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Outline

Modeling part II

Information criteria: BIC and AIC

Guidelines

Variable selection procedures

Oldies: forward, backward elimination

Newish: lasso, ridge regression
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Brief review

In the classes about “modeling” we covered transformation of
variables (the outcome or covariates) for two reasons {Wait, before
that: the song was Right Said Fred - I’m Too Sexy (find the video!)}:
1) Changing the interpretation of the model (e.g. centering, logs,
scales, etc)

2) Making the assumptions of the linear model more plausible (e.g.
taking the log of the outcome)

We also covered model specification. Should we model age as linear
or quadratic? Divide a continuous variable into categories?

We saw that we could compare models using F tests (similar to
comparing adjusted R2) or with likelihood ratio tests (LRT). We
could also use Wald tests (the “test” command in Stata)
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Overview

Today, we will see other ways of choosing models/variables to include
in regressions

The most important part about today: BIC and AIC for non-nested
models. Think of both essentially as an “adjusted R2” using
maximum likelihood or –more precisely– the estimate log-likelihood to
compare models

The other most important part: think theory/conceptual framewok to
guide in choosing variables. Never use automatic selection
procedures for choosing your variables (unless you are predicting;
then maybe)

Chapter 11 of Chaterjee covers selecting variables and choosing
models
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Overview
Often we worry about causal inference, confounders, etc. What you
know about the research question will drive decisions about which
variables should be in a model
Say, if you are modeling cancer mortality it would be silly not to add
other comorbid conditions–regardless of whether the bivariate
relationship between the comorbid conditions/index is statistically
significant or regardless of whether that variable is statistically
significant in the final model. Conceptually, it has to be there
The previous comment is one of those things that not all professors
would be in agreement but I’d say that in HSR or health econ is the
more accepted view
On the other hand, if there is a variable that conceptually you are
ambivalent about and it’s not statistically significant, you would
probably drop it
Once you have the variables that you think should be in the model,
you need to worry about how they should be there–that is, model
specification
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Framing the problem the Chatterjee way

We have a dataset with j possible explanatory variables, X1, ...,Xj

How do we select a subset of them for inclusion in our regression
model?

Let’s call the retained variables X1, ...,Xp and the deleted variables
Xp+1,Xp+2, ...,Xq

Two situations:

1 In the true model that connects Y and X, all the parameters β0 to βq
are nonzero

2 In the true model that connects Y and X, β0, ..., βp are nonzero but
βp+1, ..., βq are zero

In case 2 there is no problem if we leave the zero-coefficient variables
out, but what is the problem with 1)?
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Consequences

If we estimate the reduced model with p variables, then the estimated
coefficients will be biased if the omitted variables are correlated with
some or all the p variables

The variance of the betas var(β̂p) in the reduced model with p
variables is going to be at most the same or less because fewer
parameters are estimated

So, the full model might be less biased but the reduced model has
smaller variance

(This is an example of the bias and variance trade off we didn’t
have time to cover)

In this view, choosing the correct model is a question of bias
versus variance trade-off. BUT...
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Big picture

Note how this way of framing the problem is conceptually different
from what we have been doing before (and Wooldridge’s)

The textbook mixes two concepts. Whether some coefficients are
truly zero (in the population) and whether the coefficients are
correlated to some of the predictors left in the model

If zero, they don’t predict the outcome, so they can’t be confounders
either so not a problem leaving them out

For Wooldridge –and HSR/health econ– the main concern is causality
not bias/variance trade off

In our field, we include the variables in the model that we know
conceptually should be there, regardless of their statistically
significance or coefficient size in the *sample*

Why? Because we know that the true population model should
include those variables
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Maybe belaboring the point here but...

Note one key consequences from both approaches. If you follow a
conceptual framework, you don’t run a single model to decide which
variables will be in the model. You don’t look at p-values, fit
statistics–BIC, etc

You may do so for the ones that you are not sure about

But for sure you should do all we are going to cover today to
decide what is the best functional form for the model

As Will Manning used to say (paraphrasing): Theory doesn’t tell you
if age should be entered as a quadratic–it just tells you that age
should be in the model

For that, use today’s class tools

If you came from an epi or stats background, you might have been
told to use today’s tools to choose variables
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Information criterion - AIC
A common way to compare models is by using the so-called
information criterion

It is a way to balance bias and variance or accuracy (fit) and
simplicity (parsimony)

