Week 6: Maximum Likelihood Estimation

Marcelo Coca Perraillon
University of Colorado
Anschutz Medical Campus
Health Services Research Methods I HSMP 7607

2020

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.

Outline

- An alternative way of estimating parameters: Maximum likelihood estimation (MLE)
- Simple examples: Bernoulli and Normal with no covariates
- Adding explanatory variables
- Variance estimation
- Intuition about the linear model using MLE
- Likelihood ratio tests, AIC, BIC to compare models
- Logit and probit with a latent variable formulation
- Predictions in logit and probit models

Bernoulli example

■ Suppose that we know that the following ten numbers were simulated using a Bernoulli distribution: 0001110111

- We can denote them by $y_{1}, y_{2}, \ldots, y_{10}$. So $y_{1}=0$ and $y_{10}=1$
- Recall that the pdf of a Bernoulli random variable is $f(y ; p)=p^{y}(1-p)^{1-y}$, where $y \in\{0,1\}$
- The probability of 1 is p while the probability of 0 is $(1-p)$
- We want to figure out what is the p that was used to simulate the ten numbers. That's what we do not know
- What we do know is 1) they come from a Bernoulli distribution and 2) they are independent from each other, meaning that knowing one of them doesn't tell us anything about the other(s)

Bernoulli example

- Since we know the pdf that generated the numbers is Bernoulli, we know that the probability of the first number is $p^{y_{1}}(1-p)^{1-y_{1}}$
- The probability of the second is $p^{y_{2}}(1-p)^{1-y_{2}}$ and so on...
- We could replace the y_{i} with the actual numbers. For example, the first one is $y_{1}=0$ so the probability is just $(1-p)$. I'll keep the symbols because we are going to make the problem more general in a bit
- What we do NOT know is the value of the parameter p
- Since we know that they are independent we could also write down the probability of observing all 10 numbers. That is, their joint probability
- Since they are independent their joint distribution is the multiplication of the 10 pdfs. Recall: $p(A \cap B)=P(A) P(B)$ if A and B are independent

Bernoulli example

- The joint probability is
$\left[p^{y_{1}}(1-p)^{1-y_{1}}\right] \times\left[p^{y_{2}}(1-p)^{1-y_{2}}\right] \times \cdots \times\left[p^{y_{1} 0}(1-p)^{1-y_{0}}\right]$
- To make notation easier we'll use the product symbol Π. For example, $\prod_{i=1}^{2} x_{i}=x_{1} * x_{2}$
- So we can write the joint probability or the likelihood (L) of seeing those 10 numbers as:
$L(p)=\prod_{i=1}^{10} p^{y_{i}}(1-p)^{1-y_{i}}$
- Again, that is the probability that we observed the 10 numbers, although we do not know p yet

Bernoulli example

- Here comes the key insight. We can turn this problem into a maximization problem. What is the number p that maximizes the likelihood function $L(p)$ given the observed data?
- That number will be the estimated parameter p that we'll call \hat{p}
- Yet another way: we want to find the \hat{p} that makes the joint likelihood of seeing those numbers as high as possible
- That's of course a calculus problem. We can take the derivative of $L(p)$ with respect to p and set it to zero to find the optimal \hat{p}
- Of course, the second step is to verify that it's a maximum and not a minimum (take second derivative) and also verify that is unique, etc. We will skip those steps to keep this problem simple

Bernoulli example

- Taking that derivative is complicated because we would need to use the chain rule several times. A lot easier to make it a sum by taking the log; the log function is a monotonic transformation, it won't change the optimal \hat{p} value
- We will use several properties of the log, in particular: $\log \left(x^{a} y^{b}\right)=\log \left(x^{a}\right)+\log \left(y^{b}\right)=a * \log (x)+b * \log (y)$
- We are going to generalize the problem by assuming we have n numbers instead of 10. It doesn't make it more difficult. We have:

$$
\ln L(p)=\sum_{i=1}^{n} y_{i} \ln (p)+\sum_{i=1}^{n}\left(1-y_{i}\right) \ln (1-p)
$$

- Which simplifies to: $\ln L(p)=n \bar{y} \ln (p)+(n-n \bar{y}) \ln (1-p)$
- $\left(\bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}\right.$) This looks a lot easier; all we have to do is take $\frac{d \ln (p)}{d p}$, set it to zero, and solve for \mathbf{p}

Bernoulli example

$$
\frac{d l n(p)}{d p}=\frac{n \bar{y}}{p}-\frac{(n-n \bar{y})}{(1-p)}=0
$$

- After solving, we'll find that $\hat{p}\left(y_{i}\right)=\bar{y}=\sum_{i=1}^{n} \frac{y_{i}}{n}$
- So that's the MLE estimator of p. This is saying more or less the obvious: our best guess for the p that generated the data is the proportion of 1 s , in this case $p=0.6$, which is the same as $E\left[Y_{i}\right]$
- We would need to verify that our estimator satisfies the three basic properties of an estimator: bias, efficiency, and consistency (this will be in your exam)
- Note that we can plug in the optimal \hat{p} back into the In likelihood function:
- $\ln L(\hat{p})=n \bar{y} \ln (\hat{p})+(n-n \bar{y}) \ln (1-\hat{p})=a$, where a will be a number that represents the highest likelihood we can achieve (we chose \hat{p} that way)
- Drum roll: We just discovered logistic regression

Example

- Simulated 100 Bernoulli rvs with $\mathrm{p}=0.4$

```
set obs 100
gen bernie = uniform()<0.4
sum bernie
    Variable | Obs Mean Std. Dev. Min Max
    bernie | 100 .46 .5009083 0 1
* We just showed that p hat is 0.46
* Let's get the highest value of the ln likelihood
* Plug in p hat and the other values
di 100*0.46*\operatorname{ln}(0.46) + (100-100*0.46)*\operatorname{ln}(1-0.46)
-68.994376
```

- Again, we just did logistic regression "by hand." A logistic model with only a constant (no covariates), also known as the null model

