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Outline

Multiple linear regression estimation

Algebraic properties, redux

Matrix form

Interpretation: “controlling,” “adjusting,” “taking account” other
factors
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Big picture

We seldom run a regression model with just one predictor but for
pedagogical reasons is always easier to understand the basics of
regression with only one variable

When modeling, it’s useful to start with just one predictor/covariate
of interest and then add variables

We often want to describe relationships “controlling” for other factors

Today, we will see different ways of understanding what it means to
“control” or “adjust” for other variables and to ”hold them constant”
or “taking them into account”

Note, once again, how language can be confusing. All are words to
describe the same idea but you can understand that idea in
different ways, hence the many terms
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Estimation

Estimation of parameters is the same as before. We want to minimize
SSE:

S(β0...βp) =
∑n

i=1(yi − ŷi )
2 =

∑n
i=1(yi − β̂0 − β̂1xi − ...− β̂pxip)2

Now, we will have p + 1 first order conditions (p parameters not
counting the intercept) and a system of linear equations with p + 1
unknowns (I dropped theˆbecause it’s easier to write)
∂SSE
∂β0

=
∑n

i=1(yi − β0 − β1xi1 − ...− βpxip) = 0

∂SSE
∂β1

=
∑n

i=1 xi1(yi − β0 − β1xi1 − ...− βpxip) = 0

...
∂SSE
∂βp

=
∑n

i=1 xip(yi − β0 − β1xi − ...− βpxip) = 0
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Estimation

Note that the algebraic properties of OLS will hold here too: the
sum of the residuals will be zero and every covariate x will be
uncorrelated to the residual (remember: in the sample, not the
population)

Whenever you see a system of linear equations that need to be
solved you should think about linear algebra

That’s pretty much the origin of linear algebra. Liner algebra was
developed (invented?) as shortcut to deal with multiple linear
equations

So no surprise here that we could write the regression model as
Y = Xβ + ε, where Y is a nx1 vector and X is an nx(p + 1) matrix,
also know as the design matrix. β is also a vector of p + 1 elements.
ε is also a vector
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Estimation

From your textbook:

Again, just a way of writing a long set of equations in a very simple
way. Minimizing the sum of squares can be written as:

S(β) = ε′ε = (Y − Xβ)′(Y − Xβ)
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Estimation

The minimization problem will lead to

(X ′X )β = X ′Y (we could write β̂ here)

If the inverse of (X ′X ) exists, then we can left multiply by (X ′X )−1
to get

β̂ = (X ′X )−1X ′Y , where β̂ is a vector of p + 1 coefficients. And
that’s it. That gives us the OLS solution

Again: We used linear algebra to more easily solve a complicated set
of linear equations but the logic is the same as with simple linear
regression

Before, we were trying to draw the line that passes as close as
possible to all points. We are still trying to do so but now the line is
a plane in multiple dimensions

If you know linear algebra well, the intuition behind the solution is
that the optimal betas are an orthogonal projection. This means
nothing if you don’t know linear algebra well
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Inference

As before, we made no assumptions about the distribution of ε. We
just solved a system of linear equations

We again do need to assume that the error distributes normal idd
N(0, σ2) to figure out what is the distribution of the estimated
coefficients β

We will find equivalent results about the distribution of β̂j and the

standard errors se(β̂j) with the difference that now we have to think
about multivariate normals

The vector β̂ has a (p+1)-variate normal distribution with mean
vector β and variance-covariance matrix σ2(X ′X )−1. Your textbook
defines C = (X ′X )−1 so the variance-covariance matrix is σ2C

If you are confused, please review joint distributions and the
multivariate normal. See Wooldridge and https://en.wikipedia.

org/wiki/Multivariate_normal_distribution
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Inference

Important: We can still use the intuition from the SLR model
because each β̂j has a marginal distribution that is normal with

se(β̂j) = σ̂
√
cjj , where cjj is the j diagonal element of C

In other words, similar to SLR, we can do Wald test as with the SLR
model

We can do simulations about each β as we did in SLR

BUT: since the β̂j have a (p+1)-variate normal distribution, they also
have a covariance (the off-diagonal elements of σ2C )

