ2ERppSoQpCWGs6B1goLf3ELDAAAIABJREFUF2FIZkYFkO9faa1fBiS1NhM9zcKsTHOUMT3A5e0fEqQraUz3P4ymSHRTcMp9J/ce9Rt28Tzag1jD1XG0WlfqNl1ky6MbUDMEjhyNlPA5nNrcSOS0Gpzz67lYGo+rMIpZU8q5bnUbbxwLJNflBFMiGupomh3iyyuhza20zzCRQGxgPQkh9T1yylkURWKYAqUhgrWxhZYuUvA/hZm8XpM+5A3ZROrRET11GY/oq0jr97pTCPEV4KvAFCHE0S7fCgZ2jfRFSSk3AZt6fO2xLv/+LvDdkT7PWMRIQLa+EfxoHflYEgkvXyT8EYUGv1JSFjexNOQsimqiiHOYZPOd23ZgU02kyOVk1U0cKozC3q6Aal1oqJrKqth0PlTPWoa/qsKC8CxKlB2YWDDCyYHLUZUC725UZWr07SjiN0jcgMoc83p+cd3rMM3EsdgfozKSN/OriZu5iDUPRfKHda28Kj3MSy8jdc5NPPrm6T6BiuMNtO1Jhu5K7G5z9Efr7t8FYkvubrSrajFP2/FcpJsLREFDNBnOMuYlui6hdQ/GBWLalBIfPDVa8/TqAjGRINuOGAnQtqsuJysKObP/AsvmpzAjIpHjZ1yXnS4+oK1Xh/4o6sNpbbgcdSHAfwh0++66OJa00HRbFLajTQRd9DD9lhjyk/NpO2VDKfcjOqWGuBQLgn111mpa5EEfBDu8OsznQyoMk8BjbYh51hUupqAtLwA5pQakpKo9BMOvHKmYmIbC34pSmJp2BLCK5w2uQNxGmw9k23XwKFSt8/UF66aHmqoNhDg6J5jLyzdTrjlHrU93KDESkK3wF7Q5Za9YFy1ZIX5NEJHflGCDWpFPAiqrvrgPRTPJMU5zbFM237t9F3abyTUZCg/+9SZOlMeycspUNqo16NJEVRTuWbSEF5r34DYMWtz+qEozXJJTrHVJ8VvdjS2YEnE9D7elUbrvDH7zVFZkLMV93k7bmQeJm1XDjClXU3wxiqKLj5KVVkqjyGLHRx5yprom9Dr8cgLZwsA9aX/GGhB4HPhOl683SilrxuxVfQJiJCDbzv4cUPxUku5LwuNXghQWi0u1SS9/x+TeW1uw2ySKsBLxjz8Vxrt5Swc5BLCwx+Ky7BI+l3DvRbEvpPQ5L2vsqImnzI6I1gCJ62QIO99OpfiCC9OUnCyIYXaL0i9QcTybXkcFmNqLC4SptlETm0+gNAhcA471duaseR/T6wJx7MN5fO/Wj3qldQ/GBeKK5Jtp50nAoFb27gLRQeu+MX4J9grJvpLDLJicTWb4UtyVDs5V7sQ/ahlKXDiu8s0cKIojqc1JVjKjdloyGsTukQBTx1OXOiMUhUqkt39mIIp6T13mxgdxovBvFJ13UuxZxsyU57vpYvoNPulc7rr4NmN3RqHcHs3no2fzkf/7BEzWCVyjcGfALFoDfouJB4WTXBmTxU3TNmAVrbkUli7k8N27fNfQ9/zbPTz5inUN7SjXkEoIZQ0qgUmtLJ+/glc+2km80+W7hr5/J75r6AWTMpHtH4N26eBRZWsw0r8SKXUMQ/DchgC+f6c1wawbCt99q4Z9/HVCGHYjAdl2xbr07Pk0MJn+zelU2097NyOSFffarLyiWIzHT19Xh5/NYgn6afDQKg176O1kJcdxd4/iaGV1Wj8n4D1zSidbMO1CAI/e0Lk2xz41tUcRavDky3/1HmxoNMecGvhgYxyAtpcTyBYGKNKklPVAPXDX+LycT06MJsj2lnmr+mRxhUeuRfGCbMEC2d6f2PmBGwnQtuukVebKgCFParo9OkLCHC2Y3ULBIw0Utw2bYqCbJkIKEvUUSpVjeEwdpEBzZ2GoOzCkBykVytoXEq7t9bKgLC/QcQfZ9uICERLkwVSsiTkUwYp7baAYKFguEF+8qcULTO2d1j0YF4jqtpm9ukD0pHX7PSV9i9s++2baHvPnyZeP4dE7iN1X8fgmB269Erv2xqicbI4msXskwNTx1qU/xMpAulhFDnh0Fzbtr910Ef6v9Xny8UnUpetmTChwMcSF3m6dXglF0hZ6DKnrCCQSA3frByjC2pyBTkpa6SU+pP0hGnISZ3PgXDEPLO3eIP7IrETOPLeX6Bcv9jp4VJcfSdiyHBrtnT7IwdHp2G0dPshReMKs99Gu67xx6jBus5Nht7lwDx61EwfU3ZvVQ4c3qyndlNd9QHx09riAbFWPglSkb5ikZ07pCbKdFXctBXX7fCDb5KTuLMH5Gbf5WIK9AW2HM707FLZg14ONdo/OG/tyfZ+1nroMdFpaVbeBEK3LaWkvunxSQLbwD+/OYUdbtEb2vy8iwKWzZtFs2hMEK8PS0MoV1s6cQ6FSyN6yIyyMyWRhoiQqUnKuOpZ5MSvIjihn2SSN/Q1xJIWtmlCQbUcMFWirNLT4pkw/fPYo8QuSaYpWCK6S3PLgYl44ak0DvVqXx11fvZXXz35Efbk/P6yv5pG7HmWrayN5VdGUtjWQM+UqsoNKyW2O5c70VtaXPjUhINuuC11bVzCn2n2R63CBEN7iuT9a93BcIEYCTnV7dJ57byfuIMvH0NDcuA0DeqF166bB0YoPCNA6GHQezpW9Rlag19cQN/tdf8EeHHnZAFPHS5eOGC2grUczcRvSp0N/FPXR1GWssDmjMYE4GHRGR/TlQQrgWDmDoB+/jt/ZVmsN+N4cTvy6krYLdmw2jXnTruLJlzXf+wjwzOCpvSZSVVBtJmaYgm6aYELpumLUmwWmKZEm5G5pIuEqqxA1TaiqTSUoYCuqEJR5NNJtEtDxmILvnnKxwrbO19drUzVusy+l2fEbhGIQqcESvzY6WhMy5r3A/X/5Z7bsPcXVCzO4Yc0iWicH8uGJM6yemU7CzMhuOcUR18IDEZE0VQRyVUoOLdopztbuZFrYMpYkZJMVVk5d8zYmBa4kPWrJhIFsO2IoRai/R8FQrGlmaZiUvngA9c4UTK8uJRtcmNdaPdemKfGricLws3SpbA9GBlRiSh1DCn5zOJCf53TyHnvqEmX3DqJ4rfiujOk+iNJTl4k8RYN/FGnDip5A2yT/OH66y7sr1lTmBIVYu2I/nZamHbSXWEex0aE2pgRbrKFY3NwUZEcEZwGJEwqy7Yih9Lm0HislYG+xz+/T5nIT5gJFFRR8XIkj32YlK8Xg8OEmSgsjvU3DBu+dkuyonIkpJVqIm4MN4RxoCEdB4Lf/fTyxOtJrxfLxqfVEOz0Wv6aXnhK/qDx+tvkxNuw4RGtqCDFLpvD47Mk+F4iM0HhaLriJTpe4w4r44X3zB+0CMd5gzo4Y7g7b7Z3Qqn/rJPL2JBS7gtmioAb2TutGKLyz08anlikoqokhBc+cDuNncxX8VHCbgl+dbeZE0/PcWh1G0eyjmMJAoctQCTpSqmSIB5ge9BukdGNIDS3ul910mR0VhyevAb/ZgZROauarj67AVVI0KIr634MuarOJCJJIRQxIUR+OLoYwBqTbb7zwHZLirhw1XS4Xuv1QcRrH3txLxLpTtMUF43A1Mu3GLI601ONweQisNkmblsIRdzlqmUKTrnF2WwpB0c20VAZiS4mgwLOaKeFlXKiJYe/USQSoB9nXEM2xpghqzr9H+GIDIQQew1q/Zmd7EALChAWyVRXQDTenzrzFT3ZG4NYN9uzcT3tcAD88vgO3YbD9TAn22lbf9d+coJBOhl2wxtUhKpV1PyI4wEOl+13qmqqZZvwYHG4wNiHdTlKDsycEZDtcXd79y3bWvbsPW2EdjooWVsyexpGWZhwuD5phI3SzA4/TwF6p4cpQyW9OITCqmfzKQNRZi2lUc8mvclJcH01UREqfunRYSSkKGIab4sLXSQ91o6qyV12SZ02eUFbaP4q0YcREAm3/3kC2HTty3TSR7QYXX75IzCMKip+C6YH9byhc+4BA0USvPSXff7OW665o5/ngCtyuUv66Lr+bC4S94Qg/Xnglr5e+gN7s7V8YogtER1wutO6+GHR/+tP7HH9uJ1pJA/HVrYTfOof63EawGZfQugOSWokPn8qh0008V3MNk6eWcrbZSUFdFBWNk7hjViPrKjQON0WCobOv7giRpo5QBYahU9i8g0mmG0UFaUouFL5G2gyvC4Tp4YMDLxGV8m2fLvZyS5f/OL0Jt8uw+EnOCsx2Y0CK+t+LLrrNHJCiPhJdBkO3//HbNTx8x4pR0eVyodt3aDNYoK2ycgaBP34de1kTNrvGLcuyKf/1Fjwea/26JTOLgq5DYHXBVNUE+tauH+4ppqguCpuqMi1yOT89rVtcQRPc29qR861hHiEFxXsimTm7AKRJhbSRqhhIaaIbCu8dDbmsenvHZIp7lkpQkh17sAqAM72W7Mn5RPpPAiYzM6WcmfGHwW5HWW2BbDs2QV11IVBi1tmx13S5Fdnkoqra0mVh/Ap+uAff6fu0yCv71KW6LRjTpoB3EGXPgSSmrDyGpHddJhpoO9B0ZyKWsXo81gDBz6WUHu/31kspbxn7l3j5xUQBbSdJk6fu+S3N4Q70jTv57OdX88Zb+2mMFAS/uYNvfPVGfvbeVlojPPhvtfHNO67hyT2b8Atv4JkjQdTYA4gLLedoVQVXNV7H46fzyPAvo62hkpa2G3iudPe4g2w7Gts7cCTydDM1RZ04Ene+jfUNVxCTXUvROeclPSUnSqMRfQ5mXJ4uEIPBs3TQumd4i+dzUWfIuTOd1ODJVLcdwRZtEbvDlXJk09tkxi3kKzcs4dH/3oxHVQgpbeNLmfN4avsWPB4uoXW3VIVwzVcWcDBvO6UV0ZQ2OmlzWn1cJ+rjMf2Xc6p1E0LqoEs829phgQoCH0V9ZlYhYGIYCh/nJnF1egmKkHhMlX0FsWievnUZL6DtUKGew9UlzFbLmdoPiU3KYVb6QqT78KW6uPUBKerD0mWhhoRh0e1HQ5dPGtB2tEG2HT2OUWUKf9p6htoiE8d8Gzddewtv7DrGJtdi4ufUsmDRzTzy4SFmTSnm+PkErrphFfZj28fsOnmwn32lppFv3P0Ezc5AAp7bgn9QBE3hgrZdu7jrxsW89cYRWia5MY6ZfHbZQt48uBe/8AZeOBjC11bdwDOn/sLkMBdv5cXxxfmfZmPxc2QFlvL7sgiMAHPUQLZ9WUkNVZdV197BB+u2E5VeQeWZaG6+6y4e/Z3apy4TDbTtl5MmhPgQeAPYA9wHzAPWSimrhRCHpZQTDzTpJcaDkzYRQFtFgnnyArWrkkFVkA5ojTJ9zKdsdzAnppb5WGnz2iIQU3MRisSUgrqSID43ZyeqMACNXWUZ/GTKfmyKgUTj5+WzOOsOHncWF4wd0LYnpDPS1uKdBDJGBZx6iQtEkNqvC4RfShtKegsNFQHo9SE8cle8rz/PaYPvLLLxhJfWPd4g295OWjceOsC2h99BPdmEf5aNZf9vCbtfKKYtTyV6TiORCxsoOhdNlSuG738znhNF77CvIJZTlfETDhruSlH3pIZ206Vtmo3GmXa0coWAOjt3fTXD1zfp9GvrlaLely7jCbLtTRfHgkDsK0JpP2NHFAXwxcczfHT7qC50+8NF0aMOgB4u0FZTBCtDJ7ExpAYdiSYU1vjH8mHEWXRpokjB15PmsU++bRliqy0sC/UaYqOhtN7GjRFeQ2xsvNP0LZLCVg2JvzcWfVifRKDtguQw3mmuBFUBUxJc0Ez5igCkAiqCkCKDlkWtoECw3U16ZDlCSKQpiGpMZkHKelRhQdLLG1Zyf+xG63ZEKvyiYjbn3CETBrIdLV3GI4YFsxVC5Eops7o8/hwWt+wm4LWegNvLJcajSBut3eLpPxzg5b/8FVuWgifXZPF1aTT551FyPJyq/HCuuzcYu/9RDufFcqrAicfdSNPUUFAEnhCJe5IJwgIPzowJJt/WWaQtj/Sj1e+sDz7o9DSxICYPVQEpFTR3KNeHFaMJMKXCWw3JbKhLQJiCO7XFtIY9hSl1IlS4IqAdpI5hahS1/pKpqatHHV46VkDby80FQqjWAtdyPITPrPwIhM4kRbLU0Y5N6aR1H2+KnlCQre+zPtqnUeMEtPUYRidF/c5kpE316VJ7s8UZxISYYzD5+mKkMAlTm1kSko+q9k1R76nLeINse9NlokDDwwXa+sCps0IsoG0vQO7klmai02pASFL9ysgI7ATa9gSn/rYwkzd84NTBndxMNDh1LFtXfvc/z7D54FbaDugYpyTLvz3dl1dKqmKZNq+ezGkujuTH0Ro8m0O1VT6ArWp6aEhRrX5JIMBw45nsBgXiguqJD6lHCCunLAmyE+G3B9ULSU+3T2O6/TCaAF0K3q5PYWND4j9AtoOIYcFsAZsQwiGlbAOQUr4khCgD3gcCx+B1fiKiK8h2qCyunqP3Dy2bQfhSf9AgTGlmesQmpNTJ1hXyX5rJVz59CPDguU7h0d/dTMb0q3j62ElMJA5dRSoCXZrYNI3PzV3QyYBSVW5KXc6bJRd8bK7lCTfjNiw2l6bYmBJ+J8hfIzFQhJ2E5k/T9PQO2vZ7+E3hTpzXLMCZUUVlXjTq/Ys5fW4jB8/EcLb4BF/7inPQ73Ow/m3DAdqe/PgMr7yyjsyVM/jq4oWcPFLIqxu3M2d+CkscUzm8vQjbTJVZ6ak0VQewbV9HorqPQ6Uu/lK817vQPWi5QBzdRFOSjQDNwJ4j2JK7G49bJ3JaDfGzazh4NhCP3ukCca7IxESAIjACBFIFBEgFWjJUpGpN9KGA/7RmRFegbYoLRTERApya7gPa2hSThSEVnGmNnVCQbUcMZwqvqy4rA2I5uvEsjvk62ZmTsVWpHN5uJZ+16TeSW+Di6X37Rk2X2bNL2VMVzxFXDKgKLXMikarSTRdUbzEAOKY1g2KxCSPtnUBbVZhclVCATTFRhexTl/EG2fanS1dNxlIXYb+R/SUFRC2JxmbXLAj2fBvTr43hRF4lYSmVxGbXUVA1mZKLEcyZWsmXr2ykZaubg4VRSMMk4GgVzRlBoKhgQsApg/Y0rygmtJ0NhNRapJBUuYMxHCqoJoZU2FaczHXOYoTXpWNfQzQOrQXd1EFYV7XHXe/j8HMjFKu1oaZqA0F+3r5JPLjKN/NunmfU+3UHE2MFsu045T2Ys5eguXaC7rVj/986Mr74LiYesnWFM6/M4tsP7MemGngMlb1lCzj+uorHMLHZVD6/bC6/LziEgcSuadybPZdnK3diImnTA1FFM6Y3pyyOW8P52kOY3unqyRG3oTSd9LEFF8Z8jfq6Gtr3G9g8qSzLfoqT57fgOh6OK30RoRnPU+baTG5eLIlJTnS/4W++x0KXiQbZwsBF2tPAQmB7xxeklJuFELfTj9n533t0A9kOkcXVs1/qYogLpU3xgmybEF4GlBDwmftNVFUHJEJI/u3BCGKTr2Fpwaw+d1RDYXNZu+IFvg/y+WcLaHyu3doVR9txnQzFdTIURRW89YFkX34WpilRlKG9z7HqPxpNkG1XF4iAn8SQGFmB0C6ldY+GC4SBgSIUliXfhKH8GkN6qDbsWAWX6aN1P5O6Cr+8FrIPLcBvnspkWyqn3tSZtvA/CEoooqEimQ/ySslKKyUmbhVHXE4OnNs36lcnIyF2jxRkO1xdvmge6k5R12oweuiiSxNFCD41Y6XvWq1Wt4C2YPZJUX+sLY2GF8q5Y+UdtCW14iifRM3Bs71S1HvqMpJi4HLRpSd776H3Pu3DG3ykfsBXnl5Ks2MjQjFYwFn8XbexatpGFOHhj3fYeGnPg7z87SMoRfUENOmd19ClJg636ruGVursXLF6Ea+f/Yj8cn8u+k3j7msdPJvbwvmaCGpaI33X0MeaIgigBdMhESoIRbD9OQ+rvihQNIkiFJ57O4Dv3CbQVAH/n737Do/rqvM//j73TpU06t1ylSxbbrJcY6c4dpyExDgJIRUIS8kGQthlYXfht8tSFkLZZdldsqEklIRQEtITglNspzhO3C13Wa6yJKv30Whmbju/P+7MqNiSJVnNwHke/piA81zzmTnn3FNeX6Hyb8+3srfq/UFNekYatB0tyDZ6BtcSJkIVIGD1V3JAPWNbggI++kkzAtlKFMXi6jnN/PJzt/eaHF1VW9jre7q6uWBYt6v9e+J4IfKd2+DaHOmj/ehaK07Xmcj3zolu1IP3D4Or1DOGuYw3ZAsXnqTVAYf6/kMpZSlw7ag80SXQekK2F2Nx9T0Q2m4mI7AhW4fqIDXzJug8AOgoipPs3LXA+c2gaBsL0FZVBIm1nTgUgWmBqiikNkgcioKJhSoUkho9ODwKprQIaF6E9IOwBz7VWogp30YIEKjsaJ/BDQk7UDCwUNnWYZIjT4wpZNuzCkRigo7isju4vlr3yFeBOBe0VV3LuSW75DyD6il7UH2076Dq5IH7Vb634bkRLdU1EmL3xUK2w81FUawBFfW+uaz2Fw6wHd6/ov65R+7n4Yc2nVdR75vLxUwGJlIufW8enkmsgbBERm4ehpIOIgz7woLEZFHRMRTTfilThMHfXKuy7He9Idsjy/rfQo9CttEJRH5qd5bFObl80dddB7nZEYrUq5xN2SY/r5y5LFYH+e33BfVnEykprKGibTp769PsiY2zj2FXvo+wYRt2mmny3LG3seK7Qdst1S8zKb4btJVSi1SI0Wn2b2BbuGbIYOpIQra9Vt8dKvMm30hF2x7bEoyMKyIyrkQtwYEcOhgj0NZhoRnYORgmz+05YOcAaIbJY3u2o3m6QduxyGW8IVu48CRtCvCMEMIJbMa+4blTDqYq+59xm1M8he/9/JO8sv0gXbkO5mXmEDwbJG66i6a4dv75nivoqNPJnWJhxlfxgxuXc6ZRsDCnk7T4vfwkaRn1/mqWJjaQm+xlVuI/jStkG/t7DQK0ff3VvWz8wUvsfb6D1MlJLPzcWg68eowjbzSSl+tizt3z2LOlgj1tp0nM8rBo/VTe3VVFueolKSvILcVX8pVXj5Ltu4aZWXVUk0xFwOCZpDX8y+x4Xmw6zbFQKQ7l4PhCtkpn7PB0L617lKtA9FxBHPKgqtuAraYb9qBqdIO20UE1qqgbqhHp7AwONLxBvDO6sqmjBd9AoiHs/wVC28GJsG9iQLaDzGU4ivqogbaRXHRH9wpIf7r9SObylwDZRrN8YMHVfPnMFnRNop2UXPPISk5s2UzTiVTaz2Ry79fX8O7OLZRVZHH4RAbKsUrk2mSEU0UNyIhhB4qqULGlCbkMG06VkiMHDGYuBcUhMEx4/VgcH1sgcCoKdbqDfIeBA4lA5ednD3EsdJpUtYuVvuMIxULgIOH4elYv/IN90UE6OeP/Cp954vN0HqvDOz+HGq/CJ797E6GKDpyFiVR5Ne7/hzUcP1uDkWUxfXYKP5/yYd48vZuEzACT4qefM6YcbPOwKjVAofcAC+LXsa9LGTfINtoGPRmNWIL4iNmBda9XwkqXXdpKQuNuP9ZlEuEAyxx6LuXB06QqAa5IOWlfQJEXzuX9rna0ipqJS3BIKf8D+A8hhA9YC3wK+JkQogx4DXhdSlk/+o858Voo08Hj5gm0ChNX1VG+sfYqHuzzVvxC7RMYrZG34nx7wlEXtpdi1yeEEZaBbPkd+am/psC3LvbvHg/INtoudM7l4PM7kA0d9pZoVTvOfU2ozWEsS+Kq1XAdCaG2Wfa2aL3AKFcw2xQ6ZRzB5nh2xnWimSYVrelUm4k4kjQkkr3taTzZmEZlqMGGbM1ICRbLhmzNCGTb80yJO+MYKx7+CK6qDtZdu4jQNB8lSYFYFYgyq5lNp8tYO72IW0sW4MnpGnQViPECU3u2oQyqcxJ9vKub9q1f0yK3VSCNiNDdpaAmKRjSQlpw8PVOJt+gIqWBtODFbQ5uv1ygCoEpBQc6iljpeQ+HIjAsQWl7HL+q/gGGNHAIB38/8yZOtXwrdu5kFvdS4P0RqmIghAtH7g975VKmd8UU9fVXlaBNErFcFhTE9VLUJ2c3TuhchroC0jMXNTCwbn+xudzuvaJf3V5NewItJ2vEcol3HJhQuv1gWY3Hf/wa+57aimjyk+YPkn5DMS1HOzBcFqFcJ3OmTeZkRROiw0NoqoWpOQj4HZzsmk5hiYPDtTrtfi8/D17LmqIA7zYLfqmYLE9sIN5XyLFQXYT6aUMKAyFsMNXQNiGtsH0cwtI4U/Eaz7y1hAfuX8N3+mwrf63vCniDxfPNpTy4eDVlvg0YAQNHsPeYogond0yyX2Jlp8YkXOSl/xrhsl88xhqyHW4ubqdEn5LMgtn5VJ4IktcWpjPfi6o5cHUouLq8pC5LpLKyk0CHOuhcyoN1SCFJcbZH+i0wrcHn8vPPfnjcJmqDwmyllH7ghch/EELMAW4AngCuH7Wnm8BtKKBt33NYKYpBtObbUM9gjTdkezHL9Bd6I5/akUuF3AMOkIak83AermmRc8Wm4LGX4viX2/ueKTmOy6EyxR3m3194rXcViKMb0ITJ9qrTeDKDvNg++CoQwjW+WjcMrVRXX0XdaoljSn0ngWwH8fUGM1ZNiSnqWosD95SlnLRO4W+Ip93w8uj2tcxIq+d0SzZTc3P4lbWWxYl17OnIJttdj+7UEapAN3R2lb9EcpoN2ZqmxunKp5lZpCOEXcPwjd2/5enDJd25lNqK+pZD9RjZ8P0qO5cDdWXMNiIXSiKK+tYae+V0ouYymrr9xeay7cgLzF/Uv27/t79Liw06F5tLYufE0u2j2Vxode5Td1/Ol3+5GV1ViG8J8cmrFvHIvs3ofovkDpNb75jP/x7fAi3gDtq3hE1hobcnckPmKnaeegtVmNT6sylIvIpnazZQbZqUB3N4MG81jq4n0AydppAPy1UHqsQyFXZuncTVxfV25RRTofRYzpC3lUcLtB2pW8L9nnudN4u7V3yI5tB+ylt/SdasJdxVvCpiCW5g7vTlsVxUzcDXpnHTAx/mkcObiW82iA/pBCe5MRULd5uLT+ev5Hvl76ALc9C5iPbHsKTPQI4wAAAgAElEQVRFk2XnIhxgGWLQuYwnaDuoSZoQ4odSyn/s8Y+OAf8tpfyLnKDB0EDbwdzKu9AE7I/PbeNH33wG6tvwPPgs6/77Hp58vRRnk4Z4fktsm1Fts5BZMrbNaLYpxOd24ZnaSWtHHA/v8vHNtblsaXqZE/5UflqeycOLJ1PX+XvKgom8XJM64AHMC4GDw4Fse3IkLX8IxjiSI/Mc1GgryJ7TRGVVDlVtk2ioTaSksBZ//CL2VimDvqAxUapADAqy7dHRuXqI3SnOAbTuPor6FR9YwOGHNuNtCp+jqDsdKtcVLON7G4LohonbK6jpyKaqPROnqnLf5CK+f/Q0BzptVb3wTBxNhSClBAOqdySTuM52XUxL5f3SqawurEZiYUmVHRU543qhZDC5XBTpsmIWrnkqZf5yXH6VrFmBQecykG5/UbmYgqpt6cxdcGbIuv1fEmg7WpBtz4ta7xx+jz/+3UZayWPSlQb1NfnUlSfzjboUPvGFVH7yrEbZmYwx2Va+0G8genxFNnRgzsggPCcXV7NOwqNvc82Xr+LX20pxtEoSnlFZf28xjx3ehdWqkLLH4Po1Gbx4uJ7WDg8zMhuYmVfNyc60C44pYwnZxvrRyhCPPPY4LbsUOrxT+dB35vPqL9upOZI4qFzGE7Qd0EmL/Y+EMICu6Efsb8G7UsqbR/HZht3GwkmDoYG2A61ODcaA+uHjb2GYFlgWyvEq2j+QjyUllksSypJIVSAsSK4y6FoRihlQidWCmcsrURSJZQnazvr4m+KtIAxMqbCjbi7fL9iNgoEhFX7YsIB5KdPG3OKCSxO07VUFYmpy7yoQTbJXFQhnuwPN5caV4o+dz3tox1GyfXUUpjewJv8DvFK9lYXx0WLzd44rmBr9LruPdfGvf/9tlPlgHYT7vvBZnn/1GTJmNVB7MoszoanMmlLD4ll1FCy4iS8/XzeoXEYTtE2WFg/982MEsuKJrw/wxW99nP/+/Vv40wVx7QI8cYRSdcxsW1H/3cZDOJI6LtlczHIXVmgyaQXNMd1+Yy/d/iOD/r2MNmj7nVfesrkHVeHLd63mG++/abNBisp9xcU29yAkLlXls9NK2B58ESksMpxBViT2KIyd9Y8kdH4bpAbCRa3nu73OYY01ZNu3LxvV1akRAm0Nw0SaJqK8krbrZoAiEBJ8ZwI0rIrDFIAlSam2CK0MYQlJgiPM7IwGFEViWoLWswncs2ArqmIOakwZa8j2fJlMRNB2WJhtjz88YasLnK+N1SQNuCg0Mvqje+qPL7D9P/eSrPiZtCJMom8l771mUTirkeKFjfjjlvPMuwpSApbENDsJzEy2b734LPQUad+tljY8aE614UEkTDIC5E5pRtiYNNl6J5dlH0cIiSnBpaWwLsUu52NKeLljBvEddxBI/ClCtUhVYKU7iKpYCOHidOcPef9A4qghmZcaaDukKhDSnjQXLqtEKBKBQnN1Ah9b8C6qMElVYIU3iENY6JbK79o/zLbOunEFU6PtUgNtTSd0ZEDk8AlzTRe78rVYLsnVpv0yo4CCwFcNM5de2rlcCqDt9PkZveDUaZMTOay0xT7HWzpGpP8SwCSzi5y8JoQCMz11zI7rBm3PD6fm/cVDttF+ruqFel76h9fJmB84Z1yZu6KVPdVTOHQ6CyyJrvvpmpncDdpKHf+MSLkxCxKkhjFNQwI58e3kJUVAWwmZmp/l2cdt0LafMaUg4+8uSci2by6j2YaL2UabIoRIwf7dxJqUsmUkHu5SbYfKa/jCN5+OvZ0OFbKNru7o+Qb5P7O4PLEGRZUo4lWEMpsv3rcLh9MEyjlW+0EOnEhHURXuvvlyHj9ajmYYuDTFPhyORFUUrs2axZvqEdvmUhSWpRZTH7G5HELhqkk3Y0nb5lJQmZF6Jwo/RqIBKnmB2/j21ZtJnZMTW6p/WRgUlzQxY+mH+eajh4f19x0N0NZV6yd+51lccUkwDTwNBqn7Q3hcBoc6ajh0uIaVc/OZlxbt5FpYkl9CgS86QM3jsrwM0nJgnz+dXU1zWZqezra9G3HdKbB2C/Qyg9JDG5mzrrsKxOmTm7h9dY8qEAVpdkkVRWB4ZAS0FUgk4WnYE7SIop44KWBPBCKgbVF2DaowURXIdOg4hYUqAMXiymSLXV2OcQVTo20ot/F65nKkvZJju05z9dLpzMnJ5VD5ubnUn8xgcn4c+OBMa8aI5LK3JdsecBRbEg5Mi0MqGih2LlqeFctFIvFN6vqzyaVnJtFcjmwrp+ztI6y8eg5zpuVyZP/wc6l0VbGrqZOl6esoSZhM+tWt+D7hJrRLh+MKK2/zIYre4+yBFBrOZjG7oJH5+Wc5dCoPXzCdvaYFCDAl8Se7EPl2BsICV7WCEbl0KxD4z8aTndsMSJq0RExPPVLYoO1bjZPJzzkAioUhBUdCPvveq6FzqGoD3gR7i9YwdVoaXiYxzt6itSyNxppN5EwrGZVzuxeabIw2ZBtd5VWWqEy+Xefaf61BdZ47rnzUPMiX/m8d5ZU5XDk7nzfMNgzLnmj/zVXLebR6P5phoqiCTyy8jN+0vo9mmnTpXlQRACwURWFy/CocyhkkxnnHlGVZD+AvKyB48CNMWh5kzqwPUFOewq7j/8D84gaypl7P4dNZlB7eMawjIWOVy/d+/slRn6idrw12kjYb2EPvSZoEZoz4E11CrfRw1TDNp97npKSQZHg7UV0y4rpY3HWvhdNloSgAJl/9bBqb9l4Ze7MaCLQtbV46aJsrCtoKbQeKazmnHrftsdo9buqrchGZSdQAR4+mM6dVDvvvO9Lnj0YFso1MJguX1PerdV9sFYjbZq6yt2+wcCoOrprUXQWiVbpBSCxpoggns9Nu5ys+H+8cfo/w+yZTlt1FV/zxfrXuebMYta2T4YjdIwbZDiOXLz16EzvDuRiWrah/7Opl3dtqDgefLF4cU9Rdqspt+UPL5Y4zrew4vYfl0xezqChtQEW9by5jDdpezKRgUOae82kS7nXh+5SbOx0rCKf9mMXzdBbdrjLH/BQzk5+2f9Psp7J2Bbtvey+2Df3xb32cpj7b0K43Rfc29K5DnHxHJTEryMriK/nVri1MSamhstUu5n1/uU5JfC1loTR0j4k0DTDgrYdqufGbKhYWlgFPPabwzw84kOgYpuA7P2tmzY0HhjX5uVg4dbQh2+jZW4TF2q/k4HBXxCzBnuOKoljcd5sLV/JdzJuVy519+o6hgLbNoSv6HVP856yAX84jD73Y4/snY7ZgtKTbeIC2F8rlwK7TE3qS9vUIx/HX1qOVzJ2M06EOy3w6H2SriKbYG3lq5k0oEXAQbMj2nmndX7DxAm33nKpFWhJVEVyzcCbbq8/ah1wVhesLZ/J+UxW6NFGFwvWTi9hz5BS6NAloXhyiE1OagEC1FiJ5B0saKELF5b0Oq3M7SAOEiupaPg6QrT2ZHEjrHokqENf0gFP7A22jA7C2p5wX1r6Brhn8KTbpOVfrdjqeHvrgOgpw6uhAtkPP5Rv3plPP7QMeLu456Awll7I9cfxo7X+hawbbXfsGVNT75jIeoO3FTAoGe+NQColQBaHMo1iGzeYIVZCWsjsG2YLB9MJaftQHsh3ogPjV+bN6Zbgsdz7bq6u4v6T3b+v+9Glse2pjj3qVTsqm3NCrDnJC1jxc3v2UHsulrCId2dOwc/Yx7Mr3xb57WuTvqVvdcGrv2/o60dv6ltRo829AxCvjD9kqvSHbvuOKEE5KSm6LWYLjCdpquoGUEHZY6Ka9AhTWDZ7bcyDmPWpG7z5hrHNZsHT6Bfu/0WiDJThiEzQhxDellN8ctSe6hNq8Wbnc/w9reL3sGNcXFXLr8gUYaSYbzxzl2qmzuWPuAhJSu3i/YR8rMxeybloJU5KaONG+hYKkFVyW4mW5ZzJl4WRyfNePK2QbbQOxD3QFcW8tg8R43B0BPOuXkb6ng0CCIL5TEneVQdp+SSAB4jslzgUq6qE4zHiNcMDH0huu5JkzW2hp97LdqGXG1JVMiWugKpiFy5PHgeb5FLiaOaGlcaOrZlwg26ARh0NEwNR+tO7RrgIxLNBWN/jt81vR1GiHZvD4mzvQXN2grWaaMVV9Y9V2NGGAOFfrNqXOqaY/UOzphlOPNj2By+cbN8h2OLnkuIY+6AwmlyGBtn1yGUi3H8lcxorNmQiQbTRD96LL2fDlzZiaxOlyUDLvWh55SIn9PT3M54kNEK0OnhkSyEgWakBiJQsMKcGCk+81YS2x/ztLStSuDAxA2Jeaaeqagc/xJoqAOt3BbKc9CTUkPFm7kzzvy7Z3ZyrMCX2cmZmPxi44FC1+gs888XneeaeMVauKuPHDK9Cy49m8+xjXLClk/doSwhmO2LgyvSCFda58lHaVm2bN5yyV/Y4pK7JWsiC+GX/Xm/ji1jA5ed24QbbRdqHvX2F2MtvLqkAI1IBETVXtS3ISzm6uRC5321VGpCQj5MMyh5/LJM9L3RdPsv+RBP+3B53LeKyiwSAvDvT6A0LslVIuGqXnGZE2lrc7P/bCMyOyFDtRDk4O1J783gv9HhBWVMGcD8xh54maSH1Pwfwrp7G1ssr+MQnBoiWT2dJ4BktKHIlaBLIFFcGtM9KoCpdiIRFSsDxokJV30D7lLRXy/dOYl30YISwsS6FR+zSttTfxp4170SYnsm51Ca5247xVIJrjOkk2EnpUgWhG0dKoaT1Nflo9xZmrqQykcqZ1E0sTG7BccybULbFztg8jk57YNpVuYBkWyrFK2tZOA6cKpsRXEaDuKi/CIcBh4swMggCnopJYDdMXVyAUiSXtW78fW/AuTkViSMG2ujl8d8YuXIrEkPBfDQs4HU7hshNTSF/+sg119hC7BTqm5aAq+D+EG6fEcpk7OTemqNd7NTIt7zm5VDdUkZAZYM2UpXR0xrGn7p0JnctAt5AvlIvpsOzb2Ao4VZWkSgP/si5QRigXDFKE5Mq4MIowsaSTjQe/guHPjynqTV6FdOkcdi5e99weun0F1cakCZFLNJv+Dn7v37CHX/7PHzFSfTha/Cy7bgk7KhsJJat42k2mrJpGqb8JV5tEKoLgZAuZZKJ2OFgyazqlwTJ8vgB+fzwlU2ZQY+xganwTlYF0PjTZR4qyk7JQEqoSZHZcje0GGhC/z83aK1pQVTAMwYm6O/m7H6YOf3t5CCutE2VcGUouBesWcailHWeLjuJw4J/mIZwEng7BkoXT2NJ6GivRGHIuitLFbG8NigKWAUWhfArTDww6l9EGbS/24kCvf9cIPM+fRRtL0PbPHbKNvpHrpoEVttj5kzZu+LrE4VEwNHj5SS+FDwhUh+hxpiTM011NaIfrebH8FP90x6pBV4GI0gltusHWmqdYlfklihP+BywNQhND64bBgbbnV9RbcbbpuLpMEq7KpeGUH5wezGyL2Tl5HDzTzHH/dOKmdNKixdHRGddL6z7TlUpDKIlPTPOzM9DFcc2HNHUqg1tIMTUUR2+xW1EBdN58+wnSCv85losrksvX+pwrebDvhZKAya7yd/j8jPVkJv2INl2fsLmMhm4/krmkqRpS6vZqwyB1+6Hk4jcmpm4fzabfVbquIJ4Hn0VvDfSyBN1VtiV467L5VEbO5uFVsLqcmJ1Wd9+1vZrOzrjYKu/3j56muisNp6oyKWk1L9Y2RYgfF1j1WNLA1AU738xi1fJ2pLQwDYVN7yVc9PbySIG2Y0WFZJWEWDS7hXRvCICiomaK8svAlQhdc3rlctM1C6l9aDO6bkK8itWl4unssSuyoQbd7xhyLinCgeWoBVVi6oJdb2cx42Z10LmMF2g7nEna4hF/iku0jRVom+hR+clnfkoo3g2/f5c77r2WP/1uJ50e0De8z50fvozfv72PQIJF/KsK/3jPNTy4ZRNavIayy4mWoOKN7+S5qiC3z76cR06UkuVu4EBzC9dPvp6X67cy1dGC5u9Apq3nSMdvxhyyjUKQUY4kfMDJK6fzWHJvNns3u6g7mkx9WxrzFjdRejyXsjMZ9pmSYVzUGEnQdjQh255i93UlM2gKbiXd27/WfY6irgoS2wT3LlzC/x7egu4HZ4fKrdcUU17xDqGWeELBBEJZElVYvbRuFZOyYDZ63N2caX8CLB0MqHrdw7zLBEJ0i92rFtYjsdHUPeXZqF3jd6FkMLmMBOVycuoJln5+PinOwAUV9cHo9iOSywr7CnGD6WSmYoJDDlq3/0sAbccCso0+Y/vRMp77zcNUb3PTfDKNr3euYe68OsqO5HDlnWtxbt8yZtvLA40rD33l14QT43E9sglXWjpd8UpsTHn+lf10ek2M9wQfXbuEJ9/ZT8gbRjlscc/Spfzh2DbiEvw8diwOLUGQ42m84JgyHpBtNBfPGS+///T/kbmok4a9Cdz+wN1842uCojm1g8plvEDbAbc7hRD/BvykP2pDCLEGiJNSvjJKzzesNpZO2liAtkJAuKmJ0KJpoCgoikBpD9IyLx4pQHqgK1OCIhGWYJ43iWPpZ2M2l6cL5hZUoUQMqPZOJ3dN2YEqLAQqZ4PZ3Jd2AoewAIWtIQ+tlhhTyDbaLiXQtlcViEC4dxWIBKVXFQh9kkVgmoVsV/EE3Xz69sLY+bxwsHcViEwnPYrNx48rmBr9DkcV9eA+ndwlGh/6znxejojds0vamb2ilb3HsjlePWlIuYwGaNszF5HgYOHn1nLg1WOozWGCUz2053txtkkSgr0V9b65ZLqC3LvMy68rWjjdmczipOaJnctKyFmrUnMolUwXMUX9wMmMIf9eRgu0VRXBZTPSItyDxKEorM7L5RWlGsMyUYTCZxcujHEPCoLP5y9mt/YyumWQ6ujiiqQTgInAgUPezA0JTyLQsaRKnff7TE5eP65brj37sokM2poelUB2HFHwTPWHaJ2fgBS2aefstGiZLe2C50Lg9ptYs+yteZ9LozC9HkXY2/KdASd3Tdl5wTFlvCDb82Uy0UDbYWG2QoibgS8DIWAv0Ah4gJnAQmAT8F0pZeNoPPRw21hN0kYCso3+2HY/uYHS/X/k7DY3jQfjueXLM/EklLF/Xwbl5RloTpNwXootQgOmy8Kf7QBFoCdKtGT7MCUSiib5OKXUxj7nOAPkZTZHeA9BttLGkuSTtvuEQgpurohrQhUgUTiquSnXnaSrMrKSZq/2jdX5htFeBRkp0HZIVSBWhmJWWtJZwazlVUhhnVMFIllILveGcAmJLgU/aJiPqgTHFUwd7VxGGrSN5mK4JIFsFVQFYUkSTndSvyrOduwseinqfXNJVgJcnnQCVbEwpBI7C+ZWrAmdy0QHbc8Hpyqmhn+GI/K5N5yKBXmyi9wptpVW4KmjKAraSnCEk1mXehZH5HNvOHVintMay6MrTz36UL/jyoH6PLRUtz1JsySmx6Iz2xkbY6RbEsiyxxUBuF06MjMMAnIT2pmU2A3aZivtLE258JjyV8i2/zasM2lSypeAl4QQM4HLgRygA/gtcJ+UMjgaD3sptJGCbKOlZVasOc7SVTqL7hcc/68M7v3cC4DOXXerfONr11CwZB2/f9e2uJxOB7d+sJhflO7vYXNZts2lqnx8wVLb5pJ2qZU78q9mR2e3AXVF1i1o4YcAE1U4yUv8KOg/QWIicDEp9au0nDzN2R1eziyZSpyvjIP7M5k0M405xRc3OR1Mx180fwdFi5cjXPbZkvPd/jqyrZwnv/cCxVfP4d5rlnFkfyVP/eIdFiydzlWJkyndVoVrLpTMmozwq+zeV43IV1k4rYCOzjjeOBp9vk9T2lzFc2fejTzfWsqayqnaW4+uGTGtu/TQRnStuwrE6ZNeTJQYlqoXpCEFIASGNwraglQgnGfZvVzkP75JAXvVExCKDacqwkQIyIrAqYoAB5IiTwc7g+njCqZG22Bu5fXMZWV6Ngc2Hce11GBR8RRcHZw3lyX5eayfto69tTX85OiOEcvFiItgtgKkgMA0FzJqdgjQ80ykEnlJ7ZNLhtuPqpgoAlRMrk6twhn5fCnk0jOTkcxFuK7juTMVLE2voiSthBNhH2VN5aRfnYTT5SB1jp+8FWFWrvFx+Fgj+fl1zF/SzO6G6Rw4kYGUFq6TzXTNSAShIiTEn9HonOZAIkGCs1rFnCJin/1n4yGvBUtIGsM+Cj0qKDZou7VlMten1CKwJ9NlwURCVRvwxGkIxT7K0NLwMgmeMIpin/+tq9nEpr3aqJ7f7W/SMVaQbfRSgXvN71i6SjvvuPLVb13L3s5pmKaFw6Vy9weXxMYUl8PB3VcW87MTe7CkxOVQ+VTxIn5dZ9uCISMeVQSwsMeYK7MHP6bUzC8mafGvqT/zer/jysWAtsPZDp+okC0MnuA4Dhwf5We5pNpIQbbR81EIA8VhXyX+yFfTUNUzAAgh+dLX88ieeQMrP1Dca3J0+eWzBm1zrT3HgJrf54u8MvZFrtkTx3+sfQldM/iNb1/E5jqN0/XYRYOkg6k6cCEDajQh2+jzXUjrHk4VCENaKIrgtvxVse2bvlUgmk135GqOhRAq2Yk3cV1rEc27Dg1K6x7NrZOhiN0jDdkOJxd3WGA5VPt2sVNldd6UyLaadY6i3jeXViMJRTQCFg6h4nBfiyKeBIwRyWUsQduRymXAm4ZOB59/+5pYOTlT+THf//UnyE98GlUxuYcynt70GZ74f/uRDR14wnr3NnSLjvudcI9taBfrk5fy2OFdyFYFM+hmhXM5z5zZwqF2L+WufO5d5uW3FS1UdCbzD1Y812Wd5mgokdPhFCp+VMu1/wqqExSh8NTjCl+8T0F12L+p7/ysmQMnt47IJGiocOpYQbbRc4RygHHly/+SS5N1V79jysJpuVxdW9Dre3rNgKDt4MYUp2tHpM8Oo2vnjisXA9pe6AjCcHMZL8gWhndx4K+NkYVse5aWsc2nW6DzEFHzKWvq9UDvMi8weqBtTweqr8214U970TTD7ih0k9++sgPN7MYGH9u6C43uz7/avwPNYXckHkcXhmXYqxiWwbt1L5Lr7jagqtt+T5Gj24Bqav8xqu/vxhSyjR6WvpDWfbFVIAYDp6qu5aQNQese7ev8QxG7RxqyHW4ufd/IP9LnjXwg0PbcN/IbRiSXsQZtRyqXC900DGUdRRgW0csFaem7cZgmYCEwuPtDDhYW/FPvLaVr+98y7w+yjWZXkNp7hd7tLyf1hXpeeuZ1/ng0t1e9yoaTcSxY2EhlWyH7T6YhpTyn/9KdFpplr6z27bs00+SZU2+DuxtO7dl/pSg6UmqREsr9911jCdn2vFTQ37iS7brwmDLaoK2mGfzhN++imd2grWZ/RS84pvTNJUltw5J6pDa1QVvnSyTIMIqQF5XLeEG28NdJ2rDavooadldX88D9awg0BfFO8lKnBPmnO1bhbw2RmO2kzdHON9ZeRXO7xtQMieWq4cHFq6nvPMH0hCYWpMUzK/GfqPW/TpG7DYf7Zup1/7hCttHWH0iqKgqnXi1FLpwCQsFC0rK3DjkvHqEKLFPSdLgNORuECpYlqT7mx5olESp0hNyYPoGCxJKwqdbJ3VMETkXBlLC51aAgDZyKgiUtDnfupsP/mfGBbC+gdY92FYjhaN26btiDrN4N2r5+7HhM7DYd3YNs2DTYWLUdXTm/1m1KHS34BpLuSbPQdtBsDU7sHjXIdpi59MxkqLlE23AV9b65DKTbj0QufbfdRiqXiQzZRrM7sqicDa7NNB6Mp608ic89ci0739xMeXkGRw+nYrS3IhenIFQFy7R69V9KF+DDXgWXvfsuy5LsrzCYWwCqKjD79F8NhoOZDh0VicTuu9ra7yOhdA2rL/8jimJgSSdnz36Rzz1yP+1VjSQUZtMsFO79+noCdX480xKpF/p5x5XyxlqsJJOi1JxzxpSznSbzk0Okusr4/Iz1VIZgYZxFnqOKqZlfmhDjSn+TIE0zkIZJ3ftHkYunI1QFtcuCRGHnYDHgmNI3l0bdx0xZh4JEFQp/bOrk3lSB4yJyGaszaf21v07Shtj2VdTwtz97rtdKxdf7LMV+7wJLsa0hg601T7Mq80vMUB4BXQPdRVLqrxEue1AYS1uob+vP5qovq2TDQ0dxdXYhp2bjUF2oIZOMUouk5bnU1XWghCTpBwUpC5OpbuhAhBXUw/HkzEngVIOfg41eUjI6CChOOjU3j5+6nHWTuzgV8tNsxPNfDXHckq7RqFXQKgVEByWpIYSFlBre1GOs/s7dKI1+rv/gIrQcH8vowt2ic+Oq+RwJtQ26CsRl2QqZ8V5Od6ZTkr6adHXfJat1W1L2UtSlhJyQi0glLqygipKsYEoLacH2vQEKSs6vdVtSUB7OZ6myFTVyKLsqZHKo7T4sqZ9X7HZn/HevXI4FuvpV1PvmsmhKHF+Iz6StPZ5rJy9hakrjn20ufXX7ii1NqCsVLGledC5pquAKbyhSXs2FmvYEVmrWoHPpq9snpHX1yiWsHJ7Qun1/zMZvf/AKe17egejswhMOk726mIaKVpSg0d1/VXVg1Eu6sgUSgaI5uvuuFj/tYYXDR6dRXKBQ3hHAr7li/dfWkJ/3FJMrEs4i1ACtlsAyNXR9M9LS7AmHqVF9/E+8+ELVebeZ+xp2X++7At5l4Wrof6W1trP3SqtEI5GJMa4MKZfTrXjPQnCSF6GoqGH6H1P65LKtI0BZUxb58U1MTcqnPFjDDwzXsHP50TfvYM6s0b3VeaE2qEmaEOI/gQeBIPAasAD4opTyt6P4bBOy7T5ZPeY213hAtlklS7hr8TTQ3rLfgItXcWRbORt/9hq0d+E4XW+fbVEFCUH45FWL7S+3YpIQVLlv4VL7ur8wcQbdfCp/Jf/e+BZdmopmxuHKDKJiURfOZHrSavZ3PYGCyRkjleraZXR4H0ZxSixdcqwin8Uz37PfYE3Bgz9t4uCpcpwOlal6mO/97I1Y5zbZnMy/77E7t/f2nMVMMfn+SXvSvDiX1mEAACAASURBVPvkKeKTg7zY9AQGBm+3votm2ucX0pxOprs99oqdokFoM1LLI81TMm4wJ1zYdtq/YQ+e94/GtO5wQgIZlf6Yoh72dpJeD6FEiadDZeayaewLnoV2lXZF5VDZVBITu/D743FNSaTGuDymdS/NTuQduYBCTxvHQslMF0dweyKQraFx9uTTFKaHI2K3xua3nuCl9xZ257JpK5phsn1TA+FUtd9cjlQeYXZX91nFD7hVttbY23t/rrn01O09nQqF+VNHJJdUJYyUOqpiZ3LswAt8oYeiPlAuWw+cwVXXvR2+2OnjxfLuycAH3CoNbd8mXtVpCGykrbOVSaGJlUs0m76rdR974BoOvPAeuqrgDIT5yPrF9jnWvv1Xp4nnrH0myhRWr74LYRIO+rgh6yr2t9pmXc/+q9Uw8ftd9pkoS8fUYecrPq5e0Q4CTENh/76MEd9mHq4tONa3grNKlnD3ig9FLMGfUVS0vN9cHJ0G3mrNPl+sWAOOKX1zqdHcNIYz+eD01ZysfYLTWvKwcyk9XNVrdXc82mBX0q6TUn5ZCPEhoAK4FdiCfcvzL6otyc/D1eMs2nDPng0WHtzw2608/JXfY/oDOB98lpu++zGefbkUOjW8j77NdV+4it+8vQ+ly0K8qrDwuhm8d6ACGZTIdBMtW8cMqzh3ufj7q2fyfO2btIXc/LQ8jm+VTOVQ+x9o1OJ5uSaZL0+bj9b1KA2moL5dPecg7JwVJRfU7y8Gso3+sHc9fJBXn88je0mAut3x5M1K4nnzaubNb2BvRR4HmjPsraARuLBxMaDtmEC2PnvAySoJ0RTcSnMoRFGR1a/W3VdRX3X5LEp/V4/bb39fb51TTPmGNnTDxOEVhLp8BALx59W6l6eX8GLtQU52JOFQVLLKc3EU265LX7HbMBX2lmdf9JmzkVbURzOXoSjqA+n2I5lLvWFDtlKRE063H882lpBtijPAkfLX+NVnt1Oz28XXKhP42+/P4VeP+Dl2LGVctpkHGld4ZBPmjFyUgH7OmOJ9RmXdxxfxqz17oUvi3ejgzpvn8ctjOzFCCslHdG4pyWDD2UraQk6KkhtYlH6GJv3cMeVoq2fcINvh5lIyd/LAX6wxaIOq3SmEOCSlnCeE+AXwrJTyNSHEfill8QX/8Di00XbSxtLm+vEPX8cwLJASs70VbZltcSHB0RmidUGC3cG6JKEsIGJAuQMWzO6yWQgJ3i7BgsIqJBaWFAQCLj46dSdgYiGoDU7ic+nHEVhYQKXhZLrTGFPINtouBdC2VxWIrGTuuPdannt5T6zY/Oe/eCPff+kdAgkW7pDA8DnsChApttb9q9IDuL1+UpN6V4Eo8Nli96HWP3UXm8/72IA1X0cbTI1+d7VDJj/40v/rIXb/I2+//hRFc2o5eHwSpYHpw8plJEHbkc7llbObmOytpyqYxf1zbuNA8/9R4GqmzvCS560bV8j2vLkcSiUtL72Hbv+p897ePF8ujsi2WnQy0PO3MhLQ8MkTZ2PFq9d/eAUvbiqNbbsWTM7i5b2HCSfDzQvnooTh5fKDWEkmN8+cj9RUNlbtJjkpwDW5S2nsOh3Zdr2KjLjpsbO9ab4baRng3ORYnsO6WDh1NEHb6LhiulVCeQk2VdNnTEGCu0vSNlfEPnsDFhQFMZEkOMPMzmhAFRIzAtreHQFtzzemvBeKY27CknGDbIeby1i1YWG2Pf7w94FbsLc7lwHJwCtSyrGBgIbYxgOzHQnXpfSZAI898B6zFvopvjyAFn8lL79iny2SUmJ4JNqUVBt5lBLLLenMdSIBLdFCTyYG2LpdGmRpsbNJua4uJmfaIKSUkKO2szzlFEQO8acJL1fFNyMinysNF1OdjDlkG20THbTtWwXC8gr8mYoNP0qY5Utkb2q77XBJgSdgISNat4LAFYC5BZXnrQKRpkhWeoKoQmJIhZ3GFTTrpYA1LlUgxiKXkQJtRzKXVEcXKxKPoQgLU6poxjJuT3oTR2QQej/kiZR3G19FvW8uE1G3l3EO/JnemG5/7coCnqupQEZy8YSgeVak8Lyi4A5Y6AWdoIBDUfEEJLNmnEFRJOnOIMt95SjCwpIK9eFJ/G3qMRzCQggn74c8NJn8xUO20awGGlfCyW70dE8sl55jClKCB7qyZeQzeNw6ZIWRQE5CO3m9QNs2lqWcihrF54wp5bqXSalf/Stk20+7qALrUsr/FzmX1i6lNIUQAeDmkX7IS6n1xGxHynVxr3Fw5UeT+dI3KnA6JYgXOF25moMHU1CF4MMfW8kftpej67brdPsHF/H4wUP2eSxNBUXGbK5rJs3iXavb5rpjxir2dNkGlCIUrsi6BUt/GFPqKEIlL+mjCOMRJBoIhdSUr3PmmJuOms0k5l5DqD6NA7veGbOOfyDQ9si2chzlNSg5yQC42g0STgdxpRscKq/h8OEqrpo7mXk59nPtOVnLsvx8FqZFn6uZy/JKKPBFO7pClqan0qqfoMxfQ5FvLQWuAg4cfIi5n2iIad1nyl7jlg91V4GQ2Smg2HCq7rFvIyEE0pIEM1WkZX8GkKlm5L8HiSQlpcueoAkAyaykBlRhoQrIcBg4hLSdXCxmen20Gc5+a76OZRvodl7PXI7sr+TortOsXDqdOdNyB5VL1dl0JuXFgQ8qA6njnku6swM1AguDyWJfA45IRkhJhipptdRxhWwHyiXalBb/kHJRqt0Itwpp0NEZF8ulVKtiV1MHS9OvI80T/R0PLpcD9ZMisLBdVWDrsUqkD1AEUkq6kqU9cRYCXVqIJM0mVoS9BR6f2BnLJdXRHstFYDHX0xjLxZI6KYqgyXRimBottS+S6LO3ZC1Lo+nM62TPLBmxF+yhgLZjDdlGV98HGldcmol0qFiWPGdMURSFe64s4RenSyOfBZ8qXs7vGm1bsEvzoooAYKEoCpPjr0IV1UiM844pk1K/Ss3BYnYe/hQLVnaSVbCOsrL+x5WxAm0nMmQLQ7vdORuYJoTo+WeeGOHnuWRaT8w27LTQTWI213DPRUlh8pGvpuFyV0TMJ4svfT2Pt99ZEfsSnwPaVvQP2va1uU4MArQVPfDBbgDzJZTpe0cewByGATUWkO1gtO6+VSC8hoKpKhgR2uCeyxfzjfffRLfs7b1PL+zWul2qyh0zVvVbBaLVcoOQWNJECAc5SR8nr2INJ6vfJj7vapTivAG17vEAbccCsh3rXNrNZBTRiJQmDuFgUvIdiM6jWNJACAd5qf9G6xAU9bHW7Ucyl8H8jgfK5V+/eQ272qZEVvolVxROsVfSLImQ4G0TBLOIraS52l3oGVpsJS3QkYiV3oqiSFqMJExZFzm6oXA4nMHKuFZsANpJs+HGMixMHX7/X8185TsqUkpMQ/Df36rmyjv3jgicOlTQdqwh2+j5wQuNK31XwHuOKUMHba8e1Jhi991X88hDL593kjqWoO1Ehmxh8Lc7fwPkA/uwX+HBnpP8xU7SemK2Xl3BUrttrou5TJCacwtKBBwEGxy8697uL9R4g7ZaWLdB25gBFe1MDCxpY4MD2Vxv1GxHl0MzoCSMKWQ7GK37fFUgLnTY+Jo+cOpAVSDUHoNw2Z44vrH2qUhn9tSAWvd4gbZjAdmORy4938j7khJDUdTHQ7cfyVwGc6lgoFy+8tU8dh24steZtOIROpO2OG46u/2vU+Syz6TVvfxur3qVaZOW4o4v48D+DMrLU7Dyug27sKP7BTusGzxbejDWd2lG7++iFvl769b5+68URY/02xJJmGDXS8T16LvGC7Id7LgSbWMJ2mphHSlB03rbgheTS5La1uNCmEZb50v4BhhTJjJkC4NfSVsCzJGDOcD2F9IMN6y+eR6OEHxwxRwOB5p4/dhxri+cyZ2LFkCC/UW6fnIRdxaWkBAfZEdTKcvTS7gsLZ4UNZ9GPYG5ydeSLvaiBd/A5b2O5IQ7xhWyjba+AKZwKBi63aGf3HQQOS/PtrcsSYbixjKxV38syBReLAv7enNQxRWxuSwJ75/0M3tabNcDv5GHp7s2PA1WDinSiny26DI7iW/5G8Yash2M1g3nnzRH23Dg1KGCtn217gtVgTAdGppp2lUfTJM3arajSQPOo6gPpQrEWEG245VLtA1XUR9It9dNk2eP7yNs2pU8hqLbg05X10tUB/ZOGMi2v1zWzyxh/YdXxP6/vGVtCbesPf9EoW9mdm439cpoRda1vT5H24L5cfz2iztifYTTvZCnf28hhUBIkzRV7TbruiRqqophSaSUnC6txyrA7tukJFX6sCyJjHxWzTQif/Sc/qvBcDDbZSGkPXk91v4i87ueAQzASdHi3/C5R+5n62sHuOIDC7jxY1dgJsfxznvlrLp8Fus/uAg90cHmfce5ZuFMbr1qAXoCsXFloDFl3aSV5HlbOe1/h+m+VRSnrmOqKzChxpW+k6EZhZns3VeNFAIMa8RyadR9SBqQ0v49bWpp4uMpFvZBEXtM8TbdQ3TCeqFcxnMVDQY/STsEZAO1o/gsl0zrC9pOX5AZW6nY3lINCWbsrbj06GkS4oOxt+Jgw/tooe6l2HSR1r1S0bkT6Zo5rpBttPW9sr7x2Z1s+N17WP4Aii8e79lOTK8DR9ik86wfX4OF5gZXWOKvDxLXoKC7Jc6wk6K0HPYHqzFDKu0ek6PNmfhcIQKal+kelU5zJqkOPy1GIk5nmEYrjnRVp8lwklq5hXlTuiHbjvb3+dwj91NeVoWV4WPK0hl87+dT2PDOQcKpToqmZF+wCkRFWxXJSQEW5/j4VdrHKW16i+kJTaR6L7vkte6+inrfKhBmUEWNqOpCUXj/WIBZM+wjXIOtAtFT7BbCwLRUPEk/5D83fZ3XX9mLleGjsCD3gor6X3IuPXV7RQjKD7YgC+zPphy8bi+Ewp62P9JkQqqAle4gqmIhcfLWe19k0sy1Q84lqtsXTk3htzm3x1aw8hKmXhK6fd++a//bR5CVZ5EeD4RC+CvyiKsJYHhU4sImU6ZOZ39rE2pQYnoF3nqB4QFnWNDSpGG0x4HLAM3BmWSL8lAWCa7gefsvhyOeVLbTZCqkKwaSbrPuxM6neeQhD7pmcPhYI2ZyXGyltbSiHj3REVtp3VlTg55AbFzZ5q+IrYD3HVNqaw+S522lou3bWFKnom0LU12BCTeujFUu5Vo2Oa5CTLmHRiOBDEeA90Je0lWDJtPJ1M69TPZqqI7B5TJ9Zva4WmmDnaSlA0eEEDuBcPQfSilv6v+P/Pm2sQRtx+M2UPSNvO/h/Y0/ey3yRu5EMcHs0Hq9kTv8Pd7IN9TEPt82s5jD21uQpomqqmhGHA2ap5f51Bry9Xojb9VUjJBky/8FKfy2xOlW0HXBE492cLTqLfvs2bEaNuw4wQP3r+EPNafQKk1ch8oHrAIRO+PUbrLb/w6fn7GeNOdPaA3pdIT/DLTuvop63yoQ1R3QICDJZHbuJEpbGjkYnjq4KhB6xTlit+IApOTdV35J6px/4ZVT9ejHanBGculPUf+LzyWi22vJgjnTMznc1IgaisPMMjCESrumXlC3L/J0kBk3mWbTvvmbqmgIYd9wNQ1bUX/4P21FfbC59NTtX2oo5cHFqzmhbMBoN3D4Lw3dPppNz4sUzgefRW9t6zGZ3owe6b9uvnI+p6NnoRwKlqli+nscXdlejd6p9lrlbeh0n7f/Sk5Yz6m2Q5jSANPEQEcqEsMQvPWqOugzaKNt2I01ZBs9o1a0uIui+fXgmgbMGbVc5qeu5sXaBgzLxCkctFmNtFr2kaKT+6aSvWSPLSYMIpfxBm0HO0n75mg+xKXWxgq0TUxP4Kf/8Di66kB9eCMf/vsbePm5vQSFhCff49aPruCZjfsJKibWqwp3r1vCY3v2EnKaOLYqGGlgOnUcRyw+XbyE31Vux6l28Wx1mI9Ov5ytLa/jU9o41BJgTeaNhLt+QYoSprLDQbLbGBfItsBXQF5cHptffYJXvnuc2j1uWo67ueEz6byx0cuRw2noaSN79uxite7RBFOjHZ06ezfXlSwhVem6oNZ9jqLetwpEp8AZ8nDbqmION79FVyD+glUgzLj1dLR9G2lpPcTuDiQSw1DYX5qO0jqyZ88mci7Rs2pDUdTPp9v7Qiq3fWg+x2veQe8Eh+lCZklMYV1Qt68y0vh85nra2g5hmBr1uoOZGEhHJJMJpNuPZxtLyDbafzUFd9N5IpN/++IvmLOkjSO7k7nmsx/AuXHzoM6gjSZom5iewE++8iSGy4X6o9dQJ2UTdoh+x5Tfbt9HUDFgm+DjVyzi8SOl6KoWG1deqH0bj6OLP1Q6mJbcRpLaHhtT6jp/TaIIYfglrqR7iA8+wWAh25EGhqOTxfp6D1+758igcxlv0HZQTtql1sbCSRsLm0soAsvlQkzNAyFQFIHpUenKTQABiqKguySdWbYDJT2CrkzL3pgHhNvEmRG09/iFIM4VYlZaA4qQKEKQ4vCzIvE4CpI0VXK5pwsl8vcTIvqvGT9wcDRA25GAU3tVgTCNXlUgRIKDebfOY9eO0xC0CKcL/LkCJQheq7fW7TR7V4HQzd5VIDIcgr/JyeZEYAtNJiMO2Q7n1mdPsXvuFSYLrocD+zM4eTK734Pyl3ouma4gf1voY2vLCZp0L4viGlmdeJpGU6FDnquojyVk2zeXREtn4dVhDlcXcuRIKk5n/7c4xxK03fTcTmQgyIyVBbQJhWSXM7bteqipOXa2V0uEFw4dRg0Jbpk/B+kzefH0QayQwmV5yViuZhSZ0mPbtZKQzI5tu6ayhyZTISH+5nGFbHv2YxMNtBVxXuTk3BhDY3kdBCedf0xRFAXDaRHMsg98KUKAy8ARGVcS3RqFafUowr55mubsZGVkTFGEQopicLknGFFwlIjvOD7G48XkMhbtYjHby4D/A4oAF7ZrH5BSJo70g45EG4tJ2mh5Lm/84n+pOvQC+9+Lp7w0AZGehsxIRQiBEKCleginuCHyOZykEEzC9oUSJVpy9yl8R5KGkqjFJly5vg5yfW2Rz4KZ3jpmec+iCJjp1ClyajGIUAg1MkkbP3BwosKp/VWBMFwQyFaJgE24Ahatc0Qsj55a94WqQCQrFld4QjiEjGjdHtJVOa6Q7flyGcutkvHIJVkNcHnS8VgO1cFcPpd+HJVoLhNDUR/JXEYatP3p/2xE1wyMiG4vVAVpSRz+EC3z4pGKraHGhaBtjkC3LJCQEAI5O2g7aVHdPnJ20t/p4u4pO3EqFqYU1ARz+Exad07bwz4WpH/lzwayvdiMeo0rlZMRmekxwFZP8xJOPf+YIgA9CcJJ9su/AByJOiIxjBCQm9DOpB6g7SxvPbPizkZsQUGhU2e2MxwpaCAQqNiTtL9Ctn3bRWG2wMPAXcAz2Dc9Pw4UjtzjXVptNCDb6PmONTf+AvkBDf0Lgq/dM5ui667hhRf2Y0lwuRx86M7L+P1m+7PTqXLn9Yv45a5SLCnxGApSsTAi17Q/NfcyfnN2K5a0DajbpqxhR9tLMZtrWdpt+IM/oafNJTEQwonwfQ0hWzl9LIcdj1VQfHXcmHf85wNt6Qqyf8Meiq+ewz23LufI/kqe+oWNIV6Wl0fp3iocYVg0KxclDLuPVKOEoWTaZKSmsu2U/Tzrc9dR2lzFo+XvRp7p05zwn+D9lj9FJs8raArs5sDBALpmxLTuM2WvYVkgROSdMDvFvs4tBIYXei5FhtMivVpkZVOmmSBk7CZrSkog9llBUpjUgCIsADLVHqCthHRV0mq5GE/INtrOB6ce2VbOk997YcRz8blW8X5LOUW+eAp8JTRbypjmkuHyowrLfrGRUOxtiawS2P/jTFWOO2QbbRfKZXF+DgfePY4SMlhYPAVHmPPmsiQ/j/tmXcne2hp+smsHl+VNJs+9gDdrKvCnuylJK6ZVjx90LroOCIEZ57TxWgABoTQnMgLWAgSSJbqUsc96kgaWfRM50RNCEfaCggBmJtajCDPyWTLP29zr95Ki2JBtQnwYRZGATv2Z13n7nY5RO5IwkGF3MZDtSDA6PceVf/tUHMfaszBNC4fTwa139T+muP4/e+8dJkd15m3fp6o6TU6akUYaZY1yFiggJGHAYIJBMsnGxonFOey+jp93DQb7tdfey4vX3rVfDNgGYxsbk3MwCBCSECjnnBilGWlyd1c45/ujqquDJqceeX2ui0sqzXR30b+q8zx1zvPcP0PnloUzuWfnu/7xJ6bO8eNKzM5FFy1IHAKazvllyZiiiwDFeR8F814UEkEQ8r/DyUN72PxWHiOm5jBlIf1ektAR73Gwg2yhGzBbpdReIYSulHKA3wghNgDf7r9TG7yjP0C2ifoOTbO9zjv4+j3nMXTKdSy65vy0i3jRRVPSkqPF549vd6vk0rGZDKiJGZPL7DbZXCI4e0BBmF1hc/UXyLavXCBCJkhdd1vCdY0l48byXOwAtpRn0bo7c4GokyEvWEmE0CnIvR5z/2xe2bSvS7Tuvmwi6Q2xu68Bw12hqPelLmfsQjRxCpDoQscIXYwQj6Gwe0RRH0igbTbu37Z02XdwGVs3F6G3WlgyhNCF6zh02qJ1WNBN1BTk1gusyuRKWqAhiBrmYEuHxlgYmd+I7lpMsrexgnlFh9C9bbat0TIuyDmN4a1w1tlBnvhBHf9yOxgBd6vtp3ceZeuWl/sUnNpVhl1vQLZ9UTeYGle+8d+zOG3d0uWYMmt0Je+bNr7duHL2CvjsjLnjooyV1gTAdl2HyepAAG0HO8gWup6ktQohgsBGzx7qGMln0/91o79AtqlP5JoWoGL8lUC69Q70L9A2teg3DYQZCCSBtqbNww+vSQPaPvj8O2lA2/tWv+MzoRzDxJQeRNNxeOnYakxpucfS5u3aRyjVk2yuM42/IV9z2Vxgopp/Dnlf6jeQbV+6QGQ++X0s48kvE5zakQtEImkWwfm0vJvD7V2kdfclOLXXxO4+Bgx3laLel7qc/US+Ig1o21WK+kADbQcSZNuRLl+7o4o/Pzi+9zVpQ9Nr0kYWLPdr0sIxOJVSk3b8qSLeeGgVJ7eNY+aiFo41TmPL5iKUUmfNX3FDYnqIdst2+MumLcRtj1lnO9y7bQ0mSXDqI4f/htKTDLvU+atYs0CZ3gNWcu7qDci2L5sIEnFlaLD7MaXPgbZxi7/88mXMuO0DbdvTJTOmdKZLoV6P9FiCHcWUwQ6yha4naR/DrUP7IvDPQBXwof46qcE+pk2s5Gd33MDTq7djh2HiqHIaWmPkF4epc6L825KLOBONUloYpEE1863pl9NgtjI8T0eKM9xcdRMN5g6GBJoZGlmBJeupCORTyGlU/ncQ6kxWQbaJ4V/AcQvZ3Io2RLrbSRJO7j6BqsxzWVxKcfzgaWSFjtBcuOB7R+uRFe6TmxPX0aTXjKAJ1p48w7gS4W5fCMX25lYWFbjNDSA5GK9hRFiiCeHeVOYq1Ol3+g1k2x8uEInRn0Db9mjdmS4QVoqlTNy2eWTPRj8R6gsXiI4muv4CDGdDl8ToKUW9O7r0hG6fG5zdL4Dh7iYFbeny5Tvbn8uuzThO1SWhTWcjqc7V5AIt03cRCK5l14Y8drybi8htQhtV6NfDpc5fekwlCnERmmDPvlOoMlxwqlAcONFEYIhy5zYUW0+3MqnMna8U6fNXraPhBMC1IZUIcxVO7dsc3XYrn7v7EzTWNlNYNYTGmMNnvnEFjfWt5A7Np960+MqnLqKhKUZuWYTTVoxvXLOUbbUnccKKCcPK+P3y63ls32a0sGRKacVZMaXJaWFkGMLiONNLvz4o40paTJGK9zbvRxs1olNdJOkxRdKxLrV2HhKBphRCtB1TuqLLu/uOIcPG4EdwKKUOeX+NAt/rv9M5d4Ydgr/u3OFuD2zs2VLscdPmVGs6a6gzm5eBHInW9Qe+9xfWv7wZeeAIWkUZIi8XLeqQc6yF0pmVHK1rRI9D/klJ6aRiDtU3oJmCnJOCinEFHGypxzoVQQ87TBtWzvbW99hVV87w/AYKwzFO23msbqzmwmIbJfdxRmq8GcthXk45OfIQQiiUMhlTfSyNDD3yvLEs+XgLWqvNZe+fzs6G+nZp3ZkuEHOH5fNZbQxN8RAXDz2fkbmnB7ULRHdo3ZkuEFor6MWuf6VSsGvLabRJGlI6PXaBSCV2hwv/g/f/n+WoliiXXnc+siS/z3TRxOa/G4p6Z7ps316HM1b5VPXu0O3frX+KGcYU8hrvbFeXfXUtXabbV48q5no5ARnTWD5uBsfkwXOKbp85d6mWKOrwe1QumMKxE01nzV+5JyRORDBpUgWbT5wkfEJgFSmcCEhTx67NYWxVhCPxOprNELtrK1gwVKPBqUmbv87IfayKhZkUsCg3HEAhpcmRrY/x2K873t7raKX1r3u2c/slS3j69LtuTKnp+gr4YIorPdElXiSwI9pZMaUjXeptxarGCUyKHKc82JgWU3LVoW7r8rM7bshaotZhkiaE+LNS6gYhxBbc+TptKKVm9NuZDfIxEEDbbIFsU2uQJs+dzy23X8/WN3ZgmSZGfQNacQGOlISk4CNXz/Mv5pDU+eTSecn2fqlz2+zz3PZ+S2DIENeNmcOPdh4naoY51aJTGnGxC02ykLGFyfb+RmVw9PjVjC74BXoAHEux4Z2wfyNtPFhH9Kl1/grNqPlV7dK6M10gdu3bwaSGZK3TpSLMmzXJyW0wukB0h9Z9tgsEjK6sYH3DCbQoaJbGhPionrlAtEHsfv3Je3n+ycluknLRVO7+r+f8ya23uvw9UdQ700VGBPapCCLkdJtuf0YKTh97nNyOdOkO3f5IsgZtwZiCc45un9AmOXfZBByb6265wEf5pM5fwnIIKJ3l86ex89mVCAuCzYJYrueX6QT51PgLfGSM6eTw/qFJPEnq/HVGauyxA5QbcaS0sC3YtCp3QE3VexpXBqJrPj2mdK5LsFmjJc9bBU6NKY7ToS4NQWDTugAAIABJREFUdgH7YgYVwb0oHBqVgZN7KzR/Hynj3dIlm0DbzlbSvuL9eVV/n8i5NvobaPvMr1/i51+4DyklwVCA5d+9iUcfXod03OMPfHYJf3x+g/vzgMEHb5zLb1etx5ESWSCIl0ikUoQMg08tmsbvDr6FoyQh3eCr06awsu5ZpJIEtAC3jpxJTdN9KCRlumBewQLC5krw6l0yoYO9AdlmQgczb+wECLIsMo8X/3M/v3p8AtPnN7JlbQG5E1r7vdZpMLtATJ4ru0zrznSBuG7WdPY8e9q/XnvkAmEZbRC7NTZuKOtRAXQ2denLbr6+0gVDoGwNx5Ldptv3pS5/T0Db7oJsM+evzPu1qyDbssg8NE1yYu8z/OS2dezaGB5wU/XO4kqgII/zP7KUd9bsx7EldnGYWFkYpdRZMSUUMLj+8pncu/Vd9zgjrgzLa2Vk4WmPHJAeU3QR5H2l15EbvR+3Mz2UNZBtwq6stpu6ZBNo+w+YbS9GfwJt/2XZ7Theoa/IjaCPHUlCKhnRiVUVIL1/cELQWmm4E2xQERuabGPXgw7BihjSWwjND8aZMuQkyjsuMVq4sHAPbp2LwwXhGLoPsoVsc58GG9A2zQUiPzfdBSIvyIqbF/KH1zYSDUgilsZXb72YO1961XWBUCkuEOF0F4iisOsCsbXhEYr0euqdIj466iM0NH6XYi2OrQxmpLhAZANk6xO7N4S57+vfYMq8erZtGsKexql+rVO2gLZt6fLXpzYSNwQhW/G5b13JT/68kmhAElAa8TKduOFATgZFPcu69CaJ7ytd+hpoC/DSI28jciNc8qHz2XekNm3b9dHXN/vbrmNHlvH4lu04YcXyaVMB/Dqsa8dMpyZ2JG3bddPpZ/xt1xE5I2hueYIyXZKTc407iWRxyzUxBsOOyFlxJRJGG1OFcLs7cMI60RF5PuA2NaYAqKAiNgw/jqTGlbxgnEllJzw2WnpMASjWFEsiMa9oH0BD5H01ayDbxBhsQNsewWyFEE20sc2ZGP+bYbaJ0ZtErb2W+pf+FOM/PvsWSno3RHkZoqLUT9Ks0jBmadg/Nos0YkUuf8gsUFhFySQtUGChF8Z9EYfnNzK8oIGErNWRE0zOqQEUEwImkwOWf7O5bxLKKnQw20vzZ9G6hUCGMl0gDForc91aorCgyaN1o2BsZQlbAnX+sQinu0DkBuM+sbs00MKigt245ciCIYEJLApuwCMUoGXZBaI9XQYD0DZTF5Vj+M4cKBg5qpgtotE/dsIQS6Goi6CN/g9d+hxoq+saKhJGDh/mNh3lBmkZluPrcMnFk/nrvj0uhE4JyBG0DHHZaIamoYUcKG1BCCgMmUwoPeHWqCJ4f9kMwup3XkOLYIgOi8LNHt3eQKBBSvKc7XqsbGuTGldEWQlaRZmflJklIcyScPI4JaYA2IVgFkn/ODWuDMtrYIQHtIX0mAJQHbCZ7EO4AQxEyUNZ1wMGV6LWI5itUirfe/FduNiNB3Fvr5uBYf1wnufU2Hiwhn/61V97xOLqqKX+fVcYvLBgHFvXhBC6xnWfv5innt6GadpommDFjQt4eOVWLMtBaIJbLpvH79Zvcs/DFKApHKXQNMGnp87nj8c8BpQQXDfyfbzb+JTP5jq/9DpaY79y2VxO0PWT8MjpRFZwcN9cH2abDVuTVKBt2g01cyTbNx0mcDqGFnO3yIw4hBoURtzVZv2+oywaV8WsYYnzqGHBiHHMLnUTg2NNBYwIhQA4Y+WyOzoU3cgFNlEbXU9ZZCGlwZkc3XY3y//pKJtW5bJzQx5aXi5KCB+c6uQYHhxVYIWF/3cAO0+5O0GJlc2wG4CEcPvyCkIupFMIKDWaEB4oVSpFVSCOBr4LhNtgDdkEpiZGKjh1++pdqFOnoXUoAFrM9nXZuquGLduOsGBqFdNGV3ZLF/f6OMrk/KWUhhPXR9d0sSJGig4KK1+HluQSsYooH2irUOhh+Xety/ZNh9m67gBzzxvDlImVXdLFbgyiCtz/tyYz1DNd1udBYRAh3C/XCmlpury58yAElX9sBpO62EqiByx07zgnGEV4mqAUJ6KrGR2Wvi6luunrorBJZIJSxqnd+wxDp8zOGjh1MDAn0+JKPI4RSLIDz18wgTcOHMNx5FkxRROCjy+czf17NrjHGXGl1YygixYUzlkxRaBRnPcxhPlb3IlQg/zbvZXWx/r84bunFoxdAQxnq3mgqwiODyqlUrgA/FIIsQn4bj+c0zkzetM8kFnbUazZJFrqNc3h6/ecx6tPTPUv4l4Bbc9iQHUNaNvdi7g/gbYHau7iG5f8uUvnMtAuECtSXCAitoajux17AUPnlvlzuf2tv2FJp1MXiAanyAOnup9dWvARRPOdKCzfBaI7tO6BANpmA2TbFV3CNi76w6Oqf/jSufzg6dfcbVZD5+MLZ7VLUT+XdGkPaNtXSUFvdfnXm6vZsSPX3zYLxCWmAnAtuBZPGu2upOGupAVNgaXcMg9D09CsgMsdA1rNCEo1greiWRFZiFK7kcpdSatzQsiA5a5YCwMphV+4/5Pb1nHxZ9/MGjg1lfE4UMy6zHrBzLjS2Wpep0Dbut4AbQcWSt6WLke3fapbgOFsNQ90NUlrEULcDPwJdw3zw0BLv53VOTJ60zyQWeh5RiY2T1zLn4rxV/Lhbycn3WwAbVMZUGbM4vmHV2OaNkqqThlQZmJysZNA28TkEndsXjq2ug0GlInb8WplFCObNNa80uUbKtsuEJ0VuXbkAtFWkWtPaN0DBbTNBsi2q7pkPpFnNrR0RFE/F3TpCGjbVyDb3uryjXvnc7rh+g5r0mb0qiZtXFpN2rGUmrSXHljJkS2PsemtXHZtCBEavbnd+StuJOeMuGXzl01b/LnLtNO/g0yGXaFenzJnmLS0PEpBytyFuZaZyy7KCrMus3mgrbjSnZjSV0BbM26hpMKKWy5bMKGLkZwzTMvmiVVb240pvdVlxqLmbgGGs9U80NUk7SPAz7z/FLDK+7f/1WPW6Eq+cc1SXt68l0tmjOf6OTOQQXh+724uH1/NjdUzICB5qWY7l1ZO4crhc8k1TNadWc95xXMYkVOMdK4GpRhZcDXC2QnxFyB02aDYr5+5bAq6oSMdiVKK3Wv3wNByAJRUFBfmJJsZlKI4N+Jt/7jHJZGIXyrqxHWCQsNRbl3DptMnGFnkFaWiCGvFtPo1CxJECfivlgwZNY5AsK5LN9RgcYFIjP4Cpz7/8GriMde5wTStNFq3adlpLhCWITE9cSzH4S97NxJ3PKq6Y3dIUe8psbs/Qbbd0SVVk/7WxTyLot5/uqTT7S1U9LE+B9n2hS5Dg2d7il591Rz/eMWSGaxYkqQ5pWqU0MnXiCquHL7IP55ZciUzS65sUyNL1fKnn6/yjhSFpbl+nW/m/KXH3PIQx0Ne7Dx0Elni/kyiKAnl+kXzEkV+IB8Vd49r7TzcLW8bUJyI7WBoSHo76xIligG49Jal/p8H32vkzZe2sfjSqVxx1RxUSOe11XtYtnACH1wyAyeAH1fGDStjxSS3AWPF5KnsiR1rN6bMLFlGvh6jpuVlKnMvoSjvQ0ihBlVcKSjL83WQMl0XvdXCGRJxdVCwa/eJpA4ZMaW3upSPmsDn7p7PG39dy4Ufms8VH10M4VC7ugxWBAcASqmDwDX9eyrn3th4sIYfP+E+Ea8/8B4yBHd5S7Hrat5DCzr8aOfzmI7Du3WHyQvGefzYn7Clzcnou5xpTi7FjsmphuYf4D55vYMKVGf9hpqycCKXfWIZz9zzMkoplKb5XZ9CgzMNrW4Nj1dScqYl6gNQNeB0NHksTJ3JkUq2tR5FAbpnjgwgEMTkGUh9tTrtHyslOHVoH5+7+xPs3XkckRth9PSR/PDXn+SFF7cgcwzGTBjabReII60HyQ/FmVhQzjcLvsa2+pcGtQtEauDVdY09b25HJQqypeDk7pOoylyE5nojprpAaDHcnFe4JuRbj9ZBqQewFbDtdJSJZYl6HsX25mgnLhBvpRG729NlQvXQsyjqmbpsr69BC0uqS8u4/4JbeOX4264u+RefUxT1xOpAgqKOrnnuHP2jSzrdXiCijyKVjePohEP/lx+//F1/BWv8jFGd0u3/3nRprG12v3OpEJqgoa4lOV9lzF8BEyaUl7Pp+Al3P0NL9stpwOl4S9rc1mQ1+cf1dj5Cn41y3gEUASFTzkLj5KE9KSutBhMumOKvtG7bcAgnrPMzb6V1046j2CHBj72V1rVHj6SttE4fUdZuTNndvJviQAsH63/i1hjHNlCiOxQMsrjSkS6G6TB2eCnbj9aiFDiaJOFAmRlT+kKXX37VZbVtfWMHIhLpUJexI4cM3u1OIUQY+DQwFQgn/l0p9al+Oq9zYvQn0PbE3md49YmDA45XyKw9uvSWpbz0wMo+eSK/bswc9u483q0ncqVMzJjiN3ftZ++eP/q1Na88v41bv3s1T6/fg2U7PPvmDr7wufd12QXCr61pcXin/nW+OPZqsH7HcdMatC4Qqcynk4dP8ey9r2S4QNjtukAcbmiAE6AiMGVMOZvqT6BORTAKTbSwQ5MZTKGoH+O0nduuC0SuOgxIn9j96AOb29Ul4OnSlVrFJ2s28P25F7Er+hJ2i8079ec2RX34gikcO9ncb7ok6PZlumJ4eDKFzmaEkIDk9Yfupnz2Xfztjf1ucuDp0pMa0nNVl5nLphAMBbq8neWCbOt6xCgbW3A1B+s3t1m6svmtvB6bq/c10LajuDJQ3fKd6XLVJTPY612nvdkV6WtdBntN2oPATuAy4E7c7s4dvf1wIcTluFuoOnCvUupHGT8PAQ8Ac4E64EZvVW9QjP4C2kqp85Pb1rFlzWY0TeO6f73O7e6MW2i6xjW3LeHhlVsxLRtN07j+unn85p2N/ud846Zl3L76b+5xWBGqiGFJB11ofGHKHK+700ITGh8efoHXiWMi0Di/+CMMM+8nUcMwee6DWQHZJup+Nr/4G35z1362r4uglQ9sbc1gcoFIFIhPnjufKQuXs331Li957roLRIKqfsPU6exYU4tlgdasE8xxmVgdUdQTLhBtEbuzVQjdU136EmSbqktXKep9qcsZqdGoDKpyrsOp3wZIbEuw4c1cck90PRn4ewTaZhtkm0hKRkzNIRBc1yNz9b4E2rYVV554cgu25UBugFhVAbbj+DHld+s3EbdsdE3j5ve73Z1x2z2+df4sHqpZhSUdCkMWU4acwlF2BzHlt0Ac0Jk04/YBA9n2pS7ZqknrEsxWCLFBKTVbCLFZKTVDCBEA3lBKLejxBwuhA7uBS4GjwDrgw0qp7Sm/83lghlLqs0KIm4DlSqkbO3vvc4WT1l578FmctIoyGFLqf6ZVGiZe4i9oEi3VMPOT+NkRk4vY1XrafW2+iVFk+j9zOWn1/nEm02Zm0GR0wErCbCM3oRXe2cffWtdHm11qWQKnPvu7Wn7+xft81wffBUIqgkEjzQVC5OjMWTKWN/YcwnYkTj7ES9zavmAKrTvRTei6QDyHVJIhgShXlg+nPr4SqWzGGA4zQnGPM5RkPmWTu5QgqW9dG+6VLn0BTu1IF5EXZNYVU1m9+RCOI7HzNVpLXOJZ0EhS1KWUZ+lSFLZYPrqSHc0bkcqhrAu6ZAswXBqeyf71T/D6Q3ez4c1c9m0tTIM/Zwto+9IDKwGYcMEUGmMOBUU5aduuhflhf9t128mTKOCD86YgQ/Dojm2AW4clgg5PHN4EwHnlJUhxhnw91992lfYGEIKR+VdRokm3Pg8QkeVZX9GDwQG0PSuuDB8KxYUAmMUhzLKIf76dctKK42h5bj3ssLwGqgob/Nf+g5PWs9EjmG3Ki99WSp0vhHgd+DxwHHhbKTW2Fye0ELhDKXWZd/xtAKXUD1N+5wXvd1YLIQzvc4eoTk76XHAc6KiVfse7OfzL0ttxbHd1QsuNoKU5DhjEqvL8Iv1oicAs0PzzGj65iN1ekiaCDqGKGAmHgfygyZQhJ2jLcQBgRtBkzCBK0mDwgFO7qokdgpYKjQQV2AkqF5zqSaQHJcGKaIoLRFKTYqOZCwr2oAv3Z8Waw+JwLAWYOjho3ZB9OGdnujhhnejwPF+HTF1UCGJDVQpFPalLXjDOxNKT6F5t0rmiS2+Sgb7W5WsX3eFiFSJh9DFV4NHtZcSDPyfujxA0V+j+/aHlCKLlbh0WQDCsCJRHsZV06falJ9G05Py1qGC3r0uprrE4HPU6XsFNnh/MekIwKO+VygpESRHg3iuxqvxk61ZI0FKpJx0HMu4VoyiOnu8maXmeiw3txJRiTXFhJIb2D8eBDkePYLYp4x4hRDHwr8CTQB7wb708p+HAkZTjo0AmCdL/HaWULYRoAEqB2sw3E0LcBtwGMHLkyMwf9/noL5BtwivzS//9aX7+xftQjiQgHZZ/ZL6/OhBRghVXzOWPz29ASUVuXENqmr9v/8k5c5PbnU6QT42Z668OWE4OF5Vd6a/aNMsihuffSk3T/SgkNU6YMQFwO2ICiMjyrE/8k6evJRwaxtoX3HO46dalbN90mD/du5IZ543hYyvms3VXDQ8+upbZU6uYN24E7+w7CsAcr1NszVH3UpszzF2yTpzD1ZVXsrdpL0/VPMPk/ImUReZRG3UT/NLwbHfaMddydFsMKZOFpyIvl9RHBSfH8JNmO+xHbgBkmLRjLez4STJAQSiZRJcZzSlPnFCmywTbM/HqrANTEyPRsZe4NjJ1mT21ig3b3O99ljfJtaXLghFV3DbxQjbUHeGeXW/0mS5OAmjrDScsfMiwe0yaDqm65AddmG1inCu6JGC221fv4o8/fKzPdZmc72JJAMbnu52U7eli+7Z2OS5k2DtHO6yn6eICoBWJf4wbEjvl5nICFsJL2PKDMUSKLgnQcGKUaHHwEzTobn1vfwBtD+we5jMeswWybSuuGK2tiPISHEcSlvChK5MxJaR0blzsendKpQhKnVtmJFadFXo8hFHg4CiJaefwvg5iSqMKEI181PPulEAQgvOz6iZzYu8z3Pd1dydgMINsoQtJmhBCAxqVUmeA14Eer57151BK3QPcA+5KWn9/Xn+BbBP1HFf+02cZM21k2kW88PKZaZPL4gsmdnnf/uKq6rTJ5YIh09Mv5IJFbe7bDwagrVImw4oVax6fwEPfLxxQkG0mrXvLmpBbz/G5hAuEhaZpvguEadkETYHUPZq3prF0wihePn0AW7r1Hklat1vDkeoCcdop8MCpEg2NYHgJQr6CG3g6p3UPJDi1v0C2faVLwJRII6nDohljeaXmkF93k6So22fpkqCog9vROirvQnT1GAqnT3Tpj7q4/talKyDbVF2enz+GLWvCqJZWNKUSLaoYMQdTJdwdIBiDuEo+2IRsDSmSK2m6FcAQNraSNJlhlGr0E7U6Ox/l9/PBaRnCTQTcRE1Kw9uW3zLgEOzEdzGiXGfctDFsXxfJev1mZlzJXNVLjSnTJlaydNa4tOv0konj233g7iim5IdnoiIX9zvQtqvXaFlRnLsehG/dMI5dG/MHbdMAdCFJU0pJIcQ3gD/38We/B6RW4o3w/q2t3znqbXcW4jYQZH30J8g28USeavEC/c/magto+9ID92DGTBdYa9o8/+g7xOMu1TuqKf7w1Ds+AyqqOfxmZZIBFdVs7tmwLgm0DccxpTtBBfVWXjz+nA8ezNca2N/wW5QHtC0QMfSWewETISR6AKbPb2Tn+twBBdm2R+vuzAWisyDckQtEX1qZ9Cc4NZWi3pcg277UpbMn8u5R1D/QJ7r0JhnIpi7dabbRNIdv3Dufh3/uchUHsiZN82rSzpxo4E8/gy1rjqGkxNINHnlglQ9OPWv+CktMjwyUOXdZusn9e1f530Xm/DUseMrrbAVH2cjWR3AL5RW6DrMXt7BzfW5WQbYdxZWOYkpncaWrMSXBFty+ehcPfO8vSaBthi7xsObeJ941+uiarcQtlx3YmS4Foca0a3R/4xNtxhRNUxgBmHlBC/u3Fw/apgHo+nbny0KIrwEPk+I0oJQ63YvPXgdMEEKMwU3GbuJsQO6TwMeB1cB1wN86q0cbiJHwvfv2FUs5bcUozAnTcCbG7Qsuos6JUhyJUNcQ5VuTrqBBNVMYzOG95lauHXYLp8y9AOQGJrK48v9xuPEpEIKmyASXMSSKwVzrssUGQR3FC7951d8+0vJy2HfgtGdQrRMdlktrbSPg1jA0lWs01zegcGsYWsslB1vqXS5aUKLnJGsYqktPUu8kaxgWFuzxCloVxZpicbgVTR0iwUlzLNiytiBrINueukAkRr+AUxMuEHHLB6emUtRNy+aVjXv8Cc4yku38cdvmL3s3+pNb0gXCcn83wwWiWLNIrvbGUdHHmLns5n4B2faHLqma9DdF3UxQ1NvRJZNu/8imLX5ilNAlFWjrUtSzr0t3QLYJXb7yy67PYSsyjlN1SWjT/rgy7SiRNCc00XIjiJHDqTneBHh1cRnzl5nrFsU5QUWsXKXNXUZZK0fiLm47P2hSXXYibf6qCiUrcEp1RaHcSmJ1TwiDJTd/lYbWE0BGwnq8ia/evCSZsNZG24wrW+rd104fUXZWTEkkrIdjLYwu+jfC4jgBrYgTVj3k/SsFztYuKtD/I7HK25EuVn7Q/30Z0dh26pS7hNEFXcpym/3XlgRaUI5rOebXkHoxBTQ0zaBq2nI+d/dUGo6c4jNfvrhNXQaqJq290dUkLdFR+YWUf1P0YuvTqzH7IvACLoLjfqXUNiHEncA7SqkngfuAB4UQe4HTuIlcVsfWXTV85Y4/p69UPJGxFPt6xlPxlrOXYlfVvcUXx17N4eancZTF4SZvKbZp8LCGNr22HcdxtxyEEExYPIW9R9xJzckx/MJfIaBidDEtZgPSq4+vGF7IfucMCRTh6Io8anCLsguCMb/wVyCYkhdxTZS9m2d0qBxNHPDo9hoitIj1q+YTKT7F5+6ez+jpI7n46lkAXPLB2ciwweXLpiKAy5dNZcfp2i67QEwsKOQC0yWYLy5bhCY3DWpa98xlU9B1LekC8fZeqBgCgJKkUdSVguLciF+xo8VAQ5CovNp6tI5AuUAq99h1gfBeS7oLRK2jobxXu8uojzJ57nI+d/cnfGJ3pi57T55pl6KeqUt1aTHXVLkJ0DUjZ5IfjJ9TuqRS1FWCop7QIUMXPabQhMDxvvfd+0+hlQtkQpfjJ/Eg9UjwKOree3VBl3BobhrdnpxIl3XJpNuLoJOmS4O975yg2ydssRLA1MoZYznebPsg2/Lqcg5FW30Qd+r8JcPu77izUfrcpQFTSyIob6s2OX/52G7GR8Yj1CbvTAREVhCLT+KlBzzv4QdWuiutP342faX1/lfbjCupK+CP7kyPKYmV1oeOpK+07qxzV1pPpKy0qujjgyKmdEeXMZMr2FR3EuiqLm7ntkAwt7DEvflwa0jdJh/v1cFF6HlfYsTUNlbAU3T54a8/yZQsJmjQdceBMf3x4UqpZ4FnM/7tuyl/jwHX98dn93Rs2HZkQNhcSplsfvE3BEtzstYNlGn5c/mNC/2W/rANKuWJ/GOXz0tr5//0wnlp+Itbpy7w8RcxOxdDtPhP5OeXLedg/Q7/iby44JOIlHb+gwev4Ycfdye4LW/vTyu8HTO7Km17b+zkCp/W3ZkLxI7G3Wn1C7MLSwc9rXvKwolc9smLeOael1CKtIJsoYk0iromBGdaomgCpIKApTG5eAgbzxx3n0zjGtNzKtnW0rkLxBkZoFGbRJHcRGJr/sTeZ3xid1u6tEdRz9Tl7VOH0moVzysv4fEDyaBzLuiSSlHXEhT1FKp6qi5BUzC+vJzNJ1y6vYjC9KJyXxepSXTvfTWER1FPBp+OdFHK5vWH7ubZe8vPott3pkvbdPtkMnBeeck5Q7fPnLuu/9wlaTiSG29ckDZvpM5fuq1BCpssde4K6DrXjUzHkWTOX7m5H4LmHfg4ksjyjj1u+xFom1rvnBpT+rJQv6sNFG3FlM50ufaCaezooS5Tiz7Awfp3UkqKIFFSJPK+5HkPP9ahLpvXHUhblc/G6OpK2j+GN2ZPrSKQUovWH9sFqZT93bt+iBhd5fK1QgGu/NQF/OGVTThKEQwYLF8+h/vWbfDfc+Esr0hdSYyQxBgSReGyuD4zaRZr659AIQloBjdULqAp+j+Agy4CzCu6gQrzXgQSgcGkKSv4rzduYO0Lsk3oYGcG1r0F2SZu7LW/SdbYDLRZdF+5QPQV66i3LhA+MDUxsY3uuguElnMdNO8kEXxSid3ZLIjOli6pBfvdpduvWDCNXR7dPlMX3QoS7EbtUaoujqOx4c3cQUG3x1zL9hRu3EDicybPbeXedZPZ/FYeI6Z+YEBBtpnzlwjOZuaynG6ZefcV0DZR76yU7ceUPZvu4PwPLeLdnbU4jkTlGLRW5rm1dhkxJWgY3HjxTO7Z+a5//InzZvDge28ilcLQND4woopT8i2kcigJtLKoYA8C2UZMCTJpxneypouW0WADZyfzmbrMOK9f1qe6NbrESTvXRn9z0vqbzbUphbIvykoQFWUI4XY/WSVh4sUh8FZQ4kUa0UJ8tIBVoDCLFAgXZKsXmngvpTK/kcr8ep9CUB05wcTIe96upaA6YDEpEE80YeF+QsiHp2ZrDAagrZQ637zB6yLUNa77jucCYdpomuCa25bwx9dcercR0PnS5y/mB8+8hmU7iBxBvAK/u/PW+bO8LkIHTYgUF4gEsXsRLbFfIpWFJgIsK/8/FDTfSRIU+mAaNDWb7Li+0KU34NT+1mVdw5PYysYQBl8e90EO1N+JVBalumCxX7Dvdnfu3Dwr64yyA7uH8eUL/3x2A0MXgLZ422qJZCD1XukJ0Hb1m1/gro+8ipSSQEEejBqBlBIjoHPbHdfw0wdXYjsOhq5z7Yfn8dtV613XjEASMuxISSgFMuwoSXHYZmLpCSQOutCHGZecAAAgAElEQVT58rhrOHDme0hsNAwuLrvBwz04g2L+SoxsupWkxhQAMaQErbwMhHBBtqXhNmOKAKxCiBdK118WMAosREHcjyOVeQ0ML2hACJgQPs6knJp2YopAoJPAcJwrugzU6BXM9lwb2YDZ9gfawIxZqHAIbUwVCIGmCZywB4IUoGkCKwjNFZp79wiRBk4VQYfAkKibsAlBbjBOdekJNOHWxBQbzSws2I2GQhMaxZrNBeEomvtW3jaajsj7yqACD2YjKTmL1l1ehqgo9euM4hU5WAXJgteKmWXsbjgDgFmgsIqT91mgwEIvjPu1Yq4LRAO+60PuEUaHT/m/vzhvOGVqd/LLGASA4cTINqSzP3UZU3iaIXnJQuQPlFoE2QLAhIDJlGAK9Pkcpqj3x4rvgd3D+PzCP+IkWGmV5Wglxf45li8Yyf46t77VDkHrMN3/3lVQERtGCmTYIVgR849HF9ZRnuf3r3F5qUXI06VYc7gwEkdLVmJmHZya7bkr9YHKjFkopSASRhtThdC0JPS5jZiiaRpOUNJa7j74a0Iggja6F1eEIA0wXGw0s6hgT5sxBaF5vGLJYIgr3dFlIEZvYbYIIYYDo1Jfo5R6vW9O79wbqTDbvkYbTFk4mx+//F1eemAlL/z2NZzD76Hn5/KhL3+AJ/+6Ho61QG6QFTcv5C8vbUKcdLDyNex8Dd1SBOsEC+aN4rWjB3FqBUZY8smZ83jo8Br21FVQGI5z85gLePP0C6xpnMiQYDPvK7+C482/Y1VMMMqwGRVQuDdToFPwYH9P/PvXP4FZ9wrzL7uYsXPcz+5Il+7WUrQ3Uie5EVNz0PQ1OB5CRLa0oJO06uroYUePudSmxG/ImIZRKEiAUxvjIUak/Pys9xqkz1FtXRPtja7o0t7oKPj0py4q44tPPap1dBR2Ckg18aCV/SSto9GVpKC90Z0t+bUvHEQ6SciwJrR239cOi7Tv1okIFCmvDcs0LURKauweJ0eZ7pD+blq/glM7q8fav/4J3n7Eter6/U/Kewyy7Q2zLgGyTYsppolRc5zzP7KUd9bsR7QRU2SOxoevnMvv12yEkzbkCG5ZPIffbt+AVSswcm2MPJuoGWb/mWG+hVpbMaVcV4ws/Bi50QdIRYJkC2jbHV2yCbKFLiZpQoh/x+3w3I67hgzunPW/NklLhdn2VWFnqjFxgmVz6S1Lewy0zbyIuwq0LexDoG1vElhdBKhuupnRxb+gqlxhWy/w1lNn+Pe7Dg04f2ry3N/xpV98mp9/4T7X5zHNBUKSE5O0lGjudo6uc/OyOfzg6dewHIeIY/CJGbN8j8iADPFJ3wVCYjm5ngvEs0ilOG6VMyZSDzhoGATzboHU7c5uukD0Bzg1laKeLUhof+vSGC9kWF4MiUQXGlOKV3DgzE4kNg0yTDRyS7co6gNNt88WyBaCzL/sLh76fgArbiF0jev+aalv5m0EdK7/4Dx++vuV2LZD2NZQunt9aEKkQIYdNE2kQIbdbegPjnh/2jb05OIVHKjfhVQWp317j3TIcLagyyPKv8fN/2xxwxcF3/5MPruOZ6eeFnMtUxZ+ts2YknmN9gZoe9bcMUiBtt3RJZsgW+j6Stq1wESlEo3g/xipMNu+KOzMBNkmRjaBtomi35OHT7nFx8EgVn4uzz/6DlGhsAuD2HGHlat2EdUczHwIxt3JJqrZWPkKDLClgqCDHY7zyMH1BPRWiiNRWswIa2s3kK/VUxJs4rRdwIGmlRSKGGWGRa3jYMZewihV6Ia7stF46jUss6rPQbZ94QLRWSNF6uTWWdKcGoQzC5EHAzg1laLeWYF6fwGGB0KXjhpcuhN0skG3zxbIFizGVB/jxy9/N02TTPhzaoF4ZsLaEWR4dmkVl6TAn9sqED+x9xmvON2tE7R0A1WchxWL8ebzm/35SwU0bNvBCkE04oJTE3OXE1e8sHsPlm4iIjaWafDCkR3tzl85uoXColizKdNNZOsj6LrjOSsoZs2uZf/L1T0C2faWWZcaV3oSU/oKaOvW0lYwc1lOv+kS0h1sZVNsNDPEaGF/4xMUpcaU6Ivkd0OXbIJsoetJ2n4ggItQ/scAjDh8aNJk7DBctWAKu07X8sLuPVxWPcFlcQEvHNnBZVWTuXK4uwWytnYD88tmkxsoh8DHGRpoZmLR+2myd2FGXyQYeT9Fwdlp2wbZqnFJLdbXdQ0tLweGD0MIwa6aBr8uzlSQNzyfppgGQhFXgvyKCK1SJigBBMISURpFCDhi7Wdi6QmEUCgamZBXQVi53UCK44wPj2eibHVfGrA4mj8N29qFQuFYgoIhywgED/U5yLYvXSASoyfg1K4AbV0XCLe2xKd1e+DUjijqlu3w521biNu2v+r7yIH1Pjg1SVF3wamZLhCVuok76ZNGUc8mYHigdEnVpN918Sjq7ekyLHCSrtDtswmyJTg/aw+Y7ty1w0uO13HtN5cjRg53C+GVIn90Ga0tLf78pCIaLUMAIdjUcJLWcnfuspSipCyIEWhFCRDKZFSxhmWd8IAomfOXoESDReGYW9crtyKEgVI2oLP0xi9SMb2UN5/fzOLLZ3DFVXMAWLlqF0svmMjVS9y48crGPVw8awJjS8q4oWoqTlixfNpUAK4qmYsWllw7Zjo1sSN+TJlZ4jIFDzStZHT+UoryrqQe/LhSCKjmXw2amBIIGv2oC5QGoizM34NAUaTeY3E4GVNiwUkI521vXutcl2yuokHXk7RWYKMQ4hVSEjWl1Jf75awG+cgE2k6pLOc/vKXYLRvdmo7vrXkd03FYs8stAP/RTvcp+ZWa59KXYoNHOVj/U3cptmkrSyFt2yBb8MFUrg/AxMVT2H2oAQA7ovsgW00TnJJxNB2kcpsbTqoomuY+U2tCMH1EGdvjh1FAXgrIVgPyjaPIFD/kcu0YmtK8SU9j9MiRHNj9YxprXqElNpXDewr5zJcvZu8B1x1sXFUZP7vjBp5/bRsKGDe5olMXiB0trvtYZbiKb078Gm/WvgWkuEA0PQ1K0ZRTPThdIH77ml/8K0YO59iJJpQCGdFpHZZLtK4RpcAJgZmXrAVSYdjacNKv2NFDkp3RGk+XhAuE+7O2XCBGGZb/XpkU9dHjhvDDX3+Sl5/cAPStLmMLP3IWRf3vVRcRdNDLoikU9TjVZem6VIWTznilmqRQbqM9un2mLmNmV3WZbj8hv4L7L7ilTTumwUy3z2SS7d99EqG7FFSha9Q5DkIXLktQE4yeOpSNtS6zzg7JJDBVCE6LJjTNm42EwNHr0O0kUDV9/hJMyBmPrjZ6dXEKIivQ9Eq04HxiR3L4n8+4Scrmx1YBcK+30rrnFbcx6L+9ldYt7xxOW2mdVlqRttI6pWCYH1OeOvQqAI8fe8pdAT/1FF8EP66UtWw4q+452zGlf3URzCssQfcmujLd9kC2oNDI0/Pc78Bc2yVdxlWVZZWV1tUk7Unvv38M+h9oq5TrV6mUyclDL/DaysZBAbI95LXyd/eJ/Prxs/jRzpouP5EL74lceE/kY+fMZnt8Ev+aiXtwJK88tZFbv3s1z722zf381zp2gUg1eX/iyCa+P/ciVtW9hS3tpAtE01OuC0TzIHWB8HztRF4OaJpH6xaUV1f4tG5NCIaMLma/R1EXwIRxQ9jY7AZgAUwbUcqOuFuw3z0XiLMp6i95FPVXntqIZdp9rEs6RX2n+PvVRQs5KVR1wdSSHI9ur9qm2+dUI9RG7yw61yXg6dI1uv12br9kCU8c2YTpODxx5Nyg23fGvsrcznKBqXW9Ll1JgGxFBsg28R10Bk7t19INZYFwgbbCXMv2HaUDWivZVkzpT13OBtm6uyKJmNKe1d5gBNp21XHgd/19IufS6E+gbV3NTPIL3kAPgGPBf9xxhG1bm13m0ycW8fAa1wNQF4Lrr53Db7dsxbRdvtbH3jebe/atx5Ju0AtVxPxi3C9Uz+Xd1iexpI1AY8WwJUjrFzjKAnSmF36csfYvSUwuk+c+yH+9cQONNa9QUHkxY+cszgrINjnBJZ/CsgVOlTJO7d5nGDpldlYYWJkTnWFZaSDbjijqAUPn+pnT2Z4Csk1NnrvrAtFbivpg0KUvsTl9pYthp4NsO6fbr4Dm7X2mS380QQ00pqVi9jx+/PJ3ObrtOWYsaqZifC6jp38yayDbxOhOktKXpRt1toapTHQdHEux4Z0wP7zjPizLIRDQue17HrPOdlA5OtFhussO9GLKvQc2+DHmtnmzeOhUCkuwei7rWp7AVm6t5OKCfShsP6aMs/8fChOFRuX0O7KmS1sg267qkm2gbYecNCHEn5VSNwghttAGCEApNaM/T66nYyA4af3Ft3nxP/ez5vH7mD6/kS07h7Pr+DjARQnYYYU5ssQVQilkSNFcGfCPVQSfZ6PnmxhFpvdaqAy2UlVeh0ufhmF6A/OL9wMKqaBCC7AwUu9bCFmhSwmZb5DYds02eLCvgLY9AafmNd6JlCa2Jfi3j01i8vs/xmOPbULKs10gDEPnvAVjeaXmELaUGLrGopmjeKkLLhC60FlWOoY89RgKG00YTM5dwHj1irdVYUBkBQf3zfVdILLFXUrl+fUEnNrfuhgBndmXTOaNA8dwpETXtTRdiEDrEBftkElR70yXUh0uCLciUAiCkP8dhDrDgd3D+kSX3iTxvdWlN0DbMl15K2kOUur87dlbsdRUfvnV32LpBlpxIVpJkbslnBdk1hVTWb3pEHFDeriHefx+zUaiWgbuQTd93INUiqKwxfIxlexocqn4ZYEoV5YPpz72GoWamYF7GBzzV2Jkoyt7w19aWH3fi25MWVuAKl/K7oP1JHzKhs4dwd7GZhCCWAHESzxTMqUgDK1DPQCKgnDIggqXJagUVIaaGVF2GiFgfPg4U3KOIYQbU0pFhCW5dQgvxuyyIgwv+U5aOc+5ostAjB7BbIUQw5RSx4QQo9r6uVLqUB+eY5+NgUjS+svyJ5PirkYOd03OlcJpOIN5/jikUqDAaI5xZkaef6xJRdMYXMhgwCE01ANAKoi0CmZUH0EhkUrQ0hLk5lFvAw4SgePk8aGC42i4tWTN+iyK5GZSwYM7tlyUNWJ2Ai+QjSD44r13c2TrY2xalcuuDXmIslLUkBKEEAgBZooLBEC8UBAr0nyAU3dcINKJ3TAhYDE5YPrHDBIXiMToDT+vP3UBMEtCmCXhNnUxCxSWp0kmRb0zXSYETCYHrHOaot6f9+qJvc/wk9vWsXVtGKEJZDCIGDXCLRAXIglP1QR2CFpSwKl2QBKtSIJTCdoY7YBTAYqNZi4o2IMuFMWawwWJon2hJevCsghOHUwg20TSPu/aBazedMxP0oZXD2G3skGAHYRopeHHjVCron6q8GNMpEXC5CiO9/Mc6TClqgZNKIr1FhYX7XWTdATHosP5fJnbVCGBVbEcpubNo8x5k2wDbQcbyBZ6CLNVSh3z/hyUyVi2Rl+BbDuCDiYuoIP7TvGLb/4Bp6mFsGNzw5KpPPLkBmgxiUjB9XNm8eBrG9Fa3VUb8gVmUBKyQnx09nnct/tt7JhG3AmyMH8ejx77Gw2xEKaTQyj0VbY2PMwpMw9daAwLtlCqm5yRQWaUpfs0uvylgWellQhYFIqia5LRlUG45se8/dZxZpw3hptuXcrWXTU8+OhaZk+tYvqcKtbsO4odcjvFZAjeOnoEGXK7xdwkYB/nlY3mtokXsrdpL0/VPMPk/IlcXXkldbFN7DpzH2WReVTnzgFzNcqUjJj6Af7rK+uwTBuhC2RLC6Ks2K0KEgK91YKiEG4FrECPKfcx04vwWoxECREyrqOrZAFsQzzE0DyBhkIIqLXzUIn2JqDW0ZABz1ACyNxKytZIneQ+/O3lbN90mD/du7LPdVlUMoLa6ErqYi2Uhmd6CXtXdbGh2P/i0nTRY2B5z6dCCJyYhpHfNV1qHR0ZsDy5BW4H8ODXZdqFE3h32xFk2GDaxErsEG3qsmBEFZ8/bz4b6o5wz643uqULwfm8+sRUtq7dgnQkmhJoubkoL0EDcHIMXxM7LHy3FKUUMiJAuEmaQmGEpZ+ggVs7KURyYaHMaPbhtWW6gwZe8uwmZ64u2QGnNu8t5/ZL/sS4aQ3E6uNsO1rN9m0lWQPZ+kkJsO7Kf8cOBjFMk+u+dQW/+NWrxAOCAktx5dWL/ZgSkTofmTCH+99dD62KiAxy47B5flyJahr7ciW5gSj77EouqbjKjylNspCDgcsxW+/hpCNoVOE2u4AHOpHtji7ZBtnCPwzWezT6CmTbGXQQXLTA6HFD0iaXxcumpl3IS+e1D7R93+iJaRfx/IrpaU/Fk4sWnFX0ObUTk/OBrHMp0UyEsBECpDR54+n7ePgPkwYcZJuY5ArK8tztmzZcIJyCEHZRCM1zfZizZBxv7D6IY0mCdYKF80bz6tEDbbpADMlpoTy3lQa7gLebJvvbN2ekzpp4gHkFCwibK0lFgmQLaNuw/aBP637o+4VZBdm2pUtiW02zJIFTMX9bTfN0SOiinXTOpqh3UZdVMa1HFPX+LNJOpahn6tLf0NazQbbJGp9rP3+xuw2twDA0zl8wwd+GDtsatuamWUFD55aFCTNvRdDQ+cTUOWlm3ueVzPTMvCWa0BiVdyG6egyF44JshfSaLJLb0NkCp6oCjfOWF/H1uw4TCCgs+yj/3zeXsnv3kKyBbBPjJ898M+0azTQ5T40p0yZW8r7J49uNK5kr4KkxxZ07FmNE32FGJ8zH1Iaw/kxku6NLtkG28I8krUejr0C2nUEHE2OgeUOQeCI/yMxlFzFl4UQKq1rQy0uhqQWRH0QbUwoH69BaTJySEGpEBN7T0KISp0iDYQbilECPgghKVIGFE9cJOEHOH1bEURppiIUYEowyt8ghejpKrZVDdbiZ83Py2NsCpyzBCctgAjbKUEipsWlDWVZAtqmTXHfAqZ09+XUETk1NjHI62cIYSKDtgoooN/+z7dK6b5qQVZBte7p094m8O0DbVF0GE9A2jaKeqUsvQLbd1aUrINuOEtWzQLZjx2ckqhdk6PEBXw89A2SbSJJ//99PY+kG0jGJ5Yb4w1PvEhUKTSpai3SiudJdabUcHtm4haYcCy0KKmxz/763sHQTaWuEIk08d+I5AnorMSfI6NxjjAkdo9bOo8EuoL75McYazdQ6Gmf0APOvbCQQSMC4JTNnneLAgWFZA9n2Jqb0Fmi7ffUuXnztMe+a+OxZusRLC5B5BnrUBsvmiTe20JjjoEcV8bDDPRvXEdVshIJ4JD4gumQbZAv/MFjv8dh4sIan12zHiMH4yeWc1KKU6hGazsQoGBqg3mimUORR12AyaohCBuvQVDHvNTtML4qh1EZOWXlMLbqUcaEmWlufoNbRyMu9ps1i4IEc7RUem3ELGTGIjyxAKoWuaSyYUcWLDTVukbymsaR6FM/FvCJ5oXHJyJG8Ibdjq7O7TEuMVhYX7sVtjTYoDb2fRcZjaNgoDLacfj8/+/QBCqTF7MUtVC/7uGsJ1UYBdCLgJZ6GU4vSe1MADYFBU2cEye2sk4dP8ey9ryCDQbT8XCYunMTOmnrssI4Rd5hx0UTeOlyDGQJl4Hq7Bt3mkiljKthUfwIVsNHDDjOHlXPI3k9e0KWoXzaikmbnDUoM1wViSWkVhfJFynSLiIAxho0QCtuGP/zncMpn39VuYXpvdCkLtHqJiOM3CxSkdpgOVl0eWoUKhxGxGHM/OJ939pzssi6bW2sgaINpcOH44WyNbWtTlxzNZHSkzqPbK4aHJ1PobEYI2aYu5La9WtRWE8e5rEtHc5dyJHbDGWJzxyB0DSUVRnOM01NzUZpbn5UTg/opAktKRMAhWBF1kSgSwq2CqeMPo+tuc1Vzc5CbRq5FFy7I9nisis+V7QVlIYE18XyGNHyCcaW/QtcdFAFeXfXPWLFqGo6cIq96KPVCoygYoOV4E+HRBdQKi5JAmJbaKJHhETY1nkCPCa6dPgWV7/D4gS3ImMaCEUVnxZSS4GFiaiiHYzArRzLCeI8GSjhhNbXZkTwYdfH2qglFTc5Mz8NyJE5QEq8AdFeHSItETmxF6AOjy0A1D/TKYF0IcQFwB0mDdQEopdTYvjzJc2kYcXj1ia3uJPdCz5dinz6xyUsQnndrChqePWv7YKB5Q+218CsFdsTAcaRXBSJpzBfYZ6SLUZCShjwbO+odI2nNjWE3SpfHraDGOoAtbRSKUqORhMW1wmFS6BiaY4PbysDMkdV8/aefSXsi/0zDmz4ZenRVGVfNmYDMMbjskunsPlHr07pXzPFcH9pxgagMlzExcin5oTgXV5zv/o8HziEXCENHy43AiEqEEOw+3r4LBAgIC2JD3PqerQ0nMUISEi4QdjdcIACEgVJu4e+Sm79KLD6E9104FpEb4ZIPud9lV3WZkF+WRlEH0nRpsXa1S1EfjLpoeTntUtQ71SVag17W6tZgdYFuX6ypZKG83JZGt29Ll31Hatul2/elLtmk23c0dwlDZ+iiSRxyXBcITdcomT2UM06zX8c4cl45da0n3MaFiAMJZp0mmDnacBMFFLoQXDzMIpDiG391WR4ajteMIphbdDW5o7+EMhf71+jw4W2stP7o+fSV1nv/dtZK6zOrdvC1G5byl7fdFc+/bu54pfXJTko4BlNMydRFCBixeDS19afcOt6IAF35OoyozueoHnVBtgOkyw9//cmssdK6ut15H/DPwLskDdb/V49+A9pKi0Pbfs+0kS7QVkqT2kMvMHTC7AHrBuqIG9Mba5meWP6kLstvX72L//nML7FMm03PvpNWv1A9aohP69652gW0tucCsXr/MR+cGtR1RkRGp2/vnSsuEJdM9V0grHAHLhBCMGH8EDY0HUcBUilmjihle7wFRfddIETkOkQKRT11chtfPTRte68jXdZvO5rWUOJS1JNBx9WlbYr6oNUlFEJomlsL3wZFvSNdVNBG84JLV+j21TnV6GqDVzgvIXJ9Gt0+U5f26PZ9qUu26fadMa9u/NiFaXVOH71qftqK4nWzp7OtHWbd9WOX8fixw/7q+4VDr+Zg/RZ/m7Eo7xpo3kICxJ2Tc42rVDfAqf1WwiGsNKDt5lV/IlhSOmhAtpm6XLNkOts9XXRbg5SSok/NnJ+2yjsQumQTaNvVJK1BKfVcv57JOTb6BWgrLeyY4vGfR6m+C/SAwLEFP73zKOPnPccf3tiOgyIYMFhx1Uzu3bDJLbANGHx46Ux+tfdd/z1TtxkLQiYTS0+CkAQ0gw9WLMaM/xdCOOgiwJSCjzHa+h804QAGudU38L3XbmL3yzbzL9MYU72VSXPm8/ZbkV6DbDOhgx0ZiWdO7tkC2p4+9jh5uXEvkbE4cQ66QHQEsu2uC0RPKep92VDSW136EpuTBrI1zTSQbWe1R6m66FZ6UtA53X4FIgNkm21dsg20rZgd45tvzeC9tRFmTL+MyXNbmTM/xJZNVQyfcEmnwNTM+Svz83oKsk2MgQba7j+9EscxOW7pjMciENCwLMED9zSyZ/d9zF4wkjdqG3CkQoY1msvdddvMmBI0DD41ewa/O/4mEreJ47KyMdQFX0cqh5JAKwvz96AJeVZMEQSpnP6vvdKlvwDDXdUlm0Dbzjhpc7y/3oDbz/wo6d6d6/v17Ho4BqImDfoeaPvKcw/w9P/dw7F3Q0y5xGDmMpPNm4awa9cQzIBDfEQxaAIBOEFJ01DDP1YhRYvHF0JBMGgiKkwQMCyvgREFDV4bu2CoVs+8on2e7Y9GMSEW59SieyDbHVaQ/XbeWduu2a4BygbQViidbd8v4l9uP4gRUAgR4Dvfuogtm4vadYG4f9MWf+L8xk3LuP2tv3XZBcI2f47ykqGLKv4P+c13kgjCWsmDHNh6OMUF4pp+xwi0B0xtS5OBBKd2RZc/vrUT23YwDJ0vfeFifvD0a1iOi4SJD8WnqrdFUe+NLjF9dtZAttnWpUxXLArGcMsYAuhlD/Lcn1t8jJBh6MhJozCDOiFb8blvXclP/rySaEASsTSu/fDcFNyDwY3XTPNxD4amUTT8DDmBKLH/n73zDozqOtP+75x7Z0YjadQ7khBISEhU0cGAsY17i4PjkjjdTpzy7W52N9lNsp+z65TNJvF+6bGdOG5xnMQ9bsHGGGNsLHoXCFElhHqXpt17z/fHnRkJoQoqkOT9x7qSNVzNc+e857znPb/HiOYbs69lQ/0vSNBaaTUT+FzOsjNwDxfa+BWO8TyV/YeHf8rO3S9zarOLZAdc+/kU3njTzYH9yaAUfqdFMDcJZAhkmyjtrXrOzCkCcDmDqDS/jUdRkOHoJDetB2RbHOE7nplTFJKDAReHgnq/p4EvFl3GOs4VZvv2IK+plFKXj8bNjXaM1yQNOC+UwVAg2/AkRAD+xkZ88/JASqQUyDYvzTNjUMLeRnF0WjRPVz2Nl10WFHWDhBiHn+mp9QihkEjaOh2RxkqBxilvBp9LrkQXdq/Ze74oWiwny+PmngUe/FsD2u58potHv/QeRXM7mHNJF4GYFfzZ9l/v1wXCcCu60h2RyXLutETKA03DcoHI1luYF38s4vpQGj2ZyeJA5DrgupKoC8gFIhwTAU4dSpdgtCAwKT4C7MyckcLBrtYekG1iaNzrj6L+d13OWZfOyjR+/5XfULKglQPbErji3q/yiwfWYhghILfhx1ec0fP5mJzIXtEOAkynIpBpjzb9g1MNSnJOI4VCKUFhdCLTo99CoEiUFivcfuQFBE4dby7bcEC2ZxwCMy2CLU0EFk4FTcNwKLoytBBYuFdOEQIpBa4OEyuUU5SCqG6YWVCFJhXxWheXxNuVtL45BSSbfFG0WALQ+s0rE6XLSHPIWMa5wmwvC/3yVKXU0T4v+Dd7aCAcO07XcNcLz5wTymBY0MHQAxQXpfHLz/8KNh+C9ARuu/tKXn1qC9rODoLJTm5fs4TnX9mNttfEnyJQTuP4Z5gAACAASURBVInwaciDHpZdksNblSfZ3xhNUryXj0y/hIfqdvL40eXke5q5Oudq9rVu4oH6aEqjG4hxtNNiiX57xMYbaHu0+X4sFSRZE6yI9oMyyE7X4OYHmFpSxL5DNQSTorCi7MfYcNlUecMVmjw3VLGkJIe5oUFuW/txlk7NozQ5i8qOSjI97XicdmE40dFFobuWREc2KrCTJKOMpJjFmLOicTjLOLTLw9EDiXzxoWuQr/UkHVHbgshNsq1uFOidJqSFPlYK9C4inzLLqyHiRYTm3dISQ05qMwqFpQQ13njmxtuTCoWgKugix2m/jgX4jAai+iAoJgKc2jf5EO1GpCZBtNv+O6P0iC67jtewrbqaBfNymBlOPn100eMCCKe9de1x+kdFF9nmg6x4+81T4OgwQ836oHkVZkLPZEA0aZD2163LvkM17DxymtIV0ygJJ59z1KXJtxvT2MaypAUkRxWcocsf1h1nX1kUe95PQ2oSV94eLEshRKhzLt4dgdeCIujRoMsu1ZhusHqBalWyrVn4wEpCtA8pVGhHQJEZ1YZAIQWkagYaVvhlSdPUkODUsZw4bd/6Ms89/XOqN7t46jsevvGHKzlc/iq7d6bwxGNZY8JlG05OCTPR1j23hbU/fw06unBurWTBZ1az4+0KYk5bZ+UUI1HwsdULePqd3fj3C6xkE8Op0eWXHKqYyodKU3nt1EkON6WflVOK3e3MTr6Rdu+TwMCIkPEC2vbW5Xc/TKH4WjczZtby2I8yWXH7Zwblsv363jVjPlHrL4bbk/YsMK/P954B5o/u7Vxc8UF11Tk3cg4XOhgus54P0HbH9JphAW2LhugRG0+g7b6q13BFBZA6JEk/Stk2PCjFu688wv6jaWPicDAYyDaS/GBAFwhd1yAuCr/T3r755C3zuP/Nt/E7zCFdIHQpKYvxk6S102rGc9fkj/JBeyWJsn8XiIkAp/amdfsbu2htDGFRxoHPNhJdXLqGIymOgEvDFVTc+dl5VPfeVrt0/oAU9bHW5XwmA+eiy0SCbMO9PYGA3Q6w5qO9tqEdOndeOT+yDR0VlAiJ3Q4gBZ+Zs7hnG1oKbptyWcjM28QhNRam3MTRlt0ogiGQrUBhgJBMSvomCbG3DQhOHXOgbdz9zPuSwZzPCQ5+P5l5c37AwnkGH7lN42vfu4rdTe5zYtaNBsg2zERbfe2sQceOwYC2fSut102qGhRomxS7fMC8Mq5A2966/Ezw1a9X4HCYGMED/PqlXIKGNmBf87Yj1RfeJE0IMR2YAcQLIT7c60dxQNRY3tjFEEuyc3Bq2ogaOUcKHQzHeAJt63ZG8caGA8xZFUXJ0lIOlCezZ+sx4nNSEWlxGHExuNq7WH7NbLafbqbLI4jpUFx6SRGbG2vpirWI6ZRcMXcam9tPYMYEcPgdKKnhjukkKd7Loszp1Fut5LjrqPKmszhlNe6mTRQ4m6kMJNG9dyb6HHtZXBfUKdIsLGFhGDbQVraMX+Nz30HuuruWDzppHupgxWAuEGdtZYQaYPtzgZgIcGpfWrdp/YD8/Es5sD95QgHD/enSd0XetzF5MIr6WOkyVhOmQXWZYJBtX5r9smvmDLtB/IqmM0G2qzsKB2wQl2eAbOeQsBTKy5PZs7WY2QuT2b1hO74YF0ZOCmZzB5v+sofOKPBluNAsiTJM/HHQnmADbX1uP1acgWrXWVtxGJe7gxRPFx0dMaytKifdVc/kmEY6LTeGUuQ72ymOaqe18wWEZkUqfouvb0fXTaQEpSzmF51m/5a8czohPxog2/PJKX3zykhyyu4NScxZFUXyYLqYAj1o4o/XaU/WeendvXS6TXxxiqh2+9kdLV0WXV6Hw2GiabYuqy/p5KUPkgY85LMgP3vA93IsY6hKWhFwA5AA3Njr+x3APWN1UxdLzMvM4