Replicate using the logit command

- We have used logit before

```
logit bernie
\begin{tabular}{lllr} 
Logistic regression & Number of obs & \(=\) & 100 \\
& LR chi2 \((0)\) & \(=\) & -0.00 \\
Log likelihood \(=-68.994376\) & Prob \(>\) chi2 & \(=\) &. \\
& Pseudo R2 & \(=\) & -0.0000
\end{tabular}
\begin{tabular}{rcccccrr} 
bernie | Coef. & Std. Err. & z & P>|z| & [95\% Conf. Interval] \\
_cons | -.1603427 & .2006431 & -0.80 & 0.424 & -.5535959 & .2329106
\end{tabular}
di 1/(1+exp( .1603427))
.45999999
```

- Note that Log likelihood $=-68.994376$ matches what we found "by hand;" the coefficient is in the log-odds scale, but we can transform it
- This is a model with no explanatory variables. We can easily make the parameter \mathbf{p} be a linear function of predictors

Some things to note

- Statistical software maximizes the log likelihood numerically. Also the \log likelihood because of numerical precision. The probability of each y_{i} is small, so $p\left(y_{1}\right) \times p\left(y_{2}\right) \times \ldots p\left(y_{n}\right)$ could be a very small number
- The algorithm is given a starting value for some parameters (often using using the null model)
- Each iteration "improves" the maximization
- The second derivatives are also computed because the second derivatives are used to compute SEs
- In many cases, we need to be mindful of the difference between the scale of estimation and the scale of interest
- Logit models report coefficients in the log-odds scale
- Not the only way of deriving logit models. You could also assume a Binomial pdf. The Bernoulli is a special case of the Binomial when the number of trials is 1 . We will see a variable approach, too

Plot the $-\ln (\mathrm{L})$ function with respect to p

```
twoway function Y= -(100*x* ln(x) + (100-100*x)*ln(1-x)), range(0 1)///
    xtitle("p") Ytitle("-Ln P") saving(llo0.gph, replace)
```


What about the precision (standard error) of the estimate?

- There is some intuition in the plot above. The precision of the estimate \hat{p} can be measured by the curvature of the $\ln L(\theta)$ function around its peak
- A flatter curve has more uncertainty. In logistic models, the variance is function of the p
- The Fisher information function, $I(\theta)$ formalizes that intuition: $I(\theta)=-E\left[\frac{\partial^{2} \ln L(\theta)}{\partial^{2} \theta}\right]$
- It turns out that we can calculate $\operatorname{var}(\theta)$ using the inverse of $I(\theta)$
- For the Bernoulli, $I(\hat{p})=\frac{n}{[\hat{\rho}(1-\hat{\rho})]}$ (evaluated at $\left.\hat{p}\right)$
- The variance is $1 / I(\hat{p})=\frac{\hat{\rho}(1-\hat{\rho})}{n}$

■ Note something. Once we know \hat{p} we also know its variance. The Normal distribution is unique in that the variance can change independently of the mean

Logit models with covariates

- In most applications we want to estimate the effect of covariates on the probability p
- So we could just make p a function of covariates: $p=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)$
- The easiest one is to make them a linear function like $p=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}$
- But that could be a problem since we need to guarantee that p will be bounded between 0 and 1 since it's a probability
■ Enters the logistic or logit function: $\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{\rho}\right)}}=\frac{e^{\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{\rho}\right)}}{1+e^{\left(\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{\rho}\right)}}$
- We have now changed the maximization problem. We do not maximize the likelihood with respect to p. Now we do it with respect to the parameters β_{j}
- The math is more difficult. We need matrix algebra. The second derivative becomes a matrix too (the Jacobian). The logic is the same, though

Logistic response function

- If we constrain the response to be between 0 and 1 , it can't be linear with respect to X

```
twoway function y=exp(x) / (1+ exp(x)), range(-10 10) saving(l1.gph, replace)
twoway function y=exp (-x) / (1+ exp (-x)), range(-10 10) saving(12.gph, replace)
graph combine l1.gph l2.gph, xsize(20) ysize(10)
graph export lboth.png, replace
```


Logistic or logit model

- Notice a couple of things. The effect of x on π is not linear; the effect depends on the value of x
- But we can make the function linear using the so-called logit transformation $\ln \left(\frac{\pi}{1-\pi}\right)=x$
- I made you go the other way in one homework. If you solve for π you get to the logistic response function
- More general, the model is:
- $\operatorname{In}\left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}$, which transformed is $p=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} X_{p}}}{1+e^{\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}}}$
- Can also be written as: $p=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{\rho}\right)}}$

Normal example

- What about if we do the same but now we have numbers like
90.46561
105.1319
117.5445
102.7179
102.7788
107.6234
94.87266
95.48918
75.63886
87.40594
- I tell you that they were simulated from a normal distribution with parameters μ and σ^{2}. The numbers are independent. Your job is to come up with the best guess for the two parameters
- Same problem as with the Bernoulli example. We can solve it in exactly the same way

Normal example

- As before, we know the pdf of a Normal random variable and because the observations are independent we can multiply the densities:

$$
L\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-\left(y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

- Remember the rules of exponents, in particular $e^{a} e^{b}=e^{a+b}$. We can write the likelihood as:

$$
L\left(\mu, \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right)
$$

- Alert: Perhaps you are wondering, why are we using the pdf of the normal if we know that the probability of one number is zero? Because we can think of the pdf as giving us the probability of $y_{i}+d$ when $d \rightarrow 0$
- If you recall your stats 101 classes, with a continuous rv the probability of a number is zero