One of them–the first one to be proposed–is the Akaike Information
Criterion (AIC). In the context of the linear model (estimated using
OLS), it is:

AICp = n ∗ ln(
SSEp

n ) + 2 ∗ p
p is the number of estimated parameters (including the constant), n
is the number of observations, and SSE is the residual sum of squares
(recall SST = SSR + SSE)

The smaller the AIC the better. When is a model going to be
better? The larger the sample size, the lower the unexplained
variance, the fewer parameters we use

Usually, we compare models with the same sample size, n, or maybe a
small difference in n (a covarite may have some missings)

10



Information criterion - AIC

That 2 ∗ p is a penalty much like in adjusted R2. The more
parameters we estimate the better the model has to be

We saw that there is formula linking SSE to the log-likehood. That’s
how Stata calculates the log-likelihood when you use the regress
command since Stata doesn’t use MLE in the regress command:

ll = −0.5 ∗ n ∗ [ln(2 ∗ π) + ln(SEE/n] + 1

We could solve for SSE and plug in to get AIC as a function of the
log-likelihood
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Some intuition

AIC comes from information theory. Suppose that we know the
population process that generated the data but we are using a model
to represent that process

Think of simulating some data and then using imperfect models to
represent the data. There will be some information lost

If we knew the true data generating process, we could find a way to
estimate how much information we are losing in each model and thus
choose the model that doesn’t lose as much information

But we never know the true model/process. Akaike, in 1974,
showed that his information criterion, now called AIC, tells how much
more information is lost comparing one model to the other using the
estimated log-likelihood

The above formula is a special case that applies to the linear model:
εi ∼ N(0, σ2)
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Some caveats

1 Valid asymptotically. You need much more observations than
parameters

2 Balance between goodness of fit and parsimony (simplicity). The
penalty is incurred to avoid overfitting models because models with
more parameters will always fit the data better. If you use as many
parameters as data points, model fit is perfect (essentially, the
estimated model is a perfect representation of the data)

3 Most important: AIC is a relative measure that compares one
model to another to choose the one that loses less information. It’s
NOT a measure of how good a model is. You may have two
horrendous models (say, super low R2); AIC helps you choose the
best among terrible options–think of some elections...
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Information criterion - AIC

Note that AIC is similar to the F-test we used to compare nested
models. One way of writing the F-test was

F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)

Also, the F-test can be written in terms of the R2:

F =
(R2

p−R2
q )/(p−q)

(1−R2p)/(n−p−1)

We are essentially comparing SSE (or R2) in relationship to the
number of estimated parameters

So why is AIC useful? Because we can use it to compare non-nested
models, although there is not statistical test like F test or MLE

Again, AIC is a relative measure. Also, the absolute value doesn’t
tell us much; we use it compare related models

Obviously, it wouldn’t make much sense to compare models with
different outcomes or different datasets
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Information criterion- AIC

We also saw that we can use the likelihood ratio test to compare
models and that the F-test and the LRT are asymptotically equivalent

Stata’s way to calculate AIC (except in GLM models) is
AIC = −2ll + 2k

k is the number of parameters, ll is the log-likelihood function.
Again, 2k is the penalty due to the number of parameters; the
more parameters, the higher AIC (we prefer models with lower AIC)

We are essentially comparing the log-likelihood

The advantage of using the log-likelihood rather than SSE is that we
have an AIC for linear models, probit, logit, poisson, etc
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Information criterion - BIC

The more common information criterion used is BIC–a modification
of AIC:

BIC = −2ll + ln(n) ∗ k
Note that we now add ln(n) in the penalty term rather than 2

If n = 8, ln(8) = 2.079. So in most application, the BIC penalty is
always higher than the AIC penalty but it has a limit because the
log function “flattens”

ln(50) = 3.91, ln(100) = 4.60, ln(500) = 6.21, ln(1000) = 6.91,
ln(2000) = 7.6

The more observations we have, the lower the growth of the penalty
ln(n) ∗ k
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Example

AIC and BIC for the low birth logit model

qui logit lw cigs faminc motheduc, nolog

estat ic

Akaike’s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------

. | 1,387 -584.4731 -572.1589 4 1152.318 1173.257

-----------------------------------------------------------------------------

Note: N=Obs used in calculating BIC; see [R] BIC note.