v75l7G2vIKriwu5tXA2IghvnjjIlZOnc/2kUghK3q/fxbKUucxJWkJ30Ell20YK4lfSqKaw1/o8xa5Wkj3X0WxJGkPekRMFtB2w4TiUYHyXFNuG77rElxtH4/w4e/DQNLqzdJrmCIIW+KQgmGFizuzGUiaaMPinwnmUdb6IwuKI/yk+M/UwShlIUckl8Uu4WtsbOiZ+ipPFd/Dte7aRNq+T+h2xxHzj5sh2wZEjGdz9sYFPzZ2PC0SLJbEnAj32S/3FcAa4cAyH1t13gAtHmNYd1qa3C8Sbzz5J0OPB6ujCF+M4g6Le6YZHN27HK037Ot7CF6OQPhBBePbwbozobpRPw+XqPoPWneGq51jbo3hkB01WDDNctRQ4uvqldQvLYk5pIwcPpozJ6bTR0KW3JmOtC9Huc6bbj5UuE4nNGeizMVrJv68OX1tdHhq7tp61aLn+Y4vwLZsOQmAohWt2Bg0pPlTILjTKB01FCiVhu6sGOdNm1lmWn8mTTAIcR0qFZQmWJaTg0d9DChNLSer8k7gnqQJdWAhRzftWFI2GRCCZXHIXUv4apQIgNC699jOk5MXzzjvlXHppMTeunI0MmLy1rYIrFhTyoXmz0YJE8kqBM4VbXAuw4k1unjaLmo5TA+aUhNgrqTLcdHSvxxN9OdEXeE7pTxdnd4CmkmiUhC16C12zQElBpwWx+U4MbxfI89clb/rHEPJhLCuI1BwUz76Ff7rVN6AuE1FFg6F70l4SQrwC/JtS6nvjdE8XTew7VMOvfmyDB4+urUZ+AX742iYChskuvRF1m8Z/fVBGwDR5QSujc7WL7x/cQsB0kBC1kekpz/YqxdYM2lswXryhgaCDYWuZMMjWtBRv7TqMYYWvLdZWHMZQoWtlsbaq/IzrmuAxwPbWS9DaACMEUDUJeN9AYoT6hkymFJ7mq//7fXtFfpe9Ik/IvZy2zi1MzvKSnxzDT/7zNtau24vsNpgen8Cv713TvwtElY+v518XcYE4URPgQ6mfoto4SoffhaVmszzrIQ61vkFDMJaaqOweWnfXDlIseUG6QKzbUIlITUZlp+HLjuWEEURlxUQo6g1mJypN4uq26JgKSob65nwmB10n0Bwmccn2oRIloSglTOvegkNapDsFNd4s7kioRhcKywEf+B2kltyF4kGUMpHSyYobPktbZyeq62xdppRm9VDUj3u5f/5lZ+my33sayyfJlHn8W9G/8lbdlotSl/BWjWGYiNxJqBBFvbcurQVREbq98sF2UU8wXkHc2OoydVlBD0W9ooVvrl5+zrpkxMZF6PbvtsPc6O+epctE0O0HHbuCBhW1rQhd2sw6IaiPUjbDDrtFbvLCNJq6agFQLsOG0wFSE5jRDeh+e5mga5ASfRTLCPU4CrgpxYNDqdDpRov5CTdSrXJ6TY6WIwJlNsPuZDQPfcJ+Zg4+8haa1+TR0KTl5PMH0XyKX4Uq4IfWV51RAS++LXvAnOLUtvCd+TG8ePrVUKX1D4NuTV8QOaUfXXJWTqGxpR6AoMuyuRKA0AQNUR3IQIjYOEq69K6AP/SJHw2oS2Fq8oSw0obsSVNKmUKIDwF/n6T1iVEH2lpBEDbQtrn+z8RG9TCgamvWsW5H4G8WZAtAt5c3HrD5T28++Be++NAX2Pj4BwQDBhue2cbd9904bBcIRwjDYVgWTx05GNpGOoJhGb1cICZ+0hyO/gY607RACKxYB2jShp72oqhb2AkmZUYCrbRGklHRrCQOBKpAQHyUD02GB7UwrVtBmN6dqOGQAoEakNbtOxbNGw/c368ujmfOpKgP1j/43J5DfGv1Sh48eIyAaV50uvRm942Ubj/WujgeHJxuPzJdLky6/UgYZP2NX71BtiNl1iXE3owMAVMJAVOLev3NEwG0TdDasFQQIRSmFSTgfQOlbEi6UgFEoIx9x9JHDffR32n84YBs++pyBsj2PL2xR1OXiQLaDvfgwHtCiJ8DfwS6wt+8UDlp4xWjCbSNqp9Ou3sd0gGWofj9k4J/uVei6RZCaHz3wSZ2V76LhuAjN8zisYM2m0sKwSdXzuXBk7tsFpfU+K+rLuV7B14lqEzinUFK0howlWkzn1JXYamfYqogSmkUxn6WGfwCRQBLaXiKv89/bbiDI9UbyM9exfyFy5k+r5P2ureJS7+Ebm32hIBsYegV2ZgBbUfJBWI0Qba9B7ooA1SvyXNfivqnly88w5fx1mk9IFufEYMuuiLPYV9ad3bCRxEhX8bRoKiPZv+gYQZoPv0icR67J2q4uowXyHYkdPu/Jl366x88sD36nHEgw/4czSziB+vuY8/etUxa7KWkyEPerE9z6vA6Zs2pJ32yYMq02yYMZBuO8QLaNgfjMAM1tsNFUFFxPJ/5095D0wSmKdi2NYH7HvwDhmGhoiXeTB0jxAr85Mq5PFy9m4BhIIXk3rlzebIldIgDwZfz57PFbx/i0IXGP+TfxNGWXqfx3X7AiOSU89FlrEG2w9VlooC2w52kzQ399/5e31PABclJG6+YWZTFT/5z+B/6vg9Y7wrX1p/v5fXns8lY0EVtRQb1DZNpPBbDnLkNdEQvZnelXQ42LIvfPf8e/mkJ9pF20+LRDVsITLb5NgHT5Ik9WwlI26vM7ezGsAz7iLsy2XjqJZZkBBBCYWFxtPmPFCf6kcK2ltlT/78EkrrRkwyqxXvkd3rJS/oOJAWA1xFJjzOzqKcf6Fz6evr2lISjd4LpL853pdx7gNOCThzDWSmfowuErmlnms27LPRUr03z1jQ+X1Aa6c/r6wLRn9n8WLpA9K20jiVFfTT6B8MUdTMIv/9RE//2XQ2lVL+66JrGktk5vNFWg2FZEAXdafaWe1+Kel9dNKExN6aEbNfvURjD0iXaU87e3WnnRLe/2HUJf14aAzpKtxDSwlI6zz/ezeP/938wOroQaXER3AOdAcxkFzM/PJOtZcfw6xbGez24B5/bj9xv8fGFC/ntzj243B08W9OF16HR7ncyJbaVewo9bGquJF4ECXS0M3vajbjTf0+DCrKp5gUuzf9npqf/GAigmn/PjCkjH78GG7tGMn6Fo2Rp0ZCHK3o/N30rXMNdCFe9UMcrj3XaOWVbDNlF8TxvrmLmrHr27U3Dm9BJMGDaIFvdImDaVWDLtHhsfRn+qXokxzy27QOMPMO+thTPHH6HrGwDISBoGWyue5kURwAp+pzGx2JL3S8oKPo/561Lb00mSpeJiEFhthdrjBfMdjxAtmE6+AOPvY1hWmBZyMNVtF2Tj6Vs03J3g5/GBY5QA6xgpjueipRTICDW4ac4rQElLJQlaD3l4ZNzNoEwMJWkrHYG3y/YhsTAUJI/tk4iztWCPQfvHzw4kUDbntNb147dinwUXCBQoFwW3RlEQLZafAARondnOLrJTm3s1wXCUpBEFCtimi54F4hwjCc4tTdFvWFvDB/62jSiYsvZvetsXVAKw2nRleUAIWyQbUL/FPW+uigF6bKVxYlHI+Dav+sysC7bt77Mc0/aDKpUl+Ce75fw24c62LM7AWWdCU7FUmjtXlpmxaI0gemw8KXbMG4pzgSnSgTOLphRcNJuEFeCzi4Hd+RuxSEsEqTJJVE+NGG7nF4I4NQLGWQbnqTPWZjN+lONICSGU+HNcmBh5xTPiS7qL422jbqVIrHawrfMF2EJxjYJimafREiFsgRpVjaL0l5BEyYJQrEy2o/ExFCSB+pnMzMxD8t4K6LDhaDLhQSyhXOE2fZ5geuxcRwR9IZS6v6Bf+OvO8YLZBuZwfv9/OQ/n4G6VqK6/NxZVMzTa3fiaArgMiWa20W3RxHTKfnkxxfxnY3rCMQEMLs8LLv2Up45sZHmNjd+rwellrGx4c8c6Uii1p/GNms1tZ2/p9wbR5tysMzVOWCv2HgBbaXSWFKZS8riP6OEQZKAZS4vqYkWq29wcqxzBk8+30rpjBzuuPtSdh2v4TdvbWFBfjYzluawsbqKwGmYl5eF8phsaTyCajKZl5lDXGw35R07KXYW8bmiFTT5dnOo5Q1S3Au4ISULAutQgQ6So0qZmfE5njhwP1IzqNzm5mhTIaZlIQWI2pYQMFUipMDZ4Eek6xGwratJ4U0TKM0G2eoeQv1HgpaWGLKSmxBSIREcakujNP4YAgsLwW5vMkujW0LX0GjKATlI4wlOHSz53Pn1W9h3qIYnny+jdEYO01dP4/0j1QSO68wtyiIQR7+6LPTk8cWFi6nsqOTlmlcp9gyuy+xZV/O7r5RFnrnJxdfw0E8dBIPGWboAuBr8dGc4UJoNsg3G2RR1IQWiSUOlnK1LeDJwuD2N+QknsNMXf/O6rJkcR6P3DZp8CyjwzCHf1RHRpWKdwfZfJWCZFnWa5IkHc9i37zQQgtlmJIEIdeML8Ke6UKFL0y1suQQolA2y7XWdmNiNlDbIVqIojKtHFyYiBLLVhQqvjUjTFC2WPixw6lhMoKJOuPnJ6kdIKulg72k/y+ru4tffO0p+fi3etia21U9h79G0CQPZhv9Wur1sufVH+ONiiG3v4pP3rYnklFgv3J49j8c370RvgVivkxsTFvLo/q2oFknQcHDQNYVYTyddnR5uXHotTx5vjyCVokvmRnLKCSOJG4eBChlrf9feuuxpMKiryaf2YAIzZ7XwqX9M4sFnA+w5knpBgWxhmJM0IcSDQDRwGfAb4FZgyxje1wUf4wmyBbhxzVLys5LO+MBduqRk2GyuRVmzzhhcpiUv6fMgL8M5jF6x8QLammaQk96NJJphoG0AIezyuqUCrN/wBE+unTumIFuSHqdkaemIXSD86S5wuZA+QdQBydyrpvLenuNYDRKR2LN9s/9g3lkuENPj65EuQXMwhh83evhkZgaVXRsHdIEYT6Bt28HyASnqTz+cMaEg23Dy6a2LykrGGR2L8BpE7e3u2Vart86iqPfVJTHJ3lbr8Dv53fGVkW21xmD0qOgymkDb8dLlXEG2waCBJjUW9TLz1qTGiln2NrRpWUQFBVbIls6pa3xmzrwztqFvm3ppZBtalxo5MSvRRDUKk2Yryp7YYSFwMinpm+jBjiHBqWMFtAVB6vVdXHNfNZpD4VU/YcGq6fzLF7fjcJjcbu7lKz+9gfITGRMGsg3H/z77rwPmlJI5uVw+60yg7ar8oiF7xT7XJ6fcMYzt+tEC2vY+ENb3+e2ri2XWUf7odL72pR3oTosffFEOqMtEgWxh+JW0ZUqp2UKIPUqp/xJCPAC8PpY3dqHHeIJswzHWbK4CTwEHNh/ijQ1HmbNqOcmRxNLO7IXXUTInl9hCH+b0SVDXihWrE5ybgnm6Ga3ZTyDTSaAkCrNRorVaqHSFXmShtVuIVokn1kvUpE5a2qNJc3q5Nreb+uOtHO9MYF58E3em+nixsYuD3dFgQNXaKGYuEQgB9aaDadJESYWlJNsPZYxLwzPO0gHZWyMB2u5aWHNO4NQsTwEuz+5hDW5jDbRdEl8xIEX9P76+akJBtr0/C4MBbfetrhk20LbvinxGUuWo6DLaQNvx0mU0QLZ9KyK3D7K9OhTItsm3KvL+62d5+y6nLtrNm1vfCf3b97LvUA2PPf0XfDEuhDdAV1IUj27cQWcUOHyKjnSNrkwTZxsEowI8cuR9fG4/tGs44tt5vf51XO4gvg43mZ5aKtsfJd0lONGdxLy4alZ4TnHQF89Rfzy5V/vQHAqpA0qxaMWpHnAqFqWFp6k8NWnCQLYjySnny7Q7sPkQT294IfRMfJYDu08Oqkt3VhyBSQ6cLQZet+LhXdvodJs42hTdCYPrMimphoLkWo52pVDTncyptte4KvYo5f3pIiwWrTiF7jDRJChtYF0mCmQLw+xJE0KUKaUWCyE+AD4MNAH7lVIFQ/zqhMRY96SFV8SOwjjq3AHSLDfeU16ipzhpiu4kwYilvTZIVq6FGdOEDCRzokEwN7MTv9jNsc4USlMuY66nkaaO1yj3J5DpuXrIHoOx7nEZCjoYTviBoIHlFHgn6ZhKoUvJZdlZvCKr7SZ5Ibk2JZf1UQci19fHTqEubiMmJkl6N8vjKwG7SV5XN3Nt7NNIgljovHb6Tn77uXK8u4JkLQhwy3dn8edH2oizAswpbWTqwjX858O1Z62s7ImIXUkLNzyHE1x40OtJcPbkuadiY5CiqVDFxgamXih9RTDwdlZd+UlefvJtjCQPenMHi65aQNnJBnwJGlFtJqXLCnm3rgZfnEKYAsspsTwGxJsUZ02isvsEnhCtuzR3KjVGGZNjGjnZlcLCjEKc6h0Ko1rptkw8zhb7wIkBsTucrL60FSkVhiF4+vezSSr5+lkTwvBEJDzxCOvw16hL7wnh7te288j/e7lfXTRLolxO/HEQSBCUTMlg/8kGzNjgBa1LiqM7VEmzWyF6Kmn2pGCidemPWde3GhMIGijDQlacpHV1Hjg0MBWeE13UrnCjNIF0mDjSvAgNlAnxpwTTFp5E6mCa0HrKw12z38UhLQwl+aC2hO/mb8Uh7B6sHzeWUuq/kq64XyE0C006KPR/ivy4n6FJE4WDN/f+G0ZHPp0VtbhnZdLolqQoB77j7f3mlb3+08g2jQVT48/KKckxx2kO5LK3NYpLk7oodB+n2pjErm551s7IhZxTIrpcOQWlCSyHsvsUdQEmJFSbdC/xIvTBddGliaE0ttbP4vtTtwKBfnUR6MQevpHL5v4RKQwspfery8XSk/aKECIB+CGwA3sh9ptRvL+LJg7sPsnX73m0z0PWP2to4FLscZzaE6EBsArDOoYu9044A2q4iAulIODmDJBtc5rAaLBsvAUWbak+jHbL3rpUFnpqK5bfRKFI1tsBA7vbxGRx/FGkaVdNJCY3Tkum4Kf/94xJSUHyyTN6KW6YugMr1cPV185D+gxuz5qKP8nB9ctnUlnXOGwXCEtNoin4RabENjIj+QpqfCcjtO4cZ+mETprDMdhAp6L1ASnqHQpcRbE0ptnEbmFBtM/EnGY3ZFe5DjFjci1S9Efr1shyZ7BQ7kETFqYSfOCPpdkU/VLUV9zwWXxtMdwwNT2iS2VV3YAU9b66ZMp0CqzrSIjv4oqshXQEXBeVLn0nBSOi24t6XCkWZsHE69KXbq8C2hm6NHQfG5Bu31eX8QbaDsSs6zt2SV2SclUJbZrfZgnqgrhLMqjT222GndsEjRB3UFAyW8fS7dFK1wRXF3bj1GxmnUMoPp7ThUvaRvACuGfSTFKSP0OTb36fZ3Rx5P2Y7Inma7f0/Uy/3m9e6V0Bf3mISuuvRrhFfSHllN66KMCMBvQeHVIXeKjSfRGQ7cC6gAPFF6YE0YS9PTygLgVzUIHrIVCG1o8uP1h3HyUTtM0ZjmFN0pRS3w59+VzIgSBKKdU2drd14caercfGhM0VNA3e3/MM6dk20NYwbaBtXHQPA6qhZh2ZeaUTArIdTX7P+VjL9J2wFKcknLEym52QEqF1D+UC8XzUe336F7oitG5dvsqXp8oLApw66EDn0kCzu6/7o6ifjgrYFQFsYvf02UnsD3ShgFinNwJMPZvWrShyHcFhk1yQQrAwcXCKel9dBqKo99Vlq7v+jD7ChNUdfP/gH3tt7134uvSdFIyEbm+hKJqVxP5A54Tq0j/dvmcyYOvSP92+ry4TAbQdjFnXFzdy14eXn8Gs+9TliyMVRd04E2S7pnAVL54+Ganyrsy+keOtuyPbjFNTbo8w66RwkOy5DhgcBTFeQNt42XoG0PbE4T8yM6MHaLtr57M4E9IvGJBtb100Q0IvDMyn5y85o8o7mC661EmJuwk695yXLrs3HDgTqD4BMZTB+teUUj8Iff0RpdQzSik/4BdCfE8p9Y1xucsLKGYvnGI/dKPI5gqaBpbfYssvW7n2WyoEtIU/PCr56pd0FEEMU/DdB5sonv4Gv9l7wG6odeh8bNksfnV8h82EktoZ24xxzgBFKfUgQiyu5JUEzB8jhIkmHEyN/jRF6qdowkTgxFP8XW556yr8200WL0oltuAQ981ZyuEyF4uWeZmSu4WS6TN4f0/cefF7zgVkG45xB9qOkgvEWIFsR+oCceu0uVSGgKnD6XERocmzGEWK+vn2Ee6reo2o6ABC2r1RF4IuQ00KBqPbXyi6nG8fYW9dEqUR8uFVEbr9yy/38kVcs5QX1+2MVPRyZ6Tz0q79uFrhpnkzCKaYvHR4L7JN46aiWcQmd/NWzVZa22K4MmcBfrk/UtFbkphCU8drNE1O4B/XfZbGDW0UrtbpjjlMzb4kZhVdTnFxEwtmBtlVkUnO5MsnDGQbjrFeEJ+q3oNpBmmwYil0gO6UGAH489NuCr8kcDglgaDk4WcD7Kv9A51p9gKib05x6jp3z5rNow2bsIR9iOPevFI+8L6IEjZLcLY2m9z4J1AYJElYFuVFE9ZZOWXVvEtIL/XhmecZti7jBbIdSJc5q0qG/J2xjkF70oQQO5RS8/p+3d/1hRTj1ZM2WseD//DyC3zwgx349xhkXuYka4VJzf5kGiuTuOZTHpzuPeysyKT8eDrBQAed+fERNpc0A7TnaTYTyoJoK4A5OQASMmPbyI5ri7C40gIdLEqvsJsklUQPxHNtYjW6AEtJXmrP45W27CFL5BPZezLg1l9ocBvoJFD4uncPjh7afg5Pmvv2Ra1Ri2h3/xzpUFiGoOLJGfzLvdtCLhAOvvKzG9hdmTK0C0SUwpXuw7CsCK17W+DPBC1jQBeIYn4WSnIOtKQn2bG7upcLxI0cPfCXkAvEZWe5QIxVpXUwzc9Hl5H0EUolET9p4MpvHLcbgIWDg49N5yuf2zqgLr89cDDyWl+7YxXfen/9sHUxrJ9gKXslfln6vxDbef+Auridc3pR1K9mfy/LnYtBl/PpV+urS7IuWOqwsRmmKVn77v/hR892EgbQXbmsgOdqjqMEWE5FcJK9LSwsSK6x8C3zE1QmWJB8WmPa4ipMZWBZgs76WO4s2YQMMblWRQcgxHn8cWMp12XfNWildaJ758Ixlqeyf/mL37Ju+3p82wxSXN0suDuDHW85qT2YQMmMdvaLbQAAIABJREFUJq64FV7+IJZ9R9PxxYE/QfabUyQQbQYI5to5RQCTzG4ysxsR0mYJpgY6WJJxGE1CgR6g2BkMcQR7cspwkCEXqi7jFQP1pA01SduplCrt+3V/1xdSTATM9nxW5EOBbMODqFRgHThGy+o80CRSCGKPdlK70o2Sdq9LQpVJ91IfaBCr2ybNQigEkqbqWO6a/S6asAGC79UW892pW3FIC4XGD+tmcjjgoTCqjuKYGiYKaPvm5vWUHdvO4inzuXLp5Wzf+wZHTm8kP3Ml84pSKd/xDOvecTOlYPWYrMjDBzlsF4hHe7lATGF6cWPEBeKZd+3tLCyFaXbSFXKBwFJIYdARcoHQPAH0+IA9wlmQrbrJym0CFJaCjGAnSzIO21sSCqKC8VyTUIMmwFTQoF/P1o7NF93gNhbg1KoX6njpn9aSOquLSUv9xHmW8d5fLAqLGvrVxbC66cr3EGK3MHlqIges5uHpYnSwOP0wMqRDSVQ+hdqev2pdznXbqz9dmk7UR+j29dZ0jgcChKnA7mQHtR4LpCDgsQgmEtJBEW0FMfN6dJlkdjFpchOEAMLpZhuL02zwc4EeoMQZjGj0YtsUHO45EwpOvRhAtpGG/YBBULfoytAiIOHeOUVDEFdlN+yHwcKeapi20AbZWkrQciqWj8/ehC4t4oXFJW4fulBn5BSJ5Ob0xAtGlwsNZAvnfnBADfB1f9d/U9EbZjsYm2U0QLZhi5AEZfHQJ3agveDFmJzARz9+JX/ZVIbzL51057rQcKG3CaIDMcy7cTLvbq3iiBZDXLqXD81ZwU/rD/LrsiimpdRzef41vNNSwT0H4lmS0MD8rOs4YbyPZOiesbEE2n45sYR31MuQBxXBcupe24cz73FknkULr2A0BpmWY5B3p+Rrv+wimBrDf6+ze5vefacW38Ge184XKXz/vZ7Xnu/w8OKhHl2ucWnUt36bGC1I0PsalvKThMEl0olwLSOwqoSnvuOhbpcb3ePCMUWjoiKVY8cyufu+1Wjvvm1bDVkWjsomREECKuQCEVVv0pkjUQKUV0PEiQjktuNUDGQ3Ywmb1l1em8Wi9KOA7QKxrSON1fG1gH167LC3A3MIHtJ4gFOHSvZWkgejKAsryWMPco21LFg9jZJw8mmvYsnSHGaGk4//OAvn5jE3OYvKjkpyJjUSF5sMQG5MM9GyghR3HCrQSL4oIz9lMeXzCnjN+RYNe2NoPRTPFx+6ki3r3xpQF+fpLrqneFAi5M5RbyKSQAk1pC4HW9KYn3YEDQtTaWzvSGNqvPyr18XK9qM8dn9dXGx3RJcm326i5TbWTF5AclQOKrBzUF0eWv8WBw+m4HDoXP+xQo6/vdd+a5RieWGuXUmzFLoXVFKokqYE0ad1fFNMu5KmwFcXh8xrw1QGyhJUNmSzMPU4YFJnOCh22tvehpJUBpK4Lm1k4NTRnEg1Vhzmod8+hm9rkKe+I7n3qWvYvP8vnNqdyBOPpTPlkk5m5Z/iwUezufy6j04YyDacV9a+voM3f/gSbmmdlVN8k5zcef1SXirbjXM9mBkWH12+mKe27uPIOxqxWd00q2jaOtw86r+auxe5+cmxZh4leFZOGS4yZKyAtm9uXh/R5Xc/dJN+VQzpxY2sezuNm+/8JGs3/YmZU6v71WUiQbYw9CRtjhCiHXtN4w59Teg6auBf++uP3jDbEZl1nwPItjerZiRA211FNUMAbc9cFafHLRtWz9hYAm0/aNoFaSB0gUJx2trMFN1CapCmBREiiJQ2a2jm1OoxZaSVLL13lFwgHHzkjh5at+l1sdSxeEAXiHYrDqdLUuhqsZNO9i20tu4756QzGtWSd/a/x8v/8CZxtJ9FUfc3N9LU3INFmSiQbX+6uAxwxcTijdeI6VB84iurqHnpHbpirSF18RlunnQ6yI2up8qbzhdKbuXHjS0UOJtHRZfRANqOly5DtUAMR5fM7IQzetLmDFQBv65PBXxBnwr4ogX45fVUtm0kNn4leqgC/v5JiH8/E8e8ArJj7+fI6Y1MzlxJQuxVHKlNpK1pA/HJq/Afi+YfP/YAXekxxPz6db5y/yf439+/TUeKIPrlTQQmOfGnGrjXO/jKbVfx4w9ew5XUzhPb4/jS6uv4bfkfyU2s4aWKLD6z8FZerX6MuTGn+VVtMgGnQfSnddwf19F/3ox3+k8oLTGZc4tk359m8e+fKUPXLAxzO794N42AIScMZBvOK9cunjZqQNuCpIFzykQCbZ/l6R5dHvNxzb/uRuoWllFB3TYnP/jiKwPqMpEgWxhikqaU0sbrRi626A2zHbZZ93lAB8MxlkDbwD6Tzg0BAqtMkpfOoe5QIm9uPcbshScpmVPKvlCPTUJhBlZOvD3I1XWx/JrZbGluoiNF4GlUXHpJEWUdp/AlB3E3Obhi7jT2+g4TldROZ3ssMUmd5CWd5mRLFlfnXIZRXUZpzGl2dmWyxLGKd4wqFAoMyJRLsYwKUBb1poNiJxiWgWFK9h3N5orrRsEUWhm0WBJ7gmaeoclAIFsYuQtE78FtKBeI8NbGR0Y4uI0V0DZAkMk/C3JJXDVSO5uiblr7mZZ9PfuOpk8oyLY/XQaqTA9Hl/CK/HN9GpXPV5fRAtqOly5DgWyHq8uNa5ZGrj+0upQPre6pNPYem8LjU+8oKOqN5cxiafqVkav6imgeXn0/wcAeXvVsCiV4gcO5mbvvS+HHT+0naCTh0PezKK+G2hsKQZN0mBZPbN7BsdX29p50mDjSu0FAlxXg+RMbmby8MuRRWU9Zw5/59MK1aMLEVHupbffzq6I3cEibkfajulkcCcYBipyrfWi6ZZc0lMXShSdxaBaapgCLa2a386e9yRMGso3oNIZA2945haVQdyiRPVsLmL0wkeQ5hPo2Symdkc7eDWV0JUXhy/IQ1QVWIngzXcTU2Qv/7oQAgVQDZ4POW7sOo8e3E5/aRXdDDGsrDpPhqWVqUi3HfUnUWHHMjm1gcVw9p9q8KGlbk4EiZ0UrMrTwB4slC04MqstEgmxhBN6df48zI6re4FNaAd05OjctmMWx2jrWHStndU4x108qRXRLymp3szhjDnOSltDVHcXhlk1MS1zOMX8hJzq/wsK4erISruKI30N546vn3SR8PjFc6GA40XeumYFhWfg1SUdJHNXXeQhaJm1So7tQ0G74CFomQWniyu9kWtQxDGWS4jjOJfGVKGUgxQEuS5/Dmrj1oAIgytGSPkXu9rt6etKuu5zte6dzpHojiZkr0fNSqa1Zx66KTO799OieBpLnwHUaaxeIsDa7B3CBsKL0QSnq7Ql9iN2pQfyZfkSbhsPVNShFvdhdi6P7YSbr3Ry2PKQ4O5AOhZScRVEX0mJ+US0HjmecF55luJPnc9GltyYj1aW3Jv3pcj50ezpNnj+wG296F4yVLsfScXrBTLIrBJqUJNXbIGoTC01I4hui0KMkhrIQCCaJKZyWewlaBk1GHFAPWAg0ytqmcm1sGRIDC43N7SaZqnJQHMN48bgGYqSFK/s1bgE+u1EeJF150Shp98sJd49nKEBMbideqUKWo4rCSafQhE2ox7K4LLUKhzTRhf3zEncHRwPxSCFZNvs2/PJhTCuIEBp5U29DyF9gWUGkdDCz6Ga+udzPW2XlXLG4mA/Nm43eafLm/kNcOaOINYWl6F3YeSWjGHesf8CckhB7BYe8cbR2bSAhZhVFztIz+qInAmg7kpzi0DU+fHUJTbcUozRJu0Phy7A5gk0WLM2NplXZfXHdVpCsFJN217GIwfuy6FSuin4zNHnW2FI/k29PKcMhTQQHaDJmccgbY+sy81a88iEsy0CTOtm5tyI6ygfUZSKraPD3Sdo5RV+g7fz7Uvll6GGr0OsRX9D479e2EjBMXtO30nFbNP/1wT4CpgdH1C6caZt7lWK9vHj6oWH3r40Vb2gkaAu/w8KwQqnTUqytOIyhQmBbZbG2qty+FvZ1WeNOLEwQiqQQyFYIG2Qb8L6BxD6qDwYEyrhy6b1cufTyyL3Nn3UV82ddFbnOzCul5fQhdj9fhlxVwtylRTjbDPasO8zshVP44sLFtqH0ZttQ+nNFK2wD9l22AfuNedez43QNvzxYFqqWXMVzJ8ITuXvtwW2CJ83hGGygC1djDNNELZseoag3OUyY54lQ1NE7YBYkVFt4l3gjh0ryU+tRGsyIP5OiXhAfoqhP3YpTWqyMEfyofjYtZgJCNYCyKeq5Bbej+BlKmUjh5PJVn6C9049s6GDK0ik9FPUdLXx75soeivo+L/8x5bqIO8fpg0Fuyf0UVdYxWttiMP2lLM96iD1Nb1HZmUJ6TFoPRb2xhmKP54LSZVC6/UC6XOJEaSJymnFP+glMZY6JLtNzr8J5aCfUtRIdqzP3i6vZ83oFB95oIDvLScmdM9m+8TjbW48RPclFV56FatP4TdkRPvuRW3imeiO729zsd07h7kVuHj/ezLFOg2fiL+fr02N4sfEYFb6dZwG5x5OVNhIcys2r5rLvlbcJmhYOh8ZdqxZFTvxqhhNdWJjKXkDcVLCS50/ZC0yH1FiadQNHW3ZghVhcuclrkJ0HIieAF2d8CVec7DV2DAy0Ld8ezW9u/xHBgMEx5zqcDxk8EfpsP+E8hPM+Fckr+911kQp435zi1PbxrdVJfP/gdgJmNE5tO9+ZHzfhQNuR4pIOtHcgHJqdR2KIzE6EhNrELmS7sEG2UuBPakDzh0C3ElISK3tYgii+ONXAJSx7Ho7JPZNmstk/t19d+quA99alcF3ihLLShuKkuUJctL9HrxhtoG3QNFDCBtruq1lLlKsXA6rxZWJdAaSwtxVq6tbxekXwrxpkO1SMdIV2roa8EzlpDsegA51DYBj2szQYRd3ibGJ3nNsX4ooxMEVdUwgUDiH4cNoknJ4v9bMi70k6/mPRvP3N4VHUBztQ8vi2Y6HtPS8B8zg/06ouaF3Oh26PBnkrU9hvVIFgTHSp3n4c7eApLNNCtkgcuxrRmvxYlsJ5OoDzgA+t1cKyFEaHhCo7LQSFyZbDnZxoSMZSik4RzesnMzjWaTuJ7GhL5umGZKr89SPywh2LKFlaNKzDV+Et7rFipOU4S8lJ6LmviQLavnXkPQLOIEhI0NrOANoGvG/Y7LoQ0Pb0CHLKWIJse7ME+4JsR+qNnRJ3EzIEsgUbZHtjcuk56TLRQNuhKmmbgXlCiCeVUh8fjxu6GGI0gbaT27M4rrbb9heGYsMfA1x5t0DqCikkj/05mn9fI9A1AULjP55vYcfJ95AIPrm0hIfrywkYBhqCe2fM4bGOzQQtk3hXkJK0BkxlIpRkTdIqTK2HxTUt6h5m6j9DEcBUGlrBA/xg3X1s2PEervkahTMyuG/O0hD6YinzZ82jZHpTpPm2Q58x7iDbcIwX0Ha0XCDGC2Q7GEW9L7HbZ8Sgy65Ij8tgFHWBg+KUTyCc9jbfaCSd8wHaBowg+6pewx1rTwYmWpfzods7NI01RXM5HALZjoUuc1ZFj/kCLGgaYEFU/XT8yRsxrSCNQQfKYSGEZfsivh+L0bH5LL/KiiM1dGfZbSPOdnh5/x6MdIsbps9CdGisP7aN2LQuLs9dSHtnNNtr3yE/uQ63awZ1HdWRthHnTA+xk504PRoFnlzSi1po9L5Jk28BM4vmMGNKHQT+jAosZm5e6TltcYff54He65HEWC2MNSQH/99BUr6iQIemQBym4zRSKiwTDh6ezoLs99E1hWFKvvlcMzurB84pT3R9QMA0kUrwD5Pns0WFWIKhvBKUNkswWROscPuxT6n3n1P+e9an2XtoPVkzmymZqjFl2m1UnVjP3MLTZGSZTM1dM2Eg24F0mWig7VCctH3A94BvA1/t+3Ol1PNjd2vnHuPBSRstoO3Bh7fx1B//hGOuJHgsBqMljbSiFibNasblmc/69wXFk2spLTxNR8w8frdDYAFYCq2jjY7ZcRE2V5zXh7/Q7qnIjGkjJ74NBCgLsjq6WDjlMEJYmJZA70jhxsyTSGFhKMGD1aXkZ/3DsEvkf+1A27ALhPbzZq791skQ0FZS+bsZfPVLO0IuEJKv/fJmiqdfPrALRJRCT/Gi+qF1D+UCodDZbH0B34niCEU9tqCezuqciAuEO3rvGbTuiQCmjoYuwwHaPl/9OEEzCAY4H2zluv+sxiI4LF10TeOy7CxekdUYykJ3WcPWRaCjq5u5NvZpJEGsfnTpS7cP901eCLqEtRmr07+98QYcPhM7keaCT/1jEr98NsDuypSzzM1N3cKXbvceOTSN+JMGHYtsD1OH1IirhinzjyOkQpM6LdWx3DHzHTRhkiBViMll0+1/1DCLCl/MRQ1OHQ1dWl87wVtfexmtWBC1QGdK0myaTp4ko6SR2vIUUqZeQqexgzkFNWw5ncW2jtDktJ+cEt/lxV9iha4hr7uLtMJm20nCgsyuThbkVoRAtkFKnAGkoN+ccjHrMh5xrjDb5cDHgNuAP/f5sVJKfWZU73KUYqwnaedTDj5XkG04qX37pfU2A8q08JQdp+GOKZgiROo+5KNjtT1Ji9X9FKc3ABbKEnTvi+OOVe+CMDGVZNPBefxogU3tDlqSew6spiBtOlX+nVioCQPaptZKfO/Xk7IqHt9kL1F1CTRtN5i22E9sdhXt9Xk0njjN5LgDVO9LoztjyaivyI/4PaPmAqHFBtATbDBnX1r3UC4QNpwzjzc6p160g9toAm17U9TNcsXKf5lOp7uCU/uShtQFSyHNAB1TdVuXXiDboXQxFej+BK5POnXR6jKW8fR/v8Bj9/3B3k7VJPNvv5Rd+05jWSEj7GtK2FJZg2UpsBTBQAfdhQk9INsEZWukbLp92DEFBZOMLrJym2xdFKQMQLc3leDFtsm80p4zoeDUiwlkGz4E1p5q9xb3l1MydnbSerPEEgosyNgLuddWo4SdVzoqPdyxxAakJ0iLFW4/Ulj95pQLRZcLEWQL5wizVUptAjYJIbYppR4Zs7u7iKI3xHakzKfzAdmGHyDZ3s0D338G/UQrMc0+PppwPU9t3EnUqQDubg2HFo0/1SCqKYaVt1/Ks4ffpb3OTbAtDrV4OetrXuVwYxqnOzJ4d8YVlDe/wAetqZR7M/jYCHrHxgZoa6D8FtnvnyDjEomokqggOPZryGXb0JsUHmGxqtiPLi0Kch18/pl6dlSl9bzmcYs/VR3kW6tX8id9O4F6k+ebdvKd+ZdR7nkNo8tg66F3+PLUG0mL/wmtwSC6BTfG+hGWgWp+ivykx/nwlJv44PAupCZp2umipbVn8jwlfzU/fsppu0AAjsomyPMAEiEEMccDdOS6USiUT9rjjwCBoONUDBlZNtVeYINs56cdAcsCJG83ZbM6/jRIezJd7osfNhdpLMGpI5l8Fd+5mPePVBM4XsPcObn40nQ2VFfhO60zryiLYIrJ+41HCDaZlOblEJvcTXnHTopji/jiwsU0+XZzqOV1cmMWMNcTC4FXUYHFrJp3Ca997S3MgMLh1CmdeSUP/VRGks+guiiIORGgM0+PAIbxDE8XE8Gm5hyuSqhFSLvyfDHqcj4m2oOdDhz2tl3QwFIK17FmvPlxIDV0LxhxoFA4NI3oap2OnABgV9J8dXGo7GbArqQdachhYfpRsCzqDAcFDhOFQuCgMpCMRJ4TOHU0JlSv7tjGhn99hSjRzXNHHdx06kM894O9JOY1sLuxleONuZw6kczs/AY+/7EofrI+wI6qtAkD2Yb/vsrDJwfMKXGtgjudy3hi5za0WolsdbLiyiWRvNLdHcsj0h1BKrFk9oA5ZaKAtqm1kkeu+yVMs3jupBuzIQ1/pYOsGe3c8OUU/vSCl+pj/esy0SBbGKKSFvmfhHAC9wIrQ996B3hQKRUcw3s75xjLStovt5bxvx+8Zx9jF4IVJRmUtVdiGysJPjw1ecxXDmMNyBzOwPyHB44Pe/UspWDWijw2nayy+4/iFYEEu/+o73uIqcg7VkPqJYYNtDVh8vEW5sw/htSgQAtS7AzYFQ5L8MtNi/hN2bxBX3MoXaY5DEqcAUSoahjWZDiDhe0C8XO6kqJ6iN2PlNGeoCIuEMph9NC639yHI769xwWi7CCZntqIC8R/H6yg2F3LiuQamjUHlX4PutR6Dcz24NYzMNuDm0h6nPLt0WOSsF0V3XzjH76NnAXWXrj7m1dHtrNajqfyr/9TxMEjr7L9UAYH6rLGDGQ7kr+xty7BqSm4ZQyO1iCBzJ7TjJYeHFKXgvRaqkngRFci8+Kbep1mjB0VXc7n8zpeugyn9WEkuoxFT5q/ejp/2dyEa75GrqvgrOr7wf2xLJvdztSMIxxuyueZ9QE2fPslZFUbwYJ4Zv3zFex/oQJLBvAVOhA+N1qDJCbHx6VrMnjtvQba6qOYktXEx66O4je7ujnSnMzC1Ab+fYmDB462sa01iRjhZXpKPUIDqSTasxpX37MNqVuYpsbuV+byH7e/h0O3CJoa9/zpRvafzmTeghw2NpzoN69Mim1nUnwrwITklNGydDvnnaXzBNpKCzIfO0r6VyXCIcAE/RmNaz6/Hc2hMAw5oC5fvnYZd1+xaETv5bnGOW139vrl3wAO4PHQtz4OmEqpu0f1LkcpxnKSFq6kDcd0eLiD+IWwHTLSFfmrb+/sd5Bzng5g5OnM+NR0tr1ZhagTZwx0caKdyZPrqAikc7wlhQW9Brntbckov0n2UyfI+KpEuiRWEBzP2QOd7gSPZbLc7UeTFggHn3/mJnZWpY3IpLuvLimaCk0GzHPS5ILe4hgFoO3N9QkcLbQPtyTKLpYnHEFIE8uQHHq8mK9+eQeaNAmaki/99ga2d2RFJsuDJZ9znTyfiy6jaTFzrklntIG246XLcFofxtJzcTg6jzSx+4MGKmgSs/koDbfnoRwaUjdwpHqx3cEhbY8i95pqpK6wTEHX3jhuv3Qjmm5hWJJ3y0v5wfxNODWLgCX57IErqFdOsuPaEBKEEkw+3sKs0qNIDSxTEHUymauLT6JpCsMS/GrTIn63Y9GgZvbxkUqa9VebU8KfwUceWcu+xzZhOCx8czKI7nDirjcJTBbEXZlBXXkXWr3Ene0lb4WTfYcNOhujmZzRwNJFPt466bLzSm41SzKr2dKezt7ONKYcPUXS0mBk4Z93ooXZ844Nqct4VtLO1bszHAuVUnN6Xa8XQuwenVu7uGJeZha/u+UjfFBdRbrXSXBjO/fNupqGBC/J3bE0lwW4tehTBBKb0LqS2bpTMnPqd0lMPE5TVx6/L4/l8uwHKPIcocKbxzvHOlmYUjUmzcLDjZGCbMMJXr91BqviE3g1rpmTvlPo13m4wZ3Jm8mHOWUdQl8tuVmfwqm0jRziGAtXd7PUcxgpLVajI71ruD75FaQI8tsSB690/jPqVCG+ZfWkOOLx5YR60mYY5JtriE22V8Ubyk+HTgOt5h9vTp8wkG04xtoFYuuGvQRWmZT0cYGwogagddd0sOkve2iPV3RlnE3sVl06zoRuEtPOpnUfa85gbVU5xe5a5sfVsr09g/ZCJzhAaMIGp+oWIkRRX7T8FLpuIYVCYbF4ci17ynMmFGQ7mC69NTkfoG1vXYgeJkW9jy6Obok0TAIpJt0ZAZ4/sHtAivpo6LL7QDaGZaFJwdWF03i/sYqgMtGE5OqcYrYfOGqzwqRkcUopp07twVImzSGQrc1d03C6r8LqLAMVBKGjORcPG8sw1jyuoUC24RPFNv5E0j07BaVJe9vbbdoTNGm/rntaF0JT9s+kYtqUU2ia/Z5qwuLy7OM4pIUmFA5psTiunj81FiJVByiFQ9NZWvwhuvgZKBNN6ujOKxHyScBACp287Gv4ZnQ+3rVH+PaCxdQliH7zSs2pKtw5XWRFTxl2ThnJzshE5pQzFihBA+POYvswiSZoDvXFtdwoqHU0ojLtvriMq6sI6FCQBd374rjt0o3omiI/U7Dp4Dz+Z/67OKRJ0NL4wqGruHTRNWwSr6GUfYgoN3olmjxlt/NIbUBdyp8uwzmOhwf6i+FO0kwhRL5S6giAEGIq9sj5NxnzMrOIqjf4+pce7fPQvXPGQ3f/AKvin59nz8FoM6BGCrIN83pMC1ryYzEammycBRbNeSZGu81RMpUFOa1YfhulkKS3I6WJ3YFisjS9Amna/TwSg5sz/IiCS+DSXjeXBfT+UxOB0OflwP9n770D4zrLfP/Pe9oUjZrVqyW5KJaLLPc4Tuw4diA9TkJCCJ3AJgssuyywl10WlrLA5V5+C8vCbkh2CRBIgIT0hBAnce+Ou2Q7kq1myZKsPtKUU97fH2c0KpZtWZLtZPc+/0hnNKMpz5nzPu9TPt/tx6jasJPlq8ooK8ql8kA9Uw6E8RoW5IB+RsV3xECfrUIaBNv9tNRkUDDND4lQ15nBjsY5LMvPoN6w2X1mNovT06lI46KyJVeC2D0yCzOU1t1nOyizsqkP9Y9K7A5oQWZktrpA4VFo3elqOsu969EUG8s5zD6+yn81VmM5Fl12CopoR0oLIVQKp9+HIn6GlFFAY+21HyU7I3FsFPVR1DnsSCGt3V9gWloLszOvp7q3+ZwU9XeDXy6UuTmfX1yQraR3aRgUqPYeY0b56Uvil9l5N5L27c1xKbfEeQvJf6U3LuXmL5IkrfcSikm5RaYEeGdHMZ4pPbzTE+BgZlG87yi6eAYvN65mfkIz+/tyuK/03EDuywG0vRgcyjAWl66wqmQaL2sd2EhUy0AVFhLQVIUlU+ZzStmEg4OiKBQmXIeq1CJjguGKZy2KGFzYi9Nu4mfT14yy4Z43eI5OL0dG10J0J6qxlBm1fr5y38jv+J9GXVfcDXLbqBnwkWvKxZasr+SaMgzHA9gJClIbCI4heW0GXXq7m23XBNOu1bB0dxVRNcHqxX3omivpZKgKnyjrxKtIhABFkXxvTi55metY2Tt30C9LptMevn7MfvnB+q9nhGuTAAAgAElEQVRfsUBtrEHal4G3hBAncIehpgKfuGSv6j1gEwHajuRAebU+LMcCAdEY0NbnizGgHJOOMy+S5I0xoGSUlpb1dDf6eXHT24SmJ3H78gq8rRYv79tPpEhhVnJefOe1qmQxwXY/+xs3MjW3hXm511PXmcHJ1jdZmtlMXtoavMszCd6dgX4wSKDO5Ko7s6kuqiZcpZPpDbPi9mqaYs2VC3NamV3ezO76XKra8i47yHbA/icAbccKsh1J6xaKSlOqRJgidjyc2J3kj7jAVDE6rXteUhUeWyIAVZUsD/STlfTl8+zIlyKiO1GMpUT2+nksdnG7EEV9pDrH876dhLN2DBkocc5JUX+3+OVCmZsL+aVoZRqHzXqkgIARumR+adxbi9LQTUJtJ4qqsOVPBzGaoqQ2uj2kG7ceQ7QIvM06QhG8sf8dulu9OC0erGRJi+ahpiMNVQhea6hib08au7unoCIoukjt1ckepJgoyPaB85a2l44IuFaM+IwHF/Y7swff11i5apcKaBuxLN6o2Yrldf2SrHbFgbbS8lJ3QsFQfoh7Ngnstgia5j4+Yll4NA1DVYnaFhHHwqNoGKqG6ZiY0kIXGoqQODKKIgxUYbjSfjICwsPsm6bx9ws+h5SuZmbilADv6w3HP4NAip9bgyXu9wBITPRydyimkSlAqiAlCAHJXi89Zig2ICJIMbz028HBx+p+rP77GLjBqyRxLNw9+Hkr6fS0V7l+oQSz26SKKsAAltMKtFIFeBnIEPSLIF965i/i/6NfBKmqqprgmeqa1+slPz8fXdfHdP8xBWlSyjeEEDOI5zA49j9diWAiQNuBYGbvkRNEbYueoIHjA6ECtmTj4ybv/wvVzU7Zgsdf9PO1+zSIMaD+4ekOap7+KU3r8pH1Ck+eOk7m27203+wg2wWB7m1cldGKCEm2Vm6g/1Aid63YQLvtsKHxSTZVVfDdio3o0sFs/yXP2jfQdV8Gygcy+UjmXDb7XsNfaJF/Zz8rUqpxhM0HPqPha7qbNTNeQWBiS41a81+YOXXeZQXZDtilBtpOlgrE5QLZjuV8Gwiew5YfTTm/WLOIBc8iFjxPN84Geg7Y5QLaDqWoW459UX6ZzObm8WZuRvPLUJBt6BL65WKAtmdlnEwFeR76+9SeXBq0/QgFNFXF2z2XPu8GhAKdjoGUDlLa8dLo/tomXn5rH0ZDDyVXF3Mo3I2/yeLWZXOJ5AteOnoIrUXhttnz8Ob282b9boKtCawuXkRBdhsHWt+ipj2La7PTSVTfZndPJlNnruH+q9fF/HiIRfeVMj2xkPbwAfTMPdw8dRFp3lxkdB/l6Tspz12KMNxy9pUA2Q7YZANtB9YULMnRfzlK9t+pSGnTFgowUxdouiAj8gl8/jJK8m0Uxd0w1Hem4NcTaTND+AAhBFO8Ps7YQVRAEYJ03U9QdoIATTgElAhuq7rAo6TjpRWBCkIQIZ+OEgcl5JCckIDwQW+4DxkWJPoS0L02oWgv0YiG35OI17AwrR76ozqGnogU0GdGSdANEgyDfitKnxUhQfPg1wzCdpiwHcarevGqXiynH8vpQ1MS0BQ/0ukHGQQRQCj+i/ZLKBim8XhTPMjMn5mLL+Adt58HTEpJe3s7jY2NFBcXj+kxY9bujAVlB8f74v67WVl5Id979BPjlh5ZkJNL3ctH+OO2bRiHgnRmeTGW+TGPGdh1Hg7m3UuvcYT66kxaGjNJzCzF0PexqyGXQ02ZcFWn20uhCizp0DsdpAIokOgLI2KiwI60mFrYgKLaKAo40uS63Bp0xUFTJLY0mZ/QzO7uKQgF6pKasCIWEkma0QPCAiRS2CyYNVie1ITNjLQaYO2YhMLHspBcjE1EcuSyqUAYDp6sMDbynLTuC6lAfGH9pwbF5q9eQVZ5f0wFYikeY845ad0XUoEYWZK5VLTuyQoGRlLUhSLY+LjJmk9e2C+OAdFcV0d2rBT1i/FLnn/6mCnqV8ovI7NNF8IyjLx+navfM+O0wn++38UbeBfr3P6+m/n3HxwitWgJeeWdLFl2B3/9+tvMKWnk8Il8Vt+s8s8v/YGoaWPrDpGDjXEN0xf/ZS/ddwhMxwEH3nhyFwU3ncKWFtIj2Ll+E/eu2owjoxQlSQqdCBo2a30qDx/Yz32l970rMq0XYxfrl5FT2edbU+yaCKnTFlKrNdF5NI1uTwbl61TSCmZge1Np6LDwe036ogYhU6c/FET6VCAWTPQFkbG4xJGSznAvusc9VhlAn7hlx4jZiVeXrgazhG7zDB22D8Uj8BoeusLt7v29goChEDSb3XKlV6BrAuxmdCFJ9ghQfQjFT4JhxD8nv2bg1waPB4KzAdMUP9qQYMwNzC4+OBswX8BL/sxc+ntD+BN9kxKggRv8pqWl0dbWNvbHjGW6871ml0NxYMAuJ8h2gM6uKgL/1ho3k6Yq6Ko6mElTBAE94mbSFIkqtHgmTVEdFKEPZtJiE5IPVt3A291pZ01Bpuv9sT4Ge1KwDxca3X5241bWHz3MmqvmsG7lNby+byu76vexpLCCtRXXsPvYG9S0bWFaxgoWFU/hyMGneW2Hl2lFaylcWMgLew5NfEeeumbSVCDUQAQt2c38jEbrvpAKxH82z2GPnT7mXsX38lTXhcb5R6OoV63vJX1GxwX9MgyYOgaK+n9Xv1wKuxiQ7QCKZ3NdPZKz/ZIU7CdS5pZ7cWBqX5Cs0o64akpOT5DFJe+gCMl0LYbiidHtf1pfTqd35RUFp76rp7yHgGwTk0yy86aCInD0WFkREMEIVqrhHgB6n4M1RIdUD4GeHHXL7cIhoA6WL3vDfvL9wYGHUhtOot/WEECKRyMq++P3TdE0kD3x44DqRyNIvF6pZCLUzEnzSygYjgdbKIJQXxRfgoHP7yEUjtIfiuL3Gfi8Bv2RKH0RkwSPjt9j0BeNDsvoTZZVVVUxa9asYbdNdLrz/9kotq+9gU9u/dVlA9kO3dka63rdnrTiWE/ayvP0pGX52d+4MN6TVpyQwZ+G9KT9Tfn4ypMXg324END20yWlPNq1HZkmeKu5ieN/rOFI5ibIlBzr28/pDYcwsh5Dy7Tp4lnMMyYzcy1K7lB56Pl+dtVmxf/XVF8u398aa6DVVOYFknjuWMwviRo3JKlsaXL9UpoKM4QLsr09YCAS5+NZVcZvvqPQf8RCS7TQi1XOVE+huy6TB7++ms27NlFVl031qTw++/BqlLffxImpQPgPtdM3OwlbyBgwNYYSdCD8TgJM70TGGsPfOZnLwqk1ICS2VNjYWMRN2Y0oSExHoTKUhKVbAFcUnHrRwNT+bhbdv5SygcUn2syyW2ZQNrD4UMvilUXMSculureaBuMYq5aUkqq3cSa0h/vmDpam5nt2Mr94KVXLFrPJeBWzyiJaI7nhkeVUb3pjTH5R+yVWkltGFQ74j9pESxVkjKL+39Evl4uXOJ7M6Y7GRqKm7folcdAvidXgzFbimTTrRCJKaQ+2YyEdQW19AUtKarEdkxZLY7pmIxWXbr+vL4f78icGTp3IZ+it7eWvHvoBwZkeAk+9xEf/8RZe2r+FcKXOrx4PkLwsRG5xM6/uyOGeWz/Ii/ueYn5OAz8+XMD7r/3gZQXZHjh4mIwpAfw+wy0rRkw0R3KmrQ9hOUivSlpqEj2RPkS7RHoEU5ICdEZCWB0GiuEQSEikozeIrptELZ2I0Ki1NRJ0E7+RTNiJIHBLhQmaH3NIT5lHDRC1e+OlRKEkgdMXO6sFiMCkBVZK1KG+7jSOV6B09qB6VPA40KOQnpZKR7AT3TDp7tNJTZ5CV38Hfj1KS8ggOTCFpr7B11mckjqpgdpYbUxBmhBC4MpDlUgpvyWEKASypZS7xvOkQogpwO+AIqAWuFdK2TnK/WzgUOywXkp5+3ie71LZ7jO15xSBHuvFu+zqh8aHCShi+LRJzvDHUjFkUUiE+UX3xw/TcmBBzocH75p24T6MAbtU/UevNx5FpghQ3R6Jff2VGKpEqG46vTm8lRLVRlEhS7VQhIkiAGlTXtjA1tr0MYlzj6WxuezqhyZNBUIkK/TONtBazqZ1X0gFos5KGcZHmuiiMx6g7QBFXa0M4puvs+KflrPtV42Ej6nDiN1J0qSv+zQ7uvLZdypr0oGpF0tRH+kXUr2EKnLxNZsXpKi/l/2SJHsmRLe/HH4pKUwf7EmbN6Qn7W9GZMDvH5EBX7OIguyPxDPgBf50rDNv8mqVwbqsG7klbzlGq2TXKTf7Xj7lGqJt3nj2PSVwA8fbU+nq2khKykqsvX4+98kf0lvoJ/FXr3LPP97Bkzv3oNdYeB83sBcpGPlBfrslwKfvvI1f7fkDeVlNvHQgl/tXfYDnjj/JgrQG/k9NAbktM2j6aj5SE9hqmDeyXsGbJ/G+H8SrQW7+8E5U1ca2D3H6uOSndz2PptpY9l7+v0PpRG1GHQDwaf1Y8uI2BKOtKUPXBkNXSUsNxI/9Hjfw8M7UhpX3Ev3eYcFRotc7LDhKMHz0RUwyAvpZPWRF2vAeMq+qDeshMxRjeA+Z8MZ7yML9SrwfrENR+eMrz3LN8uvIzs4hPSeZH/7ox/zqF49SX1/LOyfriGqe+JBBdmrisMAqWaqYOW7fnBQOum652T7p0BfuJiWtx80cyhBmBApTu2Il3H5aQhoDhUYppfv+3q1BGvAz3LNgNfAtoBd4Blg8zuf9X8AbUsrvCyH+V+z470a5X0hKOX+cz3HJbXF6EYaqjon5NNFpxktp491Nlq8qw5ye7F7k6vtZ8f557OlrI5hnEzilsvKaUo5ETqDlBrGaAtywRKBmHOZEYyaNPVnMS29mUUYjb7cXsCRlpZtJA4QlqfCXccTehESCLcjRrsG2qwCHFlvjKkPiSAvLUTlQX4CuqOdsbB4Pi+tiGFt33rqMmWmpwz7D1Qtmn/MzXFQwd9giPD1z2bBFOD1lOd5x9ChdCqBtxLLgq/nkPVFL0ldUDhl7CXweUv6gcuNf7MXWJZ940IkDhj/i7OUzMVr3+abPRgbPKWo3MhYsj3fxuZBfRgbbq0rL/lv5peCLQa5JqkZRHebbR4dR1H961yBF/Ur7ZX5RLvM/MXh894jrUcU1BcOOp8+eDrMHjnJZXVjO6kL3uvW/1tRjRi02GtV4HpHxz3WXsZ7w13386DeHMK0AunaIzz6cwfdeOUrUSsfQjnJdYhN1n5qOVBU6NZOfGntwrpOIa1Ryd4TJubsFoUqk3cbO5he4/+ZXUVQbxz7A6SaLx1Y8h644mM5evlv5QWSPu8lMTIiC6iIgJDB1/mnU2AYTHK6ddRJNtdEU97pz2/QeflubOuqQT8jyo4nzD5NM1priC3iH9V75/B58fs/gsdcNzgbM7zHiAR4wLIARYQel10Ik6hAAGRE4fSoyQYAfzKhGf8iH36eheSFkavRFEkjwaHT39mIGNJSIjeIInnnh95TMKyVDy6Y3GGbhkkWsvuV6PnLXvfT2RwlMUTB0i6ip0ROJ4FNNErQofZZBVFFAugK9quL20A3UZA2/GdfulQIC3ohb9hUSpCDF49ARUeMBX4J++QM0GHuQtlRKuUAIsQ9AStkZk4oar90BrIr9/ktgA6MHae9qq0gr4OtZ72P9O5WsmVHGLXmL0LoUdjbtZ2nufMqnLCPU7aW6YwvT09yd3NHeVDq7N5CavIqrjIpx9x5MVo/LxbC4RsNYNP3lLEzHoVdR6F2SQEtAxXSgT1FRKsLkZtZjSZt0vQ6R/AKrMixWLlIpNT7NVcbLuBeXA6hp91K0/cYRPWnTRvSkzaCmdQspGSvQ06fQ1LKePQ25fPHW668YyHbALgXQtnL7MXbHAozpV0+PBc9dzFu8lmavxitHdsYCjIdcWvcrr9E3xYt2qoeeHC8/P7CXnmSJp0XSm2Xxnye2058Sxa+F0WeGiPYGiLb7yUprprr3cbITXVr37ORTKKGfM8unsS+YDppAX+UB3XL761TIv/qMC09V3MymptqoCiBslhQ0cbwt/4rhWS7kl6E+mahfon6Dp3ZvjAV+n+LwsaYx+wUdukpsnjuw3y0HZvdNyC/pniCK5qAoAA7LK+rQVQdVcbmESwqaONqSS2pNEC1JYAtQhcKUWhUtTXEHK4QCDSkomSrg0GEl4TgtKIqDQGV7y0xuSduJIiwcNF467WFq6tng1MsBtJ3ohHdDmkCG3OErkSBxFEAIpJR4ZoURqjt8BZKS6TGQbeyzvX7qyfjwFTjcO9PmpX0GprQJmX40pQ9b2ihCYXnpnYSUf8ORFqqiUZB9F0rvERxpogideUV38O0ZEV4/UMna8jLunlmB0Wm760puGXOvSmHDid2EGhJQEyvIMv55zGvKaH6xZZSw1YamJKDCmKYgR27kz2dDJyM7hCBzagZtrb1IRyIUQXpOMicbW/jrz3+GltPNCCF58HNf4GRNDRve+DORcJjyxYv4+g/+D289/RyHjxzkK1/8PB6vl1de/zPzrpvpxlmKxO+3SEsZ7G/TpE6COpgN63NyaQiZSMCRsebggaDLk0zE6mdAr9fQUxF2GKSr5+szUsjzOvT0h0nyea9IFg3GHqSZQggVd2OAECIDdys1XsuSUjbHfj8NZJ3jfl4hxB7AAr4vpXzuXP9QCPEZ4DMAhYWF57rbpFrlgXoe//zLmFGLx42TaF9X+NFvdmBaNhu1HfQ97Od7r1QStZIxtEq+dG8G39xRSdROw1Ar+caa9CsOtL0YFtdoGAsLiRRgI3mtoQpLOu6xdNh5Zh8ONggXZDuwIxeKINO/Mz4pChZEd7Ju5UOsW3lN/LWtrbiGtRWDx4tLb2Bx6Q3x47yCCvIKBi8gq1aVQavFUy+7i+Znyq/l8LEmfr3RXTRvK72F/bVNPLZrVyxb8inebm7id40NLMu/PYbL2DyuIZDLSew+Z/BsWsh1swjsrKXlA1M5ZViQExhG7E6YGiE3NlSS4bSNTutesAWP6nBLuuDByjUcCWaxJKWcBuWgC/ZUlWHE7g5HQeIgpTuYMlaK+kh1jtbmk/G+yROdGZxs/QpLM5vp0+aek6J+Jf0yZm3BUfwiinxxCaLdyikyTUnO2nqEOn6/dNnJCNkK0hmVbp+sL2PK0wc43NBN7hApt8qmdrKKB6XcNrScJqGg0JVy29DGUVFEUUzK7WSnxlMZtw6RcmvAUH91URqsk3XtmuiE991L5nNw6xuYjoNq6hiq42o9Kgp3zbuebeJFLGmjKyrLCm/lROfbONJ9f4VZIwKt3HU8nnjuKd2hQNvRMq2/uPP/YkYtfmG8ge8Ri8dj3/XHjZM8+PXbePI37vv4g68mlmm98Jpyrj5py/YRsnQ00UZAkbjLehuS4lEDtZHXoguBXft7Q0jpTnlKJL3dIWSstQUp6Q2G2bzxTTIzs3jksSfwBTw0nznD1deu5KG//SJShb//3OfYuP51bv3wPTzxu1/zpW/9I7MryvF4NKJDJMNVPYoYEsb4tBCKBIRESEGiblGspcdLr4pwLqrseqb6NFJKzogevDO1SZvyvBgba5D2r8CzQKYQ4p+Be4Cvne8BQoj1QPYof/qHoQdSSimEONeI6VQp5amYwsGbQohDA6oHI01K+XPg5+BOd5733UySTRRo+8yhvUSEhRTg1frjQFvLsTl0+s/4jChCuGWGMx0vEtAHGVCn2tfz2LYmfNU9zFxWSFu2Q0aXj8ihPtIWaoSzujA602g9JrhqdpCgfoi6pizm56+kPLeFU+3r2dmag7FoOrqhEZyqY84LkH/zVI4cb0MW9JMwJ0Swewopai+F09u4uqKYXU0qszJOsaSomdKZeezYrF7RTMm4Fs3zAm3dFPtfZ85lh+81F8vgKNznv5ZI4KfYjotlmCU+zVWBnyBldAgzbu2kMdIObKi9+OAZUHSV5DvKaDVC7rEmhhG7k/wRFHUQmDoqrVt1EMLBoyp8YUYCRuLHzn79I4jd+pBMycVQ1EdX5xB8c8cfYn5RMDL3vGtAw+ORIBrNL6rfAc2ttThI5r4vQIfChP0yrMl/BEXdc7QWpWETju2gV3eTsLEdoymK40i0Wgt1h4NoETiOpK/BS8PeFLpbe+mUHk6E0ommSCSSPW0Z/Lgmm70xrc/x9H1OxiDFRLEiIxEWI7+vK3uvuigcymi9vQN2uYC2Q9cU07Z54+R2oro5bF2ZJe8AXEAy0omX/0yrhy7TOYtNtufNg8Ne3963DjBzacE5uWT+RB8dQriDAkKQmOwjHLHiGazEgJeZV5Xxv7/3TX74g++w7q47KJo9jz+//BL/9R8/JRQO0dPVxbTSq0j9wD3xiVFlxBACgKEmIER09CEE4Q4h+NWz8R0Ddj50R39v57Bgs7839O4N0qSUvxFC7AVuwHXpnVLK8