Normal example

- After taking the \ln, we have:
$\ln L\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}$
- All we have left is to take the derivative with respect to our two unknowns, μ and σ^{2} and set them to zero. Let's start with μ :
$\frac{\partial \ln \left(L\left(\mu, \sigma^{2}\right)\right)}{\partial \mu}=2 \frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)=0$
- The above expression reduces to (I added the^ to emphasize that's the optimal):
$\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\right)=0$
- Does it look familiar? Replace $\hat{\mu}$ with \hat{y}_{i}. That's exactly the same as the first order condition you saw when minimizing the sum of squares (that also the moment condition in Generalized Method of Moments, GMM)
- Solving, we find that $\hat{\mu}=\frac{\sum_{i=1}^{n} y_{i}}{n}=\bar{y}$. In other words, our best guess is just the mean of the numbers. $E\left[Y_{i}\right]$ again

Normal example

- We can also figure out the variance by taking the derivative with respect to σ^{2}
- We will find that $\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\right)}{n}$
- That formula happens to be wrong. That's a biased estimate of the variance. We need to divide by $(n-1)$ instead
- (What is the definition of bias?)
- This is not unusual in MLE. The MLE estimate of the variance is often biased but it is easy to correct them (and less of a problem with large samples)

Normal example Stata

- We just figured out that the best guess is to calculate the sample mean and sample variance
- We can easily verify in Stata

```
clear
set seed 1234567
set obs }10
gen ynorm = rnormal (100, 10)
sum ynorm
\begin{tabular}{ccccccc} 
Variable | & Obs & Mean & Std. Dev. & Min & Max \\
\hline ynorm | & 100 & 98.52294 & 10.03931 & 74.16368 & 123.5079
\end{tabular}
reg ynorm
<... output omitted ...>
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ynorm I & Coef. & Std. Err. & t & \(P>|t|\) & [95\% Conf & terval] \\
\hline _cons | & 98.52294 & 1.003931 & 98.14 & 0.000 & 96.53092 & 100.515 \\
\hline
\end{tabular}
```

■ Drum roll 2: We just did linear regression "by hand" (although without covariates)

Linear regression: adding covariates

- What about if I told you that the number I generated is a linear function of one variable, say, x_{1} ? In other words, I'm saying that the mean of the normal distribution is $\mu=\beta_{0}+\beta_{1} x_{1}$
- Now we want to find the parameters $\beta_{0}, \beta_{1}, \sigma^{2}$ that maximize the likelihood function. Once we know the optimal $\hat{\beta_{0}}, \hat{\beta_{1}}$ we find the optimal $\hat{\mu}$
- The likelihood function is now:

$$
L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{1 i}\right)^{2}\right)
$$

- The In likelihood is:
$\ln L\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{1 i}\right)^{2}$

Linear regression

- If we take the derivatives with respect to β_{0} and β_{1} we will find exactly the same first order conditions as with. For example, with respect to β_{1} :
$\sum_{i=1}^{n} x_{1}\left(y_{i}-\beta_{0}-\beta_{1} x_{1}\right)=0$
- All the algebraic properties of OLS still hold true here
- The MLE estimate of σ^{2} will be biased but we divide by ($\mathrm{n}-\mathrm{p}-1$) instead as we saw before
- So what do we gain with MLE?
- We do gain a lot in the understanding of linear regression (more in a little bit)

The regression command again

- The regression command does not use MLE but it does give you the log likelihood

```
sysuse auto, clear
qui reg price weight mpg
ereturn list
scalars:
```

```
            e(N)}=7
```

 e(N)}=7
 e(df_m) = 2
 e(df_m) = 2
 e(df_r) = 71
e(df_r) = 71
e(F)=14.7398153853841
e(F)=14.7398153853841
e(r2) = . 2933891231947529
e(r2) = . 2933891231947529
e(rmse) = 2514.028573297152
e(rmse) = 2514.028573297152
e(mss) = 186321279.739451
e(mss) = 186321279.739451
e(rss) = 448744116.3821706
e(rss) = 448744116.3821706
e(r2_a) = .27348459145376
e(r2_a) = .27348459145376
e(11) = -682.8636883111164
e(11) = -682.8636883111164
e(ll_0) = -695.7128688987767
e(ll_0) = -695.7128688987767
e(rank) = 3

```
e(rank) = 3
```

- The log likelihood of the estimated model is stored in $e(I I)$. The log likelihood of the null model (with no covariates) is stored in $e\left(I_{0}\right)$.
- From the numbers above $e(I I)>e\left(I_{0}\right)$

The regression command again

- Stata uses a formula to go from SSE to log likelihood. Remember, SSE is Stata is stored in the scalar r(rss)

```
sysuse auto, clear
qui reg price weight mpg
* Save sample size and SSE
local N = e(N)
local rss = e(rss)
* Use formula
local ll = -0.5*'N'*(ln(2*_pi)+ln('rss'/'N')+1)
display %20.6f '1l'
-682.863688
display %20.6f e(ll)
-682.863688
```

- The formula is $I I=-0.5 N\left(\ln (2 \pi)+\ln \left(\frac{S S E}{N}\right)+1\right)$

Easy MLE in Stata

- To estimate in MLE using Stata you need to write a program but Stata now makes it a lot easier (for teaching purposes) with the mlexp command

```
mlexp (ln(normalden(price, {xb: weight mpg _cons}, {sigma})))
initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -803.76324
rescale: log likelihood = -729.85758
rescale eq: log likelihood = -697.2346
Iteration 0: log likelihood = -697.2346
Iteration 1: log likelihood = -687.4506
Iteration 2: log likelihood = -682.92425
Iteration 3: log likelihood = -682.86401
Iteration 4: log likelihood = -682.86369
Iteration 5: log likelihood = -682.86369
Maximum likelihood estimation
Log likelihood = -682.86369 Number of obs = 74
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Coef. & Std. Err. & z & \(\mathrm{P}>|z|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline xb & 1 & & & & & \\
\hline weight & 1.746559 & . 6282189 & 2.78 & 0.005 & . 5152727 & 2.977846 \\
\hline mpg & -49.51222 & 84.39157 & -0.59 & 0.557 & -214.9167 & 115.8922 \\
\hline _cons & | 1946.069 & 3523.382 & 0.55 & 0.581 & -4959.634 & 8851.771 \\
\hline /sigma & 2462.542 & 202.4197 & 12.17 & 0.000 & 2065.806 & 2859.277 \\
\hline
\end{tabular}
```