So what do we do with that number? Nothing, really. We need to
compare models using the same data and outcome –although
there is some leeway if the sample sizes differ by a bit
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Example

Comparing models

qui logit lw cigs faminc, nolog

est sto m1

qui logit lw cigs motheduc, nolog

est sto m2

qui logit lw cigs motheduc parity , nolog

est sto m3

est table m1 m2 m3, stats(r2_p aic bic)

Note that we could do a LRT between model 2 and model 3

18



Example

The first model is better, adding the other covariates didn’t improve
things

est table m1 m2 m3, stats(r2_p aic bic)

-----------------------------------------------------

Variable | m1 m2 m3

-------------+---------------------------------------

cigs | .04481613 .04666558 .04657893

faminc | -.00785126

motheduc | -.02393827 -.02342169

parity | .01208105

_cons | -1.644825 -1.5595502 -1.5857927

-------------+---------------------------------------

r2_p | .02104683 .01858425 .01860151

aic | 1150.6598 1153.2221 1155.2019

bic | 1166.3667 1168.9268 1176.1415

-----------------------------------------------------

lrtest m2 m3

Likelihood-ratio test LR chi2(1) = 0.02

(Assumption: m2 nested in m3) Prob > chi2 = 0.8871

We do prefer m2 to m3 as well. Note that BIC/AIC yields similar
results to pseudo-R2
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Another way

The “estimates” command to build table has an option “stat”

est stat log pro

Akaike’s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------

log | 1,387 -584.4731 -572.1589 4 1152.318 1173.257

pro | 1,387 -584.4731 -572.1118 4 1152.224 1173.163

-----------------------------------------------------------------------------

Note: N=Obs used in calculating BIC; see [R] BIC note.

Stata has a note on how it calculates BIC
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Modeling suggestions

Start from simple to complex (after an exploratory analysis, of course)

Focus on the outcome and relationship of interest (say, low birth
weight and smoking). In other words, simple linear regression

Make sure you understand what the parameters mean. If logistic,
make sure you go from log-odds to relative risk to differences in
probability (marginal effects). Try the linear probability model

If using transformations like log(y), make sure you understand what
the parameters mean in the scale you care about

WRITE DOWN THE MODEL

Write down the model write down the model write down the model
write down the model write down the model write down the model
write down the model write down the model write down the model
write down the model write down the model write down the model
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Modeling suggestions

Then add other variables one at a time or by logical groups, like
demographics (sex, age, race)

See how adding those variables changes the coefficient of the variable
of interest

Watch out for collinearity signs (large changes in SEs, parameters
change a lot, signs reversed)

Once you have a complete model, check for functional form. Age as
quadratic? Dummy categories?

Formally compare models. If nested using LRT/Wald tests. If not
nested BIC

Sometimes simplicity of presentation is preferred to a better fitting
model, assuming, of course, the difference is not major

If you know that conceptually a variable should be in the model, then
the variable should be in the model (it doesn’t matter if not
statistically significant, although some people may argue against that)
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Modeling suggestions

Do model diagnostics. Make sure assumptions are met. You may
need to try other functional forms

Check for interactions but be careful with complicated models
because you can complicated yourself trying gazillion interactions
(your conceptual model is your guide)

Consider stratification if you have enough sample sizes

If outcome is 1/0, start with the linear probability model to make
sense of parameters. Then switch to logistic/probit models and make
sure that you understand what the parameters mean
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Variable selection procedures

We will briefly cover other ways of selecting variables because you
may have heard of them

The old-fashioned way: forward selection and backward selection

The newer way: ridge and lasso models and there 100 variants

Before, though, the bottom line: we don’t use these methods often
or at all in HSR and health economics

In most situations we have a conceptual model and don’t want our
sample to dictate conceptual choices

In all procedures, you need to eliminate highly correlated
(collinearity problem) variables

The modern methods are ARE NOT for variable selection when
you have correlated variables. They are unstable–not a very well
known issue yet
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Forward selection

This follows the logic of starting with a simple model (one without
predictors)

Then the procedure adds the variable with the highest correlation
with the outcome (let’s call it X1)

If the Wald test for the added variable is significant, then keep it

The next variable is the variable that has the highest correlation with
Y once X1 has been taken into account

If significant, keep it and add another variable

Repeat until all potential variables have been considered

You can usually choose the significance level for the Wald test
(sometimes 0.1 instead of 0.05)
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Backward selection

Start with full model and then remove one by one

The variables are dropped in relation to their contribution to the error
sum of squares (SSE)