If we are going to do simulation about multiple parameters, we do
need to take into account their covariance (correlation) when doing
simulations
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College grades again

We now add a variable called skipped, which has the average number
of lectures missed per week:

colgpai = β0 + β1hsgpai + β2skippedi + εi

reg colgpa hsgpa skipped

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(2, 138) = 19.77

Model | 4.32237812 2 2.16118906 Prob > F = 0.0000

Residual | 15.0837213 138 .109302328 R-squared = 0.2227

-------------+---------------------------------- Adj R-squared = 0.2115

Total | 19.4060994 140 .138614996 Root MSE = .33061

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgpa | .4588039 .0876908 5.23 0.000 .2854125 .6321952

skipped | -.0774349 .0257646 -3.01 0.003 -.1283792 -.0264905

_cons | 1.579167 .3033669 5.21 0.000 .9793183 2.179015

------------------------------------------------------------------------------

What is the null of the F(2,138) test? What is the null of the Wald
tests?
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Variance-covariance matrix

Stata saves the variance-covariance matrix

ereturn list

scalars:

e(N) = 141

e(df_m) = 2

...

macros:

e(cmdline) : "regress colgpa hsgpa skipped"

e(estat_cmd) : "regress_estat"

matrices:

e(b) : 1 x 3

e(V) : 3 x 3

matrix list e(V)

symmetric e(V)[3,3]

hsgpa skipped _cons

hsgpa .00768968

skipped .00020257 .00066381

_cons -.02637928 -.00140361 .0920315

di sqrt(.00768968)

.08769082

* note it matches the SE of hsgpa

The covariance of the coefficient for hsgpa and skipped is .00020257.
We typically don’t use this information in empirical work but we
would need it to make simulations about the betas
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Interpretation

We can interpret the parameters as before with a slight modification:
The average college GPA increases by 0.45 points for one point
increase in high school GPA holding the number of classes skipped
constant

The average college GPA decreases 0.08 points for an additional class
skipped during the semester holding high school GPA constant

The average college GPA for a student with a GPA of zero who didn’t
skip class during the semester is 1.57 (an extrapolation, of course)

The difficult part is, what exactly do we mean by “holding
constant” high school GPA or classes skipped?

The language comes from experiments in which investigators can
keep one condition unchanged (constant) while changing another
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Holding constant?

One way in which holding constant (ceteris paribus) is clear is that
the the coefficient of a variable is the partial change when the other
variables are not changing:

colgpai = β0 + β1hsgpai + β2skippedi + εi

Total change: ∆ ˆcolgpa = β̂1∆hsgpa + β̂2∆skipped

For a small partial change: ∂ ˆcolgpa
∂hsgpa = β̂1

(I’m simplifying the notation but what is changing is E [colgpa|X ])

The confusing part is that it sounds like we conducted an experiment
is which we were able to study students that, say, skip no classes but
have different hsgpa. Another way: we found students who skip two
classes but who have different hsgpa...

With observational data, we can’t hold other factors constant in this
more literal meaning, but we are trying to replicate that situation
with a regression analysis
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Partialling out interpretation (read this slide slowly and
carefully)

Another common way of describing a model is to say that the
coefficient of hsgpa is the effect on average colgpa after “adjusting”
or “taking into account” the effect of skipping classes

Our original model is: colgpai = β0 + β1hsgpai + β2skippedi + εi
1) Estimate hsgpa = γ0 + γ1skipped + µ

This is the effect of skipping classes on high school GPA

2) Calculate the residuals of the above regression:
µ̂i = hsgpai − ˆhsgpai
The residuals are the part of high school GPA that is not explained by
skipping classes

3) Estimate the regression colgpa = α0 + α1µ̂i + λ

In this model, we used the unexplained (by skipped) part of hsgpa to
explain colgpa. Or, after we take into account the effect of skipping
classes, what is the partial effect of hsgpa on colgpa?