+J3pZRrzvU3IUSLECJHStkshMgBWs/xP07Ffp4QQmzAFQgaNUi7EjYRoK2KoOmR/fDJNNAEPf0Gjt+lkAtF4fUXVW6+XYlpxan8fEOAf7peQVNdkeO/fesMu1urUPwm+umjiHYFLCjc00/mVe2IBnAskMcCGGVbUG0HX7rCbzdtomzNZjIxeX+awoNVd3LDMx/hv/p24SiSR9X9fO4nC9kiX0AqDkVas6u3KRxU5Qi/ePhTzNRfQhUWQuzjj+t+yJuNSZcVZDvUxrVongNoG7Vtd9GUDs/u+hNpK9wsoCNttlc9R/nCaAzTIDlZ/wdmlsWCZsfkz3ueYF971qSpGCx937f5zXfGB7L9+PtXDBNr/tiy5XGx5pEg2xVTb6O260C8x2Va1gcQwWMMAFOX5N6HMNyF50Jgz8kYKDkfaHgkRX2s6hwtWta4QbYjy3QTAdkO9YtqGRjqIJtvTeEynms+Hu+bnKhfBuxSA22jto1wYGpPLs2+Q5iOBY7A2z2XSGATtmNyxtSRugO48la17dOYGYBnXt8RL/HNysyNT6ffMrcc/YzKW+/sOadqSltnq1viK1rFVZ9ZxJYztUTa/VSUF2KURKnqPYTRG2VO6XRyprZxJvQq7eFFzC8qpzy3BaIvIKNLWZBTccVAtgM2WUDbkWuKoigce6qdtA8C6uC6ctVNbpBnSZADjXMIGoMWfaaL0cjw+miX/ThSMmVxLpqhYkUlqqGSvyyD3mgd7gPPIOxUkvX2GCOtjbCSTfr0TCKhCI5PQfd7yPMZ9Ib6EF6J16uy8ppFbNzyFm+99Rrf/+63WLlyNY/8x7+zffur5BbM4Ov/9H10IZji9eNVdaZ4/BQF0oYNIahCxa8lE9D958yGjQdkO2Ajg01/om/Cvh6PnTdIi01hDlgr8OTQv0kpO8b5vC8AHwO+H/v5/CjPnQr0SykjQoh04BrgB+N8vktiEwHa9r55gjff2oFS30N0aQa+Nj9dRhrGrCj5U0rZt6efp0/fQOH0VozE+bx2UHKqLYklBU30BirYc0a6X7wECZpACkCRKOVu0+qA7llBWZPbtKqAxGF5SQ1CmKjC3aUvSGvgkNKBo8RagW2bOm8dRBwkw/U2bWmR6d+JZlsMNA6XJtZw1eJB1tDlANkOtcmiv6umgSpNbMdBWJLohghimeb2qdjQuCOdOfPrEcLGthW275/KDaWnUITEdFR21eYQbttPxHR3sbYeJeq4AWPUtllfv4OoYoFwMw0HW/+MXxuSKe16kYA6mCn15B9l2XP3YBzu49ZlizHmqNw+azrRYx6WzE2iz1NJw4lcyotXMru4haXFYfY05DI19/orBkwdzSeTARrWsDBt+yyK+ljUOb76fAc75e+wHAddUfjm+1bx3cqXMR23jPW5ggVsM59DKg66onFH8nVE+BFCsUlX4WpPGBEbKlHTfkVkZnrcLxXLcqk3moke87By9hKySjtJnsmY/TIyc3O+vsnJ8MtkA22N5n7+778/iX4wyLN1x7j3l3fHsRP/3niCT37vi2w//hr11Rn8zieZXd7MrvpcjrYd5YFFkp/UHkCqgtcPbib3YD/tt0hku+D3m/aReSBW/h1FNeVg069Z6umnJMnBdP7IQ/tv5O2etCuaaR3aszVyQOV8XMD5RbmEixJZ9KsP4avu4bbrFhCZ6Wdx/kI8tQ7zy9MIZzXzleJl56yKXJMTZWdrDtV/UgfXlLkBynNKadgSpbNx+LrSv8JLsNdHxNY5AyQYUWzVT1+siiiBM729yARXab5oUTF/9YeHqdn9DjOvLaF0WR4SMw6yxemJ4TVkbDPVzZmIH+FxkDZ0BcPk+hPp9/YikfSFg9jt/QRSI9xz//Ukpig8+fiLCGGTkyGx+o7x6gvPcc899wKQnJSEFnXi2bCBUqWI5dgmG2Q7YJcKaHuxdqFM2l7ihDkKgc7Y7ylAPTA2XYOz7fvA74UQnwLqgHsBhBCLgIeklA8Cs4BHhBAObrvy96WUleN8vkti+9ob2O2tY/G6EspiO/KTice4em0p0xNzaQ8fwJe8h3XXLGKK0oIMvkBF2lIW5Cyl0kphs/ES1ERIbO1EKQ5gOx6spgTWfH0ph9/eREtjJh2nc/jsw9ezvnIjR5pzON6Wz5fuXYle8wZRy0b2CUiQCF2AI3AOGDBXgOJmsusrcykvPYHEwbEVtp2Yxs0lTVjSxHQU3m4v4M4FEytTTga8NKtLEt3TjHd55sWVbhf2872tRbyy38v0vLXDduT5czP48Yx74zvyeSV+Hi28e8iOXFKeUxZvuq067o8vOkadyeqP3e4uOlU6osGPcesNbIktOmeastl+7Y0caXiJXbU5HGnJwb91D6zLB1VBhDVEQjTG3oKDfwqSe2NM+ksovLRF564VSgwwrPKTfQl8t0KgKy4t/6uHm9gbjGBMU5ldWBLnvKXPCpHtd5EIgZk6+ZkqsuM75OhRbisxEFPKgNwxqUAM2GRnCCa7DLX+qTdHpahHj15YnWNvMAMz2QZFELVsnti1najPBgWils0zlRvInGEjcHVzt9S+wKIidwFKFSbgovajarwAACAASURBVF4sJ8qRpmf55EGP20N6lckxbTOObaPN1Fhe4HPZe6p50X4Z6pNLnbkZy4DLhYYpBiy8rZXAM21uxlRVOPrcaYKHE2IgW4vN6212VZfhOJITKYJtoWwX8ixsXjtejfQNInd6pgukIkEBUzpoJcF44/5I1ZQ0NYqu2KgCcBwqAk3s6ZkybgzSRD/TyWq5MBJVitL6+f7Wp91zLMvkqNWK0xjrU141GHCm5uoUpbvnWK6Isi7LoHbtt9n8LQ1qIiQ12NzxyEIe2fEGZh3D1hXbVukP+nF0iEoIWzrZqYkIemJ9Y6D02Th+hYG+oeLZxcy8zj1XLenWW6UbpRGMeEjyREG6vgyaussgHIqvsPrjJUqJZN/BvXzjq99GUQS6pvGzn36XF5/PZ27FOrKz0lm8aPC8//jHP85DDz2Ez+dj+/btPProo/zgBz/g9OnTzJs3j5tvvpnHHntsVN9MmLcmLBLSEvBdoaEBuECQJqUsBhBCPAo8K6V8JXZ8E3DneJ9UStmOWzodefse4MHY79uAueN9jkttFwOyHa1xtuzqigmJAs/ISeeFbfvcnrTsIT1pi/pISxgS2JQKSsRtBNVD1LVk8aHrVqKnx3rS2nP48srVEypTTgrQ1rGRUYfM9SfoLs6EiyzdlmaalKxReHBLP3dOvZffTjlEtNPmma0H+M7C6zmY/QpWxGLnsY18ruQ2UnN/TKc0OXL6165fUizgRUqv/iWlxueHBReLZiwa5pdp+SvYlzXol9TMa/CmNDJ3aw3rd20jt7mX8IxkKoqnUd3YQ2iqQOvQiUZ9NHUU4p8aIm/KNN4+GuTxjhspyWvBkzSPl2ttGnsSWZbZTCRhLnu7I+NGIkwmOHXcfK+rSwkXJbKhsYFwcxMLyguJ5ItYWUpQUVqAN7efqt59eHv7Kcjuw5d8iHSfB8ilIq2FisR9YBh4ly1m09dejZ9TN8xfziP/+gZ2LDO3cMZqfvQbLX6OTStYzfde0d1jXWIGpMtRsh0SDoURC91jHEH4uB9Z0uH2y+CCbCsKqpE4tFo60zQbKVxg6otNCUTtyLj5VZUXoc5xIVba+dQ5UvzhOBtscekNHK97Pc4GG9k3ORG6/cTKdNM5XnsgBrKVJFVL2kvddV1XFawTichpnYCrmlJXX8DCwhrAod32uCVw4WBKhX3BXFTEuDFIEwXa/nzrVnpyvHhO9NBXmkBkgcR7Emi2WF+1E//CFvrrfKQb/VT3Pk5mmpf60xnMyjiFEn6UsmQfb7dnTZiRVjyzeUybo1Cwlak5qXGQ7UBQImyH0y2diLCNajokpyfT0dePiEgUSyExJZWuUC9m1MBSPKSmqrT3OkRMDctWyUpWON3vELI0t20nFqiNBrS9+f23smbtwngvWUDLYunCaXznW3+Fy8soJtyv0N7cyc3vu4W7776bUH+EUDDKpx/8Cz79mYcuGGB19/XTe6oLEbE549OQAQ0RAbVHEsjw0NNt4UQFhsca9l78hklWskJLv0OfqV1RkC2MURYq1rA/90K3vVvscshC/fzYZn5c+RYOEhXBXSVp55QkmaFblBlR3H3G5MuRXEkbjyzMlvoGF2ibLGPNyIAtCZxuw1zsA1WALSlu6yZ9fo8LtLUhv7WXBWXvoChgOwK9JZ1bptWhConlCH58ZDFVys3sjDU0X06/nHMa07QgYfRpzIGgYmA3PZDJHGBhDRxfKamuYRT14xG++OVP8NiLryCK+5En/XziI/fw5KanyZnaTOOpHHwZkoq8RvY3n5+ifrHA1Im8p/SQw79++b/iLL8v/cNH+dEzbxDMs/G2aEglES07SMLUELcuXskjLx8nK62ZkvxWVpTdzLNVu1mQ1hDLON8b90tyfBrb7e0b3JRZo/qltunb/NW1v58UVlpcnUMTCEvyMWOaq86hSlKVPpYnV6MqNratkhl+gKXpj8bAqSpbu77JFzY3TQrd/mL9MjLwnGhPWkPdK5yuzCEw7ZoLZt+TMmvp7Cri8IlErpvejd/Yz87WHGidzi/u/El8cOqB22/itR/tQeb3o8+1CHZPIXTKS35xO/d8MIFfbQhzsimNBQWt/PVNBt9/O8Lu1nR3k/nqCbo/nYnUBcKG4k1Rsj7SjiUtUpU+rkmqRtMkpi3YtW0h316zGUNziNgKH994K0e684Z99y/2HBur/NhokkQDNjTz5At43cBonLR/oTBuUfShQFsxAuOBKnB0Nd4rlpmRSHN376hAWyRo3RHsDA0QKIqDV7NipVqgVyElJcjADX19CeQm9cb/frI3mZClkxUIkJkQGPUzG49dClmoJiHE14AnYscPAE0TepXvccs4raA4gOLu4KaGp9IgDyAUBwWFluqpZE7VkMKm3VawHRtVOAihc6x3Gm9W7ZzwTnayeynGs4s8NtPAnJ6MXt2NXRYgclsSVl8bXqUf7yyTOSuS2VfbQnru6bMmRBeWNLEtlMveMxlIW5Kwp4fuCm9My2/yS7djBdmOxy5U4hv5WZ6vvHfFM5sxea2bzMQ4Rb3Hkjx7fBOBz7eACti97Dr2And84s+oqk2y2BcH2l6Ion7ZgKmxMt1I0PD5/HIuoO2X50yst2/nL84zrXuRE3znU+dI9/TGe1DBQThvDYJTpU1X7yaidvFlo9uP5pcBu3vtMu5eu2zYY+OWBnNKhwjMjFBNaak9xo/XtGJGm9CNA7Hz/OVh5/kPznGe/5tPEM7SsWQrqtPKlGVJbnClCX4m95C/oJ/MD58BFfxON/bGBO5YtxVHc7j/ZoUd2xbyz2s3o2s2j61Q+OjGWznQnk3q/aX0eLoH+vAp/WAanaIVISDD24uqOSAkuqbwwPIOPJo7retV4YsLdTzJH7js/aMjbTKAtkrUob+9D3+ij4xAIqH+CB2dvfgSDFL8KYTCUdp7grFAL4P+SJTOSB8JHh0pUugzo9gxjIfjUZA+ha6+fjdA80iE33GhXFEFzTCJ2O3omkDF7a8LWzKuFIAAJ0FlgFqrikGgrZCg+0YAbT3DgbYB3SRsG1cMZAtjD9LuB76Bi+EA2BS77X+kVW4/xn/e/DPShuy+XvjOHmR+anz39c6pMPnFN3DPBxP40YYw/ylNlhY1UzrzVr6wuXJSdrITbXqdKMh2YHev/eUsbnGSWV/YxJ84QdKDJrlpHaBItiov8Lf/eB0h/bcIYZ81IfpZdJ5v/TtonU7UnI43J/OSlm4vBch2wCYTaOs53k/ihjN4VmVS6a/n4O5TzFs8l+m5A9mJOVTMziCtFA40ZbGnZgGLpmVRtWEnPTle+ksC+E8EeX7XXtqW2HhOcFb5xTydwO7at1gy9yAnTmVRG05ndmozSzOa2d2WS4N3JlIOBgPaEklEJSbVBYXlgyT1LNVCU2JA2wtQ1C8XnmWy/VK5/RhHN1SyYlUZZaUFVB6op293gOhiA8qhuS7jnH4pX+Ufps6Rf/NUNqe1oZ+wSGzRmLMymeqMQ/TV+VA6A+TktlOQ3cypllzeN3M1IfbEM3rnU+c4E07E9qggHWxbQSrXY9nVIG0sRyUl8To0GjGlRBWC9xXMYm/lCUzHpi/qQxNBbGmDIzD65mN6N2FLE+kotPYvJd2zCymjWFLlZO80QpGxT8pO5iZzIiDboZJ0CAgtSUFq7nnuSNAXmO5Qlkt6pWhO87Dhq5UzXcUAVUh0xWFZZjNV3fl87LohGXBN5Ybiq3mu+R0sx6bbTkERZ+LneEnekGldobOs5B6q9vby5OPPUr6qjM9cfS2VB+rZc9b3PkzF7JtIi2+aTRZNuz2WAR994z/SL8CwLNZYgbZjsbGAbFs6goMZsiFZMBSQutvDJhSBlqhjpbsBVlDYGEi0VBdTpWDHs2BCgN8rY8w3gBBhO9ktVSJI0r30iOhwoG0sC+dREhFEGQDaCiUJQTvuqSHwaMkUpyResVInjB3B0QF84RK/lveMDVwg9KNRPO+EaNTq3AtEtU5fZyLRKR4kksaTabyxpYiTTW5571BzNgtM5ZySLOPZyU6k/2iiINs4JkFA5xwvVo+DgyTBCCEVJ/4+ogn7EZYdfx9DJ0QFFndNCyLKl8HaES9w6NqcyxBpmBugZPAP+TkV9NQe48DjO/GuKsPj95G028GzWEIahJv8dB1JJzzbD6XQcDqDPTVzWTQtg7SiXN5uH0A0NF3xzCZMrBH5gUWlnHroKqQq6NIsOvN6sKSKuE5SvClK73X7SZUWKVcLlC1JLL56Kw4m19kKu/Yu4lsrN6ErNqajsi3yDb50UMOUNrqqcevc6/njKVdBQldVlpTcxomOfTjSosPxxHElAxT1J9Zlxfsm57b7z6vOsSjPx8Gmt6hryqJWWUF57i/jLL9imYUwrkwwMJpPLjZDeZY6h9fhkYR9WKsEykqDB/Iq2Kq+QMoKi9TlCh9IWkXE81QMlHqY67PmcnfOS4xVnSNFhKlpjfWkVdzA8bo5dHW4PWl5wUJyf/Z6PFhMTF1M1jN2TMpN59q/uIPnKrfQV+fjh62tfPYLX2HDyVeoacyktT3Mdx/4Rw61vMi2lmyO9B/EyNx5RRh2E5kgHokT+djKlS6CCDA0lTvLV7sIIhw0VWVqwkpUpQ6Jm43XvGtQxCAkuCTz/Twx513Q2xvLgJ+vtUBTND7n+wxBsw4p5ZiBtmO1sYBsh/69pz8yqI8pBjNgEome4cNiEFzrTdWwhBXPfCUkudJbMIAclHHmW35Ao8sMnMV8Gw1oazmBEWXXpHjQmmpMfEp0ojZWgfW3iM9qDJqUcvWkv6L3gJ3vAnEhhtX7Zs5gW1v9pO1kq/aeu4HYlVJ6I95ErHtmUdf0FosKmsjNWoOxKIfutXkYx7tJag4P2917OyVaQQQjP6a7OX8Gp6z95GU1caoll/tn5zGnZT/bW7I50p13xfTmYPKmqzREPCNo4ZBkRClNawFFoisa6/zXEdJ/FMsI6kxTP8VM/ceowkLGMoLFmasnzOKaCPvtoNWLMNypLCUgsUUMVinEsPKLELD2NhsUCwWJEJKHr+2LAVMlqnBYk9XJ49d9bMxZSW3E+/DWHmPPR3+LGbXYlPh63C+jqXO4flGJWi0Y2jMxvxhE7VZ075MTYs5NBmZhohJEQ9U5HI8VZ78JAXXeOqyI5fbYKJJown6kZSGEK+cUDf0ZRVy8OseAzZy6Fqa6O6Anf/ssenU3Kcc6UVSFLX86iHbSIqlGoqiSwxu76ahOi/WQ2ryxS7Klfg6OlKjC5skjCpva5uNIiZY0yLC73JOVk40TWdU++7wg2/bwisFNwLThkOC7cwbfw3gRRBNhCw7NDEZMi2cO7SWquBv/iGXxxsntmIZ7fpmOheWEkdItaaoMBGhu4GRaPRiG/wJBzbl7ycYCsu2PWvG/J/k99JlRt58sprE5kGVL9SUQCXfHjxM9AbrMSHz4IOBJJmr3I6XEHmBOxWAUupZE5pAAy6+ND2j7brCxlju/NOR3L64mrjX5L+e9YRPpPzKae8n9WdWk7GQPB/cjUoKQJniruYnjf6xxG4gzJcf69nN6wyGMrMfQMm1OOC+yZ+Mivrl6E5pqY575JU+338aZ9+ehvi+fdaVlPBrdSzS2u//rvIq4LIomOpg2vYGP5f0ZR5qkqfu51vcsq9MtPlumcVL8C1flVFyxXorJAtpGbYf1LceJ5nlBFfj0fhycOJ5hW83zzC81EQrYjsmJ5j8ws9h0WWdOlBOtf+Ift7ZfeCd7gcnfSWO/WQa6Yg9uGIaUXzRVZW72jdR27cSOSd2kT7kNETzAQAkGYykVgQsvOqMBbSfTL7Y2CBo+F0V9UJ3D5MSpP1CeFEUIBymj7DzxNJ7krAkFz5PNfov7ZZwTieO1yXwfSkRDcUykwll9uZqiYvTNJ6RviG0KVHbVzeT9eTHdT6nxfE0AWnecE71Tp9QTakhg2YyEsxr/Z6TVoBRNo3NNLuH8RAAi+YIer0IkXZwXh5TmzUVG98Wnh91p4os7zycLZDsZflFNBUc47tCJ7dD0yH7Uh7JwHAmOpPIPHWTc68YwjgOOocUzLpYklr1yWxoagxYp/n6aQ10xXEoPXs1ioDyY6UkmYjUzALJN1LNQ7YHjNrz+YtKnZ7p6l34vut/Ab9goEUj2+xAeyRRDw4mqJHn96IaFakA0quE3EhEijG33oqqJ+Aw/Xk0bNnwwALIdTdYJmLSy7bvJxlru3Dvipq1CiF2X4PW8Z2y8fS5PPjl5O1k1MYqmCVDObiCWSJrDWymJ9QxJHK6ZVhNvIrYdkwVpDexsTUcocEjvIBpyd18Du3snEiPu43CydyMSd3efprr8KCEkurApDdQAay8ri2uoTUZQEzEtsB18O7sw52chhaA35EEm4I6RS0Ht4RzmTncxABKFLceLuaGwEbAxHYUdrTlELYtfbtpINM3CwQXZPrf/TcyMwZ3s1poXyE41QTgui0uarpLBQEBR9Fl+sP7rvLRjN9E5CcxOKhgyteaCLc80nKSgpIXZhZKSwruHZEhtZuR84IoBUyfbL1HLwgkKV0ZJPTdFfUCdw3YET2yfwlVrFAwNIrbCD/eaHO743bAsqSYU7orkU1+8HRsb4bhlRtP7ry6HCskKfwRV2DhSp8r/d3ziuc/HA4rGbIeP/+SW95xfJoth98K2fWz62vM4InpWX663zOTmFWv44S+Pk567mvzSVt7pzaWu2eCZgtuGTEW2IKPN50TvoElSM/vIktVo7e5UZGX9Qj40czN2r0OBrfDm8Vv5t915V7y3d7wg2zgOpaiAT73yl/GqyM0rr0GfLYZURRaQPaNzCFplHnOmtsTRKs8+dYan39yJ951u/A39zL5qBoecdjwnJGbIR7NTiLewn0hjAtEPqbR3JWHoFlFTI+jTUEQ/QVMnZGnIUJ8buAlicG0Zz3D1RbpRVRkH2UbNTryKm4mXEsLRLk6FVaSQ9EaCCMdBSleezqtpdIXb3UyYLkjUIGg2u2VXQ2BoAtVpBk0CXUinGL/m5/dP/JYbb7wRf24uXtXLpz76Kfbs2YOu6yxZsoRHHnkETdFj3vjvE5wN2FjLnUOVBxRgIZB8SV7Re8TeFTvyqAZW2F2sRjQQYwtytGuw7SrAwXEUttZM48appxiYZny7vQBViAs2do91KnK8FyujuZcXN71NaHoSty+voK6+Kd67NCMl97yj+HWdGZz07+Z7W4to3pNB34zFHJGdeGodbqmYj1ES5f6CrCE78t38pKBsyI58G+U5ZTy1Lcqmrz2PXt1NoMOk/O+v59ATNXQr6XhnuYvOrw8e549nvLEp1VvYfOwUD3ekxqdUD7RnIKMOnc9XIz+d6ZYdLUnDa71kfhiELrAt2LbJx23rBIoqOB3VmK7a6KqMBxSV3X/gG2uu48lpdUSDNkaoku/cdD2/b/4VVmMMWTGjmjNYbGl6ipWZX2Se938DUWTHr6lI+yULcgazLVcqQzAyIBgPC/Dnv/kTlf+xFTTzvBT1p0/fQM7sVqo7cmhoyeBMRyq3Xd3H7066DCpse1iWNGrZ7Oo8QFqhhVDBkTbbap5nwSw3eE7TBoJncKSbJf3FO4v5xt3X8a2jrxDtiGVJ36N+mSjQ9tjxnWyv7saxnbP6cq2TBoftbkzL5lRtOie6MoikKC7EtCGTH79dwO62OhxcnELfoiS3cX+EaopQ3GlVRbVjmqaC62acQFNtFCHRFcmSjCYOdGRfsd7eSdcOznTY1n0G45TgOfvXWDkWtfZhMju6aNK/jZFj0iRepSvYznTPdyArCrzAB9Z+m83faouvK3csWcjpOAJIEmpNpOd0Arqm4jU0TEsnauoIAV4tkaY+ES8rGlFBSHenG21HIFV3EhIJ0ZCOLzAcZOvxh+Ig266IwgDW60JA24gdHEjjIaVEOj3ES6/gZsXw8/jjjzNnzhxyc91z8IEHHuCJJ1zQxIc+9CEee+wxHn744WF+mQhKRAriGJErOTAwYGMtdw5VHrCAk8CnLtWLerfbREC2sxb+clJp7HXHT56zgdjtSZsRbyIuXTmL1xsGe9K+vDJrzNiHC01FjvdipSkC/9YamtblI+sVnmyrRE3rR/okb9WdJOcVQe6No8vDbGh8kk1VFXy3YiO64lB6i86DVSfZ252GMUWlLD19kNSfFyJfq0Z2uCyue5a6u2kZjDJTGHzjtl9Slfu3w3EkVw1nPi0qnj/cL9mDgea1HuIBhedED57mEGn3z6FzZzfU63S1pZF/azLv7LcJNfp4MrSG3NJWTp7K5teqMyygUMXEkRWTsaBPFM8ykCG4/6vrBjc160owjAgvNr3MrNxSPlK6lPbwAY51vkpB9iLmFy1BRvfF1Tn+6ppr+Mo33Abq81HUWxozaWnPpi9bRRUOVW153OJdSWX3Wwh5dpZUOBLrbQM5J5YTcNxMaXnpCRCSlqjGDNUddhnIkk4GSuRigLZjUecYuSHZcGI3oYYErp+xiJypbfFhjOUF6cxIq3HxP0O0dq8MyHYwS3o+9I5EciaSiONRUYTEcQSb3ynhxqmnUGKA4d1tuWdtMsfTEzteaHPVhsrBaep2gd+0ieQLukpsnjuw373mZffhnxriz9W7iFo2uZmtlOS1sPOUQ1nyKZZkNLGnP4PDTsq4+/suBLId+n1VnW6mZqQO45t5dC0emChRh/66II5XoETA8WicONHMO/uaWby8lPSiJHTDxIzqpCZPob4T/HqUftMgOZCEEC6jTEhxTqBtqC/Ewx//Ao2N9di2zZe/+jD11W28/NKLhEIRrr56Po888jhPPvFb9uzew4fu/xD+BD9vvrGBZYuvJRyKgiKYPaeck7V1APFAS3MkZ060YusKMhgkLTWJnrY+bE0iQ4IpSQE6O0IIzaYz4pCckEh3XxBdN+kK6USEhk81cWwThTR8RtKEr6UTsbHCbL1SyvCI2zxSysgle2UTsEsNs/1/INuzbRjUNjMNkZkOcEGgrQDo6iQ4JwlU4ZZwk6JuvtaBwmCQrNKOeE9oVneQxcXHURVwpEB0p3FbTr1bwpWCn9SX82jT7LP8MtPbwqyEJvefoLIiaT7p9hb3SSbJL+cD2ur66MDSgYXr3Qa0HShnDfDvyv/+eg49VYN20kKb7SAWSPrrfTitiXz2C4VD+iZz+O4D2fG+ycruiZWiJgpMfbu56dzvpdZCKxv9vZxozCTDIF6a29OWMWG/XAzQ9oLqHOcBp0rbndy94y53cjcZhxW+SDxb+7GNt74r/HIhObjz9aQl9e3k9R0GNcmzuX15Bd5WaxgMt/X0qfjkcFZC4dnZ99Y3WZrZTF7aGp7bPqhBGqgzh2mQikY/n/zerLgcXOowDdI8HlhUGtcgFY4c1CBVBbqiDGqQqq5ywsAmU1Ud0lTBUk8/Wkw54aGjN7KvJ+2s82oyQbZwfpjtgA3NRB09copvfO7XWKaNbmj80799mMIZWRMC2r76/Ku8+ec3+fdHfozl9NHXayGkh9QUVxz9ox/7Anfcfg/l0yv48Kfv5+/+5qvccNMNw4C2ERzuvfsm/uHr3+Hmm9cOAm0BEYxgpRrxaU+9z8FKIQ6t1UOgJ0cRgCocAupgeNMb9pPvD8YeKhDaxCZex+qDicJstwELRty2fZTb/kfY4vQiDFUlatsIB6b25NLsO4TpWOAIvN1ziQQ2YTsmZ0wdqTuAjS1VatunMTPAeaVZRpZPh45uTyZeYFJ6KWL9NTWLwC4LoFYG8U6LYqzsI3LMQDT4uXaNiiisjGte3rPMYdb/z957xkd13fn/73PunaaZUUFdSIAoAgRCCDACXMAY927HdpzETnGSdZL9J5vEm77p2TjF2RQnsVNtJ17HjmvcG8Y2Nr33Ipp6RXXKbef34I5GBQESNc7+zxO40sy8rubM3Pstn+/7M3pDn+flznZ6pobcEDeuIxzDzcQc4drDTBzaHkYKD2/VTeCy3BrAAeFhY0/+kBYxp5vFBSPX+wy+cfW3+iprTeFP597O81s24TvgUNxSyJcn35WslBSm9N24Hl8V5oKJ9yQrJX97tq5PL7TpdT64v4+i/uQBkyvql/CXB3eTVdDA5sZm5h++kh8+XcuU7Fp6Ot3W7drmbLhjItnP76Pz33Kp1asQtyqKXjPIvL0VoStS5wnUWyHsUQ9zQabFuRUaq1fM5vxR97Ew0+Lfpkg+8ubVZxWYOiu/gFk3FrC9YOJRq6RHDPrkzUvuS/m4Av4zXHdKQMMjAdoek+3Vv0Uo3TYV06PYykokM4rRU2twMJFSkau7DDspOKUtwpPel14u4FHRO+dCv5kUMmBesXvd+viSBxLB7Sbm3p82INgt/2ZBcnL4tcAKevJW93NvEHxn5d8TXRAv31oC3295Het9WYjrMvE+fJCl+S/gH63wXwaeJ3SMwueoLLK45CLlAps1h4/N0/jUY9ew2SpITlMLTZB/QxGtdrXbJkdRdmmINkkiWHC46jwTXXcnqLN0E59MTFMrxd1lBTx/eMFZ0Y8OXv2htru21GCZdvJzumtzDRVzJyQf2x9oG+2OEeuKEg4HCHi9RCNxtB4QQQU6KFNiR3WmTSnjK3d9lc9/4Rtcc/VVXHzRYh5+9FHu+elPiUejtB8+zJhxk5g2ew5KCpSCzkgPhC2ISTTd4Qff+E8q51Uye04lcaOTzJQIPYaXqOlBBbRkgAbgBOg7FiD8ThJqqwu798coINVj9APakmy7nq11zCBNCJEHjAYCQogK+v7MVP4VFXrDXBWZRXwzbVEy+3rq4K4B2ddva/bxsR9+gRWJ7OvRAdnXTu66OfeUWeacqOj1lGspHAf928Vc35pBddlmbNFFyJHckjKdeOhnzB9rMm+JxlTxCaaEvscFRQafnK9zwPwfrOsvczVpxUNo0soHadJyU9hYMzuZFRcHs3mpX1b8+fITu4Geqovcieh9epf/QFcSWfG29zk+ff+nWPPLde4N3buBj3/zah55lOoiogAAIABJREFU2G0hPT1oX+7vty9x00J8uhhPTgy0Iynqb6inyJ8R5OrrlqNpNjabOX/yLL635G08ms3HHZeivqEpl2hlAvQpQSmBPstIGl+jFGOn16NJF/ORBH1KVzMEDvNzGxh9FvEsI9mX/nsyOKDwH+hKcvgq5k/GV6PY/NQ+fOcoSssnEqtLYcXK3kDvDjYeqOOpqtWJyuQ1btVoTj4er560ICq8Yizbdjejio7uzhFRTczMr2ZdUyGryXUraf1ahK73JbA1gFYRwXIslCOo3VHInKkHsR0z2boVQg1oEZaZo1iTcE3pMQIIpxOkOmIyU5M6TZFK0j0r0YR1hGvK4CGI082wGwkO5XjuDS9X78CRrpJHAd5FPpRuI4T7nMJ5LWgJTVyuZrkQWwkom7nj6sku7tMIezSNG6dWsGdnffJ4yZh5PF2/O1kRm5HTN1F92JEJsZeNEB4K0i/hvKoUNj25Ft+iCKXzJ2Ps87L2hf0Y53gpLS+n/mA2L2yrpmJaHdMnV7CxLjeRUNQNmTwPtS9jnYRR+jFQGv0rRzPOKXZb24mOwIxziofcl5GAbL2hbB557iXeWvo6X/v611n6xhJ+d/99/O3ll8gvLOQvv/wlh80e7AwPyicQIYmdEUMDNEx+c/f/0NHRzK/+9g3i3XFywt2AIosIhw6nk+IJ02xGE5gbQWYwRIvd7aKJhCDDH6ZbHQbARkvIkVy0h8+TATSRZOSIU2cHdSLreJW0S4GPAIXAz/r9vAv42mk6p/fEir3bROiJZvdCoUl2Pt1A99ZgwrPS4u3XbFbvLcVxFPvSBe9G8xIjzUNfKM60/uiU4RE8fawkGwfnHHDidpL5FEvbgmO5YmwhBFmpq8B28Qi6sJmUWYUYe/GAG+is/AKur+yr+h7LHiYzH2blfwjoJcKvHUCE7yX1x7p0XtjWOiSteygD67NR2TwVLC7DtlECZFC5hEc5BEVd9aOoa4ByWFSyH0+vfRAuRX1bWwFL8kt4TavDxkHTJXMzyjmkuRORUkgWTLgWU7oTkRKN8YU3IcWvUMpAoXPFtNtwDqRwa9VYjOlBrpw1h5ZDh5K6Sa25mO79n0tMRF7IgYZsDtZ9Oamb3NCae1SS+pkCDZ8MyHYwaPQTT9zmglOl4vfaRv79V7NdcKp0jnDnyNI38rubYwhsYCN7+RlLa1LdFmHCnSOpSfvEIE3adXPIL/pwUpNWXZTFpPQqqrsmcGFJKu9vV/z5ul+ROdaDMSudlM402vRRR0xm9g7JfPTpWqZkX3WEa0r/JO1MMexOhR5usBOGYdtIIbh+7mWs1F7GdCykkMyfeh1x+Wtsx6TV9iamGG0QOpfM+RAlY2eMyNLtWNrekwHa6lKwKC2d51PbsJSD5nXw5cawUehCcq1eTG3OWzjY3OH9CE3dTXj0VnpRGkJlkKa1JoLGZg4bufj0VKRwKJiaynfu+yA719cybXY+46cFsJzIEYFdpCs+bJBtQ1M9qaMyuPqG9xFOTeWZv/8NgPRRo+jp7ubpJ5/koquvAAHBUAjTa7rDCsBjD/6Npa+9w9Mv/hFNk2SluwkIuDq40Rk6Xm8aISMwYAAgbPkHtF7Dti+J89CFMyhgDf7T4DyOGaQppR4EHhRC3KiUeuIMndN7Yp3ohUKTgoyqbvRUgS1AE5JRBzT0TImtHDQhoTodmaMBDm1WKo7TiJQOAo0VjSVcmZlgDaHzXIMPVfsOsXebyFqURmxsFH9jOq3rLCZVxgkVVtPZNI6Wg/XMLKknr2AJm+py2ZfnxSlKIy5t4qWphAwvvkYTa5yOPU+iuhSyURAsilE0u520WIzOJj/jClq5vKyH2o0R9rVlMivUxvzCQ6xqz2FHNO+MMp/6r5O1uPrWO69jOg4eKfnOpYv47+3PYzo2Hqnx3+cs5snaB7GUqzs6N1HZlMLDhblfJNT1veTfo2U+xMaurBMK8E4ti8uDhuVWBwZR1D2azoIJ1xIVPwflgnnHF94E/AKl3L9rfM5l/O/0o4F5zxsUHE0b9DfNQRir8HorcQbdeGbdn53cl3dCSwfti+CHLzyR2Bc/d92s9WtNnT0LtVNlQWTaNls8bTgykWLZNgf9ByHuoBIC8f7uHBnSQgorUeOxmByqYso5Cd1kokV4/aBznVg+sV+LsIALx5f3c+e4mCkhmJLvakiTriltfkROCIMjJzPrD2UTMRWGZbOxLvcI15T+SdqZAtqeClnBsYKqhV1lgz7fM5Kfby0RVElvJSWJ8x5s6TZS5tqpANoapsOr+6owylJBCoTXxHQckC4GaHXnRnKy3Ha4Agy7C13vQ2ngdKI0hcBFacStDhrjcfy6iw5Kn+zhmhnlGHY9UasZIVoI6bkuMiPBSAuljqatfngg2707d/KTu7+LkBJd1/nFvffy6JNPcMOiC8nKyWH2nDluEQu47gO38I3PfwWP38MTS5/kK5/9FkVjCrh00QcAuPH66/nW191EHSHwaK7QP+gdOJ05FNB2MNS2d/0zAW2P1+78kFLqr8A4IcQXBv9eKfWzIZ72f2KdyIXi+Tc2sOx7z7C1uoOCiWmUfeEitj21m+11reQW60z7yBTWvlrNssYGgkVjWHhjHi8sa2anGMe4sY3sNnLZf1jnb9lX8ZV5Hu7Z18G6jkOo+AEK3z1I3rkSUS1RJni2acgFa9FbFWHhsGhqHF06mC0P8otnrmF9dQ58oJRoto0joENqXBXI59XMPdQ6u9CX9GVfu9jPpEUas8wZFOS9gsLiznk6MnojV2a+hBAmnyrU2K/fw+TsBWdFS3EyFldPrN6IYdlJNMNfV6/ACNjuBc6yeXbHm5gh9wKXrnW4Wh8BlmNyqPFJpgQMdKmwHINtdU/xsc2+E2pdn+rJ38HtjiMp6kcGV737MlKK+gmR1IdjPWYleHOWNaDi7Nfd1h4CTMcaFAyYGNFXUKoPaCuMVTy1InJUd45ZU0NsO/QG1ftyKS9eiNe/LcmgKl9UOsB387zLZrC2pzkBoNZYeO5ktsX3oRcc6c5xsDWPYJbNnOwa1rcWcWnRhSeNujkV62QZdr2uKTKu45E2luMglGBsbCy1YnPCHkxSHF7IvsNv4igLKTS8gUtwulbhJjU6mreSp97sc00pm5XLm7tXYezysXDaXHInHx56XwoWcutXr2d9fR2/WeNWWt//8YVsaK3md7ve5pyscdx2Q2UyQVo0dzIZnmZ2HX6RsRlzmJVfmZwinhmupCLz/GF/vk8lxPZoezKSJC1uWijbIWVzCz2lYVdGFdUgZLjtOgeie4KoCYcTFSeIGV5SvPFkdarT9JLqMZIojR7Hk/juJBhpKKJmZ0LG4CIzDOMwAU251TcFlugha3wOTtREBj3ENcgsTEfFbERAYuoOOXlhDMPg2psu5qZbrsIwBAGfja7Fqaz8Dt///vcIexz8Woy446PLlnzyA7fzH7d/PDl00B3vHqLyNXSr9l9hHa/dmcD4MlRT9vhjof/ia6T6ox0Nq3ir2mULefZ2EHyzFW+dgeMo9AMW2koH0ShwHEVPtZ/qdel0NHVxWPnYF83CSFcoFGubs/lFVR7rOve6rCFdoF3gBd1yvzAaFMxtRuquVijX26elsB2TmfnVrD2UjeV1fTcVYCuHtnF20n/TVg4UtePE3ZsiOIwuPIhjuZ6bCpv5ubuRtntj1IWgJHAAOPO0bjg5q66iVsU6nzubK2yH4JYYYrabUQoHjJ0BVIUA5SIBbL+Gkg6OLXmjupgJJZvoRTU8WxfEsGNJkO2qlg2Yjps9pmntyda15Zi0tTxLqt+tKjjKoLHxNWLjPnhUijqAvyBCergFfzgTgKK8ZgJpW8gK+FBGIxXhVVSUVyK87ufubFLUT3ZfZuhh3jRciK2yFQW1OsqvQCo6Iz6coDvi7zjQXj+RQMZSpBQ4jmBz8zTmp76LR7o6rH+sV3yv/hXUEO4cTcZyOqv3oTDRx2r87eVlfO36txmXbWPZT/JO6Dt9vptS0jU3SGNIw3SgR2rIihgFOYeO4s4hONff27J0fTdLMm8/YdTNqVonw7Ab7Jryvv+6lkdWrcVTZfJE+wbsOWOSdnJV1xXx0NpLknZyxqIpPL37qn5m8Y2uWXymYHXbfqZva3Nt8cbAhr+8zmX/tg7nKPvy6pbv8Lm3686atnck2I6j4VQGtPFHNXHHC5/u1xXp4N+nLenXFdnA3ZPK+nVFbMaPuTGZ/MvqDgJxQbSigEC9iSco3MR/aTWqUdDSU8zCG/OwlE485qXNTmNUmqQl4hC3NA46OnlBQWPcJmrrSBwSTk0IoKtFkZpFUmF/uEPDlwESgQM0dipiVg95GWFqe7qS3LWC1DD1sQ4cU6FLhd9jub+zu8lJScOw6zEt97Gj/InqnKPwIfB5ixHSrX69Vypfp3odr915f+K/ryml3un/OyHEuUM85f/cGolI9lSaAvfXUijLwX7LgEqJ0ATKhrrV2ZSVH0RKksJhpRITkPUuxPZorzmcLP9EeENDsbWef2MD3upOrrx4FjvMCK9u28XF0yZz4wUVPLFhA6/t38GS4qmUTwyz9NAaupuCLC6eQ1FeM5ua3qCqNZfZeQupmB3h7pVjeHGHl4m5l1AyK5drpk5MZuQ9/j1HpXVbdWPY8LF7kjed279+Oz9/5PVkpeT6Oy7gN0/0oBd0U98UYn/uRIry6l0P00U38fHl9LvplKPiK0AXKMshWBXGyQE0aI6GUYFmlLKwbcEDz6bwjVt0wMSyJV99po3VPDZ8o+Tj2Eud6omvE1knY6G245FVjP7jTpdBta8bZ16QvHaL6FiB3hagPquPor5mQiYH4pcwtqCBQ3V55BSN4T77KuZm17GmuYCeaByVLtyAj4HuHFm+LpQwkRLAYW7ZvqQzB8qmvestLIpRAmwUL1fvwFLuDcxWDqtaNuBwdHeO/i1LjFVUZN55wlZbp3pvBieZvetYQNvBrik1LxwkvNWtjsYzBUa1j55qH1IKXt+4h/11mVTVjkITgpd372FNczarmrLQhKCje2dyX8JBw3V/0NzEMW9Ooysr0OBo+2LYxWdF23sqdYpHfM9v7wMk61Ln329IfM/bTLJ8cMkM93uu2v5CecGDzPzolVw/ZeLRJ/WnDAwWN23ZSk5aqI+RpvUhM1K8XnI1g+bDHcQau7GFgwgKfFoKsU6bDiOIHrQxTC9mXMcyNVJTFYejkqjpUv874/E+oK1SdBpRnMSxEG5rH4YPtI12yxGBaQ+3d9PVEyMc9ONN8dIRiSJNRVowgPIK2mNRhAnpgQAGBt1mlJAnQJo/RLfRSczqxq+HCOo6pt1Bj+3Bp6cOaJWeyTVcBMevOBK3MdTP/k+tvV17+dGunw5bJHuy7azB2VevliK7QRJb0ESWJ41YUUKTNs1ign0joUxXk7ZsR58m7XPX5h73NU9kDPxYwtehdGE/eO4NDNP1m3vmy2upvy4fJeHVtTWsazrEU2ojSFh7aCvTjBYcZaN8glWvvcXNi97GUQbhoMaDa99k+pzllGQZFJ+r8fm9TTy303H1SiU6C4oC1LUfndYtZj/IvX/64tD78olB+3J1n8blE+cObDH+5/Qidj2wipy/HCQ6NUBgR5SOWbm0RzLRJ8Vp35tFxnlz6PJu49DeHBprcgjnTMbr2cDq6gLW92Rjpvfpe4510xms98mQFiRuQqcCaHsq8SxrRjVxzifnUJrQ51Vl72LOLZOZGB5Da2wTnpytZAX8QAHlBY2UZ60HrwfvolJSv/84gYPdfUnNL5vx11oQhKjTR1G/6MZJ/PCFOmobc/DoGrddNInvrKxhU1seHk3jE+MnuxUbjnTnaImFESkeHMfCtiWrt4xnycRaUDaWo5EevgCvVneE2PxEW5YnWoHJijpEt9TjnZNPY7ogN+pl377qJBvM06Id1Z3D5y1jY32IxYWdTA5XsTs6jjfbgic0kXky1dHBwv2LC/v2pavHi5aqYds22NCwNpeZs2tw7JPfl+EgeEayL1uWbadnlJ9YQRh/XRdPL99AwxQNf51DsNXi6U0b6SiJojVIaINX9q4mfWI9XU1BOqwABalNjM9sZH8ChTI10MDs1AbWdead0Pd8JAG3V9fITg0mj4fSbuUEwtQYLneMOKSODRLv7sKK61imB8fj2hDETC+pMkzM6gLc7mqqz0e3ZSQraaneAJGYe6yUW3frNUn3aSEMu6/qJmQqOD2JMxEYMe+wJ0aFEGSk+mmOREFAZ3c3SZKrgvbGCHZ6IvxT0NnWgyfVQAhotXowIlE02YyU4DiHUZZCR5EqBYciEXJT8s5KoHY8Tdp8YAGQPUiTlgpop/PE3gtrR9euEYtkT4QtNBgH0LuSWqHJwMJ+J1YA9L8/Z+A+JvmaRzKLjnjNxDqd+iPTdlzKOILO0jSUJOFDqnizpQqyAQnhQAwH28U+oBg3phqF6Y7COw4XFFQhMNEEIB3mptXytpENnHnmk39RKaHvP45vT9S9gX3NDSxi+714PDqzJy3m5w/ryZvWhKLF/PAFD6Zl4wuIE65snkqrrqyowx9u+RWd+X7iK1YQMkL4GkysfrpJvxbliQNRrmpayP3P7yYns57NTU2c13EF336nmtK0WqLddWx0MlnfmXlCk3/HS2qOVYUbSiA+7s3wUd05ZhUlNGkHc3n/pQupcbbR3uZWWi8uu5i/Zg2flXZaJvhMC2XahFYdoNEzFrwSoVl4sqPQKnjsrQ194NQj3DlsrIjGtvpZfDh/uet76QiWHVrCb3fl/VPtS9m0fpq02+aSW3T4iH2p2fcCdTvymVU+g79efy7/WLuFlDqLsmgm3yi6wq2+F03lytEViIhkVcMmKjPKqRwdSFbf9wXOoyLzQeraX2FNZw5qV4Q/XvFTmOTwxD4P19Rex1tPvUl2SROvvZHDtbd+mJeXP8b08TXc9+dCpk5ZTOv1U1GapNPjUFtoYjl+xEw/BZsj1JTWusL96TB6myA+bTf5yiLPEUR2pXHTvDfRhMvOzNKyWOB/DV3aWM5WNnAOD9TrZ1yn2H8FQn4KSwoGVLC8AW+ygoUUA6pXPq9+VAeDoNc7wChdCueoJum6TEEJf1Jf1t05/IlRhaIzEicJQJP9FFkCbF8/jZYA4bOTDxUKTKcbTbpPd13KVLK1myJNeqz4WQnSjuk4IIRYCCwC7gTu6/erLuBZpdSe03p2J7hOt+NA79rbtZcfbv8JlrLQhc5nJ13DvrbvJkSyOhfmJSb/lAnCnfzbVHf0KtaJ+oGedS1F4px9uyN87bPfQ5aBswU++bk7efLFv5M9uYn6qlwOxsYyeUwdsyc3MHHGNdz1eF2ykpa2sT5ZSRMO3DJmUrKSFtLjTMtLVNIcgbE9PVFJM7GVZMWuOfxkznLAxHQkn9+7CDvFSbK4TiWt+3S+v1lRh13b9ic9TAdT1PtXSgpSiqk7JJk+vouM9AO09oyjvrU+yYvb2JXF8+vXsuyu51zA8Nwg3oVpxHd6j6CoZ3vg3z7o52dLDdZX5yAVBJbvpfGmMShdIhzIXddF+7UCpQtCWpwp2U0IqRBK0r0lzM0XvIWm2Sils2xnBT+e9TYe6ZLU79h+EVu7c47pzHG6XCD+2dYAZw5NMvuWhWzcWp9A9xzbnQNHIToO012W5rpzhOLoaabrzqFgbHc3OSVDu3PYjkB0ZnJNwp3DUoJfHZrBn+vK3lP7crJT3EfjU0oH8h/YR+5/SoQOmXqE+eE9SM3BsSSdaxfzgUXPoWsOli359duf4K/rXS2WmaowM9zAQQCzx2awzanBQSEUXJofpl3b7mp7lWBJWpCgp/f9lJyXWkGmvTxRYZLI0H9QpZaclms/DM9x4ETWsfwyBwd1x3IpCHq9RCyDHiuObgpaq5tcuVkEsnOzOdxxGN1vYcV00kdl0tl9GL/PIBb34veHk5U0JUD1+q4r8ESdAZU0Twy3kuYeEpZBNNkMgI4iJHvbsnAolnpKK2mnzHFAKfUm8KYQ4gGl1MFTcnb/QsvYatP62Z5EUBKn9nNpPP/iPLJLmmjenYN+60ReXn4l08fXsHVfIYuv0JKIgePqEk6T/ui0ailmX0jmvcFk0Dp6UgdXzluJo0yk2MdkpjEx8CKatBBiE4985h7+vtRwNWk/uvoITdrsDWPcrHjMIE3akjkU5d2WzIo/PGchnsxGNyvuyeFT05ccwdA6k7TuEwHaeuu7+NI1ffsyNEW9v6VUcz+Kev+bj0tRv3vnQ8QtC75ayOi/HiDtywL0TgJXDE1R1zWHX9+g8YnHrmZrXR6RskyUJpOVzchUDaW5mWU4EHMDtATQdlJxnctck6CUw5LCA3ikk9AOOVSmNrErmn/W8Cwnu07U13Eo/p5/QQ7dN2YnLYimXJfH3nF7ie3wkOOPcd41e6l7KkrN/kxmTGjm3y7sIrLUYP2hbJTtENp2mJ7SVFd72jvBpwQeTbruHBOGduewlWR5bTGX57q+l5YjWNeZh4ZErgFZpoFwkEhaNhWQWaqjsFBK0tJRSVZoNUoZZ9015WSmuI/Fp0QKvIt8CN1E6IJMfxdSd5I6xXlzDuLRHDTNHaK6bEYnj23JdPXCloR+FfABQFt9ENBWGwi07f3ci8TnXiQ+98Y6m+5lBsYiG+ZD464MNq+ZyIxzMqj362zYVkHFtFymT+aYcoOh2IIRO5qsZA0XaHu8dSyQLZrA8WhJNEdOdrjPwklAXkaYukGDBg2xDhzlDhr4xkgABAKP3yYt2EOvlXjIEyItpSNxHAV9FB5dG1qTljtIkzZqKE2aj5jVjdRDiH6atNyUf35NWkQI8RNgGpAcr1BKLT4tZ/UeWZuWbSe60cRZ52bFy1/aTN22VGq2hJGa4M13drG5KpuNe7KQUqCOwU86U/qjU8l8GuqcHWEnLFESAmrhCqgVNlmpq9BtdzoUTCZlVvH1j/Zl5KXAjRf0/R03VlRwY0Xf8cRpE91PIAAFLB5TzuIxfcejcyroqNrFpr+vpXxRKVfPv5Ltmw7xtzVvJm6od7B1Vx0vbFuVqGLdmbjArT6rlc2R7stwKOq9UFt0gWeRD3TLvbFzdIq6wmZuUR27mwv54GXn8tvarS4MU9dZkj+ZV7U92MohaqYg6YYEc+28cdcQ5+eAjS49FOfchOrHXCvOvJxvxkrofKiRmxfdnGT57XjSYlLld5Msv2dfCbFgxj34fRtZW13A2FguM8edXQu1kSQ1vX6sQwfPiaSmYxnGLdnIm3K4LaeMtwMvkzLGovC6COel78URNjd9UidQdyNLJj2PFCa/v9nD8/u/gmqbQDR/At7yo2jSSrWjunP4vGWU5oeo1m5icriK6ug4SonS9O3nWLF9C4GZHs779gLefaiGJ3e1klM+n6zKTqqrcmip6+Ebn/8vtlU/x6oD+WfVNeVU6uEGywmun3sZy8ULKKXosNORohnl2GhSp3DM+xBdO3AcEyk9TJ98Lb+/8+xre2+4tJQ/bHGrdF6PzgcXlPHbA+uxUXh1nY+XzeDPzctxhCLdb1KS2cTHvLfREGskXQ+hVBOgEKIFr8zCrxoRAqAZwxlNxOmbqjxWQHcskK0S9A0SJFqSvQ08pY4/aPD4w49z/kXnk5ufS9zu5v+78xtsXL8VpWDypPE8+MfvEAoFEi/YTUZ6DhnpfUCK/no7gJRQ33EAL2n+vseGvKmE+hmqe2UKXg9ndQ03SHsYeBS4Crf1+WGg+XSd1HtljXRaszQ1zLuJD6fP1HCE49KhhWS6N581qgoEeDSN0aKYarXJJfNLDc2Zia1cm5bDjhcHB5EgX2telwf05rZ3iK+zqZybTSS4h7qtoyibvJipU1tpqHuNjbvzCZVMwOPV6RnlxxqbTtH549m2u5nOdEVstJcxs/PYcKCRSLqBkecwadootsT24B/VSXdniDaZwui0RiZlNbG4qIgNOzWmBhqYl97M7KwrjqqlOBOVkhOuEpoWjheMApKE7l5mnKUcpBJ8duxsVqt/YDoWQkluHLUIW3NJ+xki4eknbBw8PNf9BcZmHFnNO1WTv8OlqJu2jaZpzE0vp1puTroEDEVRd71QdcYVXsbv517IzHEFXFA//ZgZ+XCZayX7U/jSFQP35d5fvuYe/27gvvz+aUlPng/LacarP3HMFtWZwCycjuDZAYSEg6l1WHEXz5Lp7QThWtMoYTNrah/eRgqLa2Z0IULz3Ctw/9UvqSHz2O4cCwp7/3cxk0MwYe1TvL29G8d2iG40aXsEYrs0HEdRfSiLqu5CFCClzeMrJcsPVeAodVZdU05mWnikINvj2ciddW2vafHXJ9/BmpAGUhA3LR5YugpznAZSYFgWD6xdiTXGRTH59R7shD+rUoouo52gJwG0VQrDasOv9UZP0GM30W57EaYgx+eiMtxq1whBtgoc0fe71BQfPaaRrKQdb9Dgib8+TklpCXn5efi0EP/9k68QDgcRQvDtL/+Ke3/zCF/50h244rKza+F0OtZwg7RMpdQfhRCf69cCXXM6T+y9sEYCtE1XDvfffi/pieDoA7ddzBPPrKErS5DSIXj27Y2ERvmw8xw+cF4lf/jfrehpY0nLjXJd+fl8+cWd5IUvoiSricUTLuOOfcuZGaxnY08+t0yO8mTNfZjKJGN2D1nBPUhdIaZLnv7rUiZ9Zj1ZHpOFUyRf+s21XP7rDyezrz/t38MHv7EwmX3d17SZj3+6PJl9/d1YSsmiBNldtHJd9kIM27Wt0cQ2Hpr7USar/0UTNoLtjJn4AzZG5FlpM55QldBMwFJ9Dqbttj0M2+K1+l0Y6QokOErx5PZl5JS4HDpH2Sw/8A/OKTYRwiFTM3EDT3CUwb7WF/nJnn0jIuKPdPJ3pBT1I6uAR1LUNW8l1/aD2A6HpN67Tvimc4xAxzAtHnhpOUbI3aO4ZfHEjg0YjhsMxC2L1w6txNLcYCBNa8dRJkIobGVS1fB3ZgZdoK1Z46qhAAAgAElEQVSjDBrbX6GjKoVl69/BN1tj4bRzMfZ52bJrKQXT2ygdfxH1B7OpPrg0OQkdKMsnUlmIfrCdYFuMgouKecPTjr/WwBMUA9w50jNjyMkRuppSMDtSuWyqwJu2jT0tOdR35XHrOI2ZbdtZ2Z59hDvHcKYPT/U6kaqUYVoIBTP0MCs1DcOykArKyGWD5iKBhBIUWcXUyy2YjkWrmQqqybWG6+eaIoSrKd0fHYe9Zdew92Xq7CUY+ZW8W1WDcaAOJ0enrdxPLEdnVn4BZpbNuy1VmK02FeOKCGVG2NG1gVBXhFn5Exmb0UxL9EVaY3OYGXaY6dsG3hBQNGQwNdRn+nSu4e6LVODZ2wrjwoBECEHwgEHXmEByetJTo2EmgvOuWAAV6gTc71fM9BD0xJNi+i7LS1gzk+r6qOPOBiql2LBtH9t21lBWmsmUSRnYVjuaTKAyFAg9Rtb4nGSbMS09hOPV6IzGSA348Xt02qNRlAd8fp1s08utt95CfX0dOIovffVrbN+5hVdffAkjZlA5by4/v/d7PPv0G2zdsJW77vgiKSkprFyxkoLMaVhOD5pIIR5XCG0UyJx/SZAtDD9IMxP/1gshrgTqgFGn55TeW2u4+qNeGxa9thNvQzfV4/bhrTPIqFGYmX4M3UZrknhaNPZktGFYNrGWFKKtQVandGPYNgcOZ1Hdno3hNVnXmcmajlFoCMa1bMBSbjsry9uF9ChXS6EcKuYdAmGiSYXCYfr4GrZ0duEIcJSb8W+OtGL3Hts2W416HKFwUAT0CA5WsoVpy40Ix7WtsZVFrrYG3XaPwaRQr6WooK+FeSaAqb3rRDh07x6sxnEctIjCCqskoTtlh028xNVC4EBsTxAmHkYJhXIEe/YXMHtsFQhFo6UzUbdBukDb1Z05BPoT8W2LrXUv4/cZCOlWE9paniXkM5DCfd/qGl/j3chC5txaSWmvrsSoZ96Vk4h77aNS1CeGC2iNbSLoX8stZXPI9BegjA3M9K1iZnElwusGVWeLxTXSfemtElq2jTJtOp7Zjrp5LGjuvtQ/VYN2rQt8Vg5sebmboss1lLJojoeZ5GtE1xSmI/jTzgx+PFvgkQLTEXxlax2tv/kxWZ93byzvbHsH/XGNJR9bTaPu0Fz9Nza+UMFXbnwLj+a6czxTdQ2dlYXIyiKunV/Kb5p2YFT40Co9+HJjR7hz2NgUJCutP+aSEpOLJ2lM8n+C6foPWBw0uPMo7hzHq9yc6jXSqpTsjHDP3X9HP9jOa/et4dP3foiH39qAv8Zg2V+Xc8c3zuWhzWvRGiR/a9/NrZ++nsf3vM2uxgD7fBP44KV+/rAxQlWbziP5lzF/rGsnt617LaMf+vuI9qXXNeVsantHwoMcrmasIrMI73SN61+/JNkVCU3cxTfL57NnlY+5C6IEUrawcXc+VtcE7r99PdpT0WTi/9LyVXhf6iY22sutV87nmVWb8C4lkfxfwJNvr8JeJIl3+7ClpLlH4tctwr5Uuu04B2MaQc0k6EnDcFzt1549rdz9ozexbAddl3z/q5UUjyogN8cFbCsF9S0WPaoHpaC7uwflkdRFXZ1ZV9SkwBPmsIjgmIp2K8LaV5eSVZDJ75/8nYviiMEFi8fzla/fji7g0x/7Mm+8+Ay33nghv7tvFj/96c+YM6dPU/+JOz7DCy+8QGlpKffccw9C+9cLznrXcIO07wsh0oAv4vLRUoH/OG1n9U++ettUNdboAVWjM8UWGgrNUFuzGdMyaXHCON4G0BWOLdmwcgxLZrdg2S4wdeu+Qi66YvivH7VS0EV3clLyZIG2vULrl19cj2zuonh+MS0BSZbyEDvQiacklcaAQY4TIFobJaXYS2tKN+lWiM4Gk4IxDtXOfto7glxcNIexGc1sbn2d/d1ZnDsxhz+smco7mxTtxWMomZbHD8s+2i8j1yiedHO/SomN7JyXvPGIkJa06vLWO/gNja5pXvRGiWz3cv7F83h8z9t0NgYwO1JRleextO559rTkkOMhadW1tTuTsNfAMdsRUqEsxbJHDS7+uEDqCikkD/wjha/cKNA1AULjG08eZn31u0domc60gfVpmfwtGcePX/tmslIy1L6UTplGR+sy0jIX0aVP449/fJmtDyxHr+1ktKUTK80iUG8SbHUomVTMJqMRrUFitOn4xpxDlbOP3U1BqjzjmT83xuuHfBw4nEWzE2Refg2rO3PZ3DWKcedGk/o827EpnN3iCsQ1cBwrAUx1BeL93TmEgM1WV7JdKf0WVsKLo787h9vSUVjejTiW264UQpDnWwW2gRiGO0fvOhOVm+Ekmb0ruqWelFU1bkVUk9S9vp+MrVG3IqoJDqxoxr/X4x5Lmw0buqk/lIWjFFER5MUtRVS1HcRRivXdo9hcE3Ll38qGc7UT2pezoe09XROmA77f0iJrQZT81L2oNgst6OGy9/d9ty+d4UWMepAJg4LshfNKB3xfF5dNHvB9XTRhMsbhJsZmZKIEgzAZxgAD8kg7dEY62bayEdNyUAosy2HNqi6yz/UiPQGEjBCNeeixdVQCynU8nZlSiuIp41n+pbe5+7/uZvFli7lk4QJeeXIVv/zZn4hFY7Qf7qC0dAJXX7UIlO1+/vpNj/7m1/fR3Rnl69/8Mo8++ijvv/WDRKIGGmDHTGTAgyUFOgIVtxF+jYhjIS3wB3QsaaMpDdtUeL0KJS1QOoYFKR4HXcaxlI+oLZLvx9lawwrSlFLPJf7bAVwIIIT4PxmkKWMDqu3DKAyyHdjUNIN/1I0642yhoYSpvZq0CXM/lNSkXXfLYvTsPk3anR9dPOLXH8mk5HA4UD/7yzJMw8byKiLddaBLsBXhAz00XBBwITU2pNfYROwoQne/p2m1gkkphxBS4TiCFSve5LYZb6MwKdIVY8wYngzFlQsFP22awY92reDfx1+NP3wfzcpked1jLBz9BUrTfgwYqLa/cO0lD1KS+cmBgcnco2fFc4rKBrxvE3PmJd+38vwCPh92A5P2Fw7y1oNVeGZKzP1BrMNZPFc9j9FlbfjCs1n2rqCxNpWKknq6grNYXy2HnEI7kwbWp3vyd4NnNZZjsXLQvmxreJhzQ3FEyAKeRYx6kE9dsYAv/ew1TE0S3t9JGmlJb8nrymdyoN95XDJxLj98IYpp2TTqqUwML+ThrjfQhM2W5kJ2iUz3uULCOzbMdQXMutRpWJfL9PKD9GryVm8Zz+KSGvf96+fOcaSBvRePtN3XPQPuHE8/t5LXV+3gosqpXHfVPJ54a8NR3TkCobjLBssr54pJ83i35nX2HF7OpIzzWFB4EbuaX6K9ZxnpwUVMzr5s2IMXJ+OYcqz3TzuJfTkZ15QTZQs+8Mg7xII+RNSgZ5SfP7+1nm4/eGKKrlyNnnwbbwfQbfPk9k1Ec3ugQ8Pj6+HFphfxBUxiXQHyww3s7fwzuT7BwcgopgYa8ER+x1g9wh4jPCwt34nwHXdEO0jxuUHHsQzIwykhOmo6mVyQhUdzB2J0TVJSlI8QAp8vTGObQCkXF+O4znnH1ZkJISibWsZzy5/njVeW8rPv3sPWJRu5/7e/4/XljzJuTD4//f69xGIGrs5MIxaJ902PSg18HlCw6PxLefCvv2fBwiuSgwvEDOxUr3siSqEZDqYtk/5WIuYk+WeaCT5p9D4U29DQtS5Mx32pw/EQzTEP40KZZy1QOyYn7ZhPFOKQUmrM8R955tfp5KSp7vtQ3T/HvSnCUx3jeLFz7D81W+hMruFwoFbtrnW/S6kQT3cxDzgKaRt0jdcTx5Bix7HHJThQDhTYPYwe04qQbms21+hiXv5epFBM1A2mel2g7T/DvvQPePRwEFlclAwyjhbs9B73ZtumbaMnKmm9wUBfJc0eNgNux7qUYVXHWtbt4x8PvZakqM9fOJsVjU305OkEGy1mz57MO+3VGNkW3madWVMnsL5nJ8HsHjoiKYTTu5MU9bEFZcScFUmK+sScKUdlcU3yWJR6jYR1Ut+enFLXg34sv5Fo0vpzDY/1uiOl9o90gu/+9ZtRmuste83U8TwS3XdUpuCUnCZ3otoRLEyZSyjld/3AqbeywP+HBDhVYwNf5YH6d4c1eDGSz9Lp2pexqdup2ZpDJG8e29o78bWZFM8sOG713Q62Io1MDjYLZuZ3Exeb3Or7qBxKAgeSXRH/wQC/WPJHRpV2Mfp8i8a6CTTsTGd62WE+8rlR/OZxg017s1CWg9x9iPYl48CjuUnmwR4azg+gNIFwILPOIbYgjqlsd1+ym5Aa2Da014b50AyXJWgpycqGUn4wfg1e6WApN8nsUJ7EftinlO84Ek5ab/XqQGM72/c1UTohl+KCzAGWTB0dEYRl4w36jqhemdJBVxJlOkifTFawag/VkZObjvQLXnzuVf7+0P+yetVKNu9eRdQUXLnwCt5345V8/Ztf55pr388n77iT6WPL0Pw2dW2HKCyYhBHV+NnPv4vXD3d9+b+Ixt0xTKVsHL9GMhJTCseXcJLXFELri3k8ysHrdWUpSoFH2QQ98SQ7rcv00235yQmEyfaHR/xej2QPToiTdpwlTuK5793lrQS8KAxsBbtj6ehSw980hZ7UNxAaCDQ2rR3HhTNXIYWFo3RefTdE0di6EWsURjIhOJwv7OnUUuzt2kvkwk4CMz2k0knh/DgLFofZtruZCRMaKK9oYfw501i3T2IaNnpEYaQKNyhTEKo26R6nI6T7hfHV6UTGmMnjnvoQqqgNlHsD2ttcxPz8A9jKpNHyMMnjEqT778vZYnGN1MBadkb6KiWzZqB3226lZPJkCDM0RT2vnPJR8+iJ+JOVkvTQReyKpiYrJYfWHeb+P/0PsTUmD39fcufDl7Fi20vUbsrgkd9lc9ePJrOz6nnW7cpja0M+nTeUoqSgx3aQU/M4FI2gJLQ6MH9MCu0qChIijklBlk2nbz9CKqZpPSxI24s8hRT1E/WWhKGHHgCYz4DXpBxKyz+SPMycDNMnf6jf6x7dXWLA63I63Tn29mPWSZZVH0TlcFR3DiFVAqOgaIi/w+SgnXTnkNZSdGmjJ9w5erqXYjn6sKcwT4Vjyonui2w7hy9d9CKmUYUe3uwmPrbTr8q7dMgq79ElBAf4lVY9QEIAguwre7jsmzVoHoVjN7Ljz1P40mfWo3sdfvxpyed/eRU7DuSSdUkpHVrcbX/rgtRz82jUO13dvQbjLshim1UNAlIDMWQCjqprgktLIng1V3jvEYrbinrwaQqBwiMEN+SMxhv+zBnXKQ5egZCfQMhPZn4Gs2cWH/kAy6Grti1ZIRvatqmPgdbLSFuxZi0//cF3kZpE13X+68c/oqR0KufMvJDMnGxKZpYRVx7q4h1c84FruevLX8Tv8fLyW3/hro//J11dPTgmzKqYxG/v/i9C4Q5qmtKIxj2IuA0+ra9aZigcb8Ip3kk4ESR+55gS5e0LZmKml6Annvzz4o7uDmTovtP+Xh9tnUyQdmIluPf4Et4KV+djrKLZGk15jqQymX3l98u+4rxatjCZfW2uasSjPzYijUK63xzRhODx9EdnSksx4T6HBeF6hHSw5a+5+8GPMCH1MTRpI8Qu/vCDe3j6ufjINWkZJgVZ/TRp8+cwNuP2pCbtkMfNiusT+/L+szBh2n8NN8jYvmIXf7jlV5iGxX7va3jvt3gosS9/DO1J7stuvQnxKY0fvrAGw7J5QV9D180pfGflVgw7jFfbyreWjOLunesw7BTS/e8wKb2BlI/qBG7T0e9tIzrlF1SU2pRfL9n14FTOmfgo80psPniJ5DN/uoq1Xe45CalRl6EQplvfEhIaMnqQnQkuuhTERzWjxd0LQbavC106CAEaihmpO/DZ7ni/pikWhCJEDt3Mqv3rqCyeTfmoxVi1Hqrq3yKYfwGyIDvZki8ae3xI58lUsU5Uo3eqqnkVmUVkLUoj/BEfsTUm7JEseF8YMfUdajdn0FSby5SJzZRNqGXrPteCaO/6zSjcStqiokQlDYVwYGHWBJ5yNgLQFfWjwp2QqKTlpZyLrbaB4wJtHX0xlrMPpIPlSIIpi5Ft7+AoizYz1Z0wVRbKkbS2zCErIwGxdTSqGyYwYSLD0yGeBrZg/+lty+tFmK5W6Xh8x5FICISEMZfG0DwKqQPCYe75teieBEtQc6goqWdv7Wg+dMN5AyrgH1lcmayAezSNGyfPZM9O11s0ZgXRZU9S23tB4dUcaN+UTB7HZ92CSFTJBB6mZt3OjnU2ryzbR/mi88hMJtSdzDjnihFDlPvvix+I2bEB1kz9GWgaDBtoG+mKjti2SSk4d+GFLFi8KKljA6icN4ePfvlz7vUHSPfpGCrC5dddzuXXXU6qEEjZw0tvPAyAz/ES0GOup5OCrAyJaYaOr0nz99Ok6Qqv3k+TJsAr05KatAzfP7kmTQjRxdDBmAACp+WM3gOrNyMuAorS4ZEH3ay4fp2PxuoCRE4aoNi6NYM/PTGVzVV1w7p4DBa+BvQIVoJrcyr0R6eL1j34QjfK04nQbHoz8systQMmQMfnVfHF/ziBFmMSZDuv3w8LuHB0uSuUTKwioGvHLtYs2+ISu1P6aN2Z5bBtf+6wid1nIhg4XfsS0CMo6QrXQVF0aQxN79VjOMw9rxZdd5DCnfytHNvA5h1Fw+KvDdb7uPDPlgEIif4U9f278/nFkj9iGhYrvRsx7/dy/y9XYBoCj3dFohLiwbSOn8ycqWGKIVvWAyo3Q+vzhnW+nscIfdxL+GM+btHnE8/8NbOnm8y6SaPU/hiT0h/DrfZuQsu8hdFZ5w3QpFUM0qT1d+c4UpM2YZAmbVqy0pqxt5jWz76CLIOOLZILv/7vyUrrQwcauetHX0tWWvfUbOMzn8odkQ7xVE5W9tfE6YaB9GhJCcGJ6uGO0K1pGgtm3EwPvwXloEkd3bMEIR8FLKTUGTvuMn7x7X8Oba9lOagUSTRfx7JtpBB8+IKZ3HdoI6Zj45Ea37lkIf+9/XlMZeMRGn+ecBUNsUY3yE8w0OKWyzzTRXPCDkmhVBOmLEQO9tbsB7FNCQdoE0fhowlBOOQnYlhDM9KUSLQZh9atBfUUTDOaxIkEvGkYdiT5e69vFDj17odDCFJSMo4ZVGYM9cPBUcygglnoLINs4fi2UKeuCfsvvI538Vi3rx7lKDQpuGjmJFbW1LoXCym5tGQS77ZUYyobTUguLZrKuu37MJVNjxFAF93YygYEmjMTxZsJb1ANb+ASnO6VoCwQGpq3knVrnqWqZhkTChcx+5yr2bf9JTob3yA190LKF5UiclKxUoP4OnsoOn88yyMdeFoNfKYimiGJhBXBbslFMyexovMgdtBA9ni5tGQSW+K7CIa66OkOc2nRVJoOrqUo0Eh1NJdLs8bR0F3DjmjqWWE+9V/DvblqUjBvfCav2O1YjkKXkgsLC3hO1mApB93noGdFUULh1TTuHFfByujTKOGgCY0Z2gzGpD2EwkKgo6truTz0CBITB50VzqfID1961iZ/o1YKuuzGdlyI7YIZNxOXv8N2TITQGDPxFqT4DUoZgM7F59/OvAunjXhgZTgIiVV/PnDCThdna5jidFdulFAITRDL2elOggoHoQkyM9YmQbZggbGK6666k+uu6ktObryg4pjuHFdM6nvsgsKLWFB4UfJ4cvZlkH0ZAI/84akBrinvPt7Fxq3jExpSi2deUazeOzPhJTpyB5JTOVk5UgnBsQKowcnXYEeA1tjsvu/rxHKUcWWSJXj5JX3nOZx27ulgC77w/HpMwwYpiOkOhu1+Nh3b4c/LVmOMddt9hm3z0OY1GNJ1GDEcm4gVI0OpZIDUbXagi0TVGyeh/nfPKWI1onDohdb6nUz8ekvfcUox2cU5dHXFCIf9pGWEcDx9tkzpqSk4uqAzFiPV78fn10kXfncwzO/aMvVYEYJ6Cum+FLyaRdzuwqeFCHlCpEgL2+lCk2G8evoxzdj/FRlpcHLtzv9/JdaxLh5EoviW74BEYOS/ei5Z6zrpCQmC3YqUCywyNyl6QhDsVnhmaGhbU7CDBvGeMOdcfj5/P/gWbR0BVlr1jB+7gDEpTVRHc/H6C9ncWsZEbyt7jUwqqjfQGbgXWaqoMt8g+tpWZk96iKISG8v6B2sbv0X8vKlYloOZIvlD1W6sYj9yfGBA9hWTAjPPxp4ewVE2trAI5XYzwz6IpWx00caUrDru0N7BUSaZ2k7maa9AmsU1qRoNgbtJ8Y85a1qK4d5cHcth6ZYqjEnpLsTWtHh1716MxPCC7TFxLZQhbls8vvtN8gtthADTsTgUe5OCsIEmwVIGxF/FCcZdiZ0yaOh8hofqtpzVyd8jNY2zBwWLlQhjFdJbyYTEvoz0pjMchET5opRhTwZqUpBa340uBbYDmpSManKDaBsHaXiQyg1yNCGxmtORqRruJKDkYOtYxqTpKGwEGqs6xnN5aBUSCweNFZ02sS1LaVnWQckSndDEJrprimjbVUNZeRM9Yjbvbk4lvSQv6c5hjk8jIL142k2MfC9GqR+7RaK1O6hchT7ZQet0EO2S1JwYEya2syUeI1V2MTG3gRrSOdiTway0Vm7NjvF0Sw+7Y6Gz7mE6konNwfsiDYGNg4PCo2kDXFOOty+ttsRWNppwEHhc4X7d8/gPBmjdspXRlVFSZEWSDVY85gD7Giawrj6VihsqKU20l7uLAxhp7m3MSIWuIvdfABW2cQrjqLDN3q691KpdXDKljy2YIneTFUgFipjg62KCqAZvQfJzfDZAtsPdl2wpQDngSPSIwkzXkobu/iab7iKJEm61Sm+RkEWfDsuR9JqMA8RtD7ruHlpKuHZyyvXGtBRootfSCYxYG76Qk5yGjEcP03hYRylF5HAPSpfUd7q+nN2dJkqDuoirSeuOGogEykMKQYrQaDdbUShMK4pXs7CceiQKy+nEsi08qh6PUKA6UY4XXaag9wvG3MDsXzM4610nPN35z7xO53TnSNdwph1X761LZKqCsvPHsfxQdcJ+RTBrThFvNbtsIT3VQE8zemfguGF85oCJubkRk+z8TUgdHAvya3OYO3k/mgaWJXh11WJ+9LeJLtk9XfD/2DvvwLqqK19/+5xz+73qkmW5yt2yXGRccAEbUwOYEloIgUlh0sjkZfLSZjJJSAhJXpLJZNIIISTUEEIxppsSMBh3W9iW5W7JtpCtXm87Ze/3x7m6KpblJtt5b1j/oI2qzzpnn7XX+q1vJbPch7Xv79GF4IKSQta170Wi+v1dJ9Kdd67sRDorTdNGOQ5i10FaLy0GQ0dIRbiqk7pFQZQu0DwOnoI4CNAQRGpg/OwUAkQJWj4Ic/u0VRipDq01R0r4UY8OrZ/VT2V/MpO5cZshw7e5rXhKY2zHaEoLtyOERCmNLQdvwJt110npSs70zMozYSfKz3v9Z8tR9e3IEZnM+OIlbH1lN3pTErPIS8mtpWx6pxppWFjDJLb0oto1MgsSXL4kn+e219HS7mdsThN3zgnwcHUzVZ1ZnJfZxL9NCvFcYxW74iFkUqL/ppmPfPcghh8ypGSBP4GhSyzH4Ku/voo9NcN6zUY0dL13plVofCRvJH/3V6bXV4WLqct4B4lDjifGvMgeNCFPK9N6pv13On4xNZvE8BQ49ZktxLLME/ZLBpY7Tq7oSh46vBrLsclUHSzI2IOmu5zHXQ9N5mt3bcLjVZiWlvbLmdT2DtQ1eTocwZOVUgxUFUm0FfPVG39OMnX4v/a7N/DEinK3KuJotE4Kpasi//v2i/nhO29ghky8US9/WHoxwWEF6LqD4+gUhjNpMpvwCgtTeRjqD2DJZuJSx0EQ1hLpoC5R72VIYYKUgoKG1jxaOumad04g7KPTNNPXKxTy0mGlhPg9Oit7as66LMswQLWn12E9iEGPH64VIPSCQbvvz6Wdre7O/9G2t2MvhztWMNnXiuEbT53VcVbZQv0ygELzaLe2AgppCZRcjG0fRCmJ42hk5CzCYxw56fmPg80bIhZnxYubkfkRLv/ITLSEzcsrt5HM8TB5ZCHRxjiBYQHqtTi5eoBdDYeRmQ7Xjp+KMnVeP7SRrMwoFxfNpsP0Ud74FsXhRqblXkyLFaJp1Bv8YsMwDmzX8U/I6nMiX0/JpCk892Iy/dLxJ63uYKDZIvhGvEcwQHpU1+MbKti3UidcFKNZBWnrCPDn5OXcOSfAY9XNVHdm8QUrOx0M7E+6wcD637Xyke8qDL+GbcLzTwSYcJfA49UwLY0/PG1SWffk8Ydzn+GZlYMlkj9mh3LpRG6ddz1NiS3sanmQIRNn8bHpi1z2YOfLTCmey7a45QYCjkQ71Ibn/Ub0piRSKryHTbyVCfRWiZAatqkjs1w9THu9n317s2hpb0Mqxf7mXF45WEhVp5vp2dyWyxMNuRxK1qOEAgOGXxpH87ilnQKvhWHI9KD56eNqqawupLLHdA5HSpoLBHaDdMuYSNryE9jt7u9wlMTId6G2EkWO3o4mXG2mwmFu5v7ueZw4LMzQEWE3C3kuMzcnArTd9uy6fv3ik4pAo8PBQndf0etPzi9bO/P5qLcjXf7N8/WYmIJk1oIaDMNBE2DoKu2Xc6HtPR2O4KnoKmty78XIsagR7zG2M87onB9Cjgm8ghj3ML94+mvHBNkOlH33xdsYmZHbB2RrELWT5KdE8gknjEg1FjiJBC1N9VidAjtpUOtECAQsEnEv4ZwIItrZv+asLy9NCXdOsKJfzZlPD2M63Z2gQssAGU1dfXcuZ0+gbSDsJx5LEo+mqhmmje734OAmHhJJC2UIMsMBhILWaAJpQFbA764TcdDBb3iwHYnXIDU/18CWCbyaTdDI6JW5Oxf2YZB2Cra3Yy9PVX2Hr+SVY5gSZUJtIsjOFv9pz2Q8XS3Fpg357NuTOn1dspT9lWXp09cFF13BfxcduyPoZPRHfYWvWp9OrWPpwnRdw2xqJDpjJAiNF1bvRmGvbsoAACAASURBVG+P0zApgKoGNm3HF5O0TAJ0wHDwFsQhCs8c2Yw/qpg45gBaq2Jt29t0RD3cOHwtTXGHlR/8lQ/iQ7kzZxdGtmT0QngvEaRGLUvTulWnSXHYy1e/+DAfmdt7k6u8tM+peE7tUbTuY3W1jcvpDkom547AE9nLX19Yxtqfbia51cOLVcOZdWchm9/0cmRnFi2HIlx8I7ywNkzF/iEks050OPeZGWA9WCL5081izL38Hh7/4eAPmu950LAcG2Ural4PMHWeQNMF9aaH8ZqD0hS21Nmyt+iUp3+czDzOk5nOcfnVM9kdjfHmxt1cPGsCI6cMYfn72/G1wjUzp2DlOSzfsw2tTeeaiVMJ58Z4s3ZDejpHUtvO3rZ3GJd5IfOGXMqh1hfoiP2dSHAJI7KWnrJucjD90phITUxJZdI2rh7O4hl1CE1hO9op+WWwpqY89ts3sXQD6ZgkQj7+8sIm4kJhRXTacw2Wv7sNy3ZIhBXtWQ5Pv78N03ZwwhbxzARP79mC6TiEQlGy89uJah5M00ehr56qtj8T0TrIMhwm+9tp7VyGc5xA8kRwKF3WUzu3Y0cbIa93QJBtV9cnACE/mvIT87jBEZogHjXJLXRZaT6/h1jcJBjwEvB78XkNokmLkM9D0OfF5zHSAaHQ6DXVwK8bvbpMB9KcJWJaN9C2B+5DylSjg+Oggq7yXwmQHveStcQSCKmw/YANLYk4QiqUT6YvpyZxx/YJ0HEI60lsCR1mCxHvqHMaqH1Y7jwFe6H2JRLt/811mdXuSEEFOywPe6zA/1iIbV/rVeYtyEUU5AHu6SphOFgjc1w+GmB7HKJDPSlemkJ6FfGhuNqWiImeaabT60M8nYwsaE6vC7RW5mTvRxeglCAbHxeEmv4h/HLMk3fqxdYz+CGgES3sfrH1BNp6egQ+XeueUNs8T+yEoJcDZcr+69tP8Pyz6xANbXgMH+b4QsxsA3+bQ9n8CbxbV0siQ+FvF4yfU8D78Q+gTcfo9FC2IMx+uY/WtiCxaIilZQ5x3mdfNA+pGVyYf5BJ/jZ2J7IozR59XLjwjm0XnXBJ6VRLxP4DgeNq0k6HF3giZeiTmc6BkngO1tN04TD3BeRVWMMEtlJHgVORkHtYZ/zcQzjKRkpBZ32YW0tWoQkHqXSKAjcwW3sYXbhojkPef6Gy/dEBS4AnA7I9Hb/0p0kLspG33vRS65QclX2/amEpRhKe37ydZBaUDBlCR0uCjEIPrUYnmSJMdeuhAbPvPasi2/ZV8afPr6V2o5fSuQn++Scl/On+DrZtzUI5EruthcR5xQhdw/IoooU6aODRdTydDo0TFEoDj6bhi0qscZ2g4fI0uw6ZmkIpQWfUy8dGrsejSTKFZIE/ji4UQnhYnfDT6IhBBdnCycFsj2fHymwFQl7QRK/gLZY0ewVvUdPslc2L2b3HUnVhQp567Ckuv2wJ4ZCXtsMJrJiGPyS59xf38thfnqJ8/W4Ad66y1807SR2UAekOCKHcoC1lQijw9IDaCgev4TZX+ISFX7PS7LSAkY/fyB+U69VlJ1Pu/DBIOwXrlUkT7vy+9xJBWh0f4fIlXLTgBTTNQSqDt977V4aNv+TU5x4OEm/obGopmhJbqNz1anqjm7LQYdrlsHVLPnt2F/TKpBkevTuTpgFK9J9J62eT04WRzqTpwkEXnu5MWg+/tCv/oG5yJ2PHu+4vPLOGlSt3sGjRZEacN4qXVlXga7a4ctFUEgXGgJmSDzjI6vr3mV8wg/MLA2leXFneRcyINNLU8TI7klkMjVyOWeHws69+i4KZndRX5JA7PI8ppUfYUTmUC2759DGDAaFg6Yzx/LVlN0oDzePgH5p051X2FwwczkyP6rKVzpamSXxv5MZ+goFjT0j4R9HQnWk7mekcSIVFgtjokNvkEpFY2aQAnYqgtHBGm6k1DHOiDBvVBKnDyhCnjbkF+9ITOYZpBcwOVKXXu5wSdicP8Y84MeVkyoxdh53TkQ1IaWEnYcePsvnGvTV4vGBbGv/2zUXs2pVP7sQ8DjiWK5zPFCSyNcAtsY2fnM/m6JG01nfGmGy2mwfTOuKLh4dpVZWQKvHNCguKfJtxtb0Wkz1m6uyqE/ffQo0aQefeAna/YTP3co1gZAfbthSc0DvlWMGx9UEjpSVT0IQ8JiutL2qjv87JeGcindnqC7JFF0iPni6DdkFsu8qghdkRaqPdpc2ijAhHEm5JXBOComAk3VTw8Y98jHt//L8pO28KSkHisEHNkXJ+/dvHWLb8TXZs3UE8rvefSRMgEN2ZNLrXyifTMVx/mbSurz0TmbQPNWln2MZFxnFT8T1s7FjBZK97+jLqq3j+82up3bifV+eOTZ++KrZV4fH++bTnHp4Ob+hsaymqW+/BCVtc86iRDlqFsHGkTk3bf5JoKz6jmrSefinydzDtHNG6YWC9T+WaXdx/x2+wTJudD77JF+//Aut/tQbLtHn3sY3c+d2lrHp8u4t4eH47d31hCS+9vA/Tdnh21c70PbNMX5e6Z+KYTjVe/ZGUXw5hyyoMbRtz9o/gigcOoHsUmTSwMLAFQ5fYViUPLB+JI3XQBAKdkddNp7mtyZXrCjjsNxG6W4rVAm4/X2qkHrNmB2nD7XjVdfhoqY0Q7uQHD4rPjARPamyeJmCcX6e96tvsq3mbUcMXkzVmKfsPZqRL8mMKywYlI3O6zRQnc6g51b8xb3EmHq9BTklHejqHLSqZXHLYDZ5T+J6u4Dl4sJX4qBBKKow4qJxUJk0JgocNEsWOm0lTkKjLQBvdhqPs1HSO4czOrwbcTJrjXYyj3NmYjtLw+S9FJB5BKqsb79OxDpQFwuDAkbGs3rru9DSJp8gWHJAj2KdjO+k5fdmA0BS6B+Zc3YHHo9B1UEoyfUYDVVVDueX2C9L7ZcDuXdq9sWwq29c2pjPeN46fwd4U0Naj61xWdD7PHd6d1vZeULiU6tZtaW2vOynC1fYGg9fibAryvdTe/djPumQIx3+nDBSg/nzYEg5GG/Abdi9WmukcTgVNjYSNIejSZadBA+9XB9hY1Zj2NwwMslUpvAf0htiC2xV6pLmZL37qk9QdPozjOHzlm19jx+5drFzxOsl4gjnzZnPPr37AK8+9wtbN2/jcp76BP+Bjxdt/IZIb5Juf/k8ef+QnLFv+Jrl5OpaV+aEm7UPrbX3RAzUvL6N242akI6lY5+eR34+gInUqPh5X6Uzzhk5mkxtMRpUSDtMXN6A5NiAxdEHxyGpE+IreI2DoTeM/2qb1Ws0cek2vdVnuHemPc/3dLKLuF62f3HmwY0cuWzdMZtrsXEqmM2jBwKmS1E/HLyd7zwRLa9MU9SF6D5G8klyyoJPla3PSm/21i2dQ2YOk3qt5xe7dvHLpiN4vnel5l1Hdug5HuUF7XsY1iM6t9ITafm/xX1MHhL/yxfuzuf9X67BMLx7vOu78bsGgZkVOpZnibGVuDI/Bl96+mGjGfQhdkmH8kh/NTaS4h7vRcz9D8fiPdWvSvnndsTVpV/bJtM7qo0mbM4ukdlUfTVppWpNm7ZjA8199w820bg7ju6uIt1csYnLJYbbtGUZ5tOKUppEMxtSUs6GHO0pDqOt4PEsQ2guAg6YbDB9/FT9+4JKjdMRnUtvbk5fWEydkJi2XlZbaH0zTZvk729L7Q9Kyebp8W3rfTto2T+95P81TE0KSmguAQhGz29G71krhyNbUWrHlQCt3/vFNLFviNTQe+OzFTB9dPDDIVoHs8bm+DQXrV75DQWEhv338MYQQhJVk5uL5fPEb/4oQgu/f9VX+/srfufL6K3nsD4+kM2lCCB743TKWXn0RQ4e6nZ6BcA7BEwikAv7eUwO6hsz3b+Hj/ryzZR8GaYNkx9pITNNGABMKs9yNxHLQgJLcnDTU1mtqKA1sKREISoJDKY9WYTqOmwr2FHPY2oaVmi2na9MQ4h0cZdHoeFKwQQeFoJMcsoD9m5fTXvsmGUUXkzkiH70gFzqieByb0bOL2Xi4FaImPikoLi1kVeMRtJjEJ3XGjs9nZfshiIFH6pSMymFNci92QiPTY5MV6aA96cN0gszOySTQVkeDGaZDZjIlNAozZlPvCNrV2QfZdtnxXrRX3TaHv7xb6V61oE7nEA07FXjcdtEMfr93E1JJvIbBp8um8fCRVUhcqO3nxpWxrvM5FBKPZnDNkIWYyV8hhEOOBgv88RR2wUtb+D/OSOevbmkoze0oPJFu3NIRV7K/eSNSWjQLP0KAlA6a7mHytOv577uHDFrzykAk9eNBbV9+abOLRwGShsR03ylYtsPT5dtI2nY6MH16z/skne71a7VrMZUNKDL1VqSyEMJtpmjtXE5YJdGEe5iJxZZTE93cr1+2vH3i4N3TydzY0iExZCfClnQduISwXb1MCmJbOvHzvQTgJcB1l3QHMT0ZdtB7lijAuInjeqyKmDfk0vRqRNZSyFoKwBNvL6N2o5eadVlousaqV7dSUZHN1i1ZWLl+7JxTn3pxup2VfTmUx2u+Op2gqVf2ddx0lHlzGmJ76Y3df1d/M0p7+uRk2YI9O3t7/vv7gtKFoWFb7r23/5VytDljkcplj9WsqkafGkZKhVKKgxvr0EsEUimUgsrKJpwxbiDmSOHKSdxEGG0m5HhFOnBrtSUFhvv5Dfub3ftduf7fsHc/00eApg8nY0gWSEVGdggMjXCuREiFN+glbtsICVlhP1KDzIyAuw74scqm8Z1//xb3/eQnXLf0Gi5cNJ+//20Fv/nFr0nGk7S2NFNSMobsa5fiFQYhPUzQyKLuSJxnn3mJt/7+MmgJQPv/FmLbZR8GaYNk/W0kAL/55l+wO6I8/+/7ueVHn+Dp58uh0+Sl+1YRKA6jeSWBBo3rFpzHnzZthpjiyeUV3HbtfB7cvR4zofGr2j18efE1PHv477QmfLx/5AA/KPsSlW1P0mCGqIjGuSijigZHoz32Cybsq2N09m8YUaCwrdf43SsXo/JyMApyueaT83ly7S7MbC96jo9rr5vJQ9sqMDNByzK4cUkZf6wqx8xw0DI1PjmrlMcbVqNlOOTmJZmc747+GY7GR4deiLR+w8SAxcSAztTMf2KsfT/KazIRjc7wv5MVvvmclBkHylKZps2Tj72LPTw7Tey2HPeIZ9o2f35nI3ahi2ZI2jZ/2rIOVeCW+JKOzd/2r2R4vlviM6XNqrrnmJVloQM5monATnEjTT5ovpddlnFKENvjdf721TGezIld73NiL5147G4wGLzB4gNBbXVNY/8r5aiUXlGPKchwR8dohsbBjXUwAdBcGOaubc2oce5aaBqrd0eZOAY0DRrMCOMDR9BwgbcvNHZyZ47AQCGExqbWF2i0QTkaJYk7mDjkgfSMylGlX8fjNUiEfDhDshg9u5jtuxvoDICV66W4tJDy6jo6Aw5WrkB4BXhsVLakZFQOa5tr8AU6yMmMM2foJMqjOoW+esZGmpmdM4bDdQajjGYmB9qZEppBZbtnQJTN2bCBDgzepIMt3L/MY+iU5Oaw+qA7ONxj6JRm5rOq4SDgiudLgkPZ0L4PgLgdRKMTiTv1Qtem4ai33fK4MGgTZWSrNWgCBB7ayGHblv/DB+sCTJt6OZPPi1F3YAUffFDA9Ct76LD2HabsgvFpqO3GmhpmzRyB2fVMlIxgRioDvrG9mnljRlOWW8Tejr3UJHexpGgi4yIjaEpswbE3Mj9nFjlaB5jryAnNRXinH3Xvngvr+155/en1vPz4e8iOKJppUqpPYkd9DC1m4bEkM6cPZ0tzI3pc4bUE56khbG6rQ4uDDAjshgBqpMCxDNC8mCRxpEApjYTMAGJYSsNBp1OG0YkypTgXj1GFZUsMQ2P2mCx3LmdbI+2tfoQm8EX81NW3uSVOTSDtZDpr5gsY1LZ368/8fgNPUS5/fesVVr3+Ft+/+7vMvXAOj/zhEZ5/9wVmjJ3MD+7+NrF4K7pqRJBEox2vamFr+S727t3L+AludSUWizFu3Dj27t17znx0pu3DIO00rWeZq2TedCafFwPzLZQZo+1QA059kxso6BrVG6owmuLuCTxoIGIOvhigSfbtaUBvdUW+lnCoPNCM1e5BKgXCYf3hVj5oz0jBZR02NLdxKDkEiSLX6GS3lTr2YGMmXsfIVegGKCQlU45QsS0bBew+0oplOygFUkBlU3PqVAwCRUVbQ+oU7K4rY4fTp+KwN4HEPRULFI7cmj4VgyBTlQMmAjcjmEmz+7XnYKMb6KUjAHGkBYoyAQ1PAhIypZIHvE2SaAEgBEITiCYdlSJ2CyFoaQlRlNuE0BQagl1tBZRlViGQ1DsGE5SdLh3UO66S25EWB7Y/RulIEyEkUpo0HlhBybxvIXMibNp+CLmrltLpIzEzDVbvq8GsNpgxsQgzA96pOYR5GGaOLkJFHNY37mN2ZDSXTcplR0c5GR0xynLHMTLUTGP8NZoSsxgXmc5YXweYb6DMDnL9Zcc8sZ8tGygrUrfjIC//aifezhhqVCEB3UvgA4GV62HSxOHsbmwkN6EwswQlxQVsb2xATwQh02FS0TDKmxvYlhxFdn47O7Qh7GgawthQI6Myx7IrXsvPbC+T/e0UBEfQZJeDkCgkByofY3x+Ek1ToBR7drzENT/6dDrT+uTaXXz0f13IH8u3IJXioW0V3HrHzHS21fDbGPku7+nxhtV8eXF3pnVT7Hl+ULYQM7kcIRyktYdvjL6d0dbv0ISDsO8nv6A729q33HWu/fLGM+tZ8ZuX8ewFhmRx852X8tJ/v0OOH6w8L7fccD7PPrKZ7IDEzhbcdkkZTyzfAoEARrbk+tkX8OSONQTDHcQSQTbWVjPUP49xkWYuH3E5P61exShjCpMD7UzLXUrFkf/E8ZuI+YJnf/4S37y3htygxcJZOt/7zmYuuOXT51TbeyydYl8u2WB2BE8+L8bkqXXgHQ3M4fXfv5re1668qoxDv3oTy3Jh3ddeMJWqHtfnxhlT2fOymwnDEChbAykQSpDpDXMk4aSDp4CRQatlp7llup6J6cSZPCKb//r0bDZsaWXxjAymjcxEKYjHDPobpC6F27ma+hTtyWS3Pk0p2s04R2oPk5mdxdU3f5TCvCwef+gRALJzs2lqq2P5ste45vrL0FFEwiE6Olyo7VVXLuTIkSNpn4TDYba9X0HT4ZZeeJBAyMWDxBPmKXeY9m2sOFf2YZB2GtaU2MKq2s+RIRLYHQpv5u2E4o9wIsyn05nJeFwek/9SbGuXi9C0NCq3F6Lp4qThuYPNGwJ4/en1iFCAS26YA8CK17YhgwaXXzIVgBfXVGL74erzS9jV3MiK3Xu4fMJ4xg/NY9m+rWh+yXXF7te+eWQ9EV+Si4e4P2t76+vkezqZmHUZRVN38av3FfveH8PYsedTPKGCSTPnsn51gAy/zu8+dx+s2ZV+8Tzz/CaiEYEvATIziLGt66UziydWbiG5XSCyJbfPns2fyreyfedocjLj3DRpAffXlfPw/oVMyqxH8wnWttvpl057/FFQFnZC8dyv40y4B3SPwLEFv/hBDRfcsvmsMciOpcM6GyL5nto9fdJGLiubRY4WQ3X+nsmT51IyfRGVa3bx+u9fhbYYRlWdK5LudMhICq69cyq/PPgOdDpEEjo3Xj+VPbUrsTrBk/Bz46LpbG96i1g0hOkE8RbEqTX9NCQLuLr4IvYdfoQqM4tDdi5fKlhKY8MWFBLHEqx7KYPFCzrQNAfb1thSnoc2uhWZmrxj2Q6VTc24RUl3XdHWgEwJDaTXSg1HcsuutVYV4Gp+bOngyK0I4dBV4stU5eipNVhk0kxWdo/OyXOUuemvyWXLy5uwO6IIR6K1RKneUOXuZwmFr8OmqsKF2HraFL4O2LenAdN2oF1HdBhUFjTT0u6nqc3nTkyRJgdiOdTEcskJtWFLmz1mhH1mJrr/gNu4YAAoZl7WAthp4f7kksPnTNs7kHyCsJf4sPApafZOVks5GNl3u66e4qzsXhDb43HLZg4rorCzGZ/t0Fwn8UdySSZNhDh6kLqmhPvs9Ae0TQ1S37tjFz//7j1omiDo83P3f93Nay+s4Io5l1NUWMjM80oBcBD80x3X8YW7fkgg4GP16vcIhrrRHyio2XMEpQma69vBY6CEgGZBVm6Ilva4+2S2CXIygzRFY25gqUFuJEhjPObO0BWKvGCIVqsDISTNpsCnO+jYxB1JpiefoJF1Vp7DvvZhkHYa1hjfSIZIsMAfQwNE/I+QEluCRfGEw2dsJuOAWgr/dPZvHpnWpH36G2WnDM893izIgfRHPTlQuqGjfF7k8CKEELz24lYcv07HkCAIeGHldmyfoC3PfbKf3FZBNN/l1rxdV43hl2h5MYSAZ2s2EfYmGZtzBK1Tsa7lbbKNTs6P7KQ2qTDjT7DA30k4DCMWbkQTy1GdktE5XorvcAOV0WPze/ll4eIpx/TLksnjel2fJaMn9ro+c4dMPeb1yQkv5M1XHuHFH+3h8CYfzfV5TF9ssnVLPrt3ZyOHn3jTxmDofSr7sK5efmwVv/nmX3A6onh++DTX9CjJiyfepfSjpWxYVwVxSTJP0FEk0OIQeN3glmtLeXD3euyEhmeDly8vHp8uyd+3K8gPykZR0VWSbxT809BC9kbfodGh38xFybyyszZA294neebR31CzxkdzZYTNt9zGnh0vsaU8j337CrnztkGcBHKK8NQ3nlmPisa59MY5yJwIK97YhhazKS4roqKxCSMBV88rwcyAZRXb0ROC66aWoCIOz1VtQyY0rh87jYxwjDfr1tOR9LEgL4Mc70ESqpCDCZgRlOSwiUZHIxy69txOTIksYn/zShzbxLEEm1/L5tJFUWzbxrE1dlQOZdEtg6fTPJmpKfUHG1y5hNeLFQnx6jMbiQuFnelFeTVs28HyQTzgsGxdBabtYHkkZkDyt+2ugF95bGx/kqerNuPRY2QH4kTNAOsay4loreR4OwhqJgqLbM0mTzeRsaePeoZPBGI7kHRhR2tbGmQ7IMQWumdlGjB8gr8XE22YN9kra9UTaqsExwTahrxePnHtDVx/1dW9mGgXzr2An//450fhQG646bPccOPH0yiQnuiPzau2pdho7lBCBEiPi0Rpbot1ozhQNHa6AZlK8dIaYlG3OmK485lbzA58htU14hQNh1AKxZG0D+PVvOek0/NDTtppWFNiC0fq72CiJ+5yWN0kMSn1xv8o5lN/1pMDJYSAvGxEQZ77MWDm+DBz/KT6zl3mUJZwtWEZCitLpYcC6xk9oLZAUbiNYRlt6fV4/xEmBWvRBIz3mEz2WF1s3BQrB84V7+lEZon2zaR1rQeC2mamM2luZrM7k9Y/g6y69h6+fMHfemUDfvufK7BtCUrhtLVgzhnrZiW8uJDOFBXYG5W0lIi0PwJRCZPjOCnlcSAmmDbhEAqJVIJo1Mtto9YDDlmaZKE/gSHczNN7CT95ujrn817PNjvwZKC29/3X61im7ZaJOttIzhmLbTuuX4bqdE24DiagtURgSQkKwglQk+LY0pU0RBIapeNrcJRNlh5lQeYePJrCUYLa+FA+l7sn7Ze1yQjT8r55WhDbwWIsdmnS/L6d1O59mdqGiZQuvBE4c9l33d6FGX8Nb+AyssI3s3/zct55/JeUrwqxZ2tGr0MmYS+dhcE0Z0sGdTryASEwdA3pU3TkuYdMj64hvA7kRhECMn0m43PrEMItLF6WNw2/ehjhjkgnT1cs8Efdg7/wIBB0BY+D8U4ZDJjtQBDb45UZleCEILb98dt0IN7eSOPhJImoBoYBnu5ckzIESneDNAQo3QXbdjlK6aD07phH6ApSa4/u4NWc9B7n1yx8Zwhq+yEn7SxZrn86es63ofNuFG43H5FvU39gD1tXhxk+JUjJPM6aduFYvKEzpaU4Hv9o7uUaycb67k0umXQ1doDh0RGmxHRFDRiGDpYgkfq819Rc5lPKhGmAcgf3GppGzAqiVLv7vZpOi5OJ4jBSKZocH8pjIVXXiahLr3d2xdhd1lfv05UhyvDrtG07wFdunMvuI+1oMZtJmVk88PkbeHFtJUYCpoTyeOz6m9KZkoneIfxpwR3pTMn5+VnU2PvpSPqQahoLi+5nV+trNFhhGtVMMnMeJhZbTqOjsX7jASzTZuKMDqYviHJgx6tI6ersFKAKs1OnUYEdALSuiy9I5qYCtNSOpXIdECp96szOjqbXGooJmfVowj2hFug2hlAupFNBnq5okV7OlUi+y/or7xGLs+XlTRCLUzpvIlrCZuu7e9ASNjOmj8RIQvnmQxhJmDmxCC0JGyvd52VWxljW7D+EMnVmDh1Hh+nj77XVdOT5KMudTosVYnXzLiZHQoyLlNEkNRqjG9m6LXqUXyyL9OHFzM3AdmS3X3r4IZqlsJRKr61ME6STXocy2pHKRgjI93agp3wiUJQGmnr5JVszT3n80GA2nVwwfTpMd/et7kPFJr54/5xeHdoTRuX3OuCUFBXw81SZcfP2ml76tJKMob1KjMMDo3vr07w1VLf+wpUKdFSwCBhe8H1u+1eLm78k+LePjUcVLGL3gTb3Ovv19MQUTQjGTimkvLHOfY6UYvzYfMo7XKitVIrpw3OpTEZRQNibcPWPuI9YxKhB2l1XQDAhOAFdlacOMBICN1H/gfeY75STBaWbjk1DouOEgqL+oLY9M1k9xzMpqRCaIG9oJnXNnd2Q2x4gWzRQHo4Bse3sBbHty28zRANhTREIKoaPgZr9PpIJ997vKq1mZ4dp7nBLmkIIcjKCNEa71pAbDtIQj0EKDZIXCNJkdqb8poGQ6c+FjGwc2ZBeG1qo333kTNuHQdppWt/uRfdU/HxqI9lwzrQL9BgFdCa0FCeihxpd9ENGfc3k4/+qU1P/IxLJSWdNkxbtcSrOPAfdpX2tb0BALN7vrMy3n3Ihtm8tr8CyHV5fUcFdX1jCq2/uUbq7UgAAIABJREFUxLQdXnpvB1+7eRFPrXfLoE/v6IYLP75vZ+oe2YctbV6s25Lyy6s4ysK3xOCC27L46veq8XgUiGVUHbyIbduy0YXghk+4nb+W5eAzQeo6Uil0XePCsWN4JVGFLSWaJvj09Lk83rAa03HQNMHNYxaxKfY8lrTRhMbCIdchrd/gKIsm6UsFDRIhdDJCN1EUupYDldXpknyiLpetG1YO7kD3k4Snng70+XRE6/35ZV/1Yiq2ul103qZ21Nh8bNvBiEOySxqjINQqsIq6M2meNi9qqIMtXS5ItD0DbUg7jrJpNCM4AS2V9YeKeB4Lgs0YKW1di/QyInAZsn0tbvZV5+DB0axffWp+OZ3sossIO3scwf6kAhHd7eBWKMoWRikom8eB1Fi3vpriaxeUUvlyU/reuGn6VCp7QG1vGjeDn6SgtsfT9oZCH0V0VpLOgO87r0ewuuG078v8ZBI93nHcoKg/qK2imFhH8pgQ275NBEeBbIXqAbV1mwi6Du5KKaJ2jJ78tqTTSdc3dHHb3MOgIG+oD2EUHNUsEM7w98rihUO+XqXXiN/XK5OX4fMfs1nAlsFeAeu5sA+DtEGwnt2LPeGDZsLi1SfXdKMfDFd0DGBZDo++uhHTtpEKkpbNU1t6wwef2vt+emNJOjavH16T3lgy9VYklttlqSxa2v9MRHM7KyGJii87/kbnEdj2meUfCSExDEHxhMOI8LXHhdj2PZHfMrMbZHtcJlSkJxNqOoRvBroyiUOYvvgfI7Pp3ifdfukJqTzTcOGPfzsXr68aTQOQfPW7w3l75bz0S3j+FdOP2SRwe59rcXHTuD7XYkKfl/DUo5AfwjuXUenDw99SQepytOLN52Sge89minMVFPTnl6/dPYK/PTpu0DVpIzO6NWn+BDT00KRNyb6W2nI/D359LCWzWtm+JZ897WtOyS8nPJlkAL+cTY5gf7pB0bkepUxA58LbvsKYmQsHTVN8MtreXmzBpMVT972BmbRRKgW1fXVLN9TWsln+XkX3fmFITOkGOabt8Mfta/nWyBmAm+FrMdvTXe0KRdxpR+sRNEnZ0h0cAcgWgpHcY0Ns+zQRHAWyVSKV+epuIoglupsKQkYQy4qnO0x9ehjTcfEdTrrwCAhBICMPobn6uUBqHBS40Nqe4Nqgz9sLXHsiw+W7LK3JO4f2YZA2yDZ9cQm6oSMdiVKKPe9uRx8zEikVesyGbIXQXcDgkepmZKHu3rTAnn0N6IUp+CBQUdOEp6B7va6+hcn5GiiHRjuMOyLNRTxUJ2sZ7pcp3pCC+LPs33ce9Qcb0FM1eiMSwpcVQjc0cCQ6LmICpfAYOhNGFrD6UE16Pakwn1WNB0EpDL8i6DcwOjUcKVEYaGioVLlxaKCY2g6BQkMXBgHvJIivTl2Vc1POgqOzI9d983qWLduClAoR8RErCuE4EsPQ+Ze7LubeF99Ob+S3XjqDP+zshtp+cvY0Hv1gFVKloLaTZrCudTkKSb4nzryMPYCNwMOc7FsYYv4xhSPxoiLfRqiWdMDWF1KpefS0Tm2wxdg9Xz45Q69D66yg65Q+ZNTlfOzOsw/pPFaQappuMGRa7kvIshyee6+CpGWnDxNPb+kNtX1qbzfUtufhwZI221tfwa9MwIXaRqPPECGZKiVZqPiycwIXPhG/fPkHvQP7nn65rs99fnIHGNe6PbOUrkLOa28vo2Kdn62rC9AKchEFZ/7wcKwml5J5nz9nHMGuQEmY69C8cxkz3PVFf6XeLjuRMm/f56XLTogtmLSQUvHB1v1oo4aDpqEUVG8+iDY84vYTK9hXWYdWqLklxIR7SYXm9htX1XVAj3Nx3Jb4jXRlnZhjE+6qfwNJmcTTJXtAgWpFEyEyciMA7n81QSTTDWR8QQ+OUgzJi+A4Es3QsJWiMCuCIxW6Log77vOZ5fcjNMjyBty1N4gmJGHl3o1B3UDDIqAXorAxhA4q7v4pWvb/9xDbLtPvvvvuc/03DLr94Q9/uPuzn/3sOfnd+SPyaPygiT2bq9z/YTuMnzOB5tYYwlYYSYfC4jw64kmEDcoAx5fSNjiCSaMKqEt0ut/raJQW5tNgtQNgOQYzcvKJyibi0kuTlcmoYBaoFhJK4BeQrUtXJ6QUL9y/nWX31aPpGuffuIAjjodDB5rQNMF5l5VQZSWRUqJpGjfccB6PbtiCLR00TePWS2fw513l2I6D5pd4CxJURRvQhOCqESPx+vYgkWhC42PD5tESexCJjUBndvbHyEk+DNiABpHvoAUuOeu+AHjjsXfZ/MZWpCORUrKj8gjS7wcEyZCB5XNF2NKRVHe0UZeMgwBHKjY11mL5FEqAIyVb2g8ivbb7eSU5lNhJ2Ot+fZG3kVyP28gglUPI2Uy+ZqEJhcJBmO+gkmuwO5/jwN7hTJizgKxRQ7D9AW78lyu46bMXoYJeRs4eyazZY/nI4imogM6o0gLmThnFNbNKICAYOyGPBWNHM3V4HpYvwZ3T5vCZSfPJ9FksGBphdu4EFubNJ9cTZ0F2mDGRMkZGlpKnQ2loLBH/fETgeoQ+HBH+0jkr/+qGxt8ffxelFJomIBJ2XwtSMrmkiN11rQAoqWhujZEMgjttQ6OxI0oykCqBCI2GWBQVsFLzQQU5gSjgvu7b7A6GeRsBEEIn4TQxLNWxhdAR9k5UcjV253PEktO56LYb0CMhxi2ayszFJVxyTdmAfpk4poCYz+aTC8/js3NmY/gkpaNyWFBUzLUjpw/ol+LABIbpUcZmfYKs8M3gPf8fyi+GoaPnZLof6zrzl0ymoqoOEHg8OhfMHsf7tS6zymvoXDRlDJsbDwNgaDpGyEkf4pYMncwHid0AeDSDsqwyTHuT+zuFh8LgYkJOOYCr7fVdRt3e59iz+SAT5sw/ITTMi5t2UJSTwZUzJ1Eb7zi9sW7x5aAPRwSWIvShZ98RPSx/RB4zlpRSf6iJI1X1KNNCeDyIgJvx0RzFmKnDaOyIpdYwYcIQ6jqjCEfgSQqGD8mkzUqgHI2lw0aSk5+Lo9xGBU2otEZOIvDrHtzDgvsMeTQ/WoqPiYLWxjitDRZm3MQf9nOktpVk3CRp2XQmbaJxk2jcJBzxc7itg2jCJJo0yQj6qI12ELcsEo5N0OuhJtZCzLZISpugYdBoNpCUJlIl0FUrtoxiqyh+PZIqu8aBpBukCc/ZdcQgWmNjI/n5vZsQvv/97x++++67/9D3az/MpJ2iDaSnuPSORbz+yMr0ifyKG2Z1axmk4ONLZ6XLBqGEBlnd2oabp0xlR88BvcUz2bvzSHp9YcEFPHe4Cls6dMhMxmR2d/TVOn6KPW4nkONolK8KIR1XKGwKHceRSKnAkcSEcjNiyg3odhxp6AW1rWzqhtpqXhtHuadiR0q8Ricy6W7ASimiVmXqVKxQKDxOJd2nYuFmkM6R9cyOCCGQnVFEriuQN+J2unEBBZ4OJ536R4GIAxnuUgiBTGjokVQzghC0J/0UhgUaiiY7gkKk9RWNjua2fncpVpWTGvcjeefxX7KzMjetK9m+u4E7v7uUFzfvwbIdXl61g7u+sIRndu7AtB2Wv+/q0P52aLurQ6vemi4lle+s4ofnXcSu+OvYUZuNre/wpTFLwXqYI6ZFQ+wZFhV8lRHW02CZqMSzbofYWe6k7Gs9mynqDzbw8uPvofx+SCToqB5OsDaK7ddRHg1b8xGqAycgmDhxCNvq6/HXCVQASooL2NJah2oIoPsdRhQNZ1cThL1xfLqDJuC99vHkG1FKMopocjalu0uH+SeT6WxFCJn2S0HZPfz93f1Yps2br24f0C9Pb9+e1vusba7he5dcyIvNmzAdh+drywf0i534azeCpHO9m7U5x3T7vn7JyAvzu28+gfR6cVC88MC7eA23s/Gjt83jqWWbCWgOMqhx61UzeOzN9/FqQFDjjmkz+fOeDTgeE6V07ttRjs/IJ8uf5LbiBfytdgURbQz53ihLCq5kY+vDZAgvBbpiZObtBNruITfDZOHFgu/c/hYXf/7rZ2Z+6glAbU+mu/V0OIIDySVK5pVxx/duouLdHW72PRZDG5Kbzr5ffck09vYoRV8/t5SdXRo5qfPZstnpLnGBIM8X5kjCnRDgKB1Pau92S4wuxLarBImWDTIBuNtZrFM7paHq/UFtj6VHM3DoyuY9/sizXH3ZJYwsCgGKT33m26x8t5xIJBvlSB544I+cP39urw5TNHHKENv+minOpX0YpJ2CdUFsHWUi0JiT/XGGmn+iq1Qx+bxHz9qsuWMN6K3ZPZR9FX9D088O32ggDlTV7qG88IB7QLj0jkUQDPDG8+6p+ZJrypB+g1fe3o4Arlg8hR3NjbyxdS+XTBvHTfOm8UTFVl7du5srxk1g0tBslh/cAsC1I6cT8SZZ1eiWVRfmzUeTW6iNvkFR6BLGZN7ApGnv85dtNjs2F9PYcjH3feUhrIMfoEdC3PCJj/DMC++T9Ah8luLWz8yk5m8riXskHqWR9Oho9Q4EBXcsnMlDleVYjQLDL/nU9Fk8fnAte5qGkOlPcnHx1axve5osvQ0bD9NCtbyXEOmXjq/jz4CFbQnKV4UI1Z2dIfcDzUc8HQRF31LSqQygn3zeXErmXe9CbB9ZidXS2uNefROr3YSQl3iujrAkHqXz0fNL2fXySoQFHtXjUGOBIX3cOHomP9l5hPpOH5l+i6JIgjY7g6jM5uqMpVS3bqVFunNlRwRvxGndDshT8suZgqeeLbjwsYKCLr888eNl2B1RpNMBBblIy0GzQDMd9u5xIbaaVBimZPfBeleorkA3YeeRBqyEQMa9kOHer6bpJWb62NdRiy1tmmSIFjvC5HgVUlm0KEGLNMg3dxLAciemKEXJrNYzOj91IL/U7X2Jb1yyAzNpoWkaN/7HjSx/fhu25WB4dD5797X84tGV2I6DCujEh+runqlp3HZZGX/aU07Sdkee3Tl3Bk8cXk3SsdGFxl0lM9nQthxHOeR64izM2IfC6vFOeQhIAjoq8j1K5t0yKBzBvECIHH+wF8i2r2C+C2Kb7vAUflCdWAkvyXizK94/yaHq/UFtj6VHs9FxKzGKJx5dznnTzmdkUdfQc8GP7rmHWZMvSH9vW1MH9XXtqQ5SgfLq6YAvJztEYyxGVxN0TmaQxkTMDRiFID8UoMnqTP2dHQwLZtBqNbrnawsK/YUfThz4f80a4xtxUjoXhUMi+iDK08VTMVHxZZTM+8FJt6132WBof8bMhJ++MemU9RyDNVS7avdQvjT/r243KfDqX9egjXY7GQFeeeV9YsMj6fXT6yqIZrv/jNW7D7CuvoZnD+wAYNWR/QSGJHHze7Di8Fom59Xj4OpmqjueZVroAAD18bWErXXk2c8RDsLsheUQKaO4tHfwPO+K6SccPF8ycVxv4fyICX1egFP7fQFG/NPZv298mrm0ryKTL/7LuQua8c7lpQde59dfehDpSLw+D9d/92M8++QGpFR4vQYf+fyFPPFqOVJKRFBn5oVjeHfPAWxH4kQgmeNqLr2Gwafnl/Jw9eq0Vu8rpSWsbHoFqVyt3lUFw2hNrkQqm2LDIcvXpQnrH2I7mNDn4wm09+/2nbJfzgQ8dSC/iLCXGVdOYc3WAziOxI5oxHLcl6LXMLjpiun8sWITUsrj+qXY38TU0CFAogsvS3JvJBT/E24gf7Rw/2zqJr2By8Bai22b2LagcmMWF3/+2H4JWBpS765GnMy0luP5ZevqMGbSQkmFIx2efmAlZGcCYJkOTz2/Md0MlvBIzBQ1yJaSB9dswsxyJ1HYUvLg9nXoma520laS5z94jfyQ+w3ZehsSM4W0cWjp/DOFaY6gDR3fR3kmUDKv7GhszADvlP7eKzt2uPvpyQjmy+ta08/Y5AlFvRhp3oD3mBksn9foF2qLaXH7DTdx8NAhbMfm3779bar37mP5C8uJxWLMnz+f3//+Vzz19JO8v7mSf7rji+7EgVUvgAgT7XB6ZeVamjp7dJB2Z/QAmtqjKD3FSQMXatvFSlOKxkQ0jRtSCtqt9q42CRTQaXd+GKT9v2Z5gVm4RS73AVPH+fp/RDsVxEGXnUwr/boV1dhWN+/M8XpRqYAMIOnV0gEaQNIv6QZ0wdsHq9Ifaz4nHaABBD2xdIAGMMTT3OvfqJvv9PxRkFxBybxbzmrw3GVjZl5LIjkJX14ln/vluQuauzAxv77rQZyuTmNN5+m/rEtvcnGh+MvLm5AKbB9EcxVv7tgPgONVJDJV+qa3NJM/V72XGooEHj3GW40voVBkG53MieyhOVEJQLbmUOpN9HCImc4g9ccsOxsC7dP1y+mI0/vO6axcs+uYfnH8OvF8P+9scv1g+yDaww9xzeYPWzem/XA8v0wJVqevQYZIEIj/EdLPltmvcP9MToDoL3iu3fE8H1SP4DM/uxWCAS5e6nYldmXfr1g8pf/s+8xpSC/p7PuE3GyuHeH6vCv7vsCcD7jZ92xPFGlfDUIwMnI1wtkJyRXgu5zhU2agaWtxZGqvV6pnj2EvMxIK9+jump4AgUhndGRCx8jsXvfkyDfaYdzNyvVBg6MzKfXdrsle2dazaZsP1/KJZU+55WJN57eLruD80aOOCbE9lvUsMb766goKCgt56Jm/EjJ8WNE4UTPKl7/1Zfy6n3/+5D/z0ouv8NEblnL/fQ/x85/+iFnnTQARBmHwk5//iJ9pP2Xe7Hl87Utfx0t3QCmU6v1OloDevRTShdp2WQ/M4D+kfRiknYLl+qczPe/f2NL4ExQypQUDNz3rQQSuB84dRFaZ5dTtfYkHv76BinX+s85H69lKP/fye3j0+3o6k6abJpreHZj5TInTc53QXGBnyhaPLE5n0mRSR0dLB2oxK4hOZzpQq7NyGOLtSH+v470Q7Oe6f5jv8kG/F07GugKRyjW7eOLHy5i+uIRps4vZusENREtTQUn5djcgnpEKTDbuqwHc4erQHRTMzhvNhsZqAMpy3UBkR8cuAMZF3JdSY9ydvJHrL3M3LnMdNdsTSNkd7IpwqNcLwwkapLr2sf2i1w4m3Z6LtGl+h55bYoYvkV7nGZ09XjKQl2pq6f527Zx1/fa0ruBwy9uVvdYn4pdZY4fzxdlz2Xy4lt9tWHdyfgnMIjf8eZRZjur8/YB+cQJGr+vu+EV3Sx7g+Onlh+P5pafl604vP/X0S7/A35QNNsS2K3juiWfxePfwxVENvfRoxWUjeqFAxkwewk+7ILZVHyB9cE9q/1rfcKAXCmR2QQ7PVXXr0coyc9ne0L1/FQfGQ+e9uIHqRiaf9zD/8tvP8OsvPYhyJEYshijIcTvCPTo3XTOLXzy2Ett2CEidWy+YxUPvbXazl1Lnjmld2U2FR3r5VPHMdHazPZnB0EgcRzl0OFkMj9xJbcefUEjalYd44BO9s5vHGB92shKFBQG3e/JESf+rD+1Pl49Nx+bdffsZbnpOC2I7YsI4XvvX1xDf/BYXXX4pSy+5hOUvPs/9v/w9iViC9tZ2xkzMZ9HlJUiZAPkByCyggR/d+x2yMoqoqqjmP+79Ng888gA/uPcH6XKnUJCTFaS5LdVIgSAnHKSpMwW1BfKDIRdqqxRCdYfSQkCGJ6ObHYcgbIQ5l/ZhkHaKNibzBjJ94wY8FZ8riGxG5w/Jy0pyz6PwrZvHsuv9yFnno3Xpn4onHObnb93N64+sBE5Nk3ZexfBT0qQVZN6AjJ6XPhXv3DqDLW8vG/Sg+WQEwD1HAPWE2J5NDtWSKw1WnD+WbWt9rs7mCxfzwovbMU1Xd/PRW87nyZUVmJaN1xTdUFtNY9H4UbzRXJXuAv7MlLk8cXg1puNCbG8cuYRN7S9gSZtmJwNNNAASDQ2v/0KEfJPurt/vpZ+VY2VrzgbUtmr30B5BwclBbM+WXzymRBrdfpg/bQxv1h5wu681jX+a5+qfTNs+Cb+4IvLs8O0I86HUc+v6xRXL9/+snGmobc32V7j+n2vY8l7o6L3rHOg3r/rnz1NcOvKEM4qLZow9YZnEUfdoxvxeMgkVuHjA8WGnArWdOHcBzYnYCZP+ZwwReHWB5Sg8msbs/ByUOj2IbcGo4fzt7Vd55/W/86t7/w9b1qzhofsfZPm7z1M0vIjf//hXJBJuF3b3AcL979DCCEIPMGZqMZ/81Kf4/QP3kZkb6VV2DQR9Lq+tR+k1EuwDtfV1Q22FxoCD5s+lfRiknYb1pwVzXzjLjh7I++xGLNPG8mqYEQPHdrBTA3mfXXucgbzVmzEdh6A3QX6oLR0kRbQ29rc9hFLmUQN5NU1heGD6gij7K7N7NQ70pWUPpCfpq+k4Hi27P/3TUbR9BobYllLETfO6Iba3lk7j1tLu9cAMqHGMybwhvdJCt0DoljMWNJ/sJIia7Z8+6xDbvi8fTXP4+h9m89byKemX8Pxr5/R68cy/qOSExemXHgW1nXjCgN9+55qeZajt8AKdsaXFVG4InDTE9mz65XgHiSWl407DLxcNSjAwGEHrkiv/iLrCxPpfgu/cPumcNj2dqYziyfLSKtfs4pHvP+Xq4/4ve+8dJ9dV3v+/zy3Td7ZXaVd1VVa9W5YsS7ZccC/YGEw1/hETSEggCfAlwQ4YSAgkQCDYBgw2YIONey/Cklxl9brqbVfb+8zszNxyzu+POztbrLKSVUhePn/paka7Yz9z73nO83ye98fvf8+ekg7rPPvqVmzHxTLVe/YVO6JwJQifixKKznQik6BJdE0Rd2IoFDouppCk3S5QCl0o5pfn8tur57KmoYP55QWMIpeutvcHsU20dREKhbjm5hvJzc3luYceAQQFhQX0xnt55skXuOa6iwAI54SJxXrp80NrbIpRMaKEQNjPa6+vYMZMb28IhvzvG2rbt/4SkrO+dU6SNCHETcBdwGRgvlLqqG7oQojLgR/jdZR/qZT6t7P2IU9hDdxwdF1Di4RgRDlCCPYd6ECFDJKlnimv44dEqQZCsL21FYKQKvSa41u7WjD8EgqTCAE7exuI+i3GF7RkMA5QYCRYGN2Dkop8zWFRIOUZ8spteGF10TSdyqnX8/kfTaG7rpW/+tuL6Um5RPNC7DrQMsiO6cZJk7N2TAA3V07BDSiunzoFgKsK5qAFJDWFpdT1Hhxkx4T5KcoydkwuUGd+mCJdEgpdC4CK33NOLZkAXnlwFVbKRimFbTm8+Ng674GnwDZFVvxr2Q5PrBkMT31k+2B46p8ObMjCU23XZXXL69jSRgHlZgueMgVc5WSS5jR902LTz4+fOzH2gM2ndPyVfPTr/fE4W9q8oZiJgXEZDLW1efbVLf1QW8c9qbjk+nsGVXz39zyVocer98RF12HW4gQ7N4TP+ST0cOIyMCZnIi6bVz6RFctbaXvwvWI7JxUXN5DCyui5ht4rx4qLptmgeQDWf7xvHh3dxVx0wdhBdnJXza4+6vNr4qgSujtT3HneMtrdJPnBIDu6GgbZyU0MXjKs51fQnAzWGq8Ndg6fXX37Sl+Cpo2pPOqesrOhHRnUSBSqo+4rwudiFicRmiIlbXRN4dcdBOAoF0NIwlqGIahsDAFh4UkUZpflMbssH5SgpzufkRO84YmciB80QTTfa6HmhfwoTZAb9TQr+YEgSoOAzyDlOCjNg9i++u5avva1r6JpGgGfnx//9L/50xOP8aH5H6K8rIy5c+eBCGHqBXzqU5/hji9+i1AgwFtvrebjn7iB1tYWlBLMnDmbe+655xxE5eytc1VJ2wbcANx7rDcIIXTgZ8AlQD2wVgjxtFJqx9n5iCe/BlLUASYurska8ioUo2dXsa2xPfPwElmDXqUUE8YWsyFjyKtQTB1gyKuUYkFJPp3SA0UKBDWRIN7AiqJIl+j0SVQUBG9A6BXovgWMnHKUU/H3nz+uSfHAU/HUwtIhp+IN2VPx0U2KB5yKjZpjWvCczbXj7V289JuV2YkfLRxk/6GObPld7xNgAbYPtra09BfYA7Ctu/9a90t2Jhuy1zl+i1anHgXkG3EqA+3Zn1WoSXLldgZIiSkdfyXff/WmbPu3elENew94/2ZcZRE/vutmXly5HQVMKC3iF3fcyNPrdiCAiQWe2frjtdsBmDayiNrEEQAqApV8deI/ZFu/YXMiiyvu5XDsWVAK15iIKHjAI+z/hayhcRED9FiOT2fnkfZsjGRAY1tL67DiEvGlKQz3664KzAS4e+mLw9C4CGGw5Na/o7u3GYDR44r53i8+k23JDycu/7Jk2VFb8v8b4xItiqAy94Ty+9l3sD8OKmiwq6FjWHERPhctnHUOH3SvwInjomkmvalpg55f4yeUHdNknaDGE0N5aav7K63DM1kfyEv7EwzgpZ2rRK