Regression Discontinuity Design

Marcelo Coca Perraillon

University of Chicago

May 13 & 18, 2015

An updated version including nonparametric estimation and code is available here: https://clas.ucdenver.edu/marcelo-perraillon/teaching/health-servicesresearch-methods-i-hsmp-7607

 $^{\odot}$ Marcelo Coca Perraillon, 2021. Please read the entire copyright notice using the link above. $$^{1/51}$$

Plan

- Overview of RDD
- Meaning and validity of RDD
- Several examples from the literature
- Estimation (where most decisions are made)
- Discussion of Almond et al (low birth weight)
- Stata code and data for all examples will be available on Chalk. Email me if you have questions: mcoca@uchicago.edu

Basics

- Method developed to estimate treatment effects in non-experimental settings
- Provides causal estimates of treatment effects
- Good internal validity; some assumptions can be empirically verified
- Treatment effects are local (LATE)
- Limits external validity
- Relatively easy to estimate (like RCT)
- First application: Thistlethwaite and Campbell (1960)

Thistlethwaite and Campbell

- They studied the impact of merit awards on future academic outcomes
- Awards allocated based on test scores
- If a person had a score greater than c, the cutoff point, then she received the award
- Simple way of analyzing: compare those who received the award to those who didn't. (Why is this the wrong approach?)
- Confounding: factors that influence the test score are also related to future academic outcomes (income, parents' education, motivation)
- Thistlethwaite and Campbell realized they could compare individuals just above and below the cutoff point.

Validity

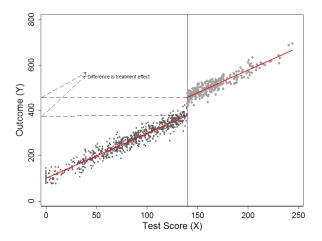
- Simple idea: assignment mechanism is known
- We know that the probability of treatment jumps to 1 if test score > c
- Assumption is that individuals cannot manipulate with precision their assignment variable (think about the SAT)
- Key word: precision. Consequence: comparable individuals near cutoff point
- If treated and untreated individuals are similar near the cutoff point then data can be analyzed as if it were a (conditionally) randomized experiment
- If this is true, then background characteristics should be similar near
 c (can be checked empirically)
- The estimated treatment effect applies to those near the cutoff point (limits external validity)

Validity

- Careful when you read that the validity depends on rule being "arbitrary" or assignment variable measured with error (e.g. Moscoe et al. 2015)
- Validity hinges on assignment mechanism being known and free of manipulation with precision or cutoff point in some way related to outcome of interest
- Manipulation example 1: Test with few questions and plenty of time
- Manipulation example 2: DMV test to get a driving license
- Example 3: Some mechanism makes cutoff point related to outcome (think biology: blood pressure). What if meassured with error?
- Example 4: Eligibility criteria to obtain some benefit (say, below income of 28K). Why? How could you verify assumptions?
- A comment on continuity
- Again: some manipulation is fine (you can always study harder, for example). Precision and lack of relation to outcome is the key to identify causal effects

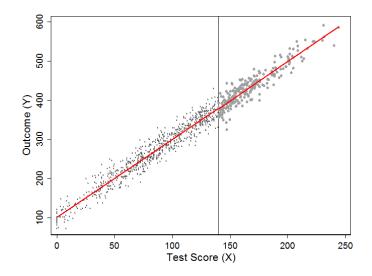
Graphical Example

Simulated data with c = 140
gen y = 100 + 80*T + 2*x + rnormal(0, 20)



Graphical Example

No effect



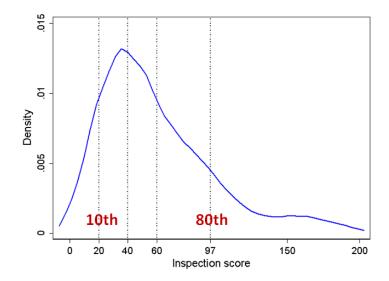
Sharp and fuzzy RDD

- Sharp RDD: Assignment or running variable completely determines treatment. A jump in the probability of treatment before and after cutoff point.
- Fuzzy RDD: Cutoff point increases the *probability* of treatment but doesn't completeley determines treatment.
- Which brings us back to the world of instrumental variables...
- Not used often but has a lot of potential
- Think of encouragement designs or imperfect compliance (like the Oregon study)

Examples from literature

- Almond et al. (2010): Assignment variable is birth weight. Infants with low birth weight (< 1,500 grams or about 3 pounds) receive more medical treatment.</p>
- We'll talk more about this paper next class. Don't forget to read it!
- Lee, Moretti, Buttler (2004): The vote share (0 to 100 percent) for a candidate is a continuous variable. A candidate is elected if he or she obtains more than 50% of the votes. They evaluated voting record of candidates in close elections.
- CMS rates nursing homes using 1 to 5 stars. Overall stars are assigned based on deficiency data transformed into a points system. Outcome: new admissions six months after the release of ratings.

