
Week 5: Regression discontinuity designs

Marcelo Coca Perraillon

University of Colorado
Anschutz Medical Campus

Health Services Research Methods I
HSMP 7607

2020

These slides are part of a forthcoming book to be published by Cambridge
University Press. For more information, go to perraillon.com/PLH. This
material is copyrighted. Please see the entire copyright notice on the book’s
website.

1

perraillon.com/PLH


Outline

The logic of regression discontinuity

Thistlethwaite and Campbell (1960)

RDD and complete lack of overlap

RDD and the potential outcomes framework

Assumptions

Examples

Parametric estimation

Fuzzy RDD and instrumental variables

2



Basics

We are going to back in time to the first application of RDD, although I’m
going make some small changes so it’s easier to explain (see the readings for
the actual details)

Thistlethwaite and Campbell (1960) studied the effects of winning a
Certificate of Merit as part of the National Merit Scholarship

The award was given to students who scored more than a given score c (the
cutoff point) in an aptitude test (SAT). If they scored ≥ c , then they got the
award

D = 1 if ≥ c and zero otherwise. Let’s say that the outcome Y is income 5
years after receiving the award

So the probability of treatment P(Di = 1|Xi ), where Xi is the score, jumps
from 0 to 1 at the point c (what did we call P(Di = 1|Xi )?)
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Basics

We could compare observed outcomes E [Yi |Di = 1] and E [Yi |Di = 0] but
since we are on week 5 of the class you know that that’s not going to get us
far

E [Yi |Di = 0] is not a good prediction for E [Y0i |Di = 1]

Treatment D is not independent (nor mean independent) from the score X ,
and most aptitude test scores are also highly correlated with future income.
Therefore, X is a confounder, so at least we need to control for it

Then we can compare E [Yi |Di = 1,Xi ] and E [Yi |Di = 0,Xi ] but now we have
complete lack of overlap – we also most likely still don’t have ignorability

If observed, we could control for a vector of covariates X , but we probably
don’t have all relevant confounders: intelligence, motivation, parent’s
education, quality of high school, and so on. All the factors that are
associated with scoring well and future income
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RDD insight

Thistlethwaite and Campbell realized they could in fact compare a subsample
of the students: those who scored just above and just below of the
cutoff c

By now I find this idea intuitive but it’s not that intuitive at first. It helps if
you notice that the point c is arbitrary

Is there a substantial difference between scoring, say, c = 1200 in the SAT
versus 1210 or 1190? Probably not

We know that the test scores are related to all sorts of observed and
unobserved factors, but students scoring around 1,200 should be comparable

Getting a score a little higher or a little lower than 1200 is random
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RDD insight

If you follow this reasoning, then close to c receiving the scholarship is as if
it were at random

You could image that –again, around c– an experiment was designed: choose
an arbitrary cutoff point c and give the award to those who scored a little
after c (caution, not the same as conditional randomization)

Think at the limit to clarify. A student who scored 1000 is different from one
that scored 1500

A student who scored 1150 is different but not as much as a student who
scored 1250

A student who scored 1199.5 should be comparable to a student who scored
1200.5. One got the award, the other one didn’t. Good luck, bad luck,
respectively
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Example of positive treatment effect

Simulated data with c = 140 and window (100, 180)
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No effect
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Notation

X is the variable used to assign treatment (the SAT score in this example),
which in RDD is called the assignment variable or the running variable or
the forcing variable (note I didn’t write X , a vector of covariates)

The reasoning above suggests that a comparison of limx→cE [Yi |Xi = x ] and
limx←cE [Yi |Xi = x ] would provide an estimate of treatment effects (note the
direction of the arrows)

The above is equivalent to: limx→cE [Yi |Xi = x ,Di = 0] and
limx←cE [Yi |Xi = x ,Di = 1] since in this example to right the right of c
everybody gets treatment; to the left nobody does

Essentially, what we are saying is:

limx→cE [Yi |Xi = x ,Di = 0] ≈ E [Y0i |Xi = c ,Di = 1] and

limx←cE [Yi |Xi = x ,Di = 1] ≈ E [Y1i |Xi = c ,Di = 0]

Again, we don’t really need to condition on D but it makes easier to explain
(I think)
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No overlap

In the class on propensity scores we saw that the definition of overlap is for
all Xi ∈ ϕ, where ϕ is the support (domain) of the covariates Xi ,
0 < P(D = 1|Xi ) < 1

We only have one variable X here. In RDD (at least, sharp RDD) there is no
overlap at all: P(D = 1|Xi ) = 0 if X < c , while P(D = 1|Xi ) = 1 if X ≥ c

Treatment effects around c are based on pure extrapolations

So we already know the main difficulty in estimating causal effects in RDD:
we need to model correctly the relationship between Y and the running
variable X or we will get our counterfactual predictions wrong

Or said another way, our model must be correctly specified
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Extrapolation
Dashed lines are extrapolations. If real-life example were like this, life would be
easier: perfect linear relationship, so extrapolation is not a problem
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A bit more realistic

True relationship is non-linear, but we use a linear model and incorrectly find
a positive treatment effect
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Key issues

I just said that we need to correctly specify the functional form between Y
and X . This immediately suggests nonparametric or semiparametric
models – that’s where RDD analysis has moved to in the last 5 to 10 years

We will use both parametric and semiparametric models in the second part of
the semester

How close enough to c is close enough? What window around c should we
use?