1vX1FSISIhhOcd9p49RSnF2MllbBpg9D5wX9H9LmLAIFXY0HEz0FqFR/gX/Y9C/JofQTLzqvBE+3oJucWDTdaFEAQC5iB9WsBnZPVpaIIukyyKI6gbjJs/j0dWrBhksn77177M577+lUGt1067l8uumc9l1zyDEAKfIVjx0v/0fyZ9zP9554FzkqQppWrBA4QeZ80H9iql9mfe+wfgWuAvKkkb2L4Zaitz+Uf6DXlN0+CKy2ewO/NACTqDx8Y/PGMa249hyGvqOpeUL+TJxj3ZE/n8ous52FXbPzYuoG9sXASvH+BH2O8lerZbOR2NTxIJpzM0a5vmQy/xyG/3HdWP8LJLp2HlGjz7zg6MFIyfXMLmnuZh+RFeXDafqnAHu7peptWOMDtnJCONI3RTQLMdY8vWBNXTe5i2oIet7+SgSuezt85zcRACxk0bybam9swUnfCAv3j/S6vHFbMp3py9njqykNp0XfZ6QUk+3dKjrhcZ8b68GxCMD01AqE3Za4I3ZOKyKws7Nv74TrbFt+KZTdz+zat5YeV2bMflxZXb+cLnL+KZdR489el1HtT28Z07sFyXx/b1t5KeqtvM3XOW8Wb7WzjS4c32t/ji2Ks5HHuoIl7HAAAgAElEQVQGV9kcjj/rtfiST+JhYp48pxsPeJtP3ySjEIIJC6rZU9fj4Q5CZn8cBIytKWVTe4t3zfHjEvWlBsQB5uQWoFTfFPDR45JKT+KVBz1d2isPruKv7/08K57Z5EFtTxCXxzb3Q23XNhzhzuVLeKpuM5br/q+MS09bHKEJlFRokRCu2x+H0bOr2N7ckb0+Xlw0v5udbRh6r8Dw4rLmJTns59dp56UpG4RCKQthrWFHbeE58fwdhEKx7UHV94F7imnoXLdoKrUDjN4H7iu648On9d9vUTNCl53OCuSDehTLTWQTL20AxBYEaCXZhKg3lhy2yboUCqX6ChKnDrVVSqFkD9npAAWoOMle/bRAbN9rrt57zs3Vvf8Hf7lrBFA34LoeOPejYPQjKGaGJCNS30BhodComHYX33/1m9Rvf4Hp58cpHR9m9LTPnFWI7dC24vvxI3w/rRyhdB76TjtfvhMME4TQ+MFddWzb4pnlPv/YO6Tnj8NxvKfqsys20Tktgu1KXJ8k1QUZaBCPb9+MmpTEkS5KwYuH1jK1ut5rjyjBOy2v8bGqd5HKJl+TFPemkBqElaIhFaJsuc6/XRbH0BWO3czGbTfx79/uHVbyfNOMaewYZvLc7eah0YbCRRcG4fANEN9BXyurb+r3XJirD9U/SZmmbe9zlNXMOicE9aGbz9BDTcBRqAG6yWsXTWXH86uy38vjxSXlhDFEIqubnJL3IQ52rcu2GI8Wl3Nlrj7cuJztpMDnN4eVFBwvLkYmKeh7Xgw9aA4nLlnfymE8v04nL63d0bCUha6Days2rgvw79/+NVbaRgYN0lXR7BDHedMrebm7wRumERqfuGgWvzyQGeIQGp+bO5Pft76F5bpoQvCFCXNY3/s0tnQoMHpZnLsX74CtMy33U4xz7s3uKfHIXdQsvJmfvH4zPQ0riFZcTEqf9b5QKPaRNkZHCo8qkD8WxBYRGVSxCuUEh22yrimBFP2VtFOF2gohcOwgup6pkivojWk0NbZ7BzpNoHxadoIzPy9EWzLZD7GNhmhLZyC2eBDbDsfT5umih4CZ+T22IKgF8ImOzO9tI2KOOmeJ2hlL0oQQrwJlR3npG0qpp87A7/sc8DmAqqqqE7z71Nfe2F7+fdcPcKSDlVvPdbkemFMpyZGO7zBi2jeYNOZ+wEJ1PMLkyQ9QM+PC7L8/WwbWfWugzcvZhNpufDTB679/k5bt45ixKIEVvoBtW8liBKzCKI4rMz1aRSLPwJbS88UM0qcRBcDOtUC62etwtAepHIQADcXYSCNKOWgCinUHQ6jsPy/SbcDFZ3q/StMFC5el+F7VmUmeB26AQ/lkfcnzuYSEyp53kNLCseE/PreWyZf+KWs47/ObXHnbIh5asRlXKURIJ16q4WR+/j/dspQ73/oztnQxNZ3bFswYtuH8stKvkBP/FtkNOOdfmDytk5+8fjNrXpJnHWI7NC4nkwycbnP1E8VF5PjprQh72AdD52++cDHfeXZl9ud/9JKZ3LdzPVJ5ENtPz5s+7LjMz/8IpdYvEUgEPlTON94Tl7PNR+tLRsaWzYLQYS79yvWDqu9LPpUYVH1fdu3UY1bfb5LVg6rvd2hjBlXf8/VxA6rvdYwq+TLNdoyNjyb42q9e9qrva6KEq3uzujzLp3uHSyGQrsNrW/dhVXgPGCldfv36OtJlXtIupeT+zWugNKPRk4pH9q+issRLCPKNbqSy0QRIJanv/j1jw4P3FIDRFXdDhQWsRBSceE853r5S2xLPiuSHCuSHQmy9xOy9yUkwEmDkcaC2wZAff8DMVrWU4KhQ276K1kD3g6HJoyFkNnHs7kjT2uUnGHZJJnQ0v8xW3JXoZ88poL27F2X2QWwV7bEEKmv3qWjrTYDZ11qXWWCaUgpLxjB1lfXB9n7/uUnSxEAy71n/5UKsBP7haIMDQoiFwF1Kqcsy118HUEp970Q/d+7cuWrduqPOIrzv9UzDczxe/wQSRbUvxldLtyCQSODNVIgpkbkUuW/QR9ATkS+ddZ/E04U0ONnR+WOhJvq0cD//r1c8bYVSEO8eVEnzJ63BlbQyspW0SIpBlbSclJatpCklSCYDgyppiwIpTE0gleSNVAhd6Bk/vkw7+By3k85ljF7+5Y+o2/aEhzfYGEEUFaKKCxBCIARYBQHS+X4QgnSuIJWX4XEpqKrOp9Zqz8bFyLXQohYig1KryOmhIqcLIaA60MSkUENm84FZoVGMEjuy10LoWdeBv4R4wMnZMZ1Om6wTxcUq8GMVBDJxUJRPKWJnoisbBydPkc7NiMMBI2ojoukTxkUpmOBzmGymvWsEAp0+LtfZjsvxJrBPBjHxfv06Rcavc+hn+dkPX8JxJK5fJzUyAroGUqH3JOmYHsnGw9+r6JqS8fFVEExImJzEJXPdK5g+oQ6FJE9PsDh3D5qQSASNyRH8ddGeM7qn1NbWMnny5JP6N8l4alBCdjSI7bESspPxyRyYkBlaCCV7B1XyhmrhSkYVZ/loSoDy9VNqhZQ4QZ2s9lR6PMH+14GAp4PVhCRgOH0hREpBgS/hHfaFOO2VtKPFQAixXik1d+h7/5LbnWuBaiHEGOAIcAvwsXP7kWByzkQMzcCRLoecAg6af4PVex8trqBHBY46wn22vPjG54xn/dpneOzhn1L/tp+1L/uYfhls2VzMw/eVnTXeE/iYPOeBo1bwXn3s3dOvSaserElrDXmatBgFVARix20Hn6019DtAKIgoLoBQkJoZVciAwfrtdciAwdSJFTh+eGdfPY4fpB+sqEJmpsuFz8WIWgify6zCykzVaAs5sTTjc8ZnqnmraE8lKAzMyHhlvo2yJCOnfIiffGmtZzivC2QigSjyDOeFEOi9NuT5AYWZEqQ8kYmXlCUY9MRwUzraAMP57rT/qIbzCkGd7afSxwB7jj4t0mDfyrO9jhaXLWsPHDUujh/SuQInE4eBcZldXpFJmPcNKy4FmqTAtEHzNonjxcVIOlgD4mDGXAYqvEUSiGb+LARuSsMYRlxA0OYKpOn9aE8j3KcBGp7H6+mEcm/Z+hJTPt3Ckbf9tG4Nc6j2Ra67vpbNm4rZvbv4rPqoDnVb6MNv/PSrD0EsQaTRx9zblrPhtd2QsDFqk8RHhtCTkqDU+Vj1bO5fvwF6FUHp4yPlc/nV7ndxUhpp18fCnLk83vhndqXKaIgVMbvoEG12hJjM5aB5+Qn3lKHf3ZM56PkZTP8fyggbCrVNJLro7GjBjgs6GnXKx0ZJpbpJ9hp0tJmDILZo3vepr7VZlp9DQyKWTar6hgSOxmczHElE8yauhWgjYpSiy8ZMXFpRjCEYCb2nggfQUt8BrkQ4GsrvQ0iFBuSHgrTHkiCVB7UNhGhP9ILMtEDNCG2pBK4ySDk6+SGDbtvClYJ2K4fSgEnIiJ5TTdo5qaQJIa4H/hsoBrqATUqpy4QQFXiojSsy77sC+BEeguN+pdR3hvPzz2QlDU7OFulkmEMENRJDp5OGyefqS5z2tt6FwiFXSRYHUxiGwrZ1/vnrS9FGL+HdvQ1IqdA0wbQLRvPG4bpMT14we24lq1sPIZXCiFoYuZY3FYTghrGF1KU3IlFoaFxbmo90VtB3ulscnXnOK4jDXWe7YrJj14vcf8c7RKXNrMUJJiz9FP/+7UNnvEJwtOS5r0qweeUOokURz3BeNzzD+b/9EE8/toGkpiDs44ZbF/LQyk0kTUnQ1vi72y/mW6+8Rtp00ZWGUwiuaWMEJJ/NGM779F5yA2luHbOIbRnD+S43l4+P+hjdPd8kX7NwlM50v/OeyubZNhaP7y3hzqV/YNzU7hPG5XTcm8er3Az87z9aXB57ZhNpU+C3FZ//2pX8xyOrSJoSU2mki3TShgshwScXz+Y3OzZi69YJ4+JgMj3cQJ6WpkRXVOV+gnDyQbIt6WNUlM4UlHt/x7dwXQvXFuz5QTFf/U49YOPYOnf+y8Vc8JHbjnqfePHx7pO+lnPf7+prCffHw2s598fDoUhXw660n0sXmdPFF/z5R5cQKC/zEicNhCnx8isxGGqLB7VNO5lpdgWpRoOyEVZmoELQcCQHfBESadsbEjDI+mQChMM+YnY6e50TNIm7fZBayPMbWMpzBggIm4BmZ98b0UMYxMlOcmolCL3kqHEZWOlDE8es8p3sMMFAdtrpXH/xlTSl1BPAe2bOlVINwBUDrp8Hnj+LH21Y62jasOaNAV5euYMZSwPULJyVnQRqrt1GKuzHqSzC7YjxxotbiAcgVeYn0O2y6s1dxIMuqahCuBLpgsxxSOam+NOezfiDMYpyEsRiYV6qq6XU38KocBuHE0WsadvIKKODCYEudqfyOBBbhdAlQkCp7mCYCl0DpSQzZrVRUDOR9fsbUVKha4KLZ1bzTv0RT9+kaUzNLeaN1sMA6LYPXbi4ykUXGguKZnGkYQtSeeLYMTkXsr/TM83WhO7pauLvgHJA6MQpoLnzV8d8yJytNfS0+epj7/LST5/HiSUQJdH+03Dcwi30M/WGqaxdcwCSEjdPY+alY3lzy0Fcw0bVujg+HSetkR9Ncd2sYp4/cpiulMmYSBf/34Qc3ujYS5sdZEIgwafKy9ibWE1rSPGxX7ssDnhJsyu/z7hxF7Jje+FZFaUPrBL0VQYGktSPZji/eNHEYftWHs9wfnzOeNoz+qOKk3ToOJ0J00DYsIpqzLs+j3/89mFM8/hxOe2Tg0MqN0P9S08Ul+NpKI9HuB8al4EayqGEe+Gbdfzp8NPsXKKEg2Z4fLSPfaMQXT8EgBCKL39zJGXVs8+aj+qx1tn0mD3WnjJ93mE2r9zRv6+4AsN2Seca9BQaPPX61uyeEujx4pIKppFRB9VjkLIdQpqLpnktVqkEPs3BrzkkHYlPOASES0rppF1PpC/w2onh3MzEbiYPC4YcjMCZGRIQWhRkgt88+CSXLl9EReVYwNOI/fM//zOPPvoouq7z+c9/nr/927/NVtW8z/X+oLZnKjk7lfWX3O78X7OOt8GokEHq/EkgBI5S+KeX0VqUQgmIKfBPjNBWAkoTCAmhlItb3Qsa1Pl3MWVUE5pQSCk4P6+IHONNNOEilU5FsIx52hZ0IXGjGnW+C9nRY+JKm3bHh/DhjbgLnQuu+iyp7jD+N2ohGsbfkyBw9XyK1veQiAj8aXjm0HrywxInX3Dr8nn8bv06VNhCT/iIV0XYsmMUoUiM3ngOO3Mr+O2hRVQGm6lLluILjGRL+zTG+9ppcoKMTPyQY1H3zxZi4GinTdt2URVl2J3tWPPGsnJHHRQH0P2KzmkhGvYfgEKFL6Homix5oXEvotzFV5L0/I8VRHph4vg6dif3MSZfEE+Y3FK1FseWzM+B+mQFdxTuxXQkRX54UwUoNF0Mn5c0C+klzTt3Fp0VUfrRWiV9azibzok2nr413EGXHW/vymw+y7LViN/9bAW2biBdi1TYz0PPrCcpFJpUxIPw69XrSWouTkTRWya9DcEVpINp7t/3FrZuIR0NfzDGC80vYOq9pFwfZf4WDnT/mhwtRrsMM8XfxHgzQZur0ambLLiyB9NU6Mbx43I6Jwc7ZeaLlKncHM2/9FTiMjAmpwK19Q40BwfFpTXpYuSEs4cabUwhHGzH1iXpYgP8OlrKO9BQbiBaBXoStDxJqFRixhROSpAXTTGuOMEuy6Y7ZZJnpJkYbKHNjlBswPxQhL0JaHN1DN2goOQ6iG8DbDTNpHSU57urdcQwdjWgleexY/Nhdq49wPnzxlAzuoJtuxrIqQNfFCgHEdPR6v0Ivw6F0BMPUXekiBEjQ2y06ljb1sO8okspDPRVWiuZnJPDeB8nrGSd6XWiQ8uVt84ftK/4ei3aa0IoDd41OklM8/aUuITIOB9OMgEaSJlGNxSBgPUe/RWAIVJEhKSvemWJHFJSZI3lfcECEG1Z2UJObhHS1cnzGyhDJzc3RMpyiCVS5IQD5IdDoKAnlSIaCFAQyFxbSaK+ICYGfnIxdJccM4wjLdJuDL+Wg6FHsZTGrx98jklTFjFiVAhH9nL//b/k0OED7Ny5E0GKluYDKNn7f5aX9kGSdhrWccf3/bonMMUrJ7cEFEIXGQ0QNAYshJ65JXTBpOkFbLc8iG3El0TXMrwYHYpC+5GOd60LxUT/PszM0KMmYHxApyByb/bhomdOh5pvAWNHzOLh7z2BaunBaOxC6RpvvLgFvT1NpFVhFwZwHBezG/wx2LenFbdLQ3T6kULw0u49dPYEaO/2owvBS3W1HIjnsS+ei45gTdtG6tJhdqZCTAg0ozKVgmNVc86GBulYqAshBKqsgCzZUUC62I/qAz0KQbpQZK+1oOslaJnTY15e3GO/ZaZLJ0RbMIR3whQKZgQ7MIT0WF0KinRFuxPwOD9Komk+Lrjqs/gLgkQDOt1bD/F3H15Al9DI85kkdnfyjeWLaRM2BWaAnUeaSedBTWkpsboUXx93BV1GnFwR4VCDxXXFn0b62tFUPmtaXablfZsC32FSqozXe2Bm6DsUsJ42VyMiNQrhnFY2j7b5WGkbUTUC1d1Jas4YDjk2qiKMEU/RMSVMqxvHqRSkSskky4pgwkVO7KVOT2AUQaRXMGX8YZQOE4sgHvdxS9W7mJqk1CdoSFZwS149hlBIE95JmxTXfBzFPSjlnjAuu/Y3ki4wmVxVRuJgkm/NWUaLlqRQDw47LkptotWO0BAYwPJLbKBIaue84nyspEAfU8mC86p4va2b1TvrkWMixEs8/IKh6yyZMJYXUgd4qWkfRqnG8qoqXpc7eK2rFl+JxtVFY2j3rWZvaj+TinRmhmsY6X8OhUO+prggmEZzN1IaMKg3byYSvvaoE7iny0LseHpbTemct7eKogVPo4SDUAaRPVezbOYf0YSNVCavbP0qlaMuOqODV5tXHjwuEmZ3UxfC0LJtysolY2jr9Hh1tl96AiG8PaU1EEOzhCdV0QUIOYhfl+cTfY82DFT2NQC/BoY+ivVt+9jY0cqC4hxmBsaAiiNEBGlpg4T8QUOnPQO1tbpSCKlozejV0j02QkFTd4xEIsEn//ojNDc14roud3z572mvr+eZZ58hnUwxc8Fc7rv35zz86MOsX7+FWz95O5FgiJdWPci99/yCXzz4H0jVhS4bKSlS4B5A8X8TbPtBknYK60S8p/fjk/nh6pnszfCehuOTKTJVEpE5kRf6jo3lOJ2f83iVgw47inKbEZpE1wza2+aSF33ba71i8MpbESpHNaB1xHjulQ1YlVGmVFaQOtiDOSFKc9CiRAZJHkkSGuOjPRQnz4lQ31JHpCTBRVXz6ImHWN+0inGFzcwoWcbhRAGHOl9lXrQF6athU69G0dJcTJ9BQU2MERccprnBpGlXHjU1nVx6ZZqnNrts3V+KrulcMM1jHblSousaS8Z5G4+rJLptogsnsylpzC+YSbu2GqkkmqZRGV6CLuozfDQdw38xQjwBuAihEw3fREX4WswBLZWxZbNIdR9lY/y3Fwe3+H7552yL79my2lNq8a0e6Cfa/fw5q2zCsQ80SoEwdMrOn8Qh10MdaLpGwawyOt04EpAhspuPJgQjJ+RQrye9zUcTzBhtgO6N2+tCcHG5jakp6LvO1zE1gcjobebkXU149N+grMXDjgsRH6+eBh3Ws82bT6gf/EuIi5QKhKQ3GsJt6fJavz6JRMsgJSTdEQcnKT12H5LecAqnRyJRuFISiHQh016bEyWpDB9BOg4gKdKdjDZPIXCp8pcgMs+voRZiZ4Mv6Lo2h5OryXctNANcaeFYr6JkGnSQ0uLQwRf5wa/bzujg1YLLvs3v7x4+EubaJdOyvLoTVd/9mg/vLvDug5DRD7F1GZChZVwGtna2c8c7T2O5Lvfufpv7F30yW5ntjXUOG2o70HT9zZWvUVJWys8e+h0AsZ4eQqbGrX//eQC+fsff8NQzT/Kh6z/Eg/c+wNe/8/9YOGsappnkwIE6Hn/0BW5/6h8pLc7lx//1NarHj6a3txPNMN6jO1OCYU+X/iVBbPvWB0naSS5lbUR1fIqsYXbgO+wbpfGlVz9L+9ZtjFiQpGZiDqOnfYYje15l2owWEmIqb22JnhXe0/HWiZhp74dL1af5WLX9TZ75wiu0Us7IhWnOv+jjfO27+xk3bgnT5razrmUMW/c3o2t/gNqDtC2tgs5GxOZd5BxM0LQkCIYAF/LqXXrdJMKAsJ5mUnELIqZ4u3YlnfURbpm6iva0y8r6h3ireQrfGv0OpusiezU2t0znkFnAF1deTCL6c0+rR3vmVLwaTdhctGzwqfgjQ07FnzjuqXjBkFPx0iGn4hvAWoPwLWDUwLgcY9M5kzT1PL07W9l0XIuOxifJiVgIIbM09W0HSs8KmuVEcOWPfOKCQRWRj1+1ICsO120NBmw+t81YMEgcftPYpTzZeDjbYryg7GoOdm3NHmpG5n0MEb+bvkNNn7fs8ZKBM63DktIGIXGljZV82YvHkLi89MIGtNYYl101m92JXlas283FcydQNaWUpzZtx98F18yegl3k8tSerWjdOtdMnEaksJcVDWvp6g5zSeVcRuW3sqV9BQfiRSwqKKFQW09tOo/ynMuYsbSGirkWJbPjtGyIsPjy6ThiB5NrGqndUc4F57D127fONF/QcmxwoO6lAFPP85A00hG8+8YIls5oBiFxXI2Nu8uxbYffPf4Glu4gActx+M2f12D5vGvXsLBcr81huy6v1L2DJRwQnkZxc9vLhDULIRSustnf9kdmBCy8epdFqmwlX3r1s7St7GbCcoPI+F18c8ZC9qzxM//8JGOq3qVm0pRj7ivH0+cFWuKUBUqPCbH1Nrp+7MXatvWDni1r2w5mk7STgdoONF2vnjSZ/7j7Lv7r7rtZsnw5cxcuZN2KFfznD39AqjdJd1cXs6dPZ+mHlmQ+DyRaXHIrwEpb+P1+nn36Kd5682k++7k7WbniAdo6JSmrg7DfoAcP14QG0sggOISgKBik3YlnJp/jFPtCxGWnl4/agiBBfHp75jvZhksxISN6TjVqHyRpJ7usNfS17hQW7zb/jGe7R1IUSHL+xXtpxeGNhie4cNyXmVT6o8x7H2LsVQ8gfJ5O5P0KSo9nWH2idaaFr2tf20pyk03C9dO8KQgdMWzLYcf2QjY3jcAqCKBQXjm8Ks9rBWcsaOJV5oCWI6QrHNC82yUnkEJoXileKodxxXXows2gihwW5x3E1NxMfieZEOhiX08uqdKdCEdm4uUyY+5BNNcTcGvC4fLz44jI8OMy8L/1/cblZNwg3s/G2OXmgmpBujauDQ/9qIev/LNANwSuK1i3No+77nsEy3bQEdx01TR+s3MXlu2gCcGnlszknsObPIhtQOEvTeFIiYbgi+PmsM7y6OkCjRuKlyLVT3CVjVI6EyKfZQo/Q2EhlU7O5H/jX1fewr76lYwbuZQ58xYzaXacnubXiJYuYmzNmROHD/dQc6YqzkMr44GWSfQEX0UzQdqK3QfHMaf6TXS9Py7fvOcP2JYLSvL0C+toXzICJeDPr9Rj7/D0SELCk7/cROr8NLZyQcLLz6ylekGd58ohBW+/vYpPTH8dhU2loaiyUxhCMheNHx14gysmfpxrftuQAav2cH5ZA5devAqUBWI3euFnGVN98xlzS2ne+xxb3oowckoIQsee6v3+q988avW9Lmjx+b+7iD1HGnBKJWMm5fOLqhv584F1REoSzKkK8bvym7LV96B/AVu7AlxYkGBCcAvTw1fy8s4OnvnKKyQ3BXixfhTXf2caL/yqm4YdUe5syufTXyrgf/5kUXuwCOlI2l7egVo+GmHqKEfR80YTakkQzRDIpI6e4z3HNE1j3dpexszJKCw0jce3GdwyVUPP8NEebAjz3bECn6bhKHi85QiHzEf44l9lKm4dNnrY5PJbvIqbiluMifhOuK8c7Vld21J7QojtQIDtvKLR+HQ9+52eVzQ6+9rJQm2DAR9+n0FxdAZr3l3LSy+9yH3/8QP2Xnwxv7jnHl5/5y3yy0v40Xe/j7AVZYFSNKnhNknssKA7bVJeXs6F511DvNvP/LnXsXnLN6lvySWZ9ki1sWQaFdABgRqAqlFK0d6bQGXyLakUnakYpq//dUsNgNiiSNg9tKTsrEPDuVgfJGknu3wLAB9gI5VGbTL6nmrF8XRYZ2qEu233HtYcWM+CMXO4ZOFFrN/6MvsaVzOufAl+31TqDv2ZmRMaKatYzuaG0jM2Gj7cDU7XBMaeLnrHRgENoSBSZxMfbSA0bzrI32DQW2UjNIilAqicHhAKXTPY11rJvNL9ICWaMHijazSX5jWBJpFKsDuVd0pC+tO9jscykgU5LPvOR7NVEqs8h/n04u+wueLCaaRKDBbrU/B3wcRJRWxNNw6qknwpXDKoSlISDnIgXsSsomXMzGljQaAyWylZ9/DzbNz8jMegahhJW2wk02e0sm1rCdpohWV7LUdHSn73+Jukq/M8UbEr+fXKd7FG6Z4bhGlnKwRSKv60exUVVU7me++y+shTnFfmVQgkkv0df2RyfhpNKECypeU/sQp6MQoc6sWbjIsnGV1wNxRYwAsoq5SpE2ed9mGFvjWc5PlMVpwH3k9rf7qVFx4fSdncBE3rwoycmMvj7lKmTmvJxsVxpCc4lRq9o/JQGQGqE1Q4fYR0oegtd3CVm3XqCJT2u3IITTG+uA6F58pRatgYQuKREiTjfR3Z6UohFAoXK/kymrAzPDYHrDVMnXjHGXFL8bRmtRmt2ZYTas0e6W3D2t6Mb9d+/uHmC/mXoS3GFsnj7Ru5e84yanOex0k4rN21ii+OvZqS3B/TZdvEHJObR/QnPCPwcdvsB1j4k/MGxX184eCE8Y6cBn7zsxfZ9Ic3EG0xCmNJij40g46dnZhdNr5el8iSClr2x8AM4JZJJpWPZOuhdvbExhAtSTCicCzbjvRwb3w51RUNHHLzOdxbQK51i7gAACAASURBVEsql0+PjvFuopc9Vg4aw5vWPlP63j6sxaScYu5f9EneatzHtGA5k4IeBmMg2qKwPJ/etEVrT4Kw38Sf6ydmW0hLEA74UAbEnTTK8aYrm1rqCeWGuPUTt1BaVMQvfnEvICkvyUM4gqcef4wbb7gSv5DkRfNJdCVAgJPSueqKa3nzjXf58A1jeP2NdYwfX03K7oMwKkTaAb/3vEIySE8sLIEyVfbatTUMX78VaMo2CZvpvrkI0tLI+ImmP0jS/rcs4ZsFBQ+AtYYmZwSHnOfQ8KoVglb6fBuPBbU9E8yhqM9ifG4jYrRit11L8/Pb8I1+AG20ZJ/zIlufncPXb1qNqUvstgf48VPXsKGu5JRYRifS0NQsnDXsDe59adIqQ6xvmpvVpI3NL+CVAZq0GSUat5yGFvH7WScjdB5lp/nePS9n413pVvKvTwzYfA7361vmmDk8uatf33K5X+eNBi8uhabJGH8A1XE3BVgs0nwI//lY0y7jd3+/JvNZLPbtrWT37mJM0+D2Wyeybk8DjpQgJebedsT4PE8MrCDQ4hKv1Dyid1JHREVWZxI7EoaRHZ6JshTUNlUwv3Q/4OAqjZXtI7k8vwmlHByl0epoRPVzO1QyLB5bYxezblhATd9hqa2JucurSfVV8hZWMrXvQJM+yLyZo5lZWMHe2F6OqF1cOmki43MqaE9tJqSt48ZRcykMVKKsjYwTdeCrwFpaw+/vzqF5UxDTZ3DLl6Zz709as9Olt9/qIXP6Kmmhw10kR4VRUmEkQRVkKmlKEGo0SI1xvUqaglRzFG10t+fKIQV7WytZWH4QV9k0OybVpgtIHKWx1yrgipLhHWbOhFPGzpU7oFoSmmlgHzCwO11KJnYyYloH6/eEsR3B5FFNzJrQyL46ieVop93L9mh4Gjh6p+G2jy7in361AlvXCHek+MyS2dy7aQW2Loh2CW6fOZcfbV+NHQOzR+eGi2ew6+AqUh1h3J4on509nzWNr1HfXUJTuhhfSRIdSW2yDDv0UQ51P4jG8Ke1T5b7aDluNpk6ll7LsAVte1rAD13pLiqjeVymT0DHoaP7CGEnj+Y2m4BpIR0b282jvtPOthiVyXEBtq9veIPvfeO7aJpG0BfgBz/5Os89XcH0abMoLytn3pyJoBLgHuC2227l//2/u/D7/KxauZo7//Wb3HLLR/ntQ78iJyeHX//6fqoq8unu7qWnqQscF61bESyOkuz2SArSFBTkhulKJBExDUxFQSRMu50kHfOjmxIHDdcVtCVyKQoL2i0XW+oZVEg/0uNsrw+StFNYfafxSuCrEycP27fxTDGHQr5ehAFC87QBjfJtxhgSTQdwWTB9H4Yu0XWFK21mltex7nDxqWlohnGqO5mW6sD3nXBNGbB558Ds8o9mLwsDMKvwM9nryjwGvHbsasqZBKiu3PAmvo8I5DpBYXGaigt20bC9kLa9BRzY9yo3LdvCxt3l1B4qO2NG6sciqA/dYEmn+fFdj0JzF4FEmo9OnMzDL23EbLfwuxp60E9vjiIcN7nplnn8evtaVKeGm/Sz0FzAo4dW09EdJJ3MQanzWd36NPtiBTSlS1gnl9MUf4jaZJRuZXK+P37cw8yJ4vJ+K8733v8bUmttfn+3xh2/v5y3t7/Ikc35PHxfMf/w7xPZue851u8q4zePjjijYOFjuXIM5aFlNWlfve7YmrQrhmjS5g7RpC2cy6j8T2Y1aYfNfk3aTWMuG9Zh5kxNV35xcQ0Fi4LebuQ4+J9s45Lb16IZEk3sQzKLr93oHTKV2MSOtmvYWFdyWrxsT6Wqfib9kP27e5m1YT7+OToXTl6Etd9HatcdVEztoGbsxdQfKqbu0D9luyJPvZzmh//2O4xDXYTv/hOX//Tj/H71RgL1FuZzK5ny6Umse6UO0SwIV6a48MYyFuhTMLrj+HwOvoBNyjFoSZhURU2SbicJ1yTpGpg5AqPM0+bF6MaICKJFXkVL0kQkFKIsP56ZBu0lYOSRtE2UUP0emkrRYyUzDhdkqlK9LFm+hCXLPb1ZnmGA6mHm7Cl8464vDYHYKm68YTkfvmmw2dCLL77wnrgEAz5yw4HB9lXRwfZV0VBgUOs1xx845oBBwDjzUNvhrA+StPexBm4k4xeOz2wk45k+L5/GQAMbt1vMmnJNdiPZX+ZDVuai1XVjj88lcWEhVkc7vkYLVSRJTXEwmjX8XT5mzYqwL9JGT3OQEn+KD01LcGRTL/s7Cplb3MqXxnXxw/3dbOgupNcKoZxu0BQ4UK4tRDq7QUmkq7NmyzgumngEzwvDZFNjJboQ6Jogf18cIypwBehCo+CgjlGo4ShJPB1AwwAkGhpH6kdRUWbgzQDpvN08gSsL16AJB4nBs01+RuXXnXSL9EzG5Xinfa0jxpdu/SGJ0jDhX7zA33/rk/znQ68RKxLkPL6aL/31lXz/xT+TLLQxVxvoZQ7BohgPro/yheVXcH/tH6nKb+Cp3RXcNu/DPFf/G2aGG/mvI+V8ZOJHWD93DZHZPio/Z7MoWotmKKSjsfd3U/j8hzcANvblGv/0P9dy0cxLTquR+tE2n6Mlz33r6hsXMq6iYNDGc+F5NcdMjJaOmzho05lfMW1QYlRdeN6Q4YLz8Q3zMHOmKs55AZvqvCZCnzEIfsLA+GkHyUk/ZlaNy4zrNXY9MJl54//IeRNcbr1U48v/fdVZBQv3xeR4PLQa4Lrl/ffMwBYjDNZNAoyfOH7AVQXLRsxgWfb6ci4Y8OqJWsNnarryULQBLaWhhIcnWnqbD91UGUKO5NPX9+IzVaZl7nL3Dfm8sPv802LofqpV9dPBFxzaHh76vS+/d9wQoLPLj37/SOYZYfKFz+t8+7V3cOaNgNnlpNcc5MddO3Bn+NDm6pjFSercnXAhlGxRFF1eT62xn0X+ifgDFgU5MQBy/BBPhYhorUQ0RZEpOJSK4uZoCKGynqRm2M76wwKEQxnfXuEZZ0b8NknbREiRnbIWQqCnBWJgpmHpCLN/utS2fZhGH7VNYKswhvC4bUqBJf0EdE44halkL4FgnEAogtA8vV0w5D9psG32tb8QqO0HSdoprlPdSIwPT2Fpbh7PRTs4nDqCcUUOVwXLeaVwD46y0JTgtlFTWaOeoGyqQ82MXhbn7gXhcsd5BlryRq4sfBZN2NxfY/Js/MuMyl8+WJN2xUWs3zqJffWeJq3mqqms2tmvSfvStaU899pGVn77KbbVdVMxPpdpX76Y7U/sZkdDO4XVJrEpPkRzgKZgiAtvLOP5N1tZ12IzpuJSbr0swC839bKvw+APxVfxtfNMfri/m/XddeQF7jvpFunpTNRO5rQ/f3Q+TVdNAF0j5koefHsDB5YHURq0SXhg21raLvQgkBEzxvjiFk+zI1tY0/o0n5n3UsaVYStNPWl+PvFlTM3Fllv5fXcOUrgIXVDsj6P7yDzQ4JbbJbreR9ZWfOOOQspHTx/2aftMbT5ncqjE2uYSX2lhLXUpXDiD5l35vJKhp9fMmDVgurSBrSt3kCgIkKrIIdAQ48k3NtI0SSfQIDFcQTLPwi518bUarNi0ByO3h9ziBL2tYV7avYeynCbGFjRxoKOMl+pqmRxsYk60iYNOhB5Ny3hUKiovS6EbGRM/JZm/+AiGIdGEQiGZM7GJwgnVvFNfj+0qfJaG0ryqsqZgGqWsF/uxpefYsaBoFkeOnMiVYw0oG4RBozOCTQ3PnbPDDJxcJTk4rZzeBSMxDnURSlikKnzESzRy2hQXLprImtgRUoU2wXaTi2dWszW1h0BBD6mOKJdNqOaIu4Gq/AYOxUopjSaZHWlkY6KcBUXL+w8dus7Uiss42PVu9tBRUHQ1WnwzfYeOitLl3F7pJfMPP/wEM5bWsDRUzpbn9jB93hg+N+MCtu1q4Ler1jBrSiVXT7ySTQcb+OW772burc+yobGBP9avydxbV7L2yEHmFdWd9LTy6YzLyUx79yXCEs8vEzR6pxUidQCBCLqgZzIqDYLVCYTer8UK+Cy8d2YGs0wPbtv3F2HdRgsXEKc76+saCeQjaaHPEcDvywda6IN+BvUoeqIXYXlcyWBplGRXipTlYPoFwaIAiR6LmG2j+Xzk5Bt0xx0StsLni2arerYrqYqWZ6t6KdlLRUjvt6uyPbsqy23MtFSP7vP5f4WZ9kGSdorrVMf0XQmd4yI4re1ZrlDHaDfLFRIC6owDOGlvbLnQ7AHhbegKl4Wlu/unE3G4tiyNiFTCwkouWXhR9vPNmXYpc6Zdmr2eOvHj2T/PHA21TWtYXdeNdCXm3m7Cq9rxNVhIqRBtGoGtBgpIaAHq1ufR3RJDKsXBhkJe2FrJvg7P43NdazE/3lfG+p6976tFeibicqLTfkNQQErLPuQSo0MozfKmTVGkR+OJTrXB06WgmDDiSHa6FClZVlyXnS5Fk1yQJ1nba+BIl26ZhybaULgZmvo1EN9CH029rGI5AL7GGOF3j+AL5cJoCLQ4FGxOEfA51MyowmzT2biqDnOKjuMP0byvmMpxIciBQ53FvFM/lfNGFlNYDptiRaxtm8K8oiJmFXJU78qzWdkcruWTaejccFkN7ddPRukaPabkyEgbRwYQMwOU7UjRvTwFGvRKm4oilx7/AYTmaeLODxVzaeiVTPKsU6QXcX7gVQzNxVE6/9U6gz2pCJrQOH/6zaS1+3CljRA6VeM/gib+B6UswOCipZ8k3eqn4E/bvWprc4Jr/+X6bDvplUfeIjI9QLrYIdhuki6IsOedMfgLekh3RNlpVHJ/7XKq8hs43FmBNa+a5+ovYma4kZ2pQtzQs+fsMHOycclacS0YibagkmsX1nBP0w5s6dKt6fROEPQ4KWzpYmsu/nFxqgMHcJSLIdqZNLqOO3JfRSqbQl2wKJhCKAdELXrBp5kY/YeTOnScztarWdSLoySm0Pnu/It4/MgDOMrBEAZ/O/4a9nd8C4mNhsmysq8QiX2bvoRxL//Jn+ujJ+Xle6p4mmNhRizbQdM0PnX5Iu5rqcVyHDTLxNS8Kq+eYTse0VbjzZKCT89BYEGmmuU380G0ZL8bub4iAmYuOW5wSPUqOKR6Fc7iOqxEGi1h9Vttxhw0y6s8C0tBXGXd0KQlsBIGri0BSLs6qVQGgoiiw1LE3SAAAq9FmqGvec9mNw4DWqhK9tDXHvX+Ms7ACdX/zeuDJO0U14ylNbg1EeIT/ER2p1l8+XR22vWIsb3YhxXSCVMyspmq8a0snDWGXtXCzPI6NjVWctmEi04Kn3CigYRT/fynEzOwfvt+bOWSsIJoKo5kQDWhYxWeLDNTTYityXx+A923gA2NDTz91kaCe3uYcF4VrWWS4q4g6a0JCucYHNIOk6wLs6x6LuWjWtnS8BqHGkqZOfJCZlQ0c6T9Vda0lDOm5KJBcQkflERHOWjVKdT+EBcumkiDu5XyUY00Hirn2qWXINY/zMwR9Ww6MpIPXbicO9/6s4eaMAw+Pns+393xHLZ0SdohdJFAKhdT01lYcRX7Ozcglac/qiq8ES2+I4MwMJlUeBNfzckZtl7xzHhXOmhS8Hcl03gn+BK2dCjQelmc51VmhTIINtzI8urfZmnqzx34GqMqlp2Skfyp0tOHJs87emIe1gBwwxpuX7VAgxFXV9Al67MA23RBK3raezRrGhTl7+135UAxPVqL3/VG6nWh+KuR03g7PXPA554z5HMvQGRcOsb5ZvHwo0+g1XUTPtiJpms0rDhA/rakx64rNNCaBYFmE6EJVmzaQ3dLANmcceXYvYd9HYXsaS/IunSs7ylkbXcBIyI9jAh2AefmMAOnzukTArY4MRwlvRgpyUt1td618K7XtG1E4kJmyvdAbBUKb3q0ULfRMn/umxwdn3PHSU3lnrbWq2GBdEETWK7Ds1tfw851EDrYrsO7+58hP2qh6eC6NnUNjzMxYmFoCkdaPLf9QX6+c9ZZ1SgeT+u2pHHqCdmO0c4oJZESHBk5asIlRIRApgp1IlSHV63yrkM52ikx05QCobyq30CPz0Syf8oy6/GZed2vR0g7MfoyQkeG0UUiUw0UpNwAnT1diJRLXk4YFdDoSvaipSE3FET4FbF0AmnpRAMhTJ9Drx3DsgwiPhNN9JJwTHxGzqAW6LlYHyRpp7jSE0K03jUGW7kkhY6ar5E/oT1zAktyR2QKSfNhhHApMjZx380pBC6wCb3wJqrLbxo2V+hEG/yprNOJGQgcjFF81wHiE/yEDkq6RuWjjU+hDoQ4/IlyHl19cTYxUldN4pmNV2cT1ssv0LnzzT9iOS5ayMZs2olo18CBqnW9lExqB0Oh8gXrnlzJtTe8icQmWKTx0OrV1Cx/nRJsLi/UuH3Vdq6bfXM2LsJvU1XUisSLSdX4Rm6atCJzKt7BsrKZXFP9LF7CuAm98Gaqy28+bWDh8b73Mu761kkBVE8JbOtBNaWSPPHuixQu9jbMfLM7k0iCK20c6xWUtEBXSGVxsP5F7nyhjWSJxJESU9P418uWZpNVU9P57ry+aoOLIXSuz7+QND9CaC66MBnj+ywTtR9jCAchfJRf9BXim4sxt8SJHLKZdF0Ze0fvJVVrIupCXLBcR1Tt4PDeYopN+KtlMXr/bLGxrgTdGQywvXHyLPbsbDwp79KBrhyFOVdwdeGsQTE5XlzOBDPNcl3iqQBaVAeh0NBo21xBYY2BEi5C6WyoncDy6jUIbFylc7B9HBMi8Ngr7/DK5h1cMqOGGy85jyfWrOPVPTtYXl1DdV4Fr+1ZR7AywdKx84i3h9hUv4pRFc1Mr1hGa2cLnd0ryc9dyqTySwicX0L8xqPHpSSQYvE1e2l4Ikn9gULmlLcwZUYjaw9XUNs64qwBbI+1ThfYVqQMCHmVWeEqnHcFXJSpx7hweEcZ0fN1QOK6Gq/vHsO42VtAudhK462WMqRSWI7DA6tXYRV6913acVhx4G0cn6dRtFyHrU0vE/J7ibgjbdo6niHq8xJxqSya2l8lPeEWYgVFpIu8xMc31iJcHMeX47Uny0e1YpZsoygYACqYUdHMjKIN4DOBimGxHWu7a4HjJ1ynsk6VmXY04b5mSYwGCxkQaCmFKFM4XTr4JaQ1rEKTzngOps/GskzSSAJGLhG/TcCfy+GYZ9qOgO6GFtxirzOEBrG2OGaB6/E6DejtjJGXH0eh8JkKX4atFjXgUDxJaaTknCZqHyRpp7jWth3EIXNyZODJESQSK7wJ4Xhj7vmagyYcPMdO7+Q4u/yOUzJBhpMH2B5rnS4N0sO/eQJ9R5ycrT1oJYUk0wbsjqDpglVv7qL+QCGH9xWgZaoNG+pKWHe4GF0IxO492FKCLhBhBYbIsKAU2gwveRAZr8YRk+u9BEvzNEPnj92HEDZ6hsE1+/9n7z3j4yrPvP/vfc6Zqhn1brnI3XKR5YJrsME2EMCAqQkESIGF3YRkkycJyZPNZtM2PZuyJCEJLYQkQCgxpgWbgDHGBeNuuchNtiXL6tJoyin3/X9xRqNiW5ZsGT/5f7jf8DlItqW5Zu6r/a7vlXPEzeiTdknzxpDCbb2msvmkHXqwoJAMxC6d51zBwt3PYINtN26vQiqJsBXmGwnEbAOpQUM8hPRqYCgcR2Pt5uFcOvZokqaus+FIMXHDwXJcPpdpO/xxwzuYyf2lpu3wQuWbWCEboYElbd469DdmjrAQgC0t9p94mvGFlstKUybbtJdpuWUC2k353J4/mbcCrxIcZpN2tcYtwUkkQj9lznCLKy9TfCiYQBMOv7v59FW98wGwPd0ZbGaatzbKj3/9ZzzbIjSn2cz/r7ms/cNRnt3TSPHE2Vz9mVyeei7G0YM6z4+7konltWyoLmZ3/W5um6H45aGtKF3w2ta32FxbzbP+SlRA8Y/DByl6SVB8WTUipnh71xtEt4e5fv4bNDqSbTWPM8sXZWS6xHKe47X93+BbrVWYt+SdZJeS69xqqxQON/1LZ7X1pWTAaHDI+h/GDp9yTgDbw7sO0VazivTiRYwsrDgjNqL7BK/0wTqjhU88fx/mu7X45+azUzXjOyS5qmIq3pEmHx1a0KP6nlXicLimgLlDcxmTs5byojJeP5pOQYvi11/8XaojsuxLn+D3v4wgRkZRB4JcdPs1/PkRM5Vk3nj1R/j0s4KpRUfYdKKEnRSg4aBMSfPfqlB357sbUyTs+UsjBbfrKGWjHHjtBZ1rrzdwsJCO4LdrQ3xnsQFYWFLwxXUnqPQ8dtarpAajJd7JRktNR0Z7Tkd2Z6MpQSrACvq8dJgmHcImLSeNQCfOQzNJy/IRSK5fSmhx0tL9GMImbrfi9aQR9KWhZBRUhKARQmheGhubEXEHPQYI3HVTcYGK6+60aSSOmTAw4wbSAKVDzPIQszykKZFqjSLACWqpihwAfpUK4IQCT8BMDjG4piMpO0IJgobpBo4fBGn/fKc3hflsMseB8m26X1T791WfNqNeNmsGr+5cx/qaLcwqnsrlE2ez7uAqqhrXMDpnPrOGZPdoEZ7Lmp/eANuzyWrX1ldj2g6qQ0CaQngESIHc6oXJ7gdOScGxyhJmTDiMIy2ko7H2wCiuHFmDrSwsqfFe41Cum3Z6wvv7AbY9F5t+4vn7Uja9cslsEmP8KZsunTUNb6mZsmlB2rBuVRJFeVFZtypJRY9gwHvY4tI7r2HFljUcrMylw1/I1Z/J5dlkleTLjbncc5ufn75usrM2H49HYYXcMXrhSNK2xxHTk88SzN0BVIUA5dpl34EhTBu6H4UEpfH60RFcln8ENzTWWNeSh8SlrR9Or0npLYWmiGdsR9ruaqRcj41I6i81YXPNlPbUNojzDbDt6wzmQEV87QlCz9QjHUlM12j6M8T36EipqNmVzprlozl6sAYpFZtq81kbK0QBunB4dW8VKiBAd9O9N5sOooaqpIYSjJHtiGRSI5XN8GFH0HQHTYMc3cSjOUmArUNL5A1Mp+iUdsnxdtPBCodpE7p0sIZwGJOzH1hy1gBbt7X/VDIheYp/ezCnT41inxiUGy7mW50txmydstzcLoZgocHFeV0MwZElMMqXQEVsxgov48rdoGbCb7Lcz+wXegXhH+nZYvzE4p6B+BcucgPG3z7xCrt+8za+A234ogaJaVn4DypUrU54+FQOiGqihwNYx9PYWHQrbfo2DhwroPZEPum5Y/B53mPdiSK2W9kYGeY5oXb6A0yPRRPE4uZJOy6FJak+dBzHq6E3tlJYlENdczuOV6G3CrLz0miJtSNNjfoWHT1g4/VYtEY9ZIezaEk0ETRM6hJeMoPZJ7HROoX/hi0JaQncYOjUov/u66aee+EZrr3xOgw9BEpx6+3XEzdj2I6ksbGBKeUV/OLhR937SUC6z0fEcgMvFOhRiZOmpbAgxAUi6LIeFWDFvAi/+/12sp+fxEAStb0U+D9od/5TnoqcoTw8744BrT45Ww1S74sKP0SyrNNm1HuaqtiZvhIRVuxreZfaddsIZP0Wf4ZDu/McVqNFvrK5IkfjU29vpdKTcU7ZW2+AbW/sRX+YQSlNWmE3TdqMDnLSumnSrptB0dA7XU1aXQG3XrwAT25Sk9ZYxJcWXHped5+e6ZyLTVPOxydZvW899nAf3697FTPNYW3dEbzHTJ6P/QE7w+ZIbAufKVpKVvHPaVYWO48/zjx/ApFpAy+gzMdYtmAe47y5PS7rGWNm9LDL6OyeAePnwm7AmBuT/OJLD9M+LEi4OsodX7uDn/15FZEhDqFjOss+dTG/eqYDozhC/ESIJsI83uZnZMkJ5pddyT+OHuHj7ZnMKTjO5NKrqIxVoXNhkpnOKlxBi0pVXc5F83gmfd6ZhjLOrWI6mr2HtroqHEexIL+UZ51KV6cjBfaBMGp0M+5CeYPD1UOZPmw/IGl0fC72QkgsqZMZWohXrzonHezZMgYr39hFW5Gf6MgQwQMR1ryyjfZ8m9hwQaDabe1r+e2kl3SQOJrGxkP/4KLJbmBzKJ7LxKxaZuXVsrG+eEAYlCzNJqVcHyDXsa9A/LPz5vHlbyThtns6CJvZOFLh8RgsnjCLnz2RSH3mZ464hO+9pKWexxReyjfXucm+4VfnjNrpD3XgPz89l+qaZvLzwtS2tqeCm7CuY+b63eqTgoZYB2Y2gEBpkna9GT3kzlKpDo2s9EhqGtSyFMNDLcnHKHWmfhIbrbO6ZeDQKfA/neg/EMpPtU5fXLWCRVdfysSy4cQ6TFa/tTpV1bv5ppu49rprGZGX1aOq5/MYtHZEXU1acWZPTVpuL01aVhCPNyelSTO7adIKQh9o0v6pj++oIn2jxDdTQQ7Ea4K07MwlPjEI4+DI8Tze3T+ZGaPyOOyDdUcrmF1SwLQiWLFuIw1XZuDdHoH9CVZtWYtxaTNytxfrMGza9zpT5++kuiqfHEOixX/H+Lw0ttQUYHkUShepDLpHRq0Umzt24svqahPWWm8zRnMz6gLDRsNCSzKIZuQfZVtj6Jyzt74YXP1iBt3Qk/cEQKqwNQ9ShZFiLhlZDiO7nkuKKigp6vpj59KiPBei+gur36Nufh7+fa3ofsVDB9fRnm/jrVaooVFern8FLd9BHg2QW3ycqvZHyc/xU308j4lDapg2sob19UVsayq64M5nbE7WqVt8d/cKvJeeDPkdnd8TJvtw5pELksykAl/ptqPyVx6gtTQfzlHzeDpxeK4nxtz0KhT2WW/k6J3U9H5th76W3qOCPr27Jq28lyatIMiWo9NTmrTqbpq0JaOW9GmX8znoctuMcRy7dzxKFzQ7Ci0/l+P+epSuaHUEuWFBYfphhK7I0g4xI+sACpuLHY0Nm2bwrQWrk6gbnbWJ6WzeeW4djXM9vVviA01Sjcaoa9PxZYycNoQXt2/Fd0hS2lDCjYGPp6rn5dmzibX6qWpyOyKZoUXsbs/qqqB7K1ix7o8pv+LxW7zc8CqqxERWecge18T4iv3o+iyUUiTMNnKCPSfR/wAAIABJREFUUTpMLzHLg6mTipMQIAOaWzoHauPVHIsfYETaCIYGSvD6uphpSkDYm3A3kiWZaZkeSYutpYT+KeG/++mgo6ONT37sC9QcqwMp+I+vfoo9ew+y4sU3icUlc+fO58EHH+TFV1bw3ub3uO222wgEArzzzjsEAi73zDLjrFmzmieeePyUvLPewVUw7IVw17M/6O8mwfOS7gtCCqmWjmPGiTZ2oIUlgZCfC3WEStUA//9zZsyYod59993z+m/s2lrNV+9+5OxK9Isv5r93vojp2AhbMeLJoxTer2MrBxzwP+/lins2IZVFBor5gQQeQ2HaGvc+dQ1bmwvdSpomEI7io/nD3Uqa5mbUd4THuZW0JJZgkX4RgazfommSTCFZkGaBsrGkxqfWXZ2qpGmSHpOAQmrcEvwQidADONJdmD1B3M340C9RyuymT1ly2pUv7wd3aLC2BvgPtfPZe3+YmgwNygLE8Dj+Mosr5y/m76+v6aFNeWHzX7oNQHyEb7y9yh2AMCw8+XGEJxkMvB4l/2ONCA9IG9TqEEuvW+O2FR3BhrXT+fbitzB0B0tq3LXmulQw0Ol8uoIB1/l0VThtcnXlVtKSzkecB1zD2ZzBWCHU/voBXv+P54mN8mFODlFeNI7aozUYYxLYVT7Gjp3KEXMrxaXHqTlYSO7wmbRZG5k29Bjrm4rYaBYkReCK0PF6rJkBlx/lKErrW8md2obQQTlQUt/OtAlVaJrCkQJPXS5XjTqMLhS2FPx850wqtStZn8TN6AiuH5nDkcRmJIqx/jompNXgejqd+elTyXXW4CY0OiL0OUTo3gtpkkE7f/7eczz6n39BOhJN15h+ywK27KhFSoWmC8quKGNDldu2TWQKEplasm0rmDZjKKtPHEqtVbx4YlHqNdUQ3DAyh+rEZhSKMf7jlKW5rTClNMq9ZZR6NiKERCkNLfzvbElc1e/7JrtXEnChz2CDmzv9SkiPMz6vHs0jUBZ4ntG5/O5NaIbDiPhPKCoYRVGWS/VXQHVzJhmhbGoi7XRCZoszwtTGWjgaq+apY4/gKAdd6Nw5/HbKwxOQwmWmgSDsKUB3alPPGKXEpEFLtAMtJslIS0MEoD3egYoLXnt1BatWvcYvH3iAeEzDNptRKoI/lI/XE+aeuz7FNcuWseDyy7jhyqv4n5/8hLKpU3psAHjo0YdYvnw5Tz79JIaQJ4FtO9EgZ8NLi0XiHN1bkwoyS8YWD2qgVllZyYQJE3r8PyHEJqXUjN7f+0El7SzPto0Hzwga7ItUbuOK5dEE4z8/nmZtjzs+rAkWfNwDmoMGFBo2XkMihMJnwGcWG3gzbj5Jkzb9JE3aiF6atFFUNa4hnDMfT052qkX45XmXcnjvwZR+6bnDe7j5sRtYsWUN8V0efn30AJ/83hd4Z++rVFfl0VDTwX98/uvsPLKC9YeK2F2/my/eXHDalS/nW/w6mOiKD1thar5agjIEbY5i6Ko4BXc0gA5bjMe59pP70DUHx9nO8b2KB67/G4buYDub+On2XGxwByBCgMfddal5BEOXhrG8rh5D9wguWhzD43EFXh5D47a5TfiSNtaE4kcLsilJ6spW7t7B4vGTuGrIXLwnFBuObeaiYRXo9aVEDn6OoSPrmDjkEvbXnaCl5U0yMxcw1ltxxpVV55ubNlgcKyMoyL0kj6ZP5qAMwVb/CcZkNSI0BU6EcruVmQUr0XUHx9lBfryAWbnLMXSHexydT7x1DZsa8lCOIu3dNlor/MmF5WeveezEzehCY3h8OEfUVoQmaXEyQJ1A4fSJm7lQyUynXc61dTy7ZGifCKLeuJujx4qosguZWFDDRSNqGTd2COuajH5NhrY6mQiSjEHNIDd7KSIJthXCrYZVhIbi2xtl67Pv4lsYpWzOOMwDXt596SDmTC9l5eXUHs7jpdTvdW/y99pw0u91rriZgdrlbHmbp5vq7vQr6SETzYM7PewVzLxRYnhVqvqVm+kkESju7tchWQZebxCfx+i1Gslge/s6HOVOQ0rl0Gg2khHIOZmZJvw9AiMRjdNR1YxSinbRSv7wPFpPJFBSkZ9VysrXVvPvn/u/LLhkMTNmzeGV19by8K8fIB6L0d7WSs7w4YyfN5e4bdGaiHMo0thD4/b4nx7n5jtvoT5Rc0aN20ADtWh7LLWfWKGItscuWDXtgyDtLM+UmaWutuQMoEHLdtAtDdUNI9DjUjJ0Fo2ax/O1+09J3G5WWpIS7SCEh5kTbkB43bbUDUtmp36eZbNmsGxWVxB++cTZXD6x6+uzSxcxu3RR6rl7i3DPo+tTYmZL19j9/HEiO9KSWbHNWysdNlSVuc+aw1/XaayprkAqlRQ0D+6eyf6IXzsdSW86/ZpXttGWoego9JFW5wbP0UwTM89GdRh4M6Nk5Z+aTn8kmMaUUAMzM0+wsSWfyHQv6CB0yPW1oSdF2CD50ISDGLqDobntk6Wj2/jToSxXW2J78epd2pLrpvasgs0buZRDLVtT2pKRQ25CRPYALmNtSPZidr2zh4eu/BWWaXPYuxrfgyoVfL4der1Xhi343ku7Me1cvEbPoPlM/Kb+tOjOJiAYNI6VgOJ7ptIkjoGAkC+OZiSdjQ7hoQeQlvusaYqJuTvx2W7AqwvJTy7JYfnR+a4mzRqNvyj/nDSP3XEzaYckz0sLMTwLf5nFxPnX89c/r+kTN/PNdU9fkGQGBkkz2a0b0BeCqDfuZoznLsZ6VqALGyE28+yyn/SAwJ4LguhsYMm/377LhYcHNRc3oyQeTeebly3oEzfz2dHXcKD5Wyke4ui0TzJO/QJdOAi8HPV/ly1R7ayGrgYL8WI5DnE7DUPrSA1NzZmwlEMt23GUDQJ0IxNkzH1jCIFHTwdObhMGDS8zsqaw6sTfU/fX5IyJwJkRHr0DnfbWGCpZrBgxfCQvvriKl//+Cj//6Q+YNf9D/PnxR3hyxasUFQ/hd//7UxLxuPsXKeiw4imNmwtVP8zWd7fymz8/2C+NW9zRTrtSSk9+T/eqW/fBBSEEwXBgQJ+1wTwfBGlnecrKh3HHj6/htZ17WDJxHEsvrsAcIlh5sJLFpRO4vmIK/qIo649vZVZhOYWhYWw6/iajcuooz9eYmjWdlo43yExbyLi8uQPS6Qz2ORvSdeeqHF0TTAnm8LY6DIBuedFx3NJ4P1bl1DkzyVTvJDeYeDhqD+Hv6x7jhc++RmyLRfEMk2Xfnczyh1qp2ZnO+GmtjJ/TzHt73QXY3en0HY5Em1BIdSyK0qBRwpxhQVpUzF3tZEQYk9+52ul0dPrXXTp9ic7K/E/zXGIbCkmrk4km6lHKQdcMhhZej9a+M3VZTxlxLX9cVjBoa5y2vvHcWWXYCcvmmQ1bUkFOwrZ5pnIzpnT1bQnbZmX1OmzdDZwz9BakcnEZtrRoaHmBdKOL3VTX8neG5FcMuIU0WBwrj65zw+Tp7Ntd1zWxq51mYlfrxUVLBrz/VpT8zCzp9cY/C81jb9yMle9AlQf7oJcdTutpcTMC6OhmF7sTogqYjsNzu97AznCnK03HZtuJv5Pm6cbU6oddzlQRPZu1Q2fqBpwOQdQbd5MfXI/h2HQmY+PC+xk/s6v1ey4IogH9XpbNH599G3tUBmgCy3BcBJAQmLbNH9/bgOlJ4mYch+VVq7F8XbiZd2pWkOMz0bUkbqbxScZlu/gZqUw21D3AitYSNKUzu2oYubOWu6+DMgjtW8olU590USbS4Ejsfyibs4S7nryPVesrWTRrAldePZvYsLSUXxlXUMALO7dhF0hKx2fxzaKZKZ9y5ZgpDM2vZ1/zGsZkzWduSQVTs+pSfkX3jz7lnWMlcjD07JMqX6c7o8OjuX9cz40Q/Tm9A53ucNsT9XWMGjeca5fdRDg9g2eeegKArOwsopEIr/xtOZdcfZX794RCxFtjqU4qCp576gUuueJSfD5fEqpspf7dmOMnTYsgktCrmKPRYNXRKe3KFiGUUY9SCp16wlrnarh6WmOFeH1hAiE/uSPzae+IE07zX1BN2gdB2lme92pr+PqO1ZiOw+odddiF8P0jL2EKh3VHDuLPj/F86x+wfTY1rZv5TM5S8jN+TovVbRrPb4PzEsosYHS4ok+B+2DTxrufM7Ggeotftab21KqcYJPFqlVNFGcL4iVePnrVHJ5etYlYcodfX6tyDrcXUOevZ2LwUmZn1jO9+EoerXoRE4v0n3jJ/GU7V3zjCJb3MJd9TVD5yHi+9Jn3MAzJxy53F2DvahuaotMLTacmy93t5j7D8awOtDaBRJEeTKBpnVWXM9DpdcXSMQZl6sv9zuinFZ2Miug8A8VEDDTDXnf0KKYlUY6k9vF30W8pRUoJEmqfO4p+rUBKhZKw/dUIQz/s8pvqE2HG+OrQNImjBL/cnMaPZnSxm75aWcMt49by7NFuq3LGJFflJFf8fCiYAGWnHM+o0Uswi8LM+d9b8R5pY+ScUrbHWwnW2Fw9ezKJEsHCrLEYdRpLJ07BXxzl7pxcIifSuLR0BkML68nLVexvLGJ64QIqcuqYn2mwsa2Y4VmL39eJ3d5noMHn6eyioprbFjdA2or9b1mUXO5WB5WEFWs83LzQQCqrX3bJ9cSYn7nfZXJJnTLnk4zLcldcddql++7NtKY4xYtK+YenBf8xk/QWwYg5eaz2H0Y/ruFr8VJREWJ/qIG2ugDZaVGGjD5OVWM+te2FfHSEztSmXaxryaMyVnhWk4jnwyZnSjI1BZ6qRhgRBjSMOC4YWlMICb5DwKjkXyyhozqEGOVGBkoK9h4bwkWlOkiJozTWNJWwJLMWNFdRVxlLR6JwHIvq2GqyHBPNAEea2OZKlEyg6QAWr7/xB7bWFPC9NRsxbYd1azaSKA7yzW5+5RuFF/OUsQnzhMMrbe+4e5F9DjWtmxnS1Ei9+W3CQYt682VaIo2Mcb4DfhOclxC+xxgdvir1OnXeOZXHXZjtQOC1ve+v/py+4LaV+zbzr5d9HIRA1w2+/50f8Pzzz7Ns0UJyc/KYMmkqekJhdEhuWHoTX/3C5/H4/Pxp+XL8viAvPbecu+/7DFbMAMNHvfTi0y0Sjgefx0MD6QQ1i6j04DOkG6AlA7xItIlgODlpKiSdjDQFJMxWjjfa7uRrpAOlIBLpwBfoOZjwfp4PgrSzPOuOHjkF5f3cpvH6OoMljj+d5mL/8CpmfmYyWZ4O9jQ/RMG4GXykfAHK3IyKvMTE0llMGuderH/+XrdVOfk5WD4HXx0EGhyqC48j6gT+2jOvyjHSTQyvyeZILtsieVzvbceWtqsmNnAXYHsUQgcNxUUfOobHcNB1oNsC7P63APqowpyCTo93FqO95x8qfKozUIjq/jd28tzLG/BUt+A/EWXB5DFsjXbgr7FIa5SMHVPKVrMO/biG2WTgGzaT/fIAe0+kUZlZyrDhx9nfWMDR1nzyckoJ6pvY0JbPjkgOufvfxvJYCF1g2RYb9/yNzBx3VU62lkAlNxj0cDzd22R76lJtsuGBYr7/drL1auhMCaV3ca3CBovSu7hW+RkeRoZ1VNN3KMLkmpAXEZ7qbnM4j1y0gdjlTJN8fdlFD0jSlxRSV9mBdULjsD0c38gY7SfSiDel8XbBrbTrW6hqOLNdMrtVRJWSVFc9yZgZJppwK1evvfUHflc5s8fuzV+dqMSs8KFX+LlmYjkPdazDnOKgTRZ8cvgk1qvnKJxkU1YeZX6Gu0rsMqUzxn83k4zvcmmayb0lOgeNn5yxG1Cz2c+GnZ9kytwIBaOvorIyh20b3xyU+8s7SWfZqstIbHKYdVEeodF7+M/yOexb7+OiuTFKh22gbPxE1m5LJ1NJHrzjPfTnYtjDM7n19iU887eNtOcKwg2KO//tUn74yuupJPP6my/mZ2siqUXxVy++koc3xrolmSHujmekkszD9lqQFthw5FU/k2YLhABpCzasGcKCqXUoJLajsWlPIXr0zDqzTr9yPvYid4fXoonTgmt7M9VS8Npu+rWobaaE/ZqQbnsx4CcnlIUto8Ttejz+NALBMEuXXsrSq1emqnixSJyRhSP5/D2fRwhB/vA86k+0o+KKKxdfxR2330pdU8QNtmzBY08/h1JgJyA3mEZNh8S0DYQQ5KUFOB43iTnuc7YRxDSjbttVgdmmEQgBAmzlbpxXuF+LxT0opWiLJlJcNaVcaO8HQdo/2ZldMrQHzHaw1qKcaiIu3a/zq3t+TTzNB396i5vvWsKLT2wg4gfrpbXccsNsnl2xlUjAIbFOoLwaxEHPlMydN5RVVdX4jRjPHIlx0/h5PFi1mQLfCbY1NnH50MtZXreG4UYTWqSeNE8bTZI+dTCD1crSLe9puUCarjEscDG6vtzlNWk6hmcxQnsSpVwh9qUL72DU6ClnpLyfT25af7VzfU0wnsr5hL2JVODc2V7Uh73LknEzyPEPQ5mbmThkM3i9QDFXLZnGmz9YkaomXDe/grpfrMKyXLtcVz6VQ910OZeNvojvvRTDsh3isRDVsiClmRyTewnf322n3svpe4M0jCV5QcLR9ZmkX6WBkpxwPIwzJFKc2vGcqk3W32TmbB3PuYjje9vlVOL+3napGFZFbiATGMbE0roB2eVTI+fws3dWY2kOHA3RZGekKqSzhizgm+tI2aEvuzTIMNJ/AiEcpKOlAgJNU9iOxvrDhViO2yLv3L3p2sF93k5dyi5CwBHjYBfc1tMFtxVCUOhbD46JQGIIwdjAIcCttpg7HDa+sR1zoQPBLLZtHE26v51f3fND9/4qyOTmu47z4hPL+7y/pMdG2ym5feZMHt68DV+gve/7y99ExZJ62j1tHG4CPc3DFR9x7y8VMSkNeRl5tXt/jSrO7vH+WDC7rH/IjMU975d/rTj5/VGQPpc3d77NC//nNWJb/LxydDjLvjuZlx9qpWZXOv/RmJOSa+w7OoRPL+1/knm2cO7enwfLtGmqb0fX4MTheqSmQVMEoekIqVCGIJAVoKPDRAmFikB2ehpN7VGUpiAGOWlBGqIxNM2h2VRkOSEaElEMYRG33URbR6GkAzKTuGxMTkqeWtgfCAUHtFKq97aDUw08dJ8E1UxJfUMjskNBQkPLLqAj3ooZNWgTkFOgU9+siJnGyXtFBaT5PP2KC87H+QDBcQ5nIBN0/dHxnG4iTghINDQQnzYCNA1NE2itMZompbkThJrAE5E0jU8uolbg65AwLgoapHkSjM87gSYUAo3WiIePDFuPLiQCnWOxQv4lpwqPkEjg7bifZuntEyEwGHiFCzXhNpDTl8MnGuMLN/6YRHoavrYOPvuDO/n5I2/QERL4EhArCRANK9IiGv/n9kV8Z/VKzDQTb4eX+69czI+3ryAYaicaCfPFOR/m8cOPMzRQR72VRUbIotTTzIRAG1NylrKr7fHTisg7kRuDNbnX+73s2xvl/37222iTQW6Hf/ncvTz78tPkjTtB/Z587rxrDrv3v8imPUnHkxScuxO1ruC8MwDsHGLoD1pEF0a339V1PGf6XXskNAWZ3HzXEp5ZvomOkCAtovjM56/k+397k46QPLNd4kHy85oYFjzBkVgB/1p2I9saf8lobyNVZg5XlnysT3H/2dhlIFWk3na562uX887OVzi2LYvmg3l88QfjUnbZVVdMR2FXi7xzgrbTDn3ZJdcTTQ6XOGe0yWDcX8Lj4M13daQaAm8HTBxdjaYN3v11Ie+Nc03eBnI/nmqoIq1Yp7hgmKsftG1U0EtyOg0ciRPQXOq+UKhusYmQuLszk9+qSfD7zM5HHCnI9nYAYAhFSHSK9wURJXCSVauQHsQgkvoaWj5Czz/vNhnIyqtTVQ4H8wwEwfFBkHaW53wEIpuf7uCRT7/NuKntlC+RbN8/gt2VuQhNYHocEiVZ7iUGOF5Je6GRelY+RUdBV9/d5zWhwAQBRaFWStJb3X1kCAq1FmZk7k+uiNHIwsf8YAO6AKmg0vJxwE5jbPttjMr5DbruIISXQ00/ZMPawDk7/XMJxs5327e7/mzXnld4+N511LzrZdKsOHd/v4yHH2xnx/YsPF6D8pklvH6swRW/KUlpeoCt2bYrpvYp4gXKXdwsBZMCGezNPea2ciVMMXLwFGxB0xRSCvJlCRflr0AXDlJp1MSLuDenCkO4NKk1cT/NUnCh+FvnKwA8m/dCX9N8vQMCGRC052upPX3jwum8l92aYgr2ZZdMvYN5GfvQhMRROqZ9ETdlvO4ymZTGBns+jdbmlB3+X7fLuX4ezvT57MFOy89B5OcCDPj+0sMmRoaZwkUUeqKU5DUM+P46XTB5Ic/7ba8ePmVeB2bahyhbdBVFBS7UWgmF8nY11JRQSK8ABEpXKL3rZxdCgacrXvAIidewU0GbB4eg7kJtfUISEEl/hCAuBXElEEL0qqQJ0AeOyBjs01fb93ycDzhp5/ns2FPD5/7rqX5xngYyau+71OBDt2XyhW8cwuNR2PZhvvbVhezfX8iy2+byp7fcsXGPx+D6q8v5/eatSBRew+CjHyrnN1WbkEph6BqLhozjLbkLR0liVhCNCCDxaAbzC67DTPwCcNCFh5L028D6FQoHIQzS026i5EAFX1r4F0ZNKqVifgdjF97JD769/qzH9U+HgBgIbmAwmWj9wVLIoMUVv4PK/87iy989ise7m29+W+Or9y9g79486qVyAzRNgNRIFAdRZhsIgRNIVjUFKA3sXOkGAgLQID03QkJzW0uaphibeRxDOEltl6Q80IQhJLpbGCVfVzRL47yLsE93zrS9QGtqx9hTg1aUya6t1ezeeJC5M0spG1HMjj01hI+ANx0oAtGuox31IXw65EBbJMiRY7kMKQlCGKo7stnYMJaZudk0W1VUttcwIbyY0V43gNtx/A9kl7VTu8nHqEmtaObvGTUqwK6dOQhNoAqz3MkQTWD5RfJ1FyipiOXrqGSP70x2yfO2owuZtInD9PCJlE1AMiYQpsX2vC/i+LOxy6539rD9jV1MX1hG2bhidm2tJnQwhjfX1TV52zitXd4za1h3tJHZJRWMDncGBK5NcvywPxGmsn0oE8JhRnuhMb6Vkiv3UrzcpOZdLxMnNDDl8ga2bc0b8P2lWx504bZavbrOzSMXsD7yPGoA99f8tGsHpIN7P5LM9/v+Utgn+RTEc2w88GGEACEEGdkhmiKxZLgkCAW9tDmW2+brtqhcCEFuMEijFUEBmhBk+cJ0yGb36whCnkyUdAG3DhoKmYzfBB6jCKEcDC0NK6rREcslGHIwfJnE4zqxjvb+L3E/jQ4umFzi3ona6C/gtju4tknTwecB5SYXQ4bnnLdArb/ngyDtLM7mnUf6z3kaADdMCYdbv5aD13fI9TG64o5/Sceb/QnKyocx94ryHpfKvHnjemRaC2tH97pYZvZRJp/c61KZm7pUhnsrWPtbFwGxa2OA3e+lMb0uek7j+oOhQxrIqH3CI92pLTijILf3z5Spt6KwEJpC98BFV7fj8Sh0HZSSlE+t5+DBIq68ahq7H38D25YYXp2PXHkR313xBpbj4Ld00NxA1aPr3DFlpstfUi5/6brSi3m25iB28nlOwVIONG9GJicoh2Z0czx4GZL9NQyrnUhVPi8/aTPr8m9TOraWg9Uj2LCijSkzqwc1Ex8IqX2wwLW9nU+m33Kn2ZTTI5g3Jltc/Yii8vs5fPnb1Xh8+1iwSONrXzk5oQnYGo6uYSc1k7fPm8431r7ucrDOYJcWJyOFXTGEwZDMmxGR3UhlI4RBUcYdzA9/nIbYu33a5f1sb53KJoPBROtXkhWyuOZxg9DmS7lk3gsIYeNInaOtP2Fk2RUDur96dx8Wt48d0P3V+fubCQtN17jxa+N5YcVyTNNG0wTX/svFPPnmDkzLRtM0brpxBo+9txXTtpE+gVnotug1TeOuWVP5c+1aTMdBE4JPl01jU9sLWNJGExofHTKXaPw3OMpEoHNR1kcpMh8mFaxnPz5gBMpg3F+gTvIpIEnP0MnJS08FRaGMwGnbfErQIyhKt/29giJfL/5YF+BWQCooMrQgBieT/POHO9SfaEFJhdAEuUUZXQMCmkB6SOnCCrPC1HS0p/5scXr4nJa4dwZqPXhuSbkQAEq5FbUPgrR/vpMR9iOEQAiFx9AZOyyftUeOgnKfxxfmsaahGpRyuWHCxlESXdMYFS7mqLkFocDQdIoCpdS0CxQaujDIy5+GFtsCSITwUj7vIwivmxn3awdmLwTE2e6wTA0HJCyEJhg5Np+de+sxTRshBGOH57kDApaDEIIJhXmsO3YMy3bwWppbpZASIQTj04vY3HEQ03G/tzgwglpru7t6SgjSPGVEndU4ykIgsPQycNbhXnJ6qiKRnhtyX3dN4PEajJo8lK27jiOS2fnoMYVs3F+LEIqApWFrGo50X/fuNvHoOmU5BWxs35967m6XFicDqAMcNF0nJ3sqQnsLUGi6h5IxV/G93y0+416+3tl4X8DO3kMMvR1PpreCmnf28I2k4338mxoX3TCXTbvfwXEkuqFRsXgCbx2sxXYcHL9GvEjHUQpD05gzdTgrmw5iK4mhaVwyZhhrY7uwpfv84ZKh1Mu1OKrT8cxLOZ5sTTI/YKHhAAYqcD0isCwVFAwWuLbf02xCYvg1rrsvgNcvEELi9Z4+oekdrPY1WDJQkGoOULfZn7LLE98599U+ZwpS+wO4HWwmWn+TLCUcyhfWoyWZaIYuKB126Kzvr+5310Dur61v7MJMWCipcKTDX3+1ClGQg1LgSMWTT67DzPG7z47kD6++SyLTRfeYXvf3R4CUkod2rkfPsFG4INW/Vr/OkHR3kMJRDhsa/8qEoImLbLWJdzyE8ljJKpKJij13RnBt76GrgKUh9S4NYV8DBb2HrlqcDAT1KQ1hdtF1aJEddAaNuhEgO69riWXA7wZnnedUezBTXzO8BI2u587grPP0Btz2Rnz0CIiUorWpIwW4VVKAU12ZAAAgAElEQVTR2tb1dSkUqnP6UkFzLJZinSmlaE5EewBu26xIqvKn9wLcStmM3h1wK5sh+XPqRldPVyTt3qkCC6Rd2OXq8EGQNuCzY08NP3/4H0jpZlnLlk3jsXVbkMms65ZF5Ty8a3Pq65+YOpUnat7GURD0xFnd+Eoy8te4uXg2xyO/SZaFdWZk3kxa7FHo3GoX/toF01CUzRnHv/7s4/zy0w8hHcnzP3iOZf/5EZ59ciPSkbz48NvcdO/F/PkV93d9asUmZIEGgJHQuG3SVH6/YxOOlDy6cRufnDubxw6txVGSB3dv4d8nXc6bjS8hlcNTNeu4a9id1LQ/hMJhf9sTFPo7S+Xu2fXOHn7974+6r6uucd39y1j+zHvJLQgaV31yHk++tjX1ut909XQe2bQFR4Ltkzy8473U1z4+cwpPVK9N2eGe8VNZ0/RC6vmygiV0xKuQyiHHkMyYujaJRdTQ0v+DJTfekvq5+uN4Ok9/gJ39hXZKR7J25Q60/FwQAmk6rFm3Dyvb74I5va5DRQhMx2Hlvv2Yme4FZDoOK4/twchw4aOmdNjYtJUh6a6my1Gyh+PJ0S1QVlJfYkLsSVTs+UGf9h3QNJtmMHzixxBJzZEQnjMmNN1tMlC7nM4mve1ixi1eefKdVEBkGm4lBMC0bB5/5V23WqPc54feeRfTsZFAwrZ5umpLKiDyGx2pINWSNhsa/uraAomjLJrbHiGsuVOWYKIiv4TQfQhvhZvQaAJN9U5ogDQv3rAPXU8K8QIanqCBoWs4jkQpgSYkStEroYEMv0W6V0MzXaBbridKppFFi2MglUOurgjrPnAMBnuR+UBO+cIyNF3DSQKDZUcHOjmpr+tRC5ET6HLqMYnIMlzAaZxuaFSQcQ0jo6v115bwUUJXwaXBSvIcOoOC1FdOPkvuWND132CARUunArD4mgqk3+DDCyeigA8vnEhlUwMrt1WxeMpoRhXlcv34MgCunzAR4XW4dqj7vrx2WDlhb4J55lwA5ufORZNbqelYSXHaYjJDNyCFgsSr4Lscmi9c4BEMB2ii67WMR2IInzf1YiaiJhiuHxESlA7PP/0X5n5oIfnFhQiP4J3Vq/npt76FkopgKMh3Hvgfho0sJWbbdMrrbKX1+HcTMoEn9b8UqBaUzCIe1ag/0pCSx2UWpNPSEjv/L8QAzgdB2gBPZ6tTJTOByuP1yQwUBIpdjfVdo+1KsbutFltKFJDmiaUuXaUUHdauZAaqUCg8zi662nwCoZov2O8J0NYQSa7ZUFimzf7tR9ysR7lVkqp9x92vK4h7JI5MgkWkZPfxeqTqysZ3Ndb1eN7f7pa8FW6VpDZ2MPnBVWRpFqQyIQfM9Wx9owDLtN1/XygO7D3R7Rn2Hq4/yS62477uVrfKQKdNUrgBBTWxQ9jS1cB02cXNlLM1iy6m3YW1SWcwZMYt97WLRFF5bukfQI/akIW73ziuSCjRNYkVp4vYDciEnmojALSZfopVa+q5u+NpcHRksjLQRRVy29C7NgXZ+sYu/vVnH6etIULG0DyqDjYCXY7nioUTEcDICQU0WXG+fO0CWqNxwll+Gp0YX7/4EppjMXIyvLSqCF+ZfAWtZpQhIZ16swpwHU+WpwNpXw1CUBoYQwZNqPDXXJtcwIXZ5QvL0HUN6bjQzH1rdqGNGAqopE3cVo5ScPxQE7JAR2jup7zmWAsyH9DcV3XH0UY8+cKtDJh+pGxD09z7YVckxtx0d0k5SA4laijxSzQh3EDNXItqepeDNd/m1//+lCvg17olNI5EBj0kitNYs/kguqYxe95oVtUc5h+7D2JoGvOnlbKy6SBSKvRuCY2jJOlek7E5Dexsr0UTGpfmjiKknqMpvhsNnYnheYyyV0J8JRIdLe0mDh2be0Ha8WVzxnHf/37KTTKlxCsdlt06y00ypSSgNK6/cloqyQwqg4/Mn86jb7+HZkq0Fo1EtmtPj/TxidLpPHZoLVJJLCeNS3KvSiaZiojMZEj4rmSSqahxApR6YnQGqSKw7KT285h5ZT3az6UVQ3u0n0dNKOCHyYrr+qNHerSfJ5fk9mg/z8zP5vmDXe3niowcDrX8CEdZNMY3k607hNq+DVgQ34Bt/YGm+lNrwM6ah3aKdUun0oEFQn7Sc8O01re5Hx4p8XkNdxMBoLpl5kJBwGPw/NNPMnrsePILC/HrBt+9/yv8/NFHGDl2LM/+8TEe/MnP+e4DP3P/QPI46CCCoKIA2AocAujESK2MUhGi7R66D08m4nZX9A0ftDv/GU/FxKF4DH3wKwNJ4bFs62rz6d5ZPdACrUfqCY0tpEVoZHo97DlQSyLbw4RhhXQ0xAgMCXBCi5GjB2hvjpNe6KHFiJAhQjS2mgzPU0hvI5rKoi5SRWmogezAOKrjMDUoKTGO0Uo2dVY7uYEZlC8sY9KsOGUzWtj1buZ5K8/3hyNXvjA44NVV/dqd2s+fRSkbx9E4ureIuD643K3+ao7K5lTww5X/yWt/eJNXH30DxzQxao5z0a0LeHfdATRLIlpMErl+NBO8jYJpF4/krX2HcSyJt1Ewe8Zw3jh6CMcSiKYQl5YNZU3DXmKmn5r2XIZlNKHo7ngepllqrEt4mJk+G5/5ZsouB/cW9al76u54CGh07K88KyF0p+PZWe+2+nJ1CDsJFDbnsl90sE7ZnHFc/olLePG3r6EUyEiUMaXZ7N3fgB53CNZ2kFNezNHGNvQEhE9IcsZnUd3aikwIPB1gJQnoTkJjcrCYnR1HiZg+9jYWMLtQo9WppclO4522sXwoy0bJ/TRLjTXxIDOC+aSpajo1nG01q06d0Ciw/bpbLQNA0qHZ2FK6+lkpiWp2cs2Om+x0JjQKCHnjSFxnilKE9Sak7bY1JQJPaz0qYKEbYNs2Vdst7v/CqYeNzkUY37v1m6vjbnDp9X646u4llE4a1mOacs4V5T0+u/Pnjevx2V0wddRp5QqLho7t8dmdlze552c3fe5pV/n1uebtPGt8m2qfJy1gJu1iEo9GaDzRhtAEGdlpPQYH0oKersEBAWGfj1aVIGrvIu5sI9c/HWWMRAG61oZfdyvswhIEND9e0YR7dzdgaOmERAudOrCEzELXMknPCdPSWMtnvngfx2pOgBDcc/d9HDiwn9ffXEkiEWfqtBl867s/ZvVrr7Bz21a+8rlP4/P7WfXmmwghiEQiCCGwo3EKCgvddFJpuLtlFAKBT8/AdGIpDRtaFsjkPlAEiBDBsHba1VVCiA/anf+MZ9K4Yn7+XzefVod0LjDVms1+HvrSqFRQtOjeDh78xXJXW+FI7NZm4tNLEbqG5VF0FOpwCNi0E19U0jweSK6VCXRI5Lhoas2MPyqYaFej65CpR5ibvo/GmKQhplETK2IJVUhNkaYUNfEgu5v9LJj8BX7w1H7coLERPTeNEZM/cVrw47lof860r7RsDgNaXTWY+rDDuw6x+omfsXlNGlX7/oZW+t5ZCeMHY6l22Ry3SrDkjgXvD4epm+MJ9Aoa1z9y6H0RQve1sUPKBA1VL1JYVsGurdWsfGYDqiPGkhsvQmaHeXXldrSoTWlFMQ3CItvj73dCc9Q+QHvCx6LCixiW1sSelr9Tb4WYFi45KaFZcscCqre/2PXZvX4Gh3+xyl3jJQW3Lp2Rep/4pM4nFsxIseQCcQ2R0ZVE3DhiGlW7j2M5DqYT5LLCLmZZu8xgZEYXS65NGThpd0E31ER68SI83qcGfWn3mZLM/VuGUzhjE0opbFvwj5f1rravafPk429hOm6wmDAkptuJxLId/rp5Ownb1X2ZtsPDW9djGu77wXQcnj7wBvjcarclbd46/jzFvs73g4VSJkKAwqSh9QH08H3k+MuZMD3KhMl14B0BnDyVfD7lCv1d83Y+k8yT7aJhmlpKA9bU2J5CcCgU7dEEqhPBoaAtESeqVXIs9lUUFo3mnygJ/zcBz4TkNgv3KKUwZTsevXPFkrvoXGkuJw+lcGQzMaeVUKCA7fteZ3hpHn9/5VdglFJXF6GjPcb3f/hd0AR33nknO7as5eO338bDv/stX//Wd5g3ZxZBn5cHf/tbPnLTjQQCQTLS03l9zWr0gO+UlT2v5u1Z2eu1rzQQ4owQ3Qt9PuCkncMZbChrD86QrjH9lgVs2VHr7lxUCtPjYA3PAU0QT4dElgsdRCmkVxErIiWN8HhMtEIzJYIs9EQYlt+EEDDaf5wJwRqXHKEgCz8XpzV24wx52GcFLigM8v+l0xf/KWdcLoeTmacmBLkj09nvRJINaxhXls/mqNvq1cMmRqYJuJDOmbkG+A6kMr8ZIUGx7z06NYljfUOZYOxOZoeCuP+jpGX+1/sO9D3dOe0EYdLxnKpycjYw1d6Q21xdMdcbR0oL2xJ8/fbxLLr3S/z6f15LVowURFpJXDQK23awvRAt1EEXKEn/Epox1WhCIZUgHvNz67ANSGWRpUnm+eN4NFesvCYepE35WZD/BUJt3yIlzs59PIl8uHAsufcbplq32c9DX/pytyTzSzz4i1WYpo2ynVMnmQI8ho4n4tAwVqGSRfRT2mS0m2RKBe0RLx8dtgGPpsgQDvP8MXThVpve7maTU8GF34/PxelAy727IR3H2/GPSE8lELuP1ZHIhGunTkRLwPI925EZDhOyi07qhhyLOEzOjJPtrSauCk/bEelul51b87j26/+H4kI3UO0LZgsK4UC9/iSN5h/ovJdy/beTHbwZTUj8hp1S48kkzLbz2ZIe8oxESoEWURqOEoT0IAf27uDyq+7h5hsv5+qrr+PihdfwzDPP8MMf/pBoNEpTUxP33XcfX/nKV1i4cCE//vGPmTHDRYhdf/313H///cyaNYsf/ehH7Nmzh9///vdntEtfMFs08b6BbOEDmO37EqS9V1vDx557elAqJKcidnd3en1echqgRP8cz+ielTQtCUqtiRVzT86+pOORPRzP6WCQ5xNu+to7r7P+4CZmlU5nyZxL2bT97+yvXc2ooouZNi6P4zUr2bK3iKHDL31fMBOnQkzYjjzJJkoqjPa4S1LX3Og4GIeWMoElpUtSL4h1sm/7dDyOgppYEffk7MMQCgmsS4SZknv/BXE8vW3efWXZmRxPZ+Vqa1sdelxQNjLntG34/jqeTX/8B0d2PMfWt9PYsyXM9FsW8N62GiCZ1Xsl1ghXKH4uCY1SUKi1MCvrIEIoRhsmZV4rleB8kND0PKe6F/74oxVsWr4eGYmicsMUXlLOiUPNWF6wcjyMH1fC3gMNxEOKaKFAIdBMgUh3KCoLcaCpHSehkRGOUT5aY1dbB+2mlxHBJq4aGuVAvJ1MzWF+6BhC70hKFM4MFz4fW1NOu51j7Anq9+Zz7Ufv5NU1TzFp5FF2HCjh0itvPW98ydPd13bQpKR4RM+1UB7dXQulFErvWguFVES1Sg5Lt5Im8DDM+z3yMsppS7i7YXVDIoVASoFXd8jzabQ7CWyl4ReSHI+HhGzHVvSA2TY1tfDSy2/x+0deZNGiJTzwwAOseXMN2Rm5/PSXP8HjNbj/y19lyZLFfP8HP2D+/LlUHznGgos/xK7K3SgBe6oOcOuNy6isrOxTOyfikmPVNe6waRRyizJSa6Fsy8AbkgR8JvGEl3BGNrWt7amW74i8rAu6ceCDdudZnu4L1gfCQuuLA9bXUu3zqUnzx6E+6QjbyabY386UPnZZnk8G02eyynhTvQAjYK9VSd1LO/COeAxthKSZFdgNFrkemwXjNb7w2+1sNIecV10LnHqpdqfjEZEo/kQi5Xi0mE1mlU4s34ceV3gtwXRVwHutdWgxA6M+LeV4WhMaO3ePoHy0xp6k43n0wLyU42m00/hLS4zpoToaHI1mKc64y/J8ret67Z3XefDhR4lvtPjjjwIUXJZGwYSGkxzP+qTj+W6vlu9/dm/5yjMnNLWRno5HYZKOl4zsxxDeckom+vnF5zb2aB9tr6xzsRdK4W1sQ43Kw7YdjBiYGbgJjBIEmhXxgs5nMJoNZL6J0AEFrS1hZF4zGi4C4ECkiNnZR5DKot4xsJWNRwgUkgbHc0aQ7fmkzHdPaKZV5LDrwCpqdmQzedylTJjQ+L4nNKeC637s04vY9tzbWLqGpyPBrUun8+AvVmFEbNITgmvvmszPqldDxMF/LFlxFRJPzMcnR83lm/X/AOGQiIX5cMHFbG1+CR2H44l8SjMuYWv0DzTbDu3tXuamV0ESPXEmmwwG2693gn7tiUzSf+J1PasNG9Yv57KvrUEzJNLeS927Xn74byswdIntbOKBt/Ixbe2877ntbpfKysoUgsPr8/Rjwfo8hvMgNe3rCWrlFIUqThooEBo9+Gn+blBZr+5H6zVQcKy2meysoXzsjs+SlTvJrYQpiDdZVNcf4emnnuL662/g2OFGvB4/h6qOMWlSB+0xaGlt4Y2332X4uFG88NLLlJSOoqkj2idDLdPS0Ye6m0d0HKReRyAAgUyINQcozOlIJmVR6iNGD/THhVyuDh8EaWd9ui9Y72tR+EAW4cKZye7dz9Jz+g3cce1d7+wh8sYu2heWIeYspSblQLLIKYedBwvYvLOCiokFTBoHWw7V8NBLa+nI9mN7JPExGTy/ZjOWaRMrhpaRDs9v3eJecIUdBIfH+HvVBkzboTj/BMNG1bKvo4As3WF2fi37GuI9LqJ1jVsgH4ThFslr5TuUGhJNh3zdQggLTQOFZNKYY6zdVpjSOT2zYQsJy13LZDkOz1RuJuF0Pa+sXoep2SBcXcuaw8spSj9Z1wIWNS1/58Xm/4+9M4+Tqyzz/fc9S+3Ve1cv6XS6k86+dJrsAUIICasEkU1nVBxFUZFxrqOMzp1xQ0dHvY7KqIMKsogICGFHJIEkkI0snX3fu9P7Xt21nXPe9/5xqquX7AF05l6ez4cPHKq6+nQ9Ve+z/n6/3kzA8kzRCY3y4AnrVIXLuemLIyHvOerXeSn0pvj03U2uZNTOXEJdDnpQy4z2bp4+lQMvd7jviTLPOfBoOOxKFpPt7c1wHv01As93ZlzOH3mcwN8Z+D9mYDyU4OovbzunwPNOyJ0vpKB5T3bSxg7dSWsNlL0nBc35LtMPLmhaxSZ66g6jDBsxRePZ373O2Lu2UGBaf9GC5lR2puLz3dht9RxPZBLVPMPmUONqRpUsICd0JYeaculuX0l2/kLGFNdkCpPONYewUjaxkQES1UUEoqB5zn5+jR7RzIYTkpTjUJ3XyLyR9WxO5rO1txDLcegZFwMThO6eX2WXdKGlzy+QzJ15DFOX6LoCJFdP6+HJHfnvyu7ZhShe+EM+/KEBnrPBO1iD+dP8DNu3w+VPG86h1m8qDk5UocJACKyETrzPhz+oYwRgc+0evvbVr6IbOqZp8v0f/QcVo57luluvpqAwwuTq6SRSLs/dB2++hX+996v82w+/xe+ffIF7v/9D/uELn0RoOtnZWfzovn+nz3ITNL9hETItErbMcKgppXB8ac1RAYaQGRS7EhAKpNIKDC58Issv6YgPoN//muLq8P6484Jt97p9vLB6C/GqLKYWlnL4cB3JCo3rplZjtum8cWAT/pF9LBw9i972AFvrVzGqtJlppZdzrLOQIy2vMyfSyIj8xWyNnh5Y8F4KjF9wR8yysXWHRJFCaQJT14lsidJ+rUTpAlPTiGxTlCw5jtAVujCI7QjzoUtWousO2ZriYl/S1aUUJnfsuYIt3fmYgwNPuhK9sne620nTJTlCcVnIQikb29H40q+WsjE1Ik1YKwisOUTDjWUoXRt6T5rA1Ifek5KC2M4sbr1sNYauyBLOSfe0uTv/zAFLWuQiuTSQQtMcpDJ5Y83/YsTYxe9o72d4hyQvZGfGvTOmXsmhg68NBJ6qJUMCz/J7n00HnmICUQ/+FofUKEHWkmKa9/QRMBIERsUZkTeGdbt7M4HHmzWN54+eHHh0BB8anc/xRK2r82crKvY1Me3iRjQdpAMT7LGMz96GritsR7Cv4yN88rH8zOdm8P6ZkU4A+wuaCxVY/2vYhXTEhvhkbDY1lWOoX99CvBSSowUTSyo4sLUTs7gPc1ycrmiIvvYAo4pbmTc7wYrjXnI1m7mRRpLBqTzenESi0BHMEw7JSB3CEFR5GpkYbETTQNoQ3JfN4pmN6Jrrk18tn8Wvts9wUXlCMK4qj83JVpRwr2vKc9jp1LnXCJYUh+jQdoNw9yVnmTolWZsAyVjTYqKZSstl6TRqn+ClzvkXrPn5Tn1yIYWJMfi8MDQ008EsjMNZzy+JECar99TwbzWrMDVXx/WO3YvZEy/mOzMu55n6h7HTyiF/P3Yphzu+jVQ2mjC4vPgfCUXvTfMOmuj5j7CtoYhNh+opiEv27TpCvCqLpfNr8LXYvFS79YLiSp8xlVUdwVP6xKq3GDt+1DlJJl2InawqUEhrS/ScVAW03iRWjiet2yowYg52NhkdVyMOZpYr6q4Lh5CeBNznRhMBRgSiGSmqY4kwMcdwO2uBMF2ptBqBkOmfc5Myn8rHp7dmrjEqiVvGf5udtPc7aRdgww+GzYMOhuqvlw45GPI+F+N7L78yqGMh+Nb6p9IVq4dvLIbv733kHTOMX4hdMCs54AQ1lJFm5RaKkhvLaHfq3GsUU68K0dGviYjkA5dYGIZbwRSbNh7NyWgifm9K6ZBDvnxd9sBO2rWL2LxjAofqV5NbsgCjYmAn7QsfWzQ0GL69ltLG6EAw3GphtPQHw5Ec2NVJQ3v5kGD4aPeVpwyGm7uTZx8zCEmBaSM0l1NNEzaLr04hQgOEqv12PuoQu9ft46eLH8BK2awL70kHHoHpWccdXy/gJ4/twrLzMI1d3PW5oqGBZ3ZRJvB0SCiu7aXzekGT2UZwVJLSwhaEpkiKDibIwYFnJw6nDjz9FbzluGoE86fcTFy7HyldUtmy8psR0T1IaaFpJlPG38CvP1uUSUo9jVFuj0ZOW9BMa7p2SODpbPhiJvAc7izkSMs9wwqaN/9bFzSDO2JDfKJrrNJtIgkzU9Bs1E4QsQYSgkLZOqR4mF02uHjYyv7EQEEzN3cqq+w6FIo2GUYEW5GOjXQ0ateXs3hGG7ZjYTsaOw+MwExT5OiaoPHRTXBjGegamq7RuKwernWDpqYLdrzaS8kSEDpICa9vDXLrAoGuC5osgzG6gyEkUgm+urOBLdE3MITGDUYlJyKrkTjkGTHmhQ+gaRJdmFR6PsV47acYwkYJkxd7v8So3MUXDLQafoadj9qFI6HkYzNpSLaCAC0gwRDncH651EB31/Th1RWaUOgovjg2iCf88bMixU/VcZ1eAZ7GKPcsHfh8zb4/e8jn63ziiunT8EQ2nX6lwP8Zeq1j6STqzJJJF2JDVAVQRLvjGVUBlCLamzitqoCZF8Dq5xJFYeZ6sFUq89qBLM0lgenviGUeUUQCDhpk+NJG+E26ndDACFY3zqDrGRqSpAa8/FVHnIPt/STtAuxCD4aUZfPQn94iFXIZxlO2zcPr15IK9zOMx7ClDYKTxnGOsjjU9BTTgymEkChSbGx4Ak+4IHPIrdq1huRmhzmzCwlVtdBbP5IDG7zMnh+nsvwoh5vGsHZ7VqbSP1zsQY7MRqvrxqrKpu+yfFId7XgaU9gVBs5cDRVVaM2C4MgEI2d0kZ1IkCV6GDWqmf2pIo52FjCzsJWvVnfxfw53ZwLI4vK5PNu4P9MhmRa5kqNdGzLcYyKdoIFJac6VfCYycPAumbeIJfMWZa5nTL2SGVOvzFyXVNRQUjHgj+kVpewOZLPq318kUBcjuznFBz92M/dvWQGNNlltOh/8+nR+snM1VlMQqzuMVayjC0ljaxEdb+XQkNVBHYpdnSP4gL8EI/+AK+UlNKjLQYvogERD40T9KEqLDRQ2bbaJNCW6kEgMXmzyMiq37r9F4BEaZC8ppMtsR6LICiTRdPWuBJ72xIyzBp7pFaX/XxY0g+lGhvvkbAWNpsGiWX2YhjsOO5+C5qKRAztpH7xtEUZh+7ta0DzUuYTK/KPsMcrJMyVzChrYeSyPTfl5oLlUGW/3bCVSYCM0yNG7gX5ZL4tDLU8xodhCCIWjUhxuf4Vv7W64ICqafl++E7WLm2ZPZ2e6w6vbHjz6wMrKmc4vXRgU5FyP1rsN0sv0s0tvQ3jcIut8lUTO9/N1trjiGClSjpNRF1m2eyV29gB9SdKOoZQ74lRKkbQ6CWgqk9z0WR1ounHeRLX9Fgj7z8g9Fg75iKXc+9GUQIqBTlpuMEB80G5Zri9AMk3eLYQg7AnRZSVR7gJI+vPlPmboOSD71QIEpp5NoTlwX6eSsMr4RAswXMLqv4u9n6RdgF3IwZCybJTl0P3cbtQto9A8GspWdP+5FbVUIEzoiXmRQYHQ1ED1epnA0DUsKXhwby4/uEjDq0NKCn56oI898UcyLXZLWeTO6KMgeACjHWxdcGD/RG5YshknqijxaKxZdx2/frZ0oNK/eTILs3N4KauD44kTGNeG+YC/hNfyD3BC7sNYPFAd7+MIsxYPVMeLMdDiN3Fd/otowuLBSUOr4/PhQXundiF7Ly+9UcvKe59jZ103pVXZTP3SFexatp/dDe0UVRpM/sQENr1Wx8rmJoIjy7nspmJeXtPKphaLkeWLGVHVxIH2CEUmfHWuyf853M3m7jo8+iP/LQKPqevcPnd+htoiYQcwtAGeq/c68MC7V9AkbZun99SSkoMkky6goOnvvvmO+Wlb2c24xcZZC5op40vxTy0hNqcM41gXIqSfsaDJyU+gjY8RbQlgdWdx87wQeQ2rONAWIWJy1oLmklHXc7Rr2wUVNJdOqoZJ/Vfl71pBI3CoP5FP5x+7ab0tn+OmztbmIoo2RxE3KJQQICF+IIga04kQirZUGMeno5CgNF6vr+DKSB0gsZTG2z2RkzrVlmOzdvtTFJW5nWrbsehoeZ6sgLuXKGWK1obllFSk98ti3dzxxN3EdzTimVnCjkQ3gQp1wdUAACAASURBVAabsdOLaMzp4/P3XEbsSIrIeEUqt45vfWoWDcc1poyOkpuzkd9EprC1McSish7C+hY29kTO6fw63Q7ihdqF8qidKq7ImIYeTI8SleLQmxZlV4FmCBwHEmmRu36qjLaETlkAN2ECWpKSlGrFZ7iJlEgJgkkPRrCfmLYNPZlN2N+J2+9qJSlH4vNludQV0qFgdAQZt9CCJkkd8styUAkH4dewDEmkOIxMSgwfpEjiWDohr4ah91Fh+olZGmFT4tN7CegBoo52bh2xYTxo/y/Y+0naBdjghGDcYoNY8AANO/OYNaWYyvK3mTRh8pADfnR5AQ888Co7H3oL40QPI9rj5N04je6tnXibbbzdAztDDYbvtOO4o50FtERzuHVKlGUtBrW9BeikDzllI3RBgSeKZrrdEk1XzLy4HsNwK3FDV1RXNbC5o3hIpd85JoTd2u52Y5B0VDjYPRKJu8TKyC5k0g2OeUYPmuZKNikc5hXtR3Pc4Khhc0NxEhE6t8B+qqD+Tv1yJtDFcOLKPU0bWF3XjXQk5sFugqva8TSkkFJhHLXR10tEs0BKRV+dj7rNOXS3RN2DryufPQfzUECdEPz0UDGbew6eckQ6PPA40uLYgSeYUuwmEecaeD4wdyrJMsHC3HEYzRrXT56GrzTGp/ML6G0JMr8ieFLgGR/ewPTcGZn9lDORKb/bgQfehYLm1lG4BH7QuKwe/QbXHz0xHzLYg6aD45xbQXPM/hUTClpwpIO0JHptB/r1x89Y0Dz01Ah3l+mtjaTmlCEvLSNVylkLGgeHUqVxU95CHP0HXDnO4rbxikv8SXTh/I8taLS6bgK9dqag8TRKQrF0QfN6HapZ0NZXmSloDonRjC5r4ZJJ1/JGfR2fiOYwt7SBrTKfnb35QxbiLcdGJiVv/6KLa76h0Ex3v+4Pv9X4yl0GCgvbEXz3v9pZdO32k4Av/zoY+NJUi92QHvfNuZw/Nj6C3ZcumGrcgqmhwy2Y/mZiumCSKZaGPIjwdGDkSedXc62PbSvzqF7oI38eaR68iUyblc+kat4RStczRefGFVeS3Oyw8KKLKapJEL4ofIFxJQqmQ99kE63Hi9Wm09Q9iopLPew8YGNdZtDelUUoqOhJCVK2wVHHINfv0GULYo6BqTv062sqXKJanUFEtSqKop+oFqLRNuKWMYS6ojg3zIlhiMvGRDfSUmhCUBoM02ml98QMiaWSWLb73DxfegQrFV4EXk8lQnPHj4M7Yi73mUEgrGGEIJHQiff58Qd1/AHOKHmlBKel7AgYHhKDEKqDO3B/aXs/SbtAK6pJMKFqN8d6nkPiMG6OwyhvEtUrqQx5Gf2BhxEeNyGYXlHK566dzz0/Xo6la2Q1JvhM9QzuX7UCSxeEmw0+NXoeP1m3GsvWh4zjmttLqApfxmPRN9CFw67uEUj/AvbEXTRg/yF3on47lm3RJsNITxOaRyAd2LS2jIXTmxGawnY0th0sfUcSTl1ONoLWc0Ib9tvudft47ZFVwICw8PLnawGorBlJV8oiO+yjO5ogWOCnw0qQHfBl9B13dDUDA8LCzx3fBgwIC7/VthaAmux8fKIJU8vBkl0UmWFX31HknlLf8S/BAj4k8HxdYfg07BQ8/7ifcXcJdEOcU+Dx6Dqj/KV8f00agWfoTAtl8ew+t1tXkBOnUR6kocMeEnhUb4qxeBhX+fCQrli/DQ48zYHjbN/Yw7RZ1543ZcdpSU+nuAnB9h2vMmJOnIBWM6hjdQ6BxzZITCrA32gRbJeMG1vJtlQzWpOPJp8/E3h6285e0IwI9bjauQIwoGxJ/KwFze6jxUN2MW2/wk5rzp6poHFHPQrbsxVpu0VMgWGjifT+4hkKGhegcJjqhZeQnwEouMmA9F24T4aM4KeM58qa0bTF36I9kWBSdTUTJ7ZD6mVUag5TxtcM3an8u1JunFA1FDgxexhwYsLQe7t6xNB7q4oM3NuiYRQv47Mi/OGFZaz/wRaS201ebJ9I6aUODbvyaTuYR6hoCh7/dmr3l7DnWCFqUNf1vUIQD7aXfv1aRgfUzAplpNgcW0LIw/RrJ7Nu2zEcKbHDGrE8t4vlNQ1uubqa3+zcjCMlXsPgk/On8PBRVw8112dzY2Upe6K1SE1SMD/OpMhe9p9YifS+g7higb9HEB/hwdEksiXMNZFFbN20CgFYtolXC2M5UUARd0xytTwSstsln+2XWErvjqV6NPyDdOT7oiYhvytDrxTEEibIJP04RFetIJnRxVRK0ZOKD0Fc9tmxTCJoZLSaSetF95DR2AS3OzZsHNnV2kPL8VZQ0KEJckry6Orsc5NEXeDP9tMXS7m/QxMEQl56k+l71EHq7msLISgI+WlP9qIATfQS8fvotbvdjqMlKPYV/dUStfeTtAuw9sQ23mq4E0elcAXBHaZ6EoOekTrpi/5ew9DHZ0UyO2ljZn+UUIk7wpFjvTT2fZTK/KM0No3h4nlZfOEdSjgNRmydrfuye90+vrzoW1hJ9wv9p8fXoo8ux7Yljk8nvmW/C1dX4HihNy0+rcAlHS3u36GCPx7chhmJYytXjuTVxvVMLGzBUQ65Ri9B5wC6IO0TyWhfHClEmvFaAN4z8p+9F1JTQwLPkTJm3lHMlhUemvbm0NyVz5QZbdQeKD1r4Dkbb1KO3o1KSyWdV+D5wgNuJzErhKgow3YkpqnzmW/ewI9/twrbcjBMnbs/fwXffWllJmG97Zrp/GbnZle8elDgkUqR47MYX9CMoxwX4TZ+Kb6ix2hVFpp4hutuuYVg/MF04PGcMfCEj/SQTXam+/bB6ukcTe+xScObCTy6cM5a0PTLGjnSQdmK+tf8TJ3nLsqfrqB5L3RgB2vSDrfBPvF4TW78+ofTouAKEfIQKw3iOPKUPrnntoV8Y93rmXu54+KpGZ94dJ1/mDKJVe2vIJWk0IwzP+sAChtNmCyM/CNZvQOKCeQ9etJ3+Xw71ecClum3qnAVH6pcyvoDW9E0Qcsmk47OMThSoWkCn/cinnjDg2U5CE0wsbjQ7braDkIIJuUXsr6jnpTtQMpAFw5KSXRNI2WH0ISOUu5zg+YkYs5qHGUhEFj6JHDeTn9fhFvUDTvD7vvCAzi2A34fdmkx61YfAHDPsEIfqzcfBsD2Ql+OyuQWcWHxq+2b6FdLtbQkvz2yBoki5ElSmdvCjh6XhDnX6GV2+AAdid3u9bsQV4ajzEeXF5DqbMkQtHpNY0g3yWcYQ8TTo/Feuut6kHFBd8pD7gg/3W0OVkKnwTHwBW1iCZOE5SGS46XPSmU6aVleL712KtNJy/L4iSUGroNGAMuKo1DYw/bLhJYFsi/9V7o6m4Mt3pvIJGi4P0VnR/r5GjiGRm+fi/xUGkhDEU2kr4VC6QOvpVC0JXsz1wKHqN095PH+jtpfw95P0i7A2uKbcJQbEAEKdNlPwZI27aQD+EIY+k9np6uOL5t8MSnlsL32VUZ44gS0kad9jf7Dc9OhegAuSl+vr69zr0vcn93YdhSA8CCgS//Isi2+KX1d474TqQ1u5TFsCd5OWZlrx+tF2W6S5fiNDMs7gOUTIPoTKrCHfScc00KoAb24gBnDUe6OU4HRm960cK1At9M+6f9/itMlK/12PqoJ/V2LfjudT+ZUzmD9ga2UzEhSNi/J6KJLWXH0MJMmNzF1fDubDley51jkvHUU32mHc/e6fdx3VzrwAHYggEj7xUo5PPX8JqzM/pjDYyu3uAEQiGs292/fmHlnLS2VCTwAWd6ejF9sZbOn8wk8uAitbBHHH/81mdP1HALPcFLeMyXO56qd6zvmp62mmzFxg9CIMxc076YO7JlGl8N9Ymk6f/z9hsz3I+HTsB15Sp+kbIffbtnsLowDlp7iwSNrMp0KU4/xRttLmetiT0s6qQepUqT6HnF9kfaJii/7i1OdTJo3ns/95BNux6ovhmxoRhRHkI7kpQfXcMtnF/D4n2qRUrJs2RY+etsMHlqzBUdKnlixjU9cXeN2rBIadqufKyaN5M22/bxw/BjFoRzKszuQyuHJhvXcUX47DdEHUDhs6nqSRfkfJxh/EHAg+l2UOS7z929buRuZft9FMOCKdafNCRiDD34c39BI4Phd0uN+03wy44OwJ4EmBp1ZJ51hZ48r/e/b2ZLnfpteUcqeeHcGuXgqrrPBfGe+kI9QeYie9igAXi1MUbGgp8td0DdNEy8OXh/4TIOKwly6+tzE0mcYVObk0pVIpH/WoCKUT1cqBoBH85DvyaPP7iNoBPHrOimnG1AgfKBXguzkoYef5MqrljKibAwAr7/+Ov/wxf9FIhZn8sQpfPdfvofhHwgWSgxOsd0kbYiTtKHvn9CG0pBpw64FvD/u/J9mBf6Z6MLEUTaa0PF4F4BagVsJaBD+xmllhc6Xof98RLo1pSPua2XJPx+l2VRI58kz79mc5ncMJ7d8J0i66oWTMDxmppOmJ5PohoZtS/S47X4ftTT8OqFIKi0tlAxmAqxB77tumRjCznTSYlYAXfTiKIc2O5RJ7kDR5pgo08JleVKuX/6C5K8Z0IBpcNvva/CN+wO6IXH0n/OVH36ImaNXYRiSj6rd/OL5T1I55nKWLpiGY8Ly7QdZPK2KWy6ahvTAnw7u5+qqcdw2bhqYktcadrOkdBLjs7K5OOWSEl9SMB9NbqOhbzmlwcXkhG5CCgXJV8F71UkBd9vK3Ug5EDzEsIPtTOb4YPAxpvkG9lfc1xr6/MHPLdCdIYHodIFnsPUHnO0bjwAwJX1du8stKKaPP3PBIQYVGP0jxVViDcksB799MQX+clr0FYisPBLWIvAUETCWUxAqAUaeMTk/m50S0XsaO8knoWAmQXP/x5l/1+CHNe9Qn2R5E0N9NPyHz4Eu851IwZ1N0aK/qKlLNaOUIjItxogr4jQeNWjZl8uYMU2MzH6SiaNC7DxchGU77D/egkyPni3bYW9Ta+baTghiCRtbyrTyrY1MJ0u2dGiMH0m/H27nOZ7aSxDJqYq56oWT8HjdM0wkkxim7mrx6hqz547lzSONLrWJrjF/2mhWNBzDlhJNCG6fV8ODB2pJ2Q6aJvjU5Dk83riWlOMQS/nRRR8g0YTGqNCl6GoZCuec4sqp/HIuKiOpRJJYMnVW1YD+nSwNjZ72KIbPwRKdhML5RLuTeL0WumaTtL3Ekwbd0TiRwjBdsThKQVcsTnFumM6ES8nRmYhTmhWmKz327LH6MuCERCpJxJtNSnalxdq7XWoQ1cXDj/yeKZNLKS0tQeHj9ttv56XnX8avgvzkF//Bspee4TOfu5Pu7oTbcU6jItx/CbL8XnqsZKbDF/b66HHSo1ghKPAH6LD6kMqNILmeMDGnOzN/yffkv5+k/U+zfF81l5TeT1t8E731I6l93Ys5/5oBVNjaLGomNwyBvGfYrc+Tob+f4XpS9glmFzawKVbITplzyn0LqWzKF/WhmwrNAJBn37M5h9Ga34i5uzxwQXIkP3r9G3+RnbRxw3bS+s6yk3ahyMPz2YGxHJsDbcuZNsFx2/DSoq/nFXTNRhMuNYFX28JPH9SwvYIfpBPBLUdOIL1wbzoR3NhwAs3j8P29fyLlOOzp2T8kca7Jzudo1w9xlEV7opY83SGr97uuX1KbhnQGYCDwpJIWmqZx86cv47nnd2TGm7csncmPH12F7TgYus7fLryI7764Estx8FkaQnM/C5qmDQo8Lo/a0hFXsrH7uQyFyaTcD3Gkcy8Smw7Hi5sinD7wvNdFTT8Smqmw5b4Xufab9UjDeteZ+gvMOPOzDrrDnHOgBTnJJ5+7ghde3EUq5V5/5KY5PP7GjlP6xNR1PnHRjMy4U7dMPJrj+kho3Fy+iM09L2BJG6EE+t5ZUP0aCAeUzrbauVw+/QiasJHK4LUN4xg5qiET2PuBA0nNIfXmm3z0liW89su3iUZsrB0Gt11xMcse34kWifL00TgfaLmM+1/aTyS/ke0tLVzSfS3fXFPHpOwTxHtd4MCWnpPJorWZOiNvsVjyzw3opkI6Dex7eCJf/vxmTI/i8lkaX7rvOg7UjzivznP/qLsf2Xy+KjBn6uyeLTldNKVqSOd1SXvVqTu7T3RTvvhfMmjj08WVwb+jIC752VceJFoeIPT4ckJmAX0l8ow++dEHZ9DW20DIyaahN4Vft5BOihgGMcdAE70u+Wt6qR8gkLuLnJxabHMKjj6BQNhHUWEMIRS5Kk59SzbxlElP7Nz20mJ9Me751J00NzQgHckX/uluGg4d5dWX/kQ8kWT23On8+pc/YNkzr7Jp8y4++vGv4g/cywsvvILH42FazVTivQmu+cA13PfLn/G/7/0aoZxzF0wfrvOZZfuGJag+ovFeVAwMZcJfUXTg/STtAi3fV03zvly+/enfYqVsHv/Vu0doOZxoNF/fyhxvDEO40PXP7r2S2p78k0ZemtBofD3IlLnudqd0tHPaszENnWlGmDUSEGDqOlMpYqM6BALidgCNXqRyf4eRmk6SlQgNdGHQlJxDtrYeQ9gIYbI/XsGqE28OQS6N/tcRQ/jCrvpC2yANwNp0AnXqjsptw64H77IApHY6bFu5G3NhFePnXTekws+pLmdX5hAtwvYOHKDVCydhVWW7B1yjRcjU6SuVWKMNKuYVUnu0GS0SJTgqTk3NFN5u0CnKb3TRahPLidPKRfl1bO4uYY+WfUpZMCTUvepj8pw0LkoJ3n5zBJdObUIhsR2N2v0lZ00E383EGU69yzL/htkXvI83OPDU5I9kzDp/hr+rOm8R9gmTQ42rCZUsQBtROEhT8tIhPpleUcoLq7fQfEkhvgPdBOpiPPf2ZlpnO3gPA402y/dsIDCjmdgxPwWeGAejDxHJ93G8qZCJhSfQEr9mUrafLe1Fp06g00hopRQli/rcvSwdUJKaucdBWOia4lTSY+/lnuC5+GT+5ZPOedR7crdqPKt2reGFu1/j5a2HKJ1Zxo3fncrzD3TTsCvJa1Mv5xNfzOMXf0yx/VAzpvFkJgFOWjb2zeNIplVGftq1m8g4RedSHaUrfplaS2SsovSqOoSueFP9kfLRYW5dsBpdd1BqG5eX1fCDi97E1Nxz7FO7r2Bnb2TIe4aQLP6nEgzvUYQGmg5LPxzH41EIIfGa8JmbPXhybj3l32+0x3ht226WVE9iYjyfv+mYmiFObmk6wYaGrcwpnU513lzi3T4OdrxFVf4l5ISuYG80l87uleRmLyQ+iDT5VLJwReM7aYu/RntiJlPGVzO5shlSz6NSc5heUXPOxNX951emKPnO0KJkeFwZXpRIUxG7YyxKE3RIRdGWXrpuOLNPgoHJhIIxIEbYE6As0Juh4ziayCLhGEOW+j3Obor8X0MkbUga9IW+TTA0GSFUpmvu91kkLA9ZgaF7aX40etOvLYTAj0kfSdaseIPC4iJ++8yDLsFtT5S8a67jnn/+FKD47Ce/yssvr+PmD13Fz3/5OD/8/peZOvNqemyBZdts2rSJKTVTeHH585xocDvops9BeBIYmo6hBfB5bFBdKBki4A0MIac925hXxaFrfw9KKbpFD2XjSofIZ/0l7f0k7R3Y9o1H3hNCy+FEowWGhVdz/1tXiu9PHUpoOXgHJnW3w/a1r1KURtKdy55NQVzym9vuo6jER2pctlslf+0tCiM21hiD2664jJf+sAGjtJdES4hv0EZx4WLGpKH1H15Tx6Tsa5lf1MTUyuu4Z9fm90QD8FT2TrURGz4/EUtKoprGnZOm8WD3WqRQPMAGPv/lGtZaz6I0yQZtGd/41AKSPIrQHAr0Wh65LIFIL4EfMn44RIal3ye+Y35++tIDvHSkjLJ5SeYv+iibVh7mX+rCTJ3ZzqaWc9tJ0xHk7kxglGs4SPpSfoTsAU2hodF8cBSRUQZKOAh03j42jqtHbMh0Rp47FKIy0jAU8TeugllTprInug9PVGdSddV5B59+O51iwnrPVqz7Pdz/s3VYqX7VhOv5yWMmlt0M/idO8slvA02kri5DLCml5M/HWbewB0vpiAWKytUpogu2kqtsRi/o4+KsgxiGYlSV4O21M7h38Zt4DMm15RqfWPUBdsaKTtLV7UdCY0Pj60FqFnQiHeusTP1n8omNRCjBqMQoGvUdWNKmPZUFgRYQ8i/qkzMt5298YwfxrRbSkTRs8rD+wWIadimkVOzcmcuDT09k+6GGkzrICnACwl241tyBdWyijtKd9LXCN7YPoSuEBijF2MoGdN1xtXaVZHHZUUxNYmgKlGROVgv74iUngS2mjLyWo12b3S6XZjBq7G2ItDSYECY1NTcPAZr0//271+3jtx+8Dytl82D4rSHrC5G/1fn9m7txUKwy13PwA3F+U7sDqbIw9F0sGNfLK4kj2Cofw7sNo3A9ChdwcWdVDRt6n0UhMTWDpUWXkEr+DCEcBAb53iuZbyxDw0ZhUG/eSih4wzmrXrwTIlvLp1C6GOQT46w+GbznlmW6EktCKFCCkGaRlOaQpX6/sx2B7aI9sTHsXQjvJUCLu66CwOvJprw0jN/nwetxJZUMqWg73IJhaiifTn5uFj0nejEMxYRRE/iPN77Dv335B1x+1SJmzpjPitff4Mc//iHJRJyuzi7GT5jJtAULSEmdE7EggT4Xufn9X/8nd//D3xNLxLh00SVIIYnZXaScxndNRWG4akIsGn8/SfufZjv3NXAimYCQB60vhZPnRZX54YRL1mflC4RHoCVAy5FExvvxHHR3JXKyElRXOpw4YdOdMKkIdbGw1OGtjjhtVoBxvl6uyA9xsE/Q5mguKizNCi/EyYSWQ/h85jFkiXTG1IF7HlPl/tNv/Qfc499bhpWy8R7uwX+sl4Y8N/n0HFd4623WN+2i1/GijnlJZgtSuQ7Hmwo50RyhMRYnadtsaS9ia3sxYzo7SRluZyHlODx1eCV4B9iu32x6llLvqUXNY7HnqO/bMqjDdrJY9fCdmN/9fAWWbiCdFImgl9+/sJm4UFhhnZ58g+fe3IFlOyRCilixu7SrOYKkP8mDh9bieGxUUsMf6mObZwN+b4Ico5cxwTbaPUlwJKM93Uz09RD22qQsJ33vLp2CezTajPMfZfz4z57sk1IYsXzEkPseXTnQ6Zt1CvTV8M7I82trWf0vz7HzYDeFk0JUfnYmh19uoN3IxTPNIdqVy/76OGWVV3DVUp0/vi2pazJ5euT1fOIyyc93Kba0N+MxnuITs6bx6Im3MijMcfktSNI6g2OWcrjz26h+Mtvc2yhK/QaBROBBhf/3KcfGw+1C2fn7O1U2yuVG03RK75xOp2hIiyMLxn84n07RghBQ6IuiGxKEwjQ0/nZ+B15DIoTEp8OXZph4sz9yUkcpg4Te4bDw7ospKk+cE1P/6XxSMD2XxNwivEckz7ds5sZvL+XZ3W9x4pifJm8FN384yMMrExxp8PD0yOv5h2s8fH9Lko2tLXj0p961/c9zsXdCO+OzdZRwqUg8hsHH5853i5p0MvOhSQvdogaJqRtcUrGUJD8BHAzNpDJyC4qfopSLKK3Mv4YHq9494tjTrS+kUjZP/O5N7LJc0ASplM1jL27ELjbca9vhtUMHSRUDwgUooVwOsKRj8+ThVZQVOggBKWnzVvOzzMyx0AFHpbATy1HBVBoElaKn70m2dr98zr56R1RAtobSBXa6iLh93tl9QpqUXwiBx8wlk2wJgcfIpsKXNYQ01q9fjkj9Pt0VNvD4F2N4I0OklLKzBykOeD0EvB7aGztRSqElHUg5pPSkq9+ZgqrIaF544TVeXf5n/uPffsTc+Zfy+GO/5Q8vvkpJ6Qh+/uMf0tkTpc8ysByNhDIyY9TqWTN44tVncEjw5orVHDl4hF6rC1MMjFUtpwNdDFB42E4LgshplRJcvrU4gbAfNIEtFULTUdJFBAfC/nP+jr3b9n6SdgG2c18DX/zmk+6XZESIudNG8ufuBpYfOQrlgljErWIMDRaXl/Om3M0bXXvwRDSuL6ik3bOag4nDTCjQmR6cRJn3JRzbZn7WoKrMqaXIN1CVvduEloPtdIdEKmWjbIemtXtRMyoRuoYek5DlatxphsbxTc0wDtBAKkX9/ihyvEpr/im2HbWZXAW6LnAULG80+Ui5K2LcYhuMNSyXJFFobO56gTaHU3bY9mwOnLJjlkpaiPIRqO5OEjMqOWZbWJVB+op10GCL7MIsELSPS6N8lMLf5yDHx6jT+zAKIBQTTK46jtJhXnEv87MOoAuJJg4QFCXckbfP1YkT9ayVPtoc/ZzoFPrtfNFXwzsj+/ZvYN1Bl3RX2xWl7tvbMQrysISHvk4vqTwvCKg7nMsvHtaIZ7v+2Xy8kPXPQzJbgnBZ+x/YtQGR5QYgn9GHo2xEmrV/Y+tz5OiucLajUnT0/pYi004DOZKI6LfSSLXTB5zd6/bRcrwV3dDB70MPBxkzdSS79rcS1xQy6KFqbDG1R5uJaw6YGrqmuVWrX+Dx6xiahmNYGD7J7DGVHDjejEePke1LUl06jbc6DhDWugkaFpowUEgKdMXE3AgiZdBfzMwdPdBxGd5RqppbBXMH7vtcmPpP5xOjDsLJdEKg2Wx4sZn2RpfouF4L8OyrJRxua0ahqK2L8J01hWyJNrmFi+Pw1MGtJB0bBUOUFGzpsKvrFXxpqh9H2fT1PU2YZLo4sFDxZWc8F4YXNgT8XPmPN6L64iy5eTYyL8yC2/vQYjaVNaU0C4u7PreIvrY4/hF+mrQ4X771MqKdCbKKTXbFG5EJjRvHTCMrFCO1fR9HDse4qnweCyaHKDlUzP4TiotLqyg3T7Dt+M0Eij1MLr+cuqZC/tQQYObIBkqLFlOuilh3uA6V0rmopIpoysvrDUeJFngJe4LsjxejG0HyfdAhNdoskwJDIx9O2aE6HXGyAERTJ5RmAxpCE3hak4giI9Mt8bYr4hG3UyjjOkYYl/lBCDo7g5TmtyM0hYZgX3eEJV14YAAAIABJREFUmuwjCCQSwbZ4PvMCnelraHO0M463z+ST0fOraBcad3z9evqaovgqss7bJ4HmZqJJLxcXZJHnOc5sdQPHEzA9ICkzTrD72Dj8RuEgeadgJmnJPaWM0hxU3sOIYe/32aSUziQP1dzSRHYwxNIbbiIczubppx4DBbm5ucT6+njt5Re58poPuK8TCtHX05fRP29vbUPkFyBI8l8/vp/Pf+UueixBnmdARaHHVngN139KKeKqDymPnbLDlohpGUH4Dk0Hr+k+7DXJDofJyg3+1bpo8H6SdkFWu6su0wkASU9YYHdKpFLYHkU/yNpRklgwMUB2KSW+0AB7v3Rs8qz9KI8NQqKUzQRvI8J2r1E25d4I25oKWXaonpljlp6SsHLZqjUs37uTxROmMPWiIlbt30Bqn5fLJs+maHwnu46/Qd3hIqorL8Pj20VX1ypyci5j3Kgl7msZXfzds3eT2tSIb36E+mLJJ+67jo33vc32Axvwz7TxHN5L1ewS/LlHOH6ggLquIq5dCHmBPbx9ooS3U8UoBFrKQN8VpGRSiMMdUbqTGrv2VlBdpbGvp49oysNDhy/mupEx3kpEWaM5TPT1EAmMpN2ppb9LBf0UJ+7htm1l0Sm7M0qBMHSK50/gmGO5fGsBjTRhGlIpymcW0dbXBIAmBGXjwtTrcSQuB1N1hZGGaSsKzShGetdCSYfFfhNTKDQBUjpUsghHjOBwfRHFIwsYm3+IfdExvL4txdyyhpP8ceNlF/Na7RrePl7L7PIaltRczMZ9KzjU+hZjCi9hZmUeDc3L2VRXyqjSy0+Jgjs0E5xJIfTdvXim6Biz4ljNSazDXkaUtVAwJ0r94QiNRwuZFmli8vRGNtWVsrOpFD0hIcv93AohkAkNPey+s9GUH6l60NK7cg3JbLIDIkM42eZoSJP+hRJc0ZjT864NHj1rQT96xUiUUjz/9Bau++TF/H7FNhyleOq1bdx440U8sLHWXeQWgnk1FSzvOMLy44cxvBJvoYtGfOz4eu6cMJ0NXc+hkLzV8Sq3ls4lGv8F4I52J4UvpkquQKRWAAb4b0H4b3xPKSQGJwRaIoGS0oX+25Ijm4+jigPpIK9xeE8zKt9d0hGaYP/hVlQ+mSRgZ3075Ls7PD0pH07aJ0IINnd3MDfsBh9NCA7GD1LoVWhpf4r4M6jTrAucbRVg9OWT+cnPXhlYBWg9NGTs/PVhAInvDQJIzK3M4ue7H8bSLBgFL/3XWlRJPdK0mFahmOZLYOiKBRUa9/ziBhZdK/jey0+nwR0+vnyrPkiX9d1Bk59uwT/Lp/OLO38J6/