Almost same

- The SEs are slightly different and so is Root MSE. Stata is using the second derivatives to calculate SEs using MLE

Source I	SS	df	MS	Number of obs	$\begin{array}{ll}= & 74\end{array}$	
				$\mathrm{F}(2,71)$	14.74	
Model \|	186321280	2	93160639.9	Prob > F	0.0000	
Residual \|	448744116	71	6320339.67	R -squared	$=0.2934$	
				Adj R-squared	$=0.2735$	
Total \|	635065396	73	8699525.97	Root MSE	2514	
price \|	Coef.	Std. Err.	t	P>\|t	[95\% Conf	f. Interval]
weight \|	1.746559	. 6413538	2.72	0.008 .467736	3.025382	
mpg I	-49.51222	86.15604	-0.57	$0.567-221.3025$	122.278	
_cons \|	1946.069	3597.05	0.54	$0.590-5226.245$	9118.382	

But they are consistent

- The auto dataset has only 74 obs. What about we use the MEPS that has about 15000 ? (That's really an overkill but just to make the point)
- OLS version:

Compare to MLE version

initial:	log likelihood = -<inf>			(could not be evaluated)		
feasible:	log likelihood $=-1539127.9$					
rescale:	log likelihood $=-52965.16$					
rescale eq:	log likelihood $=-52965.16$					
Iteration 0:	log likelihood $=-52965.16$					
Iteration 1:	log likelihood $=-48279.366$					
Iteration 2:	log likelihood $=-47689.334$					
Iteration 3:	log likelihood $=-47676.448$					
Iteration 4:	log likelihood $=-47676.408$					
Iteration 5:	\log likelihood $=-47676.408$					
Maximum likelihood estimation						
Log likelihood $=-47676.408$				Number of obs		19,386
I	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
xb \|						
age I	. 0692295	. 0011701	59.17	0.000	. 0669362	. 0715227
female \|	1.158043	. 0408878	28.32	0.000	1.077905	1.238182
_cons \|	2.176568	. 0603497	36.07	0.000	2.058285	2.294851
/sigma \|	2.830301	. 0143739	196.91	0.000	2.802129	2.858473

Numerical methods

- Stata uses numerical methods to maximize the likelihood. There are many and some work better than others in some situations. Type "help mle" for the gory details
- A classic one is the Newton-Raphson algorithm
- The idea requires Taylor expansions (a way to approximate nonlinear functions using linear functions)
- The steps are:

1 Make a guess about the parameters, say just one parameter θ_{0}
2 Approximate the log likelihood function using Taylor series at θ_{0} and set it equal to zero (easier to solve because it's a linear function)
3 Find the new θ, say, θ_{1}. Check if the log likelihood has improved
4 Repeat until the $-2 \log$ likelihood changes by only a small amount, say 0.02

- The idea of using $-2 \log$ likelihood <0.02 is that that amount would not change the statistical significance -2 log likelihood is in the Chi-square scale (more on this in a sec)

Why is the log likelihood function negative?

- The likelihood function $L(p)$ is a small number since it's the joint likelihood of observing the outcome values

```
twoway function y =log(x), range(-2 2) xline(0 1) yline(0) ///
    color(red) title("y = log(x)")
graph export logy.png, replace
```


What do we get using MLE?

- 1) It is clear that we are modeling a conditional expectation function: $E[Y \mid X]$
- Perhaps this got lost but it's worth repeating. We started with the normal density:
- $f(y ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-\left(y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)$
- We then said that the mean μ is a function of one or more covariates x and we made no assumptions about the distribution of x :
- $f(y ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}}{2 \sigma^{2}}\right)$
- That's why I said many times that the assumption $\epsilon \sim N\left(0, \sigma^{2}\right)$ is the same as saying that the assumption is $y \sim N\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)$, since $\mu=\beta_{0}+\beta_{1} x$
- Note that with MLE we did not assume anything about the errors. In fact, the errors are not even in the equations. It's a different of deriving the simple linear model

What do we get from MLE?

- 2) It is clear from the start of setting up the problem that we are assuming that Y distributes normal conditional on the values of X. Remember the example of heights for men and women. In some cases, perfectly valid to use a linear model even if the distribution of Y does not look like a normal
- 3) It is clear that we assume that the observations are independent; otherwise, we cannot multiply the densities
- 4) The value of the optimal log likelihood function gives us a measure of the goodness of fit, much like SSR (i.e. the explained part) did. By comparing the log likelihood of alternative models, we will test if the reduced model is adequate like we did with the F test
- 5) The curvature of the log likelihood function provides information about the precision of the estimates (i.e. standard errors)

What do we get from MLE?

- 6) MLE is much more general than OLS. You will use MLE for logit, Probit, Poisson, mixture models, survival models. Pretty much all the standard models an applied researcher needs
- 7) Learning to model using likelihood ratio tests is more useful for more type of models than using the SSE for nested models (although you need to use the test command with the robust option in reg)
- 8) AIC and BIC to compare non-nested models are based on the log likelihood function
- Here is a more detailed proof of MLE for the normal: https://www.statlect.com/fundamentals-of-statistics/ normal-distribution-maximum-likelihood

Likelihood ratio test (LRT)

- The null H_{0} is that the restricted (constrained) model is adequate
- The alternative H_{1} is that the full (unconstrained) model is adequate
- The likelihood ratio test compares the log-likelihoods of both models and can be written as:
- $L R=-2[L(R M)-L(F M)]$, where $L(R M)$ is the log-likelihood of the restricted model and $L(F M)$ that of the full model
- Under the null that the restricted model is adequate, the test statistics $L R$ distributes χ^{2} with degrees of freedom given by $d f=d f_{\text {full }}-d f_{\text {restricted }}$; that is, the difference in degrees of freedom between the restricted and full models

