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Preface

This is a book on quantitative methods in health services research, health economics, and
health policy evaluation – more generally referred to as “program evaluation.” Health ser-
vices research is a multidisciplinary field that examines the use, costs, quality, outcomes,
and other aspects of health care including the organization of health care markets. Evalu-
ating the impact of health policy is central to the field.

Quantitative analyses in health services research apply methods and language developed
in econometrics and statistics/biostatistics. In most applications, the goal is to understand
the causal impact of policy changes or “treatments,” broadly defined, on a set of outcomes.
In most circumstances, however, randomized trials are either not feasible or prohibitively
expensive, and we must establish causality using observational data; that is, data that were
not collected as part of an experiment. A key distinction between experiments and observa-
tional studies is than in observational studies treatment assignment is not under the control
of the investigator.

Most readers have already learned that correlation or association does not imply causa-
tion. The goal of causal inference is to understand under which conditions correlation –or
any other measure of association– does imply a causal effect. Thus, this book is about the
design of observational studies and the estimation of statistical models to answer causal
research questions. We also cover the necessary background material to understand ad-
vanced methods. The background material is focused on understanding the mechanics and
properties of parametric and nonparametric statistical models. These models are useful
as descriptive and predictive tools, but our ultimate goal is to use them to answer causal
research questions.

One feature of our book is that we separate the design of an observational study from
the estimation of statistical models. The separation of design and estimation is one of the
most valuable aspects of the potential outcomes framework since causal effects are defined
independently of an estimation method. This approach is part of the “new” causal inference
field in statistics, although causal inference has always been central to econometrics. In the
last two to three decades, these separate but related fields have found plenty of common
ground regarding causality. The new part is a clear definition of causal effects and a mathe-
matical notation based on potential outcomes and counterfactuals that continues to expand
and clarify our understanding of established methods and facilitates the development of
new ones.

Our approach is based on the premise that complex concepts are better understood when
first introduced with intuitive examples and graphs, followed by theory, and then practical
applications using statistical software. Based on our experience teaching graduate-level
classes, we think that students learn best by doing, and “doing” means relating the theory
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to application using statistical software. Some concepts are difficult to understand in theory
but are relatively easy to understand when implemented in practice (and vice versa).

We strive to present theory intuitively but formally to show how the theory is applied
and why methods work, which is essential for understanding when specific methods should
be used and what meaning can be derived from the estimators. This is not a “cookbook
approach” book in the sense that we do not focus on rules for specific situations. We do
not shy away from presenting complex concepts and mathematical notation because they
are essential tools to develop intuition on how and why statistical methods work. Mathe-
matics is a language that makes the job easier, not more difficult. Mathematics allows us to
represent ideas and concepts using symbols, and we manipulate these symbols to discover
new ideas and prove propositions that might not be self-evident. Manipulating complex
ideas in our minds without the use of symbols is much more difficult. However, we always
provide the intuition behind the mathematics to help students understand how the symbols
relate to ideas since not all students are comfortable with mathematics. At the end of the
course(s), students should be able to understand the language of mathematics as it applies
to statistical analysis.

This book is intended for advanced undergraduates, master’s students, and doctoral stu-
dents in health services research, health economics, public policy, and related fields. Stu-
dents in these disciplines come from diverse backgrounds with different levels of prepara-
tion. We assume the same background that is commonly required for admission to these
programs: two semesters of calculus and introductory statistics. A class on linear regression
would be helpful, but not strictly necessary since we review the essential features of linear
models. We keep linear algebra to a minimum. The goal of the mathematical appendix is to
review the mathematical background needed to understand the rest of the book. We hope
that students go over the introductory material even if it is not assigned by instructors. Each
new concept is based on previous concepts; it is a lack of knowledge of the basics, and the
corresponding notation, that confuses students the most. Previous knowledge of Stata is
helpful, although the background chapters also serve as an introduction to Stata.

Key features of this book include:

• Semantics Boxes that clarify how terms are used in different disciplines. Because our
field is multidisciplinary, the terms we use can be confusing –sometimes comically
so– because the same terms can have different definitions or because the same concept
is named differently in other fields.

• Notation Boxes that clarify how mathematical symbols are used in different disciplines
or by different authors. As we said, mathematics is a language, but it is a language
with symbols that are not standard and can be defined in different ways by different
authors. We clarify and present alternative mathematical notation because not under-
standing unfamiliar notation can prevent students and practitioners from grasping the
underlying concepts. A variant of this theme is that sometimes the notation is the re-
sult of giving statistical models an interpretation tied to an underlying theory, so we
also cover different ways of understanding and/or deriving statistical models. We think
students will be better equipped to understand theoretical papers and more advanced
textbooks if they understand the notation.
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• Extensive examples using datasets to illustrate real-life applications. One frustrating as-
pect of teaching health services research methods is that we usually cannot use the
same datasets that are common in the field and our own research because Data Use
Agreements do not permit the distribution of these data. However, we have created
multiple datasets from publicly available sources and include datasets that authors
have made publicly available to reproduce published papers. Our goal is to use datasets
that reflect how practitioners work in our fields.

• Stata code to reproduce all examples and figures in the book. We use Stata code as a tool
for learning. In some cases, like graphs or long output, not all of the code is in the
book, but it is available in the online supplemental material.

• Stata version control. We prefer Stata because it has the features we need and it has ex-
tensive documentation and substantial technical support. Another key feature of Stata
is that it is backwards compatible. Regardless of updates, commands will always work
provided the code includes a Stata version statement. This ensures that our code will
not become obsolete when new versions are released or commands are updated. Most
of our code requires Stata 16.1, but some examples require Stata 17. Each program
file begins with a version statement.

• Online supplemental material. The online supplemental material includes R code to
replicate most of the examples in the book when possible, although some material
is specific to Stata. The online supplemental material also covers additional topics
that we had to leave out from the text because of space constraints.

• End-of-chapter exercises to reinforce key concepts.
• End-of-chapter bibliographical notes with references to