Assignment of stars based on scores



Examples from literature

- Anderson and Magruder (2012) and Lucas (2012): Yelp.com ratings have an underlying continuous score. Distribution determines cutoff points for 1 to 5 stars. Effect of an extra star on future reservations and revenue.
- Anderson et al. (2012): Young adults lose their health insurance as they age (older than 18 and in college but different after ACA). Age changes the probability of having health insurance (fuzzy design).

Estimation: Parametric

Simplest case is linear relationship between Y and X

$$Y_i = \beta_0 + \beta_1 T_i + \beta_3 X_i + \epsilon_i$$

- $T_i = 1$ if subject *i* received treatment and $T_i = 0$ otherwise. You can also write this as $T_i = \mathbf{1}(X_i > c)$ or $T_i = \mathbb{1}_{[X_i > c]}$
- X is the assignment variable (sometimes called "forcing" or "running" variable)
- Usually centered at cutoff point
- $Y_i = \beta_0 + \beta_1 T_i + \beta_3 (X_i c) + \epsilon_i$. Treatment effect is given by β_1 .
- $E[Y|T = 1, X = c] = \beta_0 + \beta_1$ and $E[Y|T = 0, X = c] = \beta_0$.
- $E[Y|T = 1, X = c] E[Y|T = 0, X = c] = \beta_1.$

Reminder on centering

• Centering changes the interpretation of the intercept:

$$Y = \beta_0 + \beta_1 (Age - 65) + \beta_2 Edu$$

= $\beta_0 + \beta_1 Age - \beta_1 65 + \beta_2 Edu$
= $(\beta_0 - \beta_1 65) + \beta_1 Age + \beta_2 Edu$

Compare to:

$$Y = \alpha_0 + \alpha_1 Age + \alpha_2 Edu$$

• $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2$, but $\alpha_0 \neq (\beta_0 - \beta_1 65)$

Useful with interactions:

$$Y = \alpha_0 + \alpha_1 Age + \alpha_2 Edu + \alpha_3 Age \times Edu$$

Compare to:

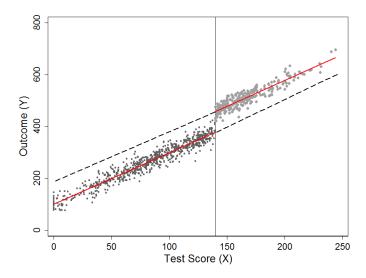
$$Y = \beta_0 + \beta_1(Age - 65) + \beta_2(Edu - 12) + \beta_3(Age - 65) \times (Edu - 12)$$

Extrapolation

- Note that the estimation of treatment effect in RDD depends on extrapolation
- To the left of cutoff point only non-treated observations
- To the right of cutoff point only treated observations
- What is the treatment effect at X = 130? Just plug in:
- $E[Y|T, X = 130] = \beta_0 + \beta_1 T + \beta_3 (130 140)$

Extrapolation...

Dashed lines are extrapolations



Counterfactuals

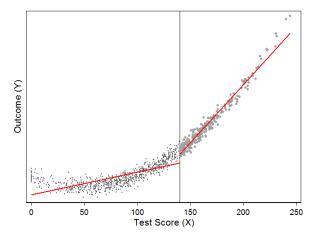
- The extrapolation is a counterfactual or potential outcome
- Each person *i* has two potential outcomes (Rubin's causal framework).
- $Y_i(1)$ denotes the outcome of person *i* if in the treated group
- $Y_i(0)$ denotes the outcome of person *i* if in the non-treated group
- Causal effect of treatment for person *i* is $Y_i(1) Y_i(0)$
- Average treatment effect is $E[Y_i(1) Y_i(0)]$
- Only one potential outcome is observed. In randomized experiments, one group provides the conterfactual for the other because they are comparable (exchangeable)
- Exchangeability (epi). Also called "selection on observables" or "no unmeasured confounders"