Likelihood ratio test: sketch of theory

- The theory of LRTs is a bit dense but the intuition is not that difficult to understand
- We could re-write as $L R=-2 L\left(\frac{R M}{F M}\right)$ since $\log \left(\frac{a}{b}\right)=\log (a)-\log (b)$
- So we are comparing the likelihood of the reduced model to the full model and wondering if the reduced model alone is just fine. Sounds familiar? Not that different from the F test comparing SSEs of nested models
- Keep in mind that the estimated model parameters are those that maximized the value of the likelihood
- The more theoretical part is to figure out how the LRT distributes and under which conditions the LRT is valid (models must be nested)

Recall the F test

- We have $L R=-2 L\left(\frac{R M}{F M}\right)$

■ The F test was $F=\frac{[\operatorname{SSE}(R M)-S S E(F M)] /(p+1-k)}{\operatorname{SSE}(F M) /(n-p-1)}$

- Both are using a measure of fit to compare models

■ With MLE, we want to know if reaching a higher likelihood is due to chance under the null

■ With the F test, we want to know if the additional reduction in the residual variance is due to chance under the null

- The requirement is that models must be nested

Example

- Compare the likelihood and other criteria

```
use "GPA1.dta", clear
rename colGPA colgpa
rename hsGPA hsgpa
quietly {
    reg colgpa
    est sto m1
    reg colgpa hsgpa
    est sto m2
    reg colgpa hsgpa skipped
est sto m3
}
est table m1 m2 m3, star stat(r2 r2_a ll bic aic) b(%7.3f)
```


Example

■ LR tests
lrtest m3 m2
Likelihood-ratio test
(Assumption: m2 nested in m3)
. Irtest m3 m1
Likelihood-ratio test
(Assumption: m1 nested in m3)

```
LR chi2(1) = 8.94
Prob > chi2 = 0.0028
LR chi2(2) = 35.53
Prob > chi2 = 0.0000
```

- It seems logical that LRT and F-test comparing nested models should be equivalent (asymptotically)

LRT and F-tests

- Compare tests

```
qui reg colgpa
est sto m0
scalar 110 = e(11)
reg colgpa male campus
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Source & SS & df & MS & Number of obs & \(=\) & 141 \\
\hline & & & & \(\mathrm{F}(2,138)\) & \(=\) & 0.62 \\
\hline Model & . 171856209 & 2 & . 085928105 & Prob > F & \(=\) & 0.5413 \\
\hline Residual & 19.2342432 & 138 & . 139378574 & R -squared & \(=\) & 0.0089 \\
\hline & & & & Adj R-squared & \(=\) & -0.0055 \\
\hline Total & 19.4060994 & 140 & . 138614996 & Root MSE & = & . 37333 \\
\hline
\end{tabular}
est sto m1
scalar 1l1 = e(11)
lrtest m0 m1
Likelihood-ratio test
(Assumption: m0 nested in m1)
    LR chi2(2) = 1.25
    Prob > chi2 = 0.5341
    * By hand
di -2*[110 - 111]
1.2542272
```

■ p-value of both 0.5341 (I chose bad predictors so p-values would be high)

Information criteria to compare models

- A common way to compare models is by using the so-called information criterion. It's a measure that balances bias and variance or accuracy (fit) and simplicity (parsimony)
- The first one proposed is the Akaike Information Criterion (AIC). In the context of the linear model (estimated using OLS), it is:
$A I C_{p}=n * \ln \left(\frac{S S E_{p}}{n}\right)+2 * p$
- p is the number of estimated parameters (including the constant), n is the number of observations, and SSE is the residual sum of squares (recall SST $=$ SSR + SSE)
- The smaller the AIC the better. When is a model going to be better? The larger the sample size, the lower the unexplained variance, the fewer parameters we use
- Usually, we compare models with the same sample size, n , or maybe a small difference in n (a covarite may have some missings)

Log-likelihood and AIC

- That $2 * p$ is a penalty much like in adjusted R^{2}. The more parameters we estimate the better the model has to be to justify the additional estimated parameters
- We just saw the formula linking the log-likehood to SSE:

$$
I I=-0.5 * n *[\ln (2 * \pi)+\ln (S E E / n]+1
$$

- We could solve for SSE and plug in to get AIC as a function of the log-likelihood
- That's one one way to get some intuition on AIC

Information theory

- AIC comes from information theory. Suppose that we know the population process that generated the data but we are using a model to represent that process
- Think of simulating some data and then using imperfect models to represent the data. There will be some information lost
- If we knew the true data generating process, we could find a way to estimate how much information we are losing in each model and thus choose the model that doesn't lose as much information
- But we never know the true model/process. Akaike, in 1974, showed that his information criterion, now called AIC, tells how much more information is lost comparing one model to the other using the estimated log-likelihood

Some caveats

1 Valid asymptotically
2 Balance between goodness of fit and parsimony (simplicity). The penalty is incurred to avoid overfitting models because models with more parameters will always fit the data better. If you use as many parameters as data points, model fit is perfect (essentially, the estimated model is a perfect representation of the data)
3 Most important: AIC is a relative measure that compares one model to another to choose the one that loses less information. It's not a measure of how good a model is. You may have two bad fitting models (say, super low R^{2}). AIC helps you choose the best among terrible options

AIC and F-tests

- Note that AIC is similar to the F-test we used to compare nested models. One way of writing the F-test was $F=\frac{[\operatorname{SSE}(R M)-\operatorname{SSE}(F M)] /(p+1-k)}{\operatorname{SSE}(F M) /(n-p-1)}$
- Also, the F-test can be written in terms of the $R^{2}: F=\frac{\left(R_{p}^{2}-R_{q}^{2}\right) /(p-q)}{\left(1-R^{2} p\right) /(n-p-1)}$

■ We are essentially comparing SSE (or R^{2}) in relationship to the number of estimated parameters

- AIC is helpful because we can use it to compare non-nested models, although there is no statistical test like F test or MLE
- AIC is a relative measure. The absolute value doesn't tell us much; we use it compare related models
- Obviously, it wouldn't make much sense to compare models with different outcomes or different datasets