It’s a bias-variance trade-off: the closer to c we are the better the
assumptions hold, so we reduce bias. But closer to c we use fewer and fewer
observations, so the variance increases

A larger window (bandwidth) means that we rely more on extrapolation

We will see some “optimal” bandwidth approaches, but the usual approach is
to perform sensitivity analyses using different bandwidths and checking
balance
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Assumptions

When would RDD not be valid? In econometrics, the usual condition is that
there shouldn’t be manipulation with precision

If a student could know that she is close to 1200, the she could stop the test
because she knows that she has the award already Common confusion:
Some manipulation is fine (you can always study harder, for example).
Manipulation with precision or the absence of a deterministic relationship
between cut-off point and outcomes is key

Think a different example: the running variable is a measure of carbon
monoxide in blood. There could be a natural cutoff point c that implies that
after c dead is imminent. Therefore, c is not arbitrary when the outcome is
death

But with measurement error, then very close to c it could be arbitrary

Another example: 1500 as the cutoff point for very-low birth weight babies
(VLBW)
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Examples

Almond et al. (2010): Assignment variable is birth weight. Infants with low
birth weight (< 1, 500 grams or about 3 pounds) receive more medical
treatment

Lee, Moretti, Buttler (2004): The vote share (0 to 100 percent) for a
candidate is a continuous variable. A candidate is elected if he or she obtains
more than 50% of the votes. They evaluated voting record of candidates in
close elections

Perraillon at al. (2019): CMS rates nursing homes using 1 to 5 stars. Overall
stars are assigned based on deficiency data transformed into a points system.
Outcome: new admissions six months after the release of ratings (consumer
response)
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Assignment of stars based on scores
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RDD as a special type randomization

Suppose you randomize people the old-fashioned way. You have a dataset
with 2000 persons ids. You create a new column that is a draw from a
uniform random variable called rv

If rv > 0.5, then assign to treatment group. We know that each person has
equal probability of being in either group (it’s a uniform distribution)

If no treatment is performed , would there be any relationship between an
outcome –any outcome– and the uniform random variable?

No. Furtheremore, there wouldn’t be any relationship between the
assignment variable rv and any baseline characteristic (rv and everything
else are independent)

But what about an outcome after performing an intervention on the
treatment group? Is there a relationship between rv and the outcome? Said
another way, do we need to control for rv in our models? No
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RDD as a special type randomization

set obs 2000

gen id = _n

* Simulated baseline outcome (chi-squared)

gen y0 = rnormal(10,1)^2

* Randomize

gen rv =uniform()

gen T=0

replace T=1 if rv >.5

* Pretend treatment is effective

gen y1 = y0

replace y1 = y0+10 if T==1
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RDD as a special type of randomization

scatter y1 rv, msize(tiny) || lfit y1 rv if T==1, color(red) ///

|| lfit y1 rv if T==0, color(blue) ///

legend(off) ytitle("Outcome") xtitle("Assignment score (uniform rv)") ///

saving(rv.gph)

graph export rv.png, replace
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RDD as a special type of randomization

* Controlling or not for the assignment variable is irrelevant

* rv is not a confounder

qui reg y1 T

est sto m1

qui reg y1 T rv

est sto m2

est table m1 m2, p

----------------------------------------

Variable | m1 m2

-------------+--------------------------

T | 10.78717 10.198423

| 0.0000 0.0000

rv | 1.1523433

| 0.7189

_cons | 100.96664 100.68496

| 0.0000 0.0000

----------------------------------------

legend: b/p
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RDD as a special type of randomization

The difference is that in RDD the assignment variables is expected/assumed
to be associated with Y

So we have to control for that variable, unlike rv in the example above

It does help to make analogies with randomization trials
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Parametric estimation

Simplest case is linear relationship between Y and X :
Yi = β0 + β1Di + β3Xi + εi

(Digression: Note how you can estimate the above regression without any
hint of a problem even when there is no overlap at all)

Di = 1 if subject i received treatment and Di = 0 otherwise. We can also
write this as Di = 1(Xi ≥ c) or Di = 1[Xi≥c]

But we want β1 at c , so we center the running variable:

Yi = β0 + β1Di + β3(Xi − c) + εi

Now the treatment effect is β1 at c

E [Yi |Di = 1,Xi = c] = β0 + β1 and E [Yi |Di = 0,Xi = c] = β0, so:

E [Yi |Di = 1,X = c]− E [Yi |Di = 0,Xi = c] = β1

We could add an interaction too. We could add quadratic terms to make the
functional form more flexible at either side of the cutoff point. We will use
nonparametric estimation in the second part of the semester
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Where are the covariates??

If the assumptions of RDD hold, then all observed and unobserved covariates
are balanced and we don’t need to include them

In practice we probably want to include the most relevant ones to improve
precision, so the parametric model would be:

Yi = β0 + β1Di + β3(Xi − c) + X′iβ + εi

We will see ways of incorporating covariates in nonparametric models
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Sharp and fuzzy RDD

Sharp RDD: Assignment or running variable completely determines
treatment. A jump in the probability of treatment before and after cutoff
point, from 0 to 1

Fuzzy RDD: Cutoff point increases the probability of treatment but doesn’t
completely determines treatment. A change in the probability of treatment
before and after but not from 0 to 1 (i.e. there is some overlap now)

Which brings us back to the world of instrumental variables

Fuzzy RDD is not used as often but has a lot of potential in particular
because no mental contortions are needed to justify the IV exclusion
restriction

Think of encouragement designs or imperfect compliance

We will go over the basics of IV next class
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