Counterfactuals, II

- In RDD the counterfactuals are conditional on X as in a conditionally randomized trial (think severity)
- We are interested in the treatment effect at X = c: $E[Y_i(1) - Y_i(0)|X_i = c]$
- Treatment effect is $\lim_{x\to c} E[Yi|Xi = x] \lim_{x\leftarrow c} E[Yi|Xi = x]$
- Estimation possible because of the continuity of $E[Y_i(1)|X]$ and $E[Y_i(0)|X]$
- See Hahn, Todd, and Van der Klaauw (2001) for details
- The estimation of the treatment effect is based on extrapolation because of lack of overlap. Thefore, the functional relationship between X and Y must be correctly specified

Need to model relationship between X and Y correctly

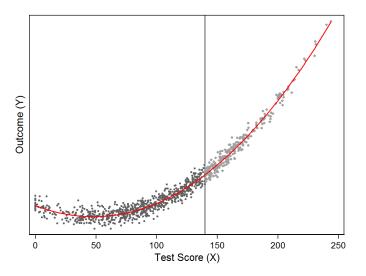
What if nonlinear? Could result in a biased treatment effect if one assumes a linear model.



Other specifications

- More general: $Y_i = \beta_0 + \beta_1 T_i + \beta_3 f(X_i c) + \epsilon_i$
- If $(X_i c) = \tilde{X}_i$ then $Y_i = \beta_0 + \beta_1 T_i + \beta_3 f(\tilde{X}_i) + \epsilon_i$
- Most common form for $f(\tilde{X}_i)$ are polynomials
- Polynomials of order *p*: $Y_i = \beta_0 + \beta_1 T_i + \beta_2 \tilde{X}_i + \beta_3 \tilde{X}_i^2 + \beta_4 \tilde{X}_i^3 + \dots + \beta_{p+1} \tilde{X}_i^p + \epsilon_i$
- More flexibility with interactions
- 2nd degree with interactions: $Y_i = \beta_0 + \beta_1 T_i + \beta_3 \tilde{X}_i + \beta_4 \tilde{X}_i^2 + \beta_5 \tilde{X}_i \times T_i + \beta_6 \tilde{X}_i^2 \times T_i + \epsilon_i$
- Question: Why not controlling for other covariates?

Third degree polynomial. Actual model second degree polynomial (see Stata do file). However...



A note on higher order polynomials

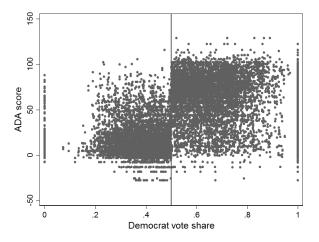
- We will see an example in which using higher order polynomials does not influence results
- In some cases, however, it may matter
- Gelman and Inbems (2014) subtle paper: "Why High-order Polynomials Should not be Used in Regression Discontinuity Designs"
- "We argue that estimators for causal effects based on [higher order polynomials] can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials..."

Real dataset

- Data from Lee, Moretti, Buttler (2004)
- U.S. House elections (1946-1995)
- Forcing variable is Democratic vote share. If share > 50 then Democratic candidate is elected
- Outcome is a liberal voting score from the Americans for Democratic Action (ADA)
- Do candidates who are elected in close elections tend to moderate their congressional voting?
- "We find that the degree of electoral strength has no effect on a legislator's voting behavior"
- Data and code are on Chalk

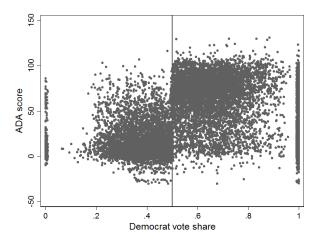
Graph a bit messy (about 13,500 obs)

scatter score demvoteshare, msize(tiny) xline(0.5) ///
xtitle("Democrat vote share") ytitle("ADA score")



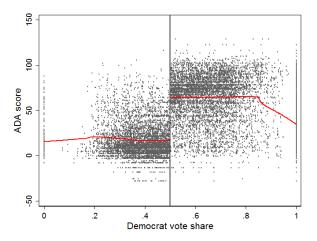
Good idea to add some "jittering"

With the jitter option, it is easier to see where is the mass scatter score demvoteshare, msize(tiny) xline(0.5) /// xtitle("Democrat vote share") ytitle("ADA score") jitter(5)



Useful to "smooth" data with LOWESS

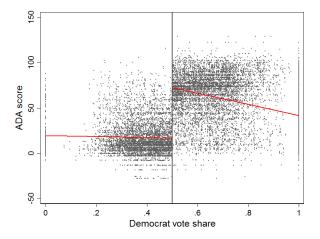
lowess score demvoteshare if democrat ==1, gen (lowess_y_d1) nograph bw(0.5) lowess score demvoteshare if democrat ==0, gen (lowess_y_d0) nograph bw(0.5)



- LOcally WEighted Scatterplot Smoothing
- Non-parametric graphical method
- Computationally intensive (one regression per data point)
- For each data point, run a weighted linear regression (linear or polynomials on X) using all the observations within a window. Weights give more importances to observations close to data point
- Predicted y, \hat{y} , is then the "smoothed" (y_i, x_i) point

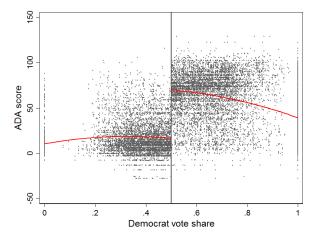
Parametric: Linear relationship

scatter score demvoteshare, msize(tiny) xline(0.5) xtitle("Democrat vote share") //
ytitle("ADA score") || lfit score demvoteshare if democrat ==1, color(red) || ///
lfit score demvoteshare if democrat ==0, color(red) legend(off)



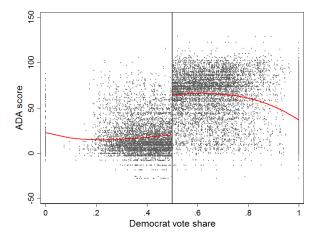
Quadratic

gen demvoteshare2 = demvoteshare²
reg score demvoteshare demvoteshare2 democrat
predict scorehat0



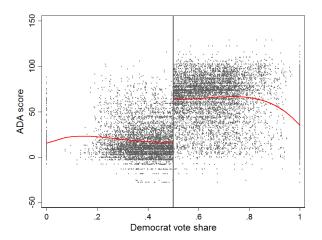
Third degree polynomial

gen demvoteshare3 = demvoteshare^3
reg score demvoteshare demvoteshare2 demvoteshare3 democrat
predict scorehat01



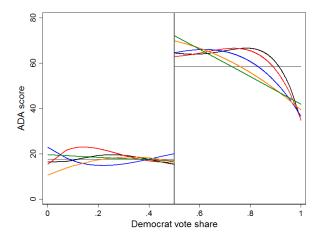
Fourth degree polynomial

gen demvoteshare4 = demvoteshare⁴
reg score demvoteshare demvoteshare2 demvoteshare3 demvoteshare4 ///
 democrat
predict scorehat02



Mean (null model) to fifth degree polynomial

line scorehat04 demvoteshare if democrat ==1, sort color(gray) || ///
line scorehat04 demvoteshare if democrat ==0, sort color(gray) legend(off)



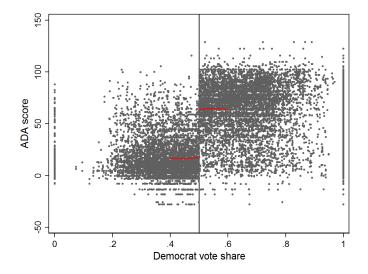
- Note that polynomials "smooth" the data (like LOWESS)
- We used *all* the data even though we want treatment effect at c
- But polynomials give weight to points away from c and tend to provide smaller SEs
- In other datasets, the choice of polynomial degree will matter (see Gelman and Inbems, 2014)
- Why not only use data close to c? Bias and variance trade-off

Restrict to a window

 Run a flexible regression like a polynomial with interactions (stratified) but don't use observations away from the cutoff. Choose a bandwidth around X = 0.5. Lee et al (2004) used 0.4 to 0.6.

```
reg score demvoteshare demvoteshare2 if democrat ==1 & ///
  (demvoteshare>.40 & demvoteshare<.60)
predict scorehat1 if e(sample)
reg score demvoteshare demvoteshare2 if democrat ==0 & ///
  (demvoteshare>.40 & demvoteshare<.60)
predict scorehat0 if e(sample)
scatter score demvoteshare, msize(tiny) xline(0.5) xtitle("Democrat vote share") //
  ytitle("ADA score") || ///
  line scorehat1 demvoteshare if democrat ==1, sort color(red) || ///
  line scorehat0 demvoteshare if democrat ==0, sort color(red) legend(off)</pre>
```

graph export lee3_1.png, replace



Limit to window, 2nd degree polynomial

gen x_c = demvoteshare - 0.5 gen x2_c = x_c^2 reg score i.democrat##(c.x_c c.x2_c) if (demvoteshare>.40 & demvoteshare<.60)

	SS				er of obs =	
+				F(5, 4626) =	1153.29
Model	2622762.02	5 524552.4	404	Prob	> F =	0.0000
Residual	2104043.2 4	626 454.829	918	R-sq	uared =	0.5549
+				Adj	R-squared =	0.5544
Total	4726805.22 4	631 1020.6	878	Root	MSE =	21.327
	Coef.	0+d Enn	 +	D>1+1	FOE% Comf	Tatemus11
	-+				[95% CON1.	Incervarj
1.democrat	45.9283	1.892566	24.27	0.000	42.21797	49.63863
x_c	38.63988	60.77525	0.64	0.525	-80.5086	157.7884
x2_c	295.1723	594.3159	0.50	0.619	-869.9704	1460.315
	1					
democrat#c.x_c	I					
1	6.507415	88.51418	0.07	0.941	-167.0226	180.0374
	I					
democrat#c.x2_c	I					
1	-744.0247	862.0435	-0.86	0.388	-2434.041	945.9916
	I					
_cons	17.71198	1.310861	13.51	0.000	15.14207	20.28189

So what should you do?

- Best case: Whatever you do gives you similar results (like in this example)
- Most common strategy is to restrict estimation to a window adjusting for covariates
- It used to be popular to use higher order polynomials
- Try different windows and present sensitivity analyses
- Balance should determine the size of window
- Try non-parametric methods

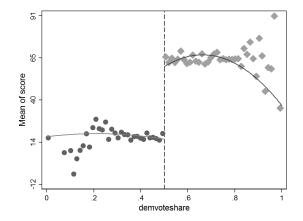
Nonparametric methods

- Paper by Hahn, Todd, and Van der Klaauw (2001) clarified assumptions about RDD and framed estimation as a nonparametric problem
- Emphasized using local polynomial regression instead of something like LOWESS
- "Nonparametric methods" means a lot of things in statistics
- In the context of RDD, the idea is to estimate a model that does not assume a functional form for the relationship between Y and X. The model is something like Y_i = f(X_i) + ϵ_i
- A very basic method: calculate E[Y] for each bin on X (think of a histogram)

Nonparametric

- Stata has a command to do just that: cmogram
- After installing the command (ssc install cmogram) type help cmogram. Lots of useful options
- Common way to show RDD data. See for example Figure II of Almond et al. (2010). To recreate something like Figure 1 of Lee et al (2004):

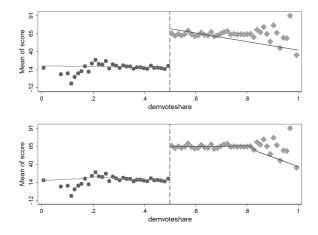
cmogram score demvoteshare, cut(.5) scatter line(.5) qfit



Nonparametric

Compare to linear and LOWESS fits

cmogram score demvoteshare, cut(.5) scatter line(.5) lfit cmogram score demvoteshare, cut(.5) scatter line(.5) lowess



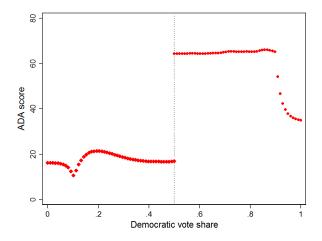
Local polynomial regression

- Hahn, Todd, and Van der Klaauw (2001) showed that one-side Kernel estimation (like LOWESS) may have poor properties because the point of interest is at a boundary
- Proposed to use instead a local linear nonparametric regression
- Stata's lpoly command estimates kernel-weighted local polynomial regression
- Think of it as a weighted regression restricted to a window (hence "local"). The Kernel provides the weights
- A rectangular Kernel would give the same result as taking E[Y] at a given bin on X. The triangular Kernel gives more importance to observations close to the center
- Method sensitive to choice of bandwidth (window)