AIC with log-likelihood

■ We also saw that we can use the likelihood ratio test to compare models and that the F-test and the LRT are asymptotically equivalent

■ Stata's way to calculate AIC (except in GLM models) is AIC $=-2 I I+2 k$
■ k is the number of parameters, $I /$ is the log-likelihood function. $2 k$ is the penalty due to the number of parameters; the more parameters, the higher AIC must be to compensate

- Maybe the best way to summarize is that we are essentially comparing the log-likelihood of related models

Bayesian Information Criterion (BIC)

- The more commonly used information criterion is BIC:
$B I C=-2 I I+\ln (n) * k$
- Note that we now add $\ln (n)$ in the penalty term rather than 2
- If $\mathrm{n}=8, \ln (8)=2.079$. So in most applications, the BIC penalty is always higher than the AIC penalty but it has a limit because the log function "flattens"
- $\ln (50)=3.91, \ln (100)=4.60, \ln (500)=6.21, \ln (1000)=6.91, \ln (2000)=$ 7.6
- The more observations we have, the lower the growth of the penalty $\ln (n) * k$

Logit and probit: Latent variable approach

- There is yet another way to derive logit and probit models. A way that connects both into the same framework
- Suppose that there is a latent (unobserved) and continuous variable y^{*} that take values from $-\infty$ to $+\infty$. We assume that the latent variable is a function of covariates \mathbf{X}. For simplicity, let's just assume a linear relationship and just one covariate: $y_{i}^{*}=\beta_{0}+\beta_{1} x_{i}+u$
- u plays the same role as ϵ in the linear model: a source of random error
- We do not observe the latent variable $y *$, we only observe if an event happens or not but whether the event happens depends on the value of the latent variable. We use y_{i} to denote the observed variable, which we assume is coded as 1 or 0
- If $y_{i} *>0$ then $y_{i}=1$. If $y_{i} * \leq 0$ then $y_{i}=0$. Note that in this case 0 is a threshold
- Think of $y *$ as intelligence and y is whether a person answers a question correctly or not. Or think of the latent variable a measure of disease severity. If it crosses 0 the person dies

Latent variable approach

- Because of the way we set up the problem, we can write the probability of $y=1$ conditional on the covariate x as:

$$
P(y=1 \mid x)=P(y *>0 \mid x)
$$

■ Since we assumed that $y_{i}^{*}=\beta_{0}+\beta_{1} x_{i}+u$ the above equation becomes
$P(y=1 \mid x)=P\left(\beta_{0}+\beta_{1} x_{i}+u>0 \mid x\right)=P\left(u<\left[\beta_{0}+\beta_{1} x_{i}\right] \mid X\right)=$ $F\left(\left[\beta_{0}+\beta_{1} x_{i}\right] \mid x\right)$

- So the probability of observing $y=1$ depends on the distribution of u, the error component of the latent variable $y *$. We could calculate that probability if we knew the cumulative distribution function $F()$
- It's obvious that we need to make a strong assumption about the distribution of $y *$ in order to calculate $P(y=1 \mid x)$ (note that
$P(y=0 \mid x)=1-P(y=1 \mid x))$

Latent variable approach

- In econometrics this type of model is called index function models (in this case a single index)
- Two common assumptions about u are used: u distributes either standard logistic or standard normal
- Both distributions have a mean of 0 and constant variance. In the standard logistic the variance $\operatorname{var}(u)=\frac{\pi^{2}}{3}$. In the standard normal $\operatorname{var}(u)=1$
- The idea of fixing the variance is not that trivial in the sense that if we don't fix it, then we can't estimate it because we only observe a 0 or 1 and the probability of 1 depends on the sign on $y *$ but not the scale (variance)
- In other words, we don't have information to estimate var (u) yet we lose nothing by fixing it because $P(y=1 \mid x)$ does not depend on $\operatorname{var}(u)$

Latent variable approach

- Remember that the cumulative distribution function (cdf) gives you $P(X<a)$. Remember too that to calculate the probability we need to integrate the density $f(\mathrm{t})$ from $-\infty$ to a: $\int_{-\infty}^{a} f(t) d t$
- If we assume standard normal cdf, our model becomes $P(y=1 \mid x)=\int_{-\infty}^{\beta_{0}+\beta_{1} x} \frac{1}{2 \pi} e^{\left(-\frac{t^{2}}{2}\right)} d t$
- And that's the probit model. Note that because we use the cdf, the probability will obviously be constrained between 0 and 1 because since it's a cdf
- If we assume that u distributes standard logistic then our model becomes $P(y=1 \mid x)=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}}$, which we saw before as the logit transformation
- Remember that there are two different concepts: logistic response function and logistic distribution. The standard logistic cdf happens to have the above formula (the pdf is different)

Estimation

- Estimation is straightforward with MLE. We did it for the logistic model already
- For probit, the likelihood is just like writing $P(y=1 \mid x)$ above because that's the probability of seeing the data. We need to multiply n times and also consider that the probability of 0 is $1-P(y=1 \mid x)$. If we take the log, it's a sum
- This is often a source of confusion but remember that the likelihood function is the probability of seeing the data given assumptions about the distribution of the data
- So what is the probability of observing a data point $y=1$? It's

$$
P(y=1 \mid x)=\int_{-\infty}^{\beta_{0}+\beta_{1} x} \frac{1}{2 \pi} e^{\left(-\frac{t^{2}}{2}\right)} d t
$$

- What is the probability of observing a data point $y=0$? It's $P(y=0 \mid x)=1-\int_{-\infty}^{\beta_{0}+\beta_{1} x} \frac{1}{2 \pi} e^{\left(-\frac{t^{2}}{2}\right)} d t$
- For the logit, we would do the same, but we would arrive to the same place as before