We will find that α̂1 = β̂1 14



Convince yourself

We estimated: colgpai = 1.57 + 0.4588hsgpai − 0.077skippedi

reg hsgpa skipped

...

------------------------------------------------------------------------------

hsgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

skipped | -.0263437 .0248204 -1.06 0.290 -.075418 .0227306

_cons | 3.43048 .0379318 90.44 0.000 3.355482 3.505478

------------------------------------------------------------------------------

predict hs_r, r

reg colgpa hs_r

...

------------------------------------------------------------------------------

colgpa | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hs_r | .4588039 .0911463 5.03 0.000 .2785914 .6390164

_cons | 3.056738 .0289395 105.63 0.000 2.999519 3.113956

------------------------------------------------------------------------------
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Not the only way of partialling out

Your textbook presents another way of understanding partialling out

* partialling out (Chatterjee)

qui reg colgpa skipped

predict colres, r

* The part of colgpa that is not explained by skipped

qui reg hsgpa skipped

predict hsgres, r

* The part of hsgpa not explained by skipped

reg colres hsgres

...

------------------------------------------------------------------------------

colres | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsgres | .4588039 .0873748 5.25 0.000 .2860484 .6315594

_cons | 1.11e-09 .027742 0.00 1.000 -.0548508 .0548508

------------------------------------------------------------------------------

We removed the effect of skipped from both colgpa and hsgpa. Then
we regressed both unexplained (by skipped) parts. So the effect of
hsgres on colres is the effect once skipped has been taken into account

Note that now the standard error matches the original standard error
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Useful to stop and think about hsgpa and skipped

Let’s compare the regressions

qui reg colgpa hsgpa

est sto m1

qui reg colgpa hsgpa skipped

est sto m2

est table m1 m2, star stats(N r2_a) b(%7.3f)

----------------------------------------

Variable | m1 m2

-------------+--------------------------

hsgpa | 0.482*** 0.459***

skipped | -0.077**

_cons | 1.415*** 1.579***

-------------+--------------------------

N | 141 141

r2_a | 0.166 0.211

----------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001

We reject the null that skipped=0. Also, note that the coefficient of
hsgpa went down, from 0.48 to 0.46

Some of the effect of hsgpa is accounted/explained for skipping
classes. Look at the regression of hsgpa and skipped above. Students
who skip more classes have a lower high school GPA
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When are they going to be the same?

If skipped and hsgpa were completely uncorrelated, then in the
regression, reg hsgpa skipped, the coefficient for skipped would be
zero and the variance of the residuals would be the same as the
unexplained variance

So adjusting would not change the coefficient for hsgpa

This is why in a clinical trial adjusting for other variables
doesn’t change the estimation of treatment effects. Treatment
and other factors are independent

Remember, if two variables are independent, their
correlation/covariance is zero
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Confounder, mediator, or modifier?

Skipping classes is a counfounder of the relationship between high
school GPA and college GPA: skipped is related to both

But we need to know more about the subject matter (mechanism) to
figure out if skipping classes is a mediator. It’s not that hsgpa causes
lower colgpa, it’s that low hsgpa causes skipping classes which in
turns causes lower colgpa (probably not)

Note that we have implicitly assumed that skipping classes is not a
modifier. In our model, the effect of hsgpa on colgpa does not
depend on skipping classes

We can check for it by adding an interaction:
colgpai = β0 + β1hsgpai + β2skippedi + β3hsgpa ∗ skipped + εi

Now ∂colgpa
∂hsgpa = β1 + β3skipped

So now there is not a single effect of hsgpa (nonlinear). Instead, the
effect of hsgpa on colgpa depends on class skipped
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Summary

Most of what we learned in SLR easily extends to MLR

We interpret coefficients in a different way and in MLR. We need to
adjust, control for, hold something constant, take into account...
Many ways of saying the same

Under the assumption of iid errors that distribute normal, the
estimated coefficients have a multvariate normal distribution with
normal marginal distributions

The key with MRL is to gain intuition about what it means holding
other factors constant or adjusting for other factors

Next, inference and comparing models using F tests
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