First drop the variable with the smallest contribution (so the variable
that doesn’t “matter” as much)
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Example

Beauty example, forward selection

stepwise, pe(0.1): reg lwage abvavg exper expersq union goodhlth black female married south

begin with empty model

p = 0.0000 < 0.1000 adding female

p = 0.0000 < 0.1000 adding exper

p = 0.0000 < 0.1000 adding expersq

p = 0.0000 < 0.1000 adding union

p = 0.0041 < 0.1000 adding south

p = 0.0176 < 0.1000 adding black

p = 0.0255 < 0.1000 adding abvavg

p = 0.0525 < 0.1000 adding goodhlth

(omitted)

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

female | -.4423845 .0310588 -14.24 0.000 -.5033175 -.3814515

exper | .0441188 .0046224 9.54 0.000 .0350503 .0531873

expersq | -.0007647 .0001029 -7.43 0.000 -.0009665 -.0005628

union | .1607766 .0321088 5.01 0.000 .0977836 .2237695

south | .1027258 .0372794 2.76 0.006 .0295887 .1758629

black | -.1283028 .0546851 -2.35 0.019 -.2355874 -.0210182

abvavg | .0671251 .0312239 2.15 0.032 .0058681 .1283821

goodhlth | .111338 .057356 1.94 0.052 -.0011866 .2238627

_cons | 1.194908 .0738119 16.19 0.000 1.050099 1.339717

------------------------------------------------------------------------------
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Example

Backwards

. stepwise, pr(0.1): reg lwage abvavg exper expersq union goodhlth black female married south

begin with full model

p = 0.8518 >= 0.1000 removing married

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(8, 1251) = 65.21

Model | 130.94827 8 16.3685338 Prob > F = 0.0000

Residual | 314.031702 1,251 .251024542 R-squared = 0.2943

-------------+---------------------------------- Adj R-squared = 0.2898

Total | 444.979972 1,259 .353439215 Root MSE = .50102

------------------------------------------------------------------------------

lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | .0671251 .0312239 2.15 0.032 .0058681 .1283821

exper | .0441188 .0046224 9.54 0.000 .0350503 .0531873

expersq | -.0007647 .0001029 -7.43 0.000 -.0009665 -.0005628

union | .1607766 .0321088 5.01 0.000 .0977836 .2237695

goodhlth | .111338 .057356 1.94 0.052 -.0011866 .2238627

black | -.1283028 .0546851 -2.35 0.019 -.2355874 -.0210182

female | -.4423845 .0310588 -14.24 0.000 -.5033175 -.3814515

south | .1027258 .0372794 2.76 0.006 .0295887 .1758629

_cons | 1.194908 .0738119 16.19 0.000 1.050099 1.339717

------------------------------------------------------------------------------
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Problems

Oh... where to start?

The order sometimes matter and can give different results

The method doesn’t work with highly correlated variables (remember
that collinearity makes p-values unstable)

The usual advice is to do backwards elimination because you start
with the full model

It gets the modeling problem conceptually wrong. It uses the data to
dictate what should be in a model that describe a true and unknown
model – where is the theory?

Not once in my life I have used these methods. I can’t remember ever
reading a paper that used this methods in HSR or health econ
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The modern methods

Same conceptual issues in terms of selection of variables

The idea is that we change the objective function in linear regression.
Besides minimizing the sum or squares, we try to shrink the
coefficients to zero

Our usual OLS: min
∑n

i=1(yi −
∑p

j=1 Xjβj)
2

Ridge penalized sum of squares: min∑n
i=1(yi −

∑p
j=1 Xjβj)

2 + λ
∑p

j=1 β
2
j

30



The modern methods

Some coefficients may shrink to zero; the idea is that we could drop
the ones that are closer to zero

Ridge regression is better at prediction rather than variable selection

It introduces bias by forcing coefficients to shrink but reduces
variance (so better RMSE)

If some variables are really zero and thus not predictive of Y, ridge
regression performs well

The other alternative is lasso regression; it imposes a different
penalty

There are new methods for binary outcomes and different types...
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Summary

Use BIC/AIC to select non-nested models

Don’t be seduced by variable selection procedures unless you are
building models for prediction; if so, learn about ridge and lasso
regression and their many new variants

But be careful with the newest-is-best effect

Take into account that you need to eliminate highly correlated
predictors first (use VIF) in all these methods
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