ZBUQ633rGElx57G702SrLIC14vWkLg260x/crRrNl+FNmqIXIlH5s1iwdrt7NrbwV52XFumXAx9zfX8vDhS5iQ3YLmFXRYQX7SFub2kmIO9q2mU4rTghHO5BNCHuL1bZnR+l2fW8R3hwFizsUntnJBK029h2hUNkrqTHI+yQjtF0iVQsifg+3F8AXSC/WKoDcnzcDfO4SBvyvWhxaXZAcnIvwTiSb6UNEOwv4gUkuStHrxmiGCviwSyR4cJ4quh/F5s5AejWBlHiLhkBMOonwaAY+DloRN2w5yx7e+gRAahm5y73e+y+tvvMKHliykIFLE9OppBEyLsG1x820f5jtf+Se8Ph+PvfQ8j973K1a8+ipKSj7yqY9y0cULSDgabckQOR5JUjrY6DTZGrmGwlJJHJXeCT4FSW4sag6MNjWReUgAps/zV03Q4P0k7YKsZvJITEO/YCb6E/XbcRx3J+aNX7Zx5T+5C7LSgb0HJjCzbC2G7i76b9idzz3PPH1aqoxPjx7Pr7vWofIFb3ccYcquDpejqhxqH13B1XduRmJhjNL5w6sr+ecb36Si0MF2nuG1Hd/ii282DHzpb1rAt/e+TKrDvf7CnZOoVzoYOuVaHwvy/4xSNjNsjYO/m8xXbtkCWHzc0fjSr5ayMTUCR0jMuJdPjpnPt1rfAOGQjIe5pmgB2zpdUtGmZITK7MvZFnuETtuhzs7nC5Hr6eraeVrSz+qFgTOOBG772KWZ3TO/PVRR4eaaqexa35bxwSer52T0LE1d51Imsip5EAxojYWY6NeR0kbasOx3Ab5yl4ndL0nzG42NKQ1bNvNzo+2M/nijsYH9zxxiV2Q1RBT7+rbStHIHnqLfYEQculiG1WZRqNssGalz1zO7uPrSD58SmWh8s5Ib23M5PmWbCxiwOjAfSXLtV/ajhI3j6Ox5Yir3fHIDhu5gOzov7P8KP1reCy02BAQfv+QiHtpdi9UmMHySW0dfwrLGlfiNGHE7wIdHXsPKlgZy9G5sTKYFG1iTEER0RXn2xwjGH+FMyhKDx034fAiZJvC0bPYfa3UJDpQ71tyTpkuQChwpiWkutYpUCumxkGnWtaRts79pNyrNL2VJmz5rNygHhEQqyBV9oAYKHU0vpba9iPX1G85I93A++p3DR56JijAzH/kb/Ad78B2Nsmz9JhJTw/iOOPi6NbI87Xgm2RTqo+jpPMGMsU0caygmFJqG0LdTM7Ket1tLsYLVbOtqRrX6MbJT9OJlX3uELE+SGQURWqwDrOkZS4HRy+SsEbTbm1mjfBRoklxtLMXGHjThJs4n2pfzfH0qU7y9uH4jbddm49nRC4eSrNi6FmNRJ3Kvh1xvJwd7H6ag1M+JowWMHd1A9aQmNtaVsqux5NwAEqcBYER0d59W13DBF6PrzxEU4+q0+gaBYlKOzc6GV/H73RUJW1p0tL1Ali+t5alSNDcvp9kocgubipF85Gs3Duz43TiamvyRmGNSGSDLknmLmLFI51DjasaUzMPrmULdsdeZPq6R4tJyts2alfG1pzGKE20iXlTF0nk1+Fpsoh22C0YYmwYjtG3louB0Sgvncrx3BbFOF4xwODqRIy33MCfSyIj8xWyNFvCb7S/TO8rE3JuCsZJX2l5FlaWQB03yxncwoeYQdYeKaK6PcKhuOR+9qJa3z9EnKw6twTIthC7I0buQyhWzV0py/OATjJ2ZSn9W1EkyTmigTIZKOMW73MdMRbQpilmczl88EOuIkpXfByYkVRdOLJ+g0YrHAEUnPbFSjvemhdF1gdeQNPV2IpXCMBVzr5/DK9f/yR2ztjlkFSdZcPVdfPP7d2E6eQTMNrdQVt3c/uEPcsVV12XACP/+/R/Q8K//6r52+jMmAFuZePQwMdkOKFLKQGnZSMftnJ2OJDcQ1gY6fnKAPF0I4SJF/8r2fpJ2ATZlfCk//eat1O6qY+zk/WSFf8tPP30Ru4+OZ8roKDF9B4faS5hRfBk1+c1ckmOwsac0o9N37Nm9LN/8OolNNk5LLi/G5lI6uZ2mPQUUjB7B7+3rqK5qYNvBUvSR2hkPt9fq96JyBOiCcDCFg4PQ3S9T8czmAeQaktlTD2PoTnpx16ErupqUU3naL/2xrAa0hIYSikJfL0Jz+leD+PAdEl3vZ4hWfOOOApq5ecjhdns0Qrwqi6mFpVire/j61KtozYmTHwux96kTjLKrKbkkAH2F/OZXURZd/I9MntLDjsO5/KDuKNeN78FbMJfHtzSi9ejc8cTdNBzbTc/UFDt8HXz8R0s50boWs+IoBWXt/HTsrexu+CMVZXuwtfkZf5xNz3LvrzbR8UQcc7pGx1aNyNXX0uvfz4mdeSdJ0mzpjGDlOKdF+w32hwJqY7vx6CrtE0VjYg2jdQdNhyLdRhMWmgCUw/SSutNSezhI5CxQSYnAHWcuujsHYcjM4u/HP27hNdMAE01y69wk46tuyoBD4usauXfmnIwW6LViLFfMHseLe3dgNGuM6q3gzqpv8frxjfS2BCkJB8nNOUp7XwWP7g+xqKya8eFDLnr3SC+zCuqGaIFWL5xE6cwUkYt6admp0dZbxNhxLVTXtDF61mRqj566sDlpId/yYGBjOQ7Yij3/eYDCvwd0NzeLHhmNp+h1d4TuCHbVT2ZOwVoMTWFLjTVH8vnim0+dkcPOcuxz1u/89bOlJ4EbMol5WOfTN4yn5bITKEPQYysqViUp+NtW0CHsaWBJcD+a5jDf2UkkUcScguczifSarll88U0dywLRIyCnl17poS9qkh8toSlygA4nREcszKiOi/AUbaFdGrRIjU0bivjWon0YugJ0vrK6g42tazJdlscqjpIaGUHcVEjFE/V03nyQoHIou7HXBVyYitJqjR0v1/DPt6zBMNx7uuuZD3LVuEVnJVI+HQCjxTEZqzmodKG583AZV1x7ZrqMqVYe65MSDEFPr4kW1t1i01Gsesji6jtdbjLHETz0QoB/uc0AXHDH157r4G2exFby9LQo5pPYVTbHtENEOuLUB+/FGGNRL5ZzWeRLTMr+AZBCdTxKdenDTK+YfVLXa/b92UM6kdVfL+XHj67FtiVvGGvpuyvAd1/cheVkIfw7SBb3o+4NPju9i0c7XyYZsVHfrKD0+UbyPmPR420ge5ZAvGpw3Uc2oRsOjqOz65UZfPHytxBYfFrq3PX0jVw9sRxP9i4OtEVojBbzkQqd6R27Wd9VyJ54MVn7A7SNcxOtNhlG+loQwkE6Gm+/NYLLpjejaS7710kyTkINos5wqTIUpOeHAkIMXANmwB3J9z8sZM8QAIIte1HKM+T1+jv0QsghRH3hIgMhXDUABPi8CTQFCJflMuyzqSjMzVBoCEuS7xgon47f8JBMppBeyPEHEDZ4YkGksMjyBUnGDGLJXAIBScifQ08MklY+2T6JZgTpiFngQMHoCFYqgeOXOFLHSOl4A5KY1oZjhQmZWe9uEnEe9n6SdoE2ZXwp2UWbKYx9F11IHP8rFFbfze6eR3Esi0i2yeiwjur4DiUMFe5deNHFvHzPCpyUwgin6Dw8kraDeZimwU0fG89PHmtm99FidE0wqacREXTHbbqmYR7oQ8si/QURVKgCjjpdKBTRuBcR1lCOREnBnrZSpqg6hOMgpcaqzjKukPWAxFYaHcEgVZWNGAmbsmAPi0YKAm0HMB3BvKwOZhWO4A9tfexPhOh2chC0oXAwdIO8yFLo3Q5YaJpJceliSjzuPtVwktjNw0hif/zoG1gpB5TE/P1B2heMQAlY9TRcf2gsf+jcj9LggYYAvpKNriaihD836oydU4ejbKQjWNcZ4iPT3kITDsd73qA0eBNLxz/s+kO9kfHHcCHl4XqW3oUxHvuORmyXe/jWfHkJ9/9My3TpKscs5iePedxrj8LKdg+ms/kDCSSKwGlDpUeK9fExjJJ7UEialcE4j4OmJDYah1QWY6q66PCcoNDXQUJ6ycrtxSO1k/xhGENRcP0+EWmfCOF2u6ZXlOJpjHLP0pNJe9c8sIk7vn49Kx/bj2U7LDf2ctfnFvHrl9tI2c08buj87czx/PLENhyh+E/D4NPjp2QQsBnggXIwhM7fj1/K9Y+c+L/snXmYXFWZ/z/fquq9syeEhAQSICEQIOyKBAgIiIIIAqLDqJlRGYZR0REdR2Y0ouPoMOMo8lNxYTIqsoksCsNOANkTyEYWtiQEAiF7uju9VdX7++Oc6r5dfWvpJekOOZ/n6afvvXXuue9Z77ln++JCs40Rjcdx/JhbSSWzJLSSf7nySm55KcNpkw/mo0ceTvW4HTzz9iLes/cMPjTlcCbutYGXt/yFKSNm8pdb3+KldfdwzJD1LN+6F6/950QqDmoj/UoVi6YOY23baYyf/DbrVu3N6P325fr2czhq4pu8sHYfUvskSu5hZ7Ky9TsXbN672+KGaMN8ScVmVJVwo8LJBNMuHsOmCreSe1TFdpIpNwcwkTCmj36RqrRvSCvLaZM38bvRF/L0G2tpePg1/u/H99F8cA01y5vZdtRYtu4YRWpKa0e4X299P/vsv55V6/fmtR1jWbdxGMdOXMeGxCE8t6GKrBmt6TS3rVxImqz7WEiIif9wAK2J1xAwprqRZIWBjFRFlrPP3NjRuJcy/NO5Ytp+XdPjfROO5IgR69naNI/hdbM4aMz7ii7AeOvQvampXcLCl8Zx6d+cSmJzAx+rHU3bxKGcdcqRVG5LMzt5IDsmpjjnmMN49NpHGfFcI+1jM9Qu2ErqnIPZMGID7UsqaHunivSDZzOkYhXrXtyLN1pG0fjMWCYmXmX+KxN4qaKOsePXs3V7LTua6njmnQd578hlvNo0mnU7RvHmtns4o/41lrcMY1Xb8LK3qym1AOaeu5939VhCtLdluOmeZ2lLp0GiNZWh3e9LnM1kmTv/adKT3LxDkkLnDENVm7yOrLHXGZtJVrh8Z8pw7jnrkdrdrA1l+Nq5W3gp8x+cMbWd06ckmVL9OQ5N/Run1rVx6YQkq1L/ReaVyXzji0+ROAy2L6ng9Csv56kX7+XNxSPYsmoMz515NitevZuDD6khVVtBnTK+twpkIrflhiSq5bbKcO0qw5oF9X5I0KClvYIaa8WPItJiNdTSCuY+TrOJFMmka1RXpTIMrczS3pYhiVGfbCMj0WJJ11tVOYy2zI6OXrwuvV3yvV1+MUJzY0vH/DElkjT5+WNKiNpxFazf1NDR2Gxq20a6vgIEW5sTDK9tY3PGqR9sbE+QqGjCB49UO1TVt4M5yaiWigSVSbc1SVtmG41MGLCGWmik9YGGHQ+zt7IkBSJLa/NdTEg2MT7ZzrpMRcHCX47szX3/9zz3ff8OXnpnG8PG1ZM+cAw11LFmyzuMnVDJ9ik1VG03Fm9/m7pxNezYP0vz9jpWVtZTN66RjZlaGrK1bHy6nilj3+Z1G8YajeTN5XWcOHIdm5MVvNK2gWnjGzlh6Mt+JczznD8uywnVzT5ML/HVvSp4KnsZ44Z8oGzNzkKrrFpb2l3Fls7iaqMEOyaNcPPB/ATPB15fhQ3DNXpqMq6B5pxSNX57x0R3JYwD93qDpFzFJjJUtN9HqjrreqbIkmi5k+kVDUCWtemqstMjTsOT1lZ+9M1bSK3fSkUVZaWHtqd4sQHqtk6melIjW7bX0tBYy/KmUzlwwpu82jSa31e1cObYVaxsGca2yS0kEw9w8eEvk8C92EckCqdHuavgCq56a23nnnsX0drmhpba2zPc8cRSWtrdeWt7musfeZr2KbXuxZNO8+vFT5HZz7198hcePP76H9m73vUMZrLtNCfuIpl0m/ZmrZUNmd9y0v5GRuKJNz/G7dueJF2VZt22F9hn8yY2tH2HIbXtbGj7Pz586sVMGrqAVIWR/uSb/Ou/jGTZ/e5D5uS/cR8yb60ZTQJx0mFDuH7ZeBatG0tFMsnXTpnCkxvX0m4Z1JoikW0nm3Bf5VUbRkF9ApTBTLy6bAyHztwIWSOTFU89vy8nH7UeElnS2QRPbR/PhP02MuHADby6ZRRvZkbx/qlbOHT0QhY2jOBNq+e4cdN4oSnF3lXvcMCQzZwy8QMs3TKfAys383a6moQqMDIkE26ekvw8pVxDOrdtxrL0cB6/6s9UvdzshvS/cTgvXrOBllWVJCTWvb2MdWNGsm7VaNKVoH1g8RtjWbx2LLWb2+Hozpfoiuc2wgw6ZlI/u7ad6dOcusc7bUOYWrMekSFr4sHmBEciEgYZgxda/sLatZfQ1L6IQ4fuYB9upmnzWUzJ3AfVbZC5B2sby4FDjiyxAONMxk3qOjcumUzQfv5rLFixkUwmSzKVIHvaFh577S1UtzeVjYYNSbEgXUX7+vFkJhitRxuvtwtrOZTaURky05q5lyTWPpUhozNMm7oaJYyJWUjsSHDC3osw2jnFxEtbDuBvRiwH2vjIUHHj1qlMHnJuWRvZFltQhcH2xWtgdD1urNBoWrYR7V+JJYxkC6SzuelNRnZrErLCyd7Blm11jLctGFnMxEtNoznGXiVJFrMET7dUc3BNAvyw/3reZKhamFjh9EVHVj4A2TaEm9M5tWY1Ov5MvnfNv7p67HO5leQns3hsZz02YvxJNG19GzW2sGNrhmRFktTQGjI7MpiMbEWCoXXVbNvQTCIpLAXVpGipSJFpyJKoyJCxBBkSpHcMpa4iww5L0JZN0JAdyrBkmlYZrdZGTQ1UU0V10s0DG1tl1Ef2VmuzOpQYTmVqOJWJStLZps7FDKrutgIT8rbGiMwfs6yxaWND7hQQ2cqk77Fz8b69rRVymp2JiP6GQJUZ31p1GylUpdpzP2FAc3pbaKTtjlRUHoi1Q9Z3miTtDY6odIm7V7KVluQIyFRSaBfr/BV/OQ49aDxL/vgMbNgOQOVbjVSlK0mMdd3HFU1iyFo6uoxtR4rEGwKJJlJsaa+hfbjLcGu2juGNzDBSw50u36LGMWygkgnDnIBsnOZlotNrEqSZOTSJ6t3eHTndTsA1AkosKe8yqdqMV+5fDIdP7Mj9qdZcQXMFr6k53THRPducxHLlwmBzSzXjTB0T3d9OD3GzEcytOWy2rU74xXnFfqnXO7Q+90vtoKVyGjQX3lW82ArMxpfeJrHiDTBXzstND4CtTTW0reucfLq6eQRvbKgDIJ3Yxt3bJ3ZUXKNSDW7LC5WfHqXSJJoe2uHSAwnLGq8+twbG17n9+rLGK0vfgr3ktxOATH1dR/ybQXN1BRVel3N7SzXjhrhJ7lng5XQTe/kbTVBVv9V9VZt71XxkzMuk/DL5DP/OI6nDeLltSOxmvKPGL6IyLSQjkYQr5kxk3qPHd2k0/3jOrbB+K/c8/CIjZ0yieWiSukaj9qQ0oxYZTfVG5SYj+fZmtp+xF9ZYwc1b1zG6fQyZkzNsa6ijcUoVG1eNYvKQjbzeNIYtI0eSeKeFg2u3srx5OJsnt/PXhz9CRSLLCZbgqbcP4byxz1E5Lku7iavfOYznmjZy1ZEn0tZ6B1KaoZllfHWvFmRpUIIdNZ9hXXZEyY+bQh8Lt/70Af7yu3lsaG6hctxI7IB9qG5OU7MuQcuYSqyyglRbgpELjeZRkEkJa0uiJTXYmDTtiSStbUmWLN+P4aO3szwxlhWbxjJt6NuoErZk6vnB+kM5svYdalNbqUxup6HtOfZLtXNEpdfzbLuTzldWcQ3cfKIfCdlMlicfWEpi7GiQyLZl+MtTL5MeVe0+3BA7po+j3U9AytT4VdkASWjdJ0Mycl4/vhEl3Is/mYQpY9ZhtPsPN+Mjey8noXZvufHXI18mUT+eCbXXlfy4iUsPgJ987fe0b2vgnUh6pJrTZFqzDGurpnlcNakWI7teNI8VGQm1VmArRHp8mmxLki1tSZa8PJERe29le2s1TW1V3PT6cRw95nU2ttezNVNHMjGR99WtY2MmCVrNzOqWTtnJ7BLc67vr6vJyVpLPf/otSLuuYbVlyGxtgYoUApLtWRrbdmDJBMoKtUNLym26bukEGVOHOHlbOkWbJVHSlekdmRTtiMpEprPCUm4rW0hhXd41lWoE24FlK0klaklFGmOFVo52WTHq54/levvSTa1QV9XpR4fCmm8qt1tnIy0rSHbaks4kqajIIP/uaLMkdR13Qku2fcBE1kMjrQ9kk9U80VDN6GSGjZkk0yraO8fpgRo2oZH/26utM2bMOoREMtEhtmy+dwPo0LzMFYSU17zMnSdboD3ye7Y1ScJvRQjQnu1UmHWal51szCS95mXudnOySuVHS5fK7Z3XN3D3bx+H2lqsaQeqr6XmzUYyNSmSzWnaRlZTtz5Lulpkk9CeSFC93utDJpO0J2pIVGXItibJVGVYuWkvhlS20NBWzT5DtvKkn1Rdk2wjWbWRJ1pcetTImOy3jwBIIOqT9dDL9Bg6up5oRCWynSel0oNMNIYhYZ2x2dBWjdm2Djs7NUjdPW2mjjPnJFlS6zKfaHo8eeezrFiyFtXVQkWKRGJER3pYRYL2RBV16410tauM24aoIz0yNUZWSdo31JCoStNWV8HKjTCkqoXKZIZEHR3pUZ1oI1kdSQ+MSdH0sCwH12zn1bZhBWV6oj1OY/f7AB//bGd6Nb70NskVb7rewb1GkdzURv0mSCTFo0+sJLk1S/1mICvaK4aSeNM1AkzGpuQQGta5PbKS9a2sbRnJ2taRYDB+XCOvtQ9hVcMQsgYHjV1H0g8LJclw8si1pBJ+OBRjWvU2Xm0bSlPb/VTKldGRiRZEuw9rhrrm65k68gZU6RrThT5ucmmV/5JtXvMWNLthmlQ7aEsrkki1ZlEiSduoCpCo3A5Zidbh7gNBDSnSNQms2mWehsZamqtFsjpDU3sV6USSCUNd3nu1bSiJxA4Ort3ekUbjky48OS1dv8aUUlvO5JP7SGhtaXON/abOoS3oXn6SLeZa9gnF1mXJyHlDWzVZ2+5HAjrrM78gmY2ZRIfX8j3s1nw7o4ZdVdYHZ356bFu7gcz6DR11QaodElvbOn5PkKR6u4+rNqgcVcU2c++FbDpJZruvFwSN6QpaGoeRi9rt2Rpead67M6xq5aX2SiSYkmrzK3pzT8q6VczJ8T2uyyqrK1Cmc3iTbAbXenGeK2sdDTF3Tud5ls6GjjOyS2MnkxXRqq/dEuSaNW5XSct7l2QhuwXK3Gi2pr6aCVPHd+xptn1LE9s2NUI24xptrUlIJpAZJpFod418Zf3/dlwWzgLZBJYyyKpjCDeZzJLJimTCaMxUkZKbGpQhMWCNtERpJ4FCjK45hm1Ww8vtlWzJJnkr07kSRNAhbK36S3u8HcAhxx/EBz9zaqd/FZ3t6WRrhv3HDOvI7BVtMHVEZ0Mq1SYOqh/ZeW9bkkPq9uk4r0h0ijhvSdeT0WE5i9mSTbFFUyMFKeE2MO0hhxx/EJ/45/M4/VMnk8pksI2bobmFZGsrVWmjcksryZYMVc1pUq1Qvc2obDKSCZFsE5XbRU1LklS6gkxDJdaWJNleQUt7DW81DqOxrYptLfVsSdfzcsverG0diZRiSzbJy+2VvJmuJiq4Jv9i6W16bN/YiBK+EhNMfe+UjvNC6dFBsjM2BRy291gS3nVTWxXDkpM6ft+aHkJGh5JLj0pfoSt3d80FvdpaIpceZ37mVGgdiEBLAAAgAElEQVRuwTZuxrZuJ5kUyZYMlVtaqd6RJpVMdKRHTYvbwyyXHtU7Eq4Hri1JpqGK08dPp7G9ircahrGpuY6kki49mvdmXdsYpBSbMz49MtUgtyGlAQlVcNzYf+CjE87lnw66ghkjz2Lm+OuYPvLvmTn+OobXfwyN/F9Uf7n7X6B3MJFMkGpro6IiSSKpjs0/K1JJvyAjS+Vrm5zshxdfrlvThl/kRrYlSW5nEZloXFePZYVlwbJixfrxZCxJJgsZS/Do5om0Z5NkTKQtwYoW95Lt9qHT5VXk9zjsJSee39kgsqYdJBKdfle0ZUkkOqvxyjZ1PW+OvDGBaXXjujRwFHkFbE4PBXW+gddl3HyejjZR7WcKpkcxch8JBx3rd9JubiG7ai3D6l35TLZkqNywo8N9qhVSzS5Gk22ier0YnXKbiVqb+0gYkXA9vI1tbjVsJa68bUnXs75tWIdfW7JJtjOhbFtLMWPWIaQqO+uVZFsrqVRnHFY1p7u4n3Xw/p1uWyAVSbtkewUpdd7b3F5LMtEZ/+vbR3Z+vGWSmKKtowq3zUwv6rKKqgqGjh7SecEtsY6cQ0Wy0y5lodLnKZnrXeuw28AyiniVIGOd97pZaO69mDHRaAmyfewbqqmvZtS4EdTUVzN0RB3KZFwYALWnUcZ8eXblPeF3tEpkRcKEMnLhyAhlE3S2VRO0Z5IuDFmRIUmrVeC0RRgwkfUB6UmTdCEwBzgYOM7M5hdwtxpowPXpps3smF1lYzmMqp7BieN/wesNfwYz9h36YZRZAa33QdUHSNTlq072jNM/dTIP/OZRN+G7vb1jc8aKihQXnnNMFz23i2cdxb/f82jH+eyjjubbTz/SsXrqgklH8cqKt2nPZGhJ15FSU4fY8MEjPsrqrS919mLUfwq8DEtPv5rzKSWwfto5R/LKO1uY99TLzDp+CvtOGcNd85ch4MPHHEK2Cv64/EUgXmB9W/pVntvyPMeOOIrDho3okhaJhPtqBvq8b1ZO/Do3P+XMi45nzTUPdSwuKJYeyXQCItuyXHjgEXx/xbqOtPng+Jx0Vsanx3kd6bGlo9fTDWuo5rxehwHgrM+dDsDjtz3Diee/h8nHHdQlLbLVKe6d9yIGfHDWdNJVdEmP5Y0bufeVlzjzwKl84tDDOXbVBB5Yt4zTxx/C0aOHdYjdzxz9PkZUNHVJj2ReekysPJKJwzttK2foNkc58zpfeHEtO155i9vveYFkQzPpA8ZQTS0VW9upaYXpFx/G/EdXkU1BZm/j4hPfw2+fWcLL85IMG7uD46ccye/fXssvdlQzZe/1vM4w1jSNYHPbCL5xcB1/3PAqr7UNIZUnIr8tW01zzaeoa74ecpv/9qEM9Xea3bxqQdlp1l/12SHHH8Rl/z2bK06ZQ7o9QyqT5tOXvZ+f/egB0u0Z6lqyfOyso7nx3hfIZrMM2ZGgYUiCTDZLTSbFV947s0M8viJTyeUHn8z3lt9NezZDW7qWc/c5mz+um0vGsqxqHc/4qiYgQ4IUifq/g8aryNVnfSlDPa3Pzjl9BjOemsCDi1/htMMP5IBJo4vWZ0MqW7ukRyK7iHVNDzK+7jSSNfv3W302dNQQtm9qwPyQ4YjR9Wzd2tyxzcWoEXWs39Toe77E6KF1Hdt1JBBj6+pZ19TgekRNfqsP15gfVjGUHZmtHY376tRoWtNuG4yMJbDEWMi+xR13PshHL/wSy158noMP2ae4wQWoqa/mqh9+i5NnnsKHP/Rhho4aQltbhoaGZoYMqaGytoJtDa4XetiQarZs28rc3/yW2Z/5HMPrqln31jouv/xyfvHb3/L6ypW8vm4t73n/yQytqKY2laQx3QhAfaq+YCNtzpw51NfXc8UVV/QqDKVQTqF+VyLpYFztdR1wRYlG2jFmtrEn/h9zzDE2f36sl7sd0d2p819ESzuEw52k0MLVXYWq8ze97dg7aPSkLlsn5ETPc3M0ytWc29OIk6UqNz3yBcmjaRHduysuPeIksgLl019lqNB+a6EMlU9PylD+3nTF6rP89Igucgpp0ZXly5dz8MEHd5FCqqmvpnlHK81NbdTUVVJTW0VzSxs7mtuoramkprrSb3zrtsGoraqkqa2NpvY26ioqUQKa0q3UpaqoTVXSkmnpGB6sTlaTzu7oujAgu4OPf/wTrHtrI6eeehrf/va3u9mZTqdJpUr3I82ePZuzzz6bCy64oKTb1atXc/bZZ7N06dJuv82dO5f58+dz7bXXlheRnt400nJpEEXSgtiOKDMbsD9gHq4RVuj31cDonvp79NFHWyAQCAQCga4sW7ZsoE2whoYGGz9+vK1cudKmTp3acf2RRx6xmTNn2oc//GGbMmWKpdNp+8pXvmLTp0+3ww47zK655ppufn3605+2W2+9tZv/p556qh155JF26KGH2h133GFmZhdddJFVV1fbjBkz7IorrrBVq1bZ9OnTrbW11SZOnGijR4+2GTNm2E033WTf+ta37Oqrr+7wc/r06bZq1SozM/vud79rU6ZMsRNOOME+/vGPd7h75ZVX7AMf+IAdddRRNnPmTFu+fHls+OPSAJhvMe2Zwb5wwID7JRlwnZn9opBDSZcAlwDsu+++hZwFAoFAIBAAvvSlL7Fw4cJ+9fOII47gRz/6UVE3d955J2eeeSZTp05l1KhRLFiwgKOPPhqA559/nqVLlzJ58mR+9rOfsXr1ahYuXEgqlWLz5s1l2VBdXc3tt9/O0KFD2bhxI+9973s555xz+P73v8/SpUs7wrx69WoAKisrueqqq7r0pM2ZMyfW7wULFnDTTTexcOFC0uk0Rx11VIftl1xyCT//+c+ZMmUKzzzzDJdddhkPP/xwWTYXYqc10iQ9COwd89OVZnZnmd7MNLM3Je0FPCBphZk9FufQN+B+AW64s1dGBwKBQCAQ2KnceOONXH755QB8/OMf58Ybb+xo6Bx33HFMnjwZgAcffJBLL720Y9hz5MiR8R7mYWZ84xvf4LHHHiORSPDmm2+yfv36frH98ccf57zzzqO21q1IPeeccwBobGzkySef5MILL+xw29ra2ufn7bRGmpmd1g9+vOn/vyPpduA4ILaRFggEAoFAoHxK9XjtDDZv3szDDz/MkiVLkEQmk0ESV199NQB1dXV9fsYNN9zAhg0bWLBgARUVFUyaNImWlpYe+ZFKpchmO1e9lro/m80yfPjwfu+ZHLRbcEiqkzQkdwycAXSf7RcIBAKBQGC34A9/+AOf/OQnWbNmDatXr2bt2rVMnjyZxx9/vJvb008/neuuu4502m1tUu5w57Zt29hrr72oqKjgkUceYc2aNQAMGTKEhoaG2Hvyf5s0aRLPP/884IZgV61aBcBJJ53EHXfcQXNzMw0NDfzpT38CYOjQoUyePJlbb70VcL15ixYtKsveYgxII03SeZLeAI4H7pZ0n78+XtI93tlY4C+SFgHPAneb2b0DYW8gEAgEAoG+c+ONN3LeeV23QTn//PO58cYbu7n97Gc/y7777svhhx/OjBkz+P3vfx/r59/93d8xYcIEJkyYwPHHH8/FF1/M/PnzOeyww/jNb37DtGnTABg1ahQnnHAChx56KF/96le7+HHKKaewbNkyjjjiCG6++WbOP/98Nm/ezPTp07n22muZOnUqAEcddRQXXXQRM2bM4IMf/CDHHntshx833HADv/71r5kxYwbTp0/nzjvLndlVmAHZgmNn827agiMQCAQCgf4ibvuHwK6lJ1twDNrhzkAgEAgEAoE9mdBICwQCgUAgEBiEhEZaIBAIBAJ7EO/GaU67Cz2N+9BICwQCgUBgD6G6uppNmzaFhtoAYGZs2rSJ6uryxdoHu+JAIBAIBAKBfmLChAm88cYbbNiwYaBN2SOprq5mwoQJZbsPjbRAIBAIBPYQKioqOnb0Dwx+wnBnIBAIBAKBwCAkNNICgUAgEAgEBiGhkRYIBAKBQCAwCHlXKg5I2gCsGWg7IowGNg60Ebs5IQ77TojDvhPisG+E+Os7IQ77zmCMw/3MbEz+xXdlI22wIWl+nNxDoHxCHPadEId9J8Rh3wjx13dCHPad3SkOw3BnIBAIBAKBwCAkNNICgUAgEAgEBiGhkbZr+MVAG/AuIMRh3wlx2HdCHPaNEH99J8Rh39lt4jDMSQsEAoFAIBAYhISetEAgEAgEAoFBSGikBQKBQCAQCAxCQiNtFyHpO5IWS1oo6X5J4wfapt0NSVdLWuHj8XZJwwfapt0NSRdKelFSVtJusQR9MCDpTEkrJb0i6esDbc/uhqTrJb0jaelA27K7ImmipEckLfNl+PKBtml3QlK1pGclLfLx9+2Btqkcwpy0XYSkoWa23R9/ETjEzC4dYLN2KySdATxsZmlJPwAws38aYLN2KyQdDGSB64ArzGz+AJs06JGUBF4CTgfeAJ4DPmFmywbUsN0ISScBjcBvzOzQgbZnd0TSOGCcmT0vaQiwADg35MPykCSgzswaJVUAfwEuN7OnB9i0ooSetF1EroHmqQNC67iHmNn9Zpb2p08DEwbSnt0RM1tuZisH2o7djOOAV8zsNTNrA24CPjLANu1WmNljwOaBtmN3xszeMrPn/XEDsBzYZ2Ct2n0wR6M/rfB/g/49HBppuxBJ/yZpLXAx8M2Btmc352+B/xtoIwJ7BPsAayPnbxBejoEBRNIk4EjgmYG1ZPdCUlLSQuAd4AEzG/TxFxpp/YikByUtjfn7CICZXWlmE4EbgM8PrLWDk1Jx6N1cCaRx8RjIo5w4DAQCuyeS6oHbgC/ljdAESmBmGTM7AjcKc5ykQT/0nhpoA95NmNlpZTq9AbgH+NZONGe3pFQcSpoNnA2838KEylh6kA8D5fEmMDFyPsFfCwR2KX4u1W3ADWb2x4G2Z3fFzLZKegQ4ExjUi1lCT9ouQtKUyOlHgBUDZcvuiqQzga8B55jZjoG2J7DH8BwwRdJkSZXAx4G7BtimwB6Gn/j+a2C5mf1woO3Z3ZA0JrcjgKQa3EKgQf8eDqs7dxGSbgMOwq2sWwNcambha7wHSHoFqAI2+UtPhxWyPUPSecBPgDHAVmChmX1gYK0a/Ej6EPAjIAlcb2b/NsAm7VZIuhGYBYwG1gPfMrNfD6hRuxmSZgKPA0tw7xGAb5jZPQNn1e6DpMOB/8WV4QRwi5ldNbBWlSY00gKBQCAQCAQGIWG4MxAIBAKBQGAQEhppgUAgEAgEAoOQ0EgLBAKBQCAQGISERlogEAgEAoHAICQ00gKBQCAQCAQGIaGRFgjsJkhqLO2qT/7fI2m4/7usF/fPkvTnfrLlakkvSro67/psSRskLYz8HdJDv78ROZ4kqeRmlpIulfSpnjynN/jwXburninpD5L27+W9kyT9VX/bVOR5N+XtNxkIvOsJjbRAIACAmX3IzLYCw4EeN9L6mUuAw83sqzG/3WxmR0T+lpXjoRwJ4BslHedhZj83s9/09D7/3F4pu/TlmeUgaTqQNLPXeunFJKDXjTTfIJ3Tg1t+htvMOhDYYwiNtEBgN0bSEZKelrRY0u2SRvjr8yT9QNKzkl6SdKK/XivpFknLvPtnJB3jf1staTTwfeAA30t1dX4PmaRrvTwXks6UtELS88BHI27qJF3vn/9CnG6obzRd7XVFl0i6yF+/C6gHFuSulREP9ZIekvS89+sj/vokSSsl/QYn//JroMaHLaf9mpT0S99zd7/fjTzf/zmSrigWt3nuZ0l63Idlmb92h6QF/jmXRNz+jffnWeCEAs/8nKTnJC2SdJukWn99rqRrJD0p6TVJF/jr4yQ95sO5NM5G4GLgzgLxuVjSNn//KkmbJZ2S5+z7wInezZclVUv6Hx//L8S4L4mkT0lq9Gm2UFKzpNv9z48Dp/W20RsI7JaYWfgLf+FvN/gDGmOuLQZO9sdXAT/yx/OA//LHHwIe9MdXANf540NxQvXH+PPVuB3hJwFLI8+YBfw5cn4tMBuoBtYCUwABt+TcAd8D/tofDwdeAurybD8feAC3A/hY4HVgXKGw+uuzgQ3AwshfDU6HeKh3Mxp4xds0Cbc7+3vj4tH/ngaO8Oe35OzOe+4c4IpicZvnfhbQBEyOXBvp/9fgGoyjgHE+3GOASuAJ4NqYZ46K+PNd4Av+eC5wK+6D+xDgFX/9K8CV/jgJDImx8VHgsALx3JHmwAXA3GJuIs+83h9P8+GqLpKfZwNzYq7PozNPLgUmRX57ADh6oMti+At/u+ovfJEEArspkoYBw83sUX/pf3Ev7Bw5AeYFuMYIwEzgxwBmtlTS4j6YMA1YZWYve3t+hxumBDgDOCfXE4Rr0O0LLI/cPxO40cwywHpJjwLHUloX82Yz+3z0gpzw9PcknYRrlO2Da/gBrDGzp4v4t8rMFvrjaFwVIy5u83nWzFZFzr8oJ8sFTrB9CrA3MM/MNvhw3AxMjfHrUEnfxTV464H7Ir/dYWZZYJmkXJifA6738XJHJHxRxuEavP3FTJzkGGa2QtIaXFg68pikUcBD/nQkUCnpXH/+STNbUuIZ7wDjcfEeCLzrCY20QODdS6v/n6FvZT1N16kR1WXcI+B8M1vZh+f2hItxvVFHm1m7pNV02tlU4t7WyHEG19NVinLituO5kmYBpwHHm9kOSfMoLx5zzAXONbNFfqh5Vowt4OIdM3vMN1jPAuZK+qF1n9/WnLPBNx6/5a9/tgd29Qgz2wQc4Z85G9dLNqcHXlTj7A4E9gjCnLRAYDfFzLYBWyLzjT6JG8IqxhPAxwDkVkUeFuOmARgSOV8DHCKpStJw4P3++gpgkqQD/PknIvfcB3xBkvyzjox5zuPARZKSksYAJwHPlrC/EMOAd3wD7RRgvyJu230P065kGLDFN9CmAe/1158BTpY0ytt0YYH7hwBveTcXl3qYpP2A9Wb2S+BXwFExzpYDBwKY2e3WuRBjfp67NG4oNp/8fPJ4zjZJU3E9p31tpOc/eypuCDQQ2CMIjbRAYPehVtIbkb9/BD4NXO2HLY/AzUsrxk+BMZKW4eY2vQhsizrwvR1P+AnnV5vZWtxcraX+/wveXQtuePNuuYUD70S8+Q5QASyW9KI/z+d23FDYIuBh4Gtm9nYZ8XCRum7B8T7gBuAYSUuAT+EakIX4hbfrhiJu+pt7gZSk5bgJ908DmNlbuLlnT+Ea0MsL3P+vuAbdExQPW45ZwCJJLwAX4Ye487ibrj1yhViCm7A/O+/6YiDjFzN8GZe3Ej4NbgZmm1krfeMvwJ8A/FBuc5l5JBB4VyAzG2gbAoHALkJSEqgwsxbfA/YgcJCZtQ2waYFdjF/F+ghwgp8XOKjxDcHtZvbrgbYlENhVhDlpgcCeRS3wiB82E3BZaKDtmZhZs6Rv4RZZvD7Q9pTBVuC3A21EILArCT1pgUAgEAgEAoOQMCctEAgEAoFAYBASGmmBQCAQCAQCg5DQSAsEAoFAIBAYhIRGWiAQCAQCgcAgJDTSAoFAIBAIBAYhoZEWCAQCgUAgMAgJjbRAIBAIBAKBQUhopAUCgUAgEAgMQt71jTRJz3h9v9clbYjo/U2S1FjgnkslfaoHz7hR0mJJX5Z0laTT+i8EvUPSPEnH7OJnfklSbeQ8Nn53FwrFYX44+/iMWZL+HHP9HElf749nDCZ8eN/Xi/tWSxrdz7acK+mb/niOpCv603/v7z2Shvu/y3pxf2z+6MH9Rctgvl2Sxkv6gz8+QtKHevHMknEp6fOS/ranfhfw6xhJ15Rw0+P4l/QrSYf0zbqynjNX0gU7+5n+nTeg4vQ7wwbv51/15NnRchWta32dsNPTvCe862WhzOw9AF4c+Bgz+3zuN0mF7vl5uf5L2hs41swO7Jul3fwVThEi25/+7mS+BPwO2LGrHigpOQC6gwXD2V/2mNldwF199WcgkJQys3SBn2cBjcCTu86ignwNOGdnPsDMPgTuBQFchhMhH0wMJ2KXma0DLvC/HQEcA9yzE557PU4s/vq+emRm84H5JZx1CWeZ/n62tzaVKAM75Zl7MJOAvwJ+35ub8+rac4E/A8v6xbJ+4F3fk1YKSf8maZGkpyWN9dc6vgQlfVHSMt9TdlOMF/cD+/jeuRPzvoo+JGmFpAWSrom03Lt8aUpa6lv5kyStlPQbYCkwUdJXJT3nn//tGPuT/plLJS3xIsQ5LpT0rKSXJJ3o3VdL+h/v9gVJp/jrd0s63B+/EOlhuErS5ySNk/SYD+fSnH8RO74IjMfpQj5SIn7HSLrNh+s5SSfEhKtW0i0+7m+X6xE9xv/WKOm/JC0Cjpf0j96mpZK+5N10+WKTdIWkOf54nqQfxMRNjaSbJC2XdDtQE2NXt3DG2PNNH66lkn7hG9xIOlDSgz4+npcTOI/6fayP+wMkzZZ0rb8+1+efJyW9FslfCUk/9XnsAblemwvIw/u72Kfd1er8mkz681z++jt/fZaPoz94v2+IhOFoSY/6PH2fpHGROP2RpPnA5ZI+7NPsBR/msXINlUuBL6uzvMTmBUmjJN0v6UVJv8LpjHZD0s8kzffuvh25/n11ltv/jLlvKtBqZhtjfjvC59fFPu+NKJFviuXVXA/g94EDImnQpYdM0rVyH5JIOtPH+/PARyNu6iRd75//gqSPxMVJgXiql/SQz3dLIvfm2zXJ59tK4CrgIv/bRSpQb/njK32c/AU4KOLmAEn3+vzyuKRpAGa2A1gt6bgYW+dK+rlP15ckne2vF6q7or0ic3wczZMrK18sEM6i9VkkvaN1Tre6LM/9HEm/lfQE8Fsfl4/7OH9evgdZjmvl6voHgb0KPLNQ3l4t6duRtJzmr5+szpGiFyQNickKKbnyvFyufNdKOlXSHRH/T5er//LDV6jsf06u7C6SK8u1/vpYXx4W+b9cD3pS0i99uO6XFFfPXujTZZGkx/y12Pj0aXuiD/eXVaBeK4R8Xev9Owe42vt1QKH8u0sxsz3iD5gNXJt3zYAP++P/AP7FH88BrvDH64Aqfzw8xt9JwNLI+Vzcl2g1sBaY7K/fCPw5339/vtT7MwnIAu/1188AfoF7QSVwLfyT8p5/NPBA5Hy4/z8P+C9//CHgQX/8FeB6fzwNJ6xcDXwd+AdgGPAccJ938wiu0v0KcKW/lgSGxMTFamB0GfH7e2CmP94XWB7j1xXAdf74UCCN6wnN+fuxSPiXAHVAPfAicGRMulwBzCkRN/8YiZvDo88sI5wfi5yPjBz/NhIHzwDn+eNqnNj5LJ+u7wMWAPvm51dcnrrV54FDgFf89QtwvRwJYG9gC3BBjL1LgeP98fdz8QJcEkmTKlxvxGRv0zZggvf7KWAmUIHrARvj77koEl/zgJ9GnjmCTm3gz0biew5d835sXgCuAb7pj8/ycTw6JmwjI3lynk+3UcDKyPPjyu3f5GyKKfOLgZP98VXAj0rkm2J5dTUwmu75cRa+PvDn1/o0z9UbU3Dl/hY6643vAX+dCxPwElBXot5r9P9TwFB/PBp4xfufb1fHOXl1Zkza5eqtXBmsBYZ6v3Nx+RAwxR+/B3g4cv+VwFdibJ4L3IvLe1OAN3y8FKq7OuLS2/gkLj+PBjbh8m1+OMupz+bRtc7pVpfluZ+DK8M1/rwWqPbHU4D5/vijwAP+ueNxwvEXxDyzW96O5Kkv+OPLgF/54z8BJ/jjeiCVZ98kH46cm+txeVfACjrL9e9zYY3cW6zsj4q4+27EtpuBL0XCMMzbkAaO8NdvwefpvOctAfaJlt8i8dmR/iXqtY48QNc8M5uude0FEb8K5t9d9feuH+4sQRvuBQmucJ0e42YxcIP/0rgj5vdCTANeM7NV/vxGXOYpxRoze9ofn+H/XvDn9bjM+VjE/WvA/pJ+AtyN69nL8Uf/fwEug4J72f4EwMxWSFoDTAUeB74IrPL+nO6/iCab2Ur/5Xi9pArgDjNbWEZYCsXvacAh6hxuHiqp3syi82dmAj/2di6VtDjyWwa4LeLudjNrApD0R+BESg8VxsXNSbjGAWa2OO+ZxYjaA3CKpK/hKpWRwIuS5uEqndu9/y3eXoCDcY3xM8wNN8Vxh7mh72WRr/iZwK3++tuK9GDmkDQc9wJ6yl/6PXC2Pz4DOFydvW/DcPmrDXjWzN7wfizExdFWXCPkAW93Engr8ribI8cTgJv913YlLl/FEZsXcGnxUQAzu1vSlgL3f0zSJbhGyDhcI3YZ0AL8Wq6HJW5O1zhgQ/5FScNwL4VH/aX/xTWQcxQqU4Xyak+ZBqwys5e9Pb+js944AzhHnb1Z1fiGbRn+CviepJNwH4L7AN16g3rJibgyuMPbfJf/X4/7+Lg1kr5VkfvewYU3jlt8vn5Z0mveXaG6K5+7zawVaJX0DvHhfI6e1WflvCsA7jKzZn9cAVwr6QhcHZGz9STgRnPTItZJeriAX3F5O5e3ovkw19v6BPBDSTcAf8yV3zzWmtkT/vh3wBfN7D8l/Rb4a0n/AxwP5M/JPojCZf9QSd/FfTjUA/f566fm/PFh3SbXK70qEt/RchTlCWCupFsiYS0Un/kUqtdeKuA+ljLy7y5hT2+ktZtvIuMSPS4+zsIVqg8DV0o6zHox1yCPNF2Hmqsjx02RYwH/bmbXFfLIzLZImgF8ADeU9DEgNyG31f8vFLYoz+Hmn7yG+8obDXwOV4gws8d8BX8WrvD80Mx+U8LPQvGbwPUWtpS4vxAtVnreV7E4hp7FTdn2SKrGzXs5xszWyg2x5j87n7e8myNxPbdxtEaO4ydT9hzhvnrv63JRmpX3vFwcCXjRzI4v4F807/4E+KGZ3eX9m1Pgnti8oALzRfPcTMb1BBzry8Fc3Jd2Wm4Y7f243sbP414YUZpxlXdP6a98Uyp/xiHgfDNb2YvnXQyMAY42s3ZJq8t8ZpSe2pwAtprZEQV+r8alQxxW4rwYcXm3q2c9r8/KeVdA1zLwZWA9MAMXF2XXd4XydsRJt3xoZsIcRl4AABaUSURBVN+XdDeul/cJSR8wsxV5XheK1//B9cS14D788t9xxcr+XOBcM1skN2Q/q0Tw8tOn23CnmV0q6T249Fkg6WjgC5QXn4XqtUkl7MqnVP7dJezxc9KKISkBTDSzR4B/wlXq9WXevhLXwzXJn18U+W01cJR/xlG4rtg47gP+1rfokbSPpL2iDuTmuyTM7DbgX3L+FuFxXIWdm5ezL7DSzNpwwywX4oa3HsdVErn5APsB683sl8CvCjynAYibB5HP/bgClwtDXCF4AtfgRG61zWFFwnOu3NyKOuA8f209sJfc3KYqOnuPivEYbgIqkg7FDZ3FUSycuYp0o0+3CwDMrAF4Q9K53v8qda4Q3YqrjP7dN2jK5QngfLm5aWOJqRzNbCvQ4Cs8gI9Hfr4P+Hvfm4CkqT4OC7ESGCPpeO++QtL0Am6HAW/6409HrufHXaG8EE2LD+KGT/MZinspbvPh/6B3Xw8MM7N7cC/KGTH3Lge6LfYxs23AFnXOUfok8Gi+uzzKyav54V6D60Gs8r2d7/fXVwCT1Dlf8RORe+4DviB1zA880v/fR9JDJWwcBrzjG2inAPsVsKuYzauJr7cew5XBGrl5UB8GMLPtwCpJF/p75D8oc0zFDZnGcaHP1wcA++PyXmzdVSLcsWEpsz7rK8OAt3yP4CdxvU/g4usiublT44BTYu6NzdvFkHSAmS0xsx/gPrrjein3zZVfXPn6C3QsGFmHe4f8T8x9xcr+EOAtX49cHLnnIeDvvfuk76UuCx+WZ8zsm7ge74kUjs/8fNrTei1Kh19l5N9dQmikFScJ/E7SEtyQ4zX+pVcS3+V9GXCvpAW4xN/mf74NGCnpRdxXfmw3rJndjxueesrb8Ae6V6j7APPkhqR+B/xzCdN+CiS8fzcDs/3QALhK8B1v++O4IavH/W+zgEWSXsA1OH8c4/cvfHi7Dbvl8UXgGLlJnctwPYBxdo7xv38XN9dsW74jM3se9yX3LG7O16/M7AUza8fNJ3oW1zOY/0UZx8+AeknL/b0LCrgrGE6fP36Je/nch6ssc3wS+KLccNiTuHlkufvW4xqS/y/SoCrFbbj5Ostwaf88MXEEfAb4pc8jdRE3v/L3Pi+3mOA6ivQO+Yb8BcAP5BZJLMQNB8QxBzdMsACITs7/E3Ce/MIBCueFbwMn+TLyUdz8o3x7FuHK5QpcOckN4wwB/uzj+S+4uYb5PAYcmWvw5PFp3OThxbgVjlcVCGOOknnVzDbhejeWSrrazNbi5uMs9f9f8O5acMObd8stHHgn4s13cEM+i328fMdfH4fr5SrGDbh4XoIbgloRZ1fePY/gGpILJV1EgXrLl8GbgUXA/9E1z18MfMbnlxeB6GKHE3BlM47XcWX3/4BLfbwUq7uKEhPOWZSuz/rKT4FP+7BPo7OX7XbgZVzZ+w3uozjf3kJ5uxhf8uFbDLTj4i6flcA/+DpuBK7Oy3EDbji02/B5ibL/r7i69wm61rOX46Z+LMHVpT3Z2uJquUURS3F15SIKx+diICO3yODL9LBey+Mm4KvyC7gonn93CbmJtYGdgPw8K/8i+H/Ay2b23wNt1+6ApCRQYWYtvrA8CBzkK4uAJ5LHRuFeaieY2dtxbvzx14FxZnb5AJg7qJD0Y+BPZvZgH/0Z0Lwq6fPA6+a2Etgt8L2A/2hmn4z5bS5uUvcfdrlhezByq8lfMLNfD7QtgU729DlpO5vPSfo0buL0C7gWfaA8anHbXFTg5hhcFhposfzZD5dVAt/Jb6B5zpL0z7jyvga3mingVkuW22tZjAHNq2Z27a56Vj8yGtcDExgE+B7vJtyq18AgIvSkBQKBQCAQCAxCwpy0QCAQCAQCgUFIaKQNMjSAepfqqkE6VzG71+e5ny1p/K6yb2dSbljy3Wkn6/vJrf57MDJ5u5gtud3te/OcSZKa1blj+UL1QL+2v+zJz/+KKC/0J8rTpdRO0u4s8OyOZ6mA1q8Ka7oWjI/e1h1llvUONzs7zw9W8vNMGe7zdVFj07QH/pXMo8rTnozmL/VSc7i/3klyKgLLlbfgSnnamzurzO+uhEZaAAB1apAe3oPFDbNxO2aX8rtPcx/7en+ZzKaMsOS7M7PPmtnO1Hk70j/nCDO7Oe+3Lrb0A6/65+T+Su2D14GfPN/f9vSYHuSVI3D7SQ0oZvbNvi5c2NXsjDzfD3WE5LZM2pn0NM/k9EJ3JecSWUWZl7++hJs/OVB8BvicmeVvOTIJv93OrmIXvVP6hT22kSanxXa1nH7Yg5KOU6fe2znezSTFa6/NktN9u1tOf+3nuQrC+/vf3t+HJI3x12M1wCRNlvSU3HLj7xaxt5A+5XKV1kHrpqMY84guGqR593fTovRf1cfg1BgW5j9X3bUci2k+/lidGnrH+etz1FUHr5DGY6xenWI0TwvFV1xYyg2zumrtfcKn41JJP8jLa6V0/0ZKusPb+7Skw+X2xPsdcKx/3gER94Xi/wvqrunXa81Hf38xDcEfyG0V8Yly7ektRfJAWXkl4k83XUr/0yHqrvmIpL/2cbdQ0nVyDdJ827pphfr89rC/9pCkfWPui/ZQxWp2xjDR2/mypG/F+FlIpxNJn/L2LJLbZT7/3u94m7qFMeImmudj83apNPBuZku6S27H/YcK5VPv7s78MKtMrWPv793exqW59FbxOqmLRmtcnlFprcwueqH+Wr16oIlbJA266WUqXntyrqQLVEBzOOLfBXKraou+k+LiN8a2bvWgnBb0TJwKSP5WL120N/218XLvy5cl/UfE7zO8bc9LulV+D9FSceOvz5V7Vz8D/IdKaCkPGmwX61ANlj/cTssf9Me34xopFbiNLxdaaa2wFtwmi0ncXj8XRPy92B9/k05NsFgNMJx80af88T/gtfbybC2mT1mODlqsjmKem0nEaJD640JalPOI0baM/PZTf1xK8/GX/vgkOrXV5tBVB6+QxmM3vToKaJ4Wi6/8sJQb5tw5rgJ8Hberewp4GLcLdy5PlNL9+wnwLX98Kp15cBYRXbqYOI7aspp4Tb+Smo8+bppx+x/l/k6MxgXxGoJf66k9JcplJs+G1+ksQ4XywBzKyCt5z5lNd13KOM3Hg3F5rMK7+ym+vEbujdUK9fd92h//LU5+KPesnLblXLpq/XbT7Iyx+y3/zBpc4ySn9VhKp3O6T/vReemas+Fq4Oe5cOQ9dy7x+pKxebsHafBGxI7YfFoozJSpdQycj69jvLthlK6T4jRaZ9M1z5SjlZmv19ojTdw8/+bQmW8K6WV2pFNMuq2mq+ZwY+T4AmCuP459JxWK3zwbi9WD84jXQp5FV+3N2Tjlm2G4crEGt5ntaNz+hnXe3T/h9X3zy2ORuPkzkPTn3bSUS9VPA/G323T57QTacCK+4BpAreZ2415Cp5ZYMa2wZ83sNXBzuXCF7Q+4SiM3LPU74I8qrgF2Aq4SAdcY6OiBiVBMn3KVldZBK1dHsRCnKE+LEldBlSIXD8V038DpmmJOqmWo3JYS0FUHr5DGYze9OkmFNE9fp7z46k2YjwXmmdkGAG/PSTi913J0/2bi84GZPSynlDC0yPMKEafpV67m46sWL4FSTEMwfwi2HHuK0Ry1QU5m5hh/WigPQBl5xbpqw8YRp/n4ftxH0nPevxq6bjAL7sUbpxV6PJ1h/i2uEVOIYpqd+TxgbnPWXF0wEycinaOQTuepOMmfjQBmtjlyz78Cz5hZOfrCUfqiz5sLS86OQvm0UJjvoDyt48eB//K9On82s8flFEWK1UlxGq35lKOVmU9vNHHjKKSX2R8UeieVoyVdrB7sCQ+ZU/9AbpPo/XBhPQS3KTG4d1m3jYApHje3mlnG93p201IejOzJjbSoFlsWrydmZll1jlcX017L37uk0F4mRmkNsEL3lkNJHTTK11HshnqnRZkjtyN0Kc3HQnEZ1cErpPfZTa/OP6+b5qmcRFfJ+OpjmOMoV/evP4jTluy15qNKawg2xd5Y3J7eUkzns5y8UopCeqX/a2YFlTysPK3Q/qRU3dMbnc7ngKMljcxrvJWir/q8+VrF3fKpnAJHOXVEQa1jORmrDwHflZPQup3idVLJfGvlaWUW8jfqd6n6MY659EwvM45onObnj7h3Ukkt6X6kUDw9YGafiL+lg7kUjptS9dWgY4+dk1YmhbTCAI7zY/cJXPf0X/z1BF6vEa+NZsU1wJ6gU08xqnsWpZA+ZU/CEaejWA6xWpSecrU6S2k+5uaIzAS25b6g8ojVeFS8Xl1JzdMYomHpTZifBU6WNFpuPs8nKK35GCWqSzgL2OjzTbk2FyNW87FMeqIhWK49vaUczddy3ZVr60PABbn8Izd3cL+oAxXWCn2SrmW7WJktptmZz+nejhrcRPF8yaBCOp0P4zQxR+XCErnnXtzcoLvVfW5Vbyg3raIUy6elwpy7v1u5l1txvMPMfocb0j2KnunQ5sjX/yylldlf9WMchfQye6LFul7Swf4ddl7keqF3Ujn1am/qwXLj6WngBEkH+ufXyWm45lMobjqw4lrKg4rQSCtOIa0wcIXyWtyQ0SrclxnezXFymmGn0qn7V0gD7HKcltoS3LBEN6yAPmUPwjGHeB3FklhxLcq5wM8Vs3Agz49Smo8tchp6P8etAIqjkMZjN706K0/zNJ+OsOC+4noUZjN7C/g6Tu9wEbDAzO4s8cwoc3A9GYtxL8tyGtOxtsRQSPMxn9wk59zfF61nGoJl2SPpGEm/KuJPIcrRfC3X3SN01aWMxdwqxn8B7vdp8wBuyDdKIa3QLwB/469/ElfWCz2nmGZnPs/idDQXA7eZ2fy83wvpdL4I/BvwqC+HP8yz4VZcvr+rRH4qh3LTKkqxfFoqzBQp94cBz/qy/S3gu2XUSXHk55miWplWXBc16q43thTSy8zXnoySrzn8ddxQ9ZN0HV6NfSeVU6/2sh7M196MxQ+hzgZu9HH+FPEi8oXiJp9YLWWfTwYNQXGgF/iejivM7OyY3xrNrNuKk0A8kubh4rJbpRsIBALy8xLN7PMDbUsgsKsJPWmBQCAQCAQCg5DQkxYIBAKBQCAwCAk9aYFAIBAIBAKDkNBIe5cjpzSwUNLrkjZEJoVP0gDqhEbsu1QlNCLVQ828nYWkcyR93R/na+R17MK+E5/fI53HXj4jp8Jxdd71WfKKG/68Y6f8Xj5ntbyup6Qne2/x7kt+Hir2267IX5FnzVZ5OrZRtYSoCsE9crqVXbQrBxu7U77Lj8v+LPOBwU1opL3LMbP3+P3ZvgncbJ26jKsH2DQAzOznVlojcrDoLN5lZt/3p1008vqCytSRs12j83gJTlHgq3nXZ1F6xVmvMLN+97fcON1Z95dJsTzUb/mrF8ymDxqsZvYhvyp8p2hX9lfa7Ix811/EhHGX64DuojIQKEFopO3hKF53r0svSa7HTdI4Oc3SnM7miTH+rZb0H3Labc+qc0+bSYrRMZTTXbzCH/eXZh7qm9ZpIY3I2ZKuVYxGnr/1wqjt/p6k753K6d39nb8+S07D9S5gWd7zkz4Nlvp4/HJ+uqiAzqPK0OmU4+qI/7l96u7C7dC9QJFtKeQ2Ab4U+LK6arueJOlJOa3LaH4pqe+XZ08uf83yeaBX2obqrs1XSC83526+T6uzI+lbjpbkdHVqeS6WNMVfj9X4VIy+ZZE8RH/kr7x4KaRdWa4+bU91JXO9pN20K8vJGz5vP+/tfchfm6Ou+qyF6pMLfXgWSXqsRHqVk+8+5K8tkHSNYnqvJFVL+h+5svSC3N50+LSeHnE3T277mWIapR35L+8x/aoDqgJ6zjHxPFbS7T4+FynSmx7YReTrRIW/d+cfebpz/loh3b25dNV/y2m3fQW40h8ngSExz1kdcfMpvCYb5ekYzqN/NPP6qnVaSCOyw46YOCpk+yWReK3CyfdMxvVMNQGTY55/NG5n7dz58OgzKaLzSHk6nefj9vtK4uSCXgfGRdM6xqaOdIrYcivuQ+8Q4BV/vaS+XySfjI4+k75rG86lqzZfIb3cubjNWxM+Dt/wcTqb8rQkf0KnPm8lTrWioMYnZZazmLD0On/FpHcX7Ur/v6Q+bbG4p7Ce52qczuIkumpXlqP9OAaXtydHbaS7Pmuh+mQJTu4HOstNt/QqM9/lylnOlhuJ11P9SiROpuHKUzVuY+Nv++vjgJUl8tVsIvkv7xn5cVnI5nLLSqyec0w83wx8yR8n8Xkn/O26v9CduWdTjqZklOeA6+V2cr7DOjUw87kx8v+//XG5Oob9oZnXV63TYhqRxYiz/QzgcHX2NA3DNQzacDp+cTqqrwH7S/oJcDdu9/YoxXQey9HpnAncaGYZ3K7jj+I09+4qI4xR7jCnxrEs9yVOefp+xeirtmFOm6+YXi7ALd72lyW9RuemmOVoST4FXClpAi7/vSypmMZnT8tZIXqSv6L5agl52pX++ikqrU9bSne3J5STN94LPJYrF9ZVoiqqz1qoPnkCmCvpFjrjq1t6xdgWl+8agdciZfRG4vVUZ+IagpjZCklrcDrPt+DK7reAj+E2f83FQzGN0nJlufpSVorpOUfj+VTcxza+vohTgwnsREIjbc+mkO5eGj8ULicZUgkdAugnAWfhKsIfWvx8MitwXA47SzMv3//cM+J2Vi+mEVmO3/m6mV8wsy4CyHIbIsfqyJnTyJwBfAA3zPgxXG9BOfRap7MXRONSkf990ffrq7ZhLk57qpdbSAsyLi6Xyw2pngXcIzfEWEzjs7+0W8vOX1HM7CV11678D8rTp+2NrmQh+po3SuoumtmlclqfZ+GG7Y82s9/np5eZPZx3a1y+6xNm9qakTZIOx/Vo5VQXimmU9kRbsi9lpZie826nb/luJsxJC8SxGtcrAG5uTAWAnGbhejP7JfArnAZeHBdF/j/lj3uiY5hPTzXz+qp12p/aj/cBf+97H5E01dtUELn5PAkzuw0nSZQfz8V0HsvR6XwcN8cvKWkMcBJOdqcYPQlvT3VTS9FjbUMrrpcLbn5Xwsfh/v4ZcWHpFpeS9sf1sFwD3AkcThkanzH0RGexECXzl+K1K8vVp+2NrmShMJSTN57GzXWc7N2MJJ7Y+sTXDc+Y2TeBDcDEAulVDitxPdqT/Hkh+bCo7u5UXK9YLj/dDHwNN0y42F/rjZZuf+uAlqvn/BDw996vpKRhZdgQ6EdCIy0Qxy9xIrmLcMMKuS+rWcAiOZ3Ni4AfF7h/hJwe2uW4eRnQAx3DGHqqmddXrdNydAeLaeRF+RVuYcDzcnqu11H6K30fYJ4fwvgd0KV3xorrPJaj03k7Ti9vEU50+2tm9nYJm/4EnKeuCwe6Yb3TTS2K9U7bEArr5YKbN/QsLu9cmt9r6ikUlx8Dlvr0ORT4jZWn8ZlPsTzUn/krTruyLE1e3HBZb+Iey9OuLCdvmNNnvAT4o3/ezQW8L1SfXC03gX8priG3iJj0KtP+ZtyKynvldI8biB/u+ymQ8GG6GZhtZrlerj/gGpO3RNyXq6UbtaW/dUDnUJ6e8+W4YfEluGH2Q6Bjm5VerwAOlE9QHAj0K5JW44ZQeiTkHgjsKiTNxc3N+kMpt4E9G/3/du0QB0AYiKLg1nNNzlPF0VBcA7+IVpKQNIgVM77+521b2zLzntXriIgrM/vXO/iLkgYA7/ZZ4M4YJ8LV/3SwREkDAChISQMAKMhIAwAoyEgDACjISAMAKMhIAwAo6AGqVzQnB6faRQAAAABJRU5ErkJggg==\n",
"text/plain": [
"