Local regression is a smoothing method

Kernel-weighted local polynomial regression is a smoothing method

lpoly score demvoteshare if democrat == 0, nograph kernel(triangle) gen(x0 sdem0) bridth(0.1) lpoly score demvoteshare if democrat == 1, nograph kernel(triangle) gen(x1 sdem1) bridth(0.1) <omitted>



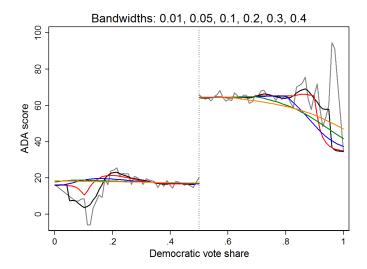
Treatment effect

```
• We're interested in getting the treatment at X = 0.5
```

	İ	sdem1	sdem0	dif
1.		64.395204	16.908821	47.48639

Different windows

What happens when we change the bandwidth?



Nonparametric

- With non-parametric methods in RDD came several methods to choose "optimal windows"
- In practical applications, you may want to check balance around that window
- Standard error of treatment effect can be bootstrapped
- Could add other variables to nonparametric methods but more complicated
- See Stata do file for examples using command rdrobust

Using rdrobust

. rdrobust score demvoteshare, c(0.5) all bwselect(IK)

Sharp RD Estimates using Local Polynomial Regression

Cutoff c = .5	Left of c	Right of c		Numb	er of obs =	bs = 13577					
+				Rho	(h/b) =	0.770					
Number of obs	3535	3318		NN M	atches =	3					
Order Loc. Poly. (p)	1	1		BW T	уре =	IK					
Order Bias (q)				Kern	el Type =	Triangular					
BW Loc. Poly. (h)	0.152	0.152									
BW Bias (b)	0.197	0.197									
	Loc. Poly. Robust				obust						
		Std. Err.									
+											
demvoteshare											
All Estimates. Outcome: score. Running Variable: demvoteshare.											
		Std. Err.									
Method											
Conventional											
Bias-Corrected											
		1.262									
1000000	10.014	1.202									

Parametric or non-parametric?

When would parametric or non-parametric or window size matter?

- Small effect
- Relationship between Y and X different away from cutoff
- Functional form not well captured by polynomials (or other functional form)
- Parametric: can add random effects, clustering SEs,...
- But more important: What about if the outcome cannot be assumed to distribute normal?
- The curse and blessing of so many good RDD guides...
- With counts, for example, need to use Poisson or Negative Binomial models
- If conclusions are different, do worry

Marginal returns to medical care

- Big picture: is spending more money on health care worth it (in terms of health gained)?
- Actual research: is spending more money on low-weight newborns worth it in terms of mortality reductions? Compare marginal costs (dollars) to marginal benefits (mortality transformed into dollars).
- On jargon: In economics marginal = additional. So compare additional spending to additional benefit
- In IV language, the "marginal" patient is the "complier"
- RDD part used to estimate marginal benefits. Data from U.S Census birth 1983 to 2002
- Forcing variable is newborn weight. Cutoff point c = 1,500 grams (almost 3 lbs)

- Did they use a fuzzy or sharp RDD?
- Related question: What is the "treatment"?
- What models did they use? And what was the outcome?

Estimating equation

Their model is:

$$Y_{i} = \alpha_{0} + \alpha_{1} VLBW_{i} + \alpha_{2} VLBW_{i} \times (g_{i} - 1500) + \alpha_{3}(1 - VLBW_{i})(g_{i} - 1500) + \alpha_{t} + \alpha_{s} + \delta X_{i}' + \epsilon_{i} \quad (1)$$

■ Change notation so VLBW = T and (g_i - 1500) = X̃ and after doing some algebra the model is:

$$Y = \alpha_0 + \alpha_1 T + \alpha_3 \tilde{X} + (\alpha_2 - \alpha_3) T \times \tilde{X} + (\alpha_t + \alpha_s + \delta X') + \epsilon$$

• $(\alpha_t + \alpha_s + \delta X')$ are covariates

Covariates

- They compared means of covariates above and beyond cutoff point
- They found some differences (large sample) so they include covariates in the model
- They did a RDD-type analysis on covariates to see if they were "smooth" (no jump at VLBW cutoff)