Estimation

- We can program the probit model easily with Stata
- I have more examples on my site https://clas.ucdenver.edu/marcelo-perraillon/code-and-topics
- Note below that writing the likelihood makes it obvious that the betas are shifts in the standard normal cdf scale

```
program probit_lf
    version 12
    args todo b lnf
    tempvar xb lj
    mleval 'xb' = 'b'
    * latent variable assumed cumm standard normal
    qui gen double 'lj' = normal( 'xb') if $ML_y1 == 1
    qui replace 'lj' = normal(-'xb') if $ML_y1 == 0
    qui mlsum 'lnf' = ln('lj')
end
```


Standard logistic vs standard normal

- Does it make much of a difference if we use one vs the other?

```
clear
set seed 123456
set obs 5000
gen u = uniform()
* Simulate logistic distribution
gen l = - ln ((1-u)/u)
sum l
* Simulated normal with same parameters
gen }\textrm{n}=\textrm{rnormal(r(mean),r(sd))
* Plot
kdensity 1, bw(0.3) gen(xl dl)
kdensity n, bw(0.3) gen(xn dn)
line dl xl, sort color(red) || line dn xn, sort ///
    title("Logistic (red) vs normal distribution") ytitle("Density") ///
    xtitle("x") legend(off)
graph export logvsnorm.png, replace
```


Standard logistic vs standard normal normal

- Assuming either one as the latent distributions makes little difference

Digression

- Assuming standard normal cdf or logistic are not the only options
- There is the complementary log-log model commonly used in discrete time survival because the exponent of coefficients are hazard rates
- Or the Gumbel model used to model extreme values
- Or the Burr model. Or the Scobit model
- Statistics and econometrics are large fields... Papers must be written, dissertations must be completed
- Sometimes a proposed new method goes to the Journal Article Graveyard. Sometimes they are resurrected 30 years later when somebody discovers that they are perfect for a particular application
- So many ideas and clever people out there. See Greene (2018) for more details

Example

- Women's labor force participation (inlf); main predictor is "extra" money in family

inlf $\quad=1$ if in labor force, 1975						
nwifeinc (faminc - wage*hours)/1000						
educ years of scho						
exper actual labor						
age woman's age in						
kidslt6 \# kids < 6 years						
kidsge6 \# kids 6-18						
Variable \|		Obs	Mean	Std. Dev.	Min	Max
inl	$1 f$ \|	753	. 5683931	. 4956295	0	1
nwifein	nc	753	20.12896	11.6348	-. 0290575	96
	uc	753	12.28685	2.280246	5	17
expe	er	753	10.63081	8.06913	0	45
	ge I	753	42.53785	8.072574	30	60
kidslt6	t6 \|	753	. 2377158	. 523959	0	3
kidsge6	e6 \|	753	1.353254	1.319874	0	8

Labor force participation

- The probability of working is decreasing as a function of "extra" income

```
lowess inlf nwifeinc, gen(lflow) nograph
scatter inlf nwifeinc, jitter(5) msize(small) || line lflow nwifeinc, sort ///
    legend(off) saving(lblow.gph, replace)
graph export lblow.png, replace
```


Writing down the model

- We want to estimate the following model:
$P\left(\right.$ inlf $_{i}=1 \mid n$ wifeinc $\left._{i}\right)=\Lambda\left(\beta_{0}+\beta_{1}\right.$ nwifeinc $\left._{i}\right)$
- By convention (in economics and health economics), when we write capital lambda, $\Lambda()$, we imply a logistic model (Λ is not a non-linear function). When we write phi, $\phi()$, we imply a probit model
■ Write the logistic model this way (no error term!):
$\log \left(\frac{\text { inlf }_{i}}{1-\text { inlf }_{i}}\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}$
- Or
$\operatorname{logit}\left(\right.$ inl $\left.f_{i}\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}$
- Again, write it like this: $\log \left(\frac{\text { inlf }}{1-\text { inlf }_{i}}\right)=\beta_{0}+\beta_{1} n$ wifeinc $_{i}$ because this will match Stata's (or any other statistical package) output. Remember, we are not directly estimating $P\left(\right.$ inlf $_{i}=1 \mid$ nwifeinc $\left._{i}\right)$

Estimating the model

- So, we will estimate $\log \left(\frac{\text { inlf }}{1-\text { inlf }_{i}}\right)=\beta_{0}+\beta_{1} n$ wifeinc $_{i}$

- A one thousand increase in "extra" income decreases the log-odds of participating in the labor force by 0.021 . And it's statistically significant (p-value $=0.002$). Same Wald test as before: $-.0207569 / .0065907=-3.1494227$. The difference is that the it's not t-student distributed but normally distributed

Overall significance

- The χ^{2} (chi-square) test of the overall significance should look familiar. It compares the current model to the null model (without covariates); the null hypothesis is that all the cofficients in current model are zero
- It's the likelihood ratio test that we have seen before; the equivalent of ANOVA:

```
* LRT
qui logit inlf nwifeinc, nolog
est sto full
qui logit inlf, nolog
est sto redu
lrtest full redu

\section*{What about that Pseudo \(R^{2}\) ?}
- We can't partition the variance into explained and unexplained as before so we don't have a nice \(R^{2}\) that goes from 0 to 1
- But one way to come up with a measure of fit is to use the (log) likelihood function to compare the current model to the model without any explanatory variable (the null model)
- The formula is: \(1-\frac{\|_{c m}}{I_{n u l}}\), where \(\|_{c m}\) is the log-likelihood of the current model and \(I_{\text {nul }}\) is the log-likelihood of the null model
- If the current model is as good as the null model, then \(\frac{\|_{c m}}{\|_{n u l}}\) is going to close to 1 and the pseudo - \(R^{2}\) is going to be close to zero
- In other words, adding variables doesn't improve the likelihood. If adding variables improves the likelihood, then the pseudo \(R^{2}\) will be greater than zero

\section*{Pseudo- \(R^{2}\)}
- Replicate Pseudo \(R^{2}\)
```

qui logit inlf nwifeinc, nolog
scalar ll_cm = e(ll)
qui logit inlf, nolog
scalar ll_n = e(ll)
di 1 - (ll_cm/ll_n)
.0101362
di "cm: " ll_cm " " "null: " ll_n " " "(ll_cm/ll_n): " (ll_cm/ll_n)
cm: -509.65435 null: -514.8732 (ll_cm/ll_n): . }989863

```
- Psuedo \(R^{2}\) is not a measure of how good the model is at prediction; just how better it fits compared to null model. I don't think that calling it pseudo \(R^{2}\) is a good idea
- Big picture: comparing the log-likelihood of models is a way of comparing goodness of fit. If nested, we have the a test (LRT); if not nested, we have BIC or AIC

\section*{Not the only pseudo \(R^{2}\) ?}
- Stata uses one version of pseudo \(R^{2}\) but there are plenty more. Other software may use different metrics
- Long and Freese (2014) have a laundry list of different pseudo \(R^{2}\) (it's an excellent book, by the way)
- There is the McFadden one, MLE, Cragg and Uhler (also known as Nagelkerke), Efron's, Tjur's... (page 127)
- In any case, none of them have the same meaning as the \(R^{2}\) in linear regression
- In particular, they don't mean that predictions are good. Recall that in linear regression the \(R^{2}\) is also the square of the correlation between observed and predicted values
- See, context matters a lot

\section*{Let's try a different predictor}
- We will estimate \(\log \left(\frac{\text { inlf }}{1-\text { inlfi }}\right)=\beta_{0}+\beta_{1} h s p_{i}\), where hsp if education \(>12\)
```

gen hsp = 0
replace hsp = 1 if educ > 12 \& educ * = .
logit inlf hsp, nolog

Logistic regression	Number of obs	$=$	753
	LR chi2 (1)	$=$	15.08
Log likelihood $=-507.33524$		Prob $>$ chi2	$=$
	Pseudo R2	$=$	0.0001
		0.0146	

inlf \|	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf	Interval]
hsp \|	. 6504074	. 1704773	3.82	0.000	. 3162781	. 9845368
_cons \|	. 0998982	. 086094	1.16	0.246	-. 068843	. 2686393

```
- The log-odds of entering the labor force is 0.65 higher for those with more than high school education compared to those with high-school completed or less than high-school

\section*{Odds ratios}
- Let's do our usual math to make sense of coefficients. We just estimated the \(\operatorname{model} \log \left(\frac{\text { inlf } f_{i}}{1-\text { inf }_{i}}\right)=\beta_{0}+\beta_{1} h s p_{i}\)
- For those with \(h s p=1\), the model is \(\log \left(\frac{\text { inlf } f_{s p}}{1-\text { inl }_{\text {fsps }}}\right)=\beta_{0}+\beta_{1}\)
- For those with \(h s p=0\), the model is \(\log \left(\frac{\text { inlf } f_{\text {nohsp }}}{1-\text { inlf }_{\text {fohss }}}\right)=\beta_{0}\)
- The difference of the two is \(\log \left(\frac{\text { in } / f_{\text {fsp }}}{1-\text { inf }_{\text {hsp }}}\right)-\log \left(\frac{\text { inf }_{\text {folosp }}}{1-\text { inf }_{\text {onolsp }}}\right)=\beta_{1}\)



\section*{Odds ratios}
\[
\frac{\frac{i n l f_{\text {hsp }}}{1-\text { inff }_{\text {hsp }}}}{\frac{i n f_{\text {nhsp }}}{1-\text { inlf }_{\text {nohsp }}}}=e^{\beta_{1}}
\]
- And that's the (in)famous odds-ratio
- In our example, \(e^{.6504074}=1.92\). So the odds of entering the labor force is almost twice as high for those with more than high school education compare to those without
- That's the way careful reporters would report this finding. And it's correct. The problem is that we would then interpret this as saying that the probability of entering the labor force is twice as high for those with more than high school
- That interpretation is wrong. A ratio of odds is more often than not far away from the ratio of probabilities

\section*{Predictions in the probability scale - logit and probit}
- We can easily calculate predictions in the probability scale
- Remember, we are modeling \(\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{j} X_{j}\)
- But we can solve for p :
\(p(\mathbf{X}, \beta)=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{j} x_{j}}}{1+e^{\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{j} x_{j}}}=\frac{1}{1+e^{-\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{j} x_{j}}}\)
- That's what Stata does by default when using the postestimation command predict
- Predictions after probit can be a bit confusing, but remember that the coefficients are shifts in the cumulative standard normal (they are \(z\) scores), so to calculate \(p(x, \beta)\) we need to calculate a probability given the \(z\) score

\section*{Calculating predictions after logit and probit models}
- Make sure you understanding this. Think of predictions after probit as \(z\) scores that need to be converted into a probability
```

logit inlf hsp, nolog

* Predictions for logit manually
gen phat_manu = 1/(1+exp(-(_b[_cons] +_b[hsp]*hsp)))
*Same as using the inverse logit function
gen phat_invl = invlogit(_b[_cons] +_b[hsp]*hsp)
* Same as default of predict command
predict phat_pred
sum phat_manu phat_invl phat_pred

| Variable \| | Obs | Mean | Std. Dev. | Min | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| phat_manu \| | 753 | .5683931 | .0694388 | .5249538 | .6792453 |
| phat_invl \| | 753 | .5683931 | .0694388 | .5249538 | .6792453 |
| phat_pred \| | 753 | .5683931 | .0694388 | .5249538 | .6792453 |

*probit
qui probit inlf hsp, nolog

* use inverse normal
gen phat1_norm = normal(_b[_cons] + _b[hsp]*hsp)
predict phat1_predprob
predict zscore, xb
sum phat1* zscore

Variable \|	Obs	Mean	Std. Dev.	Min	Max
phat1_norm \|	753	.5683931	.0694388	.5249538	.6792453
phat1_pred~b \|	753	.5683931	.0694388	.5249538	.6792453
zscore \|	753	.1760512	.1813693	.0625907	.4655894

di normal(0.1760512)

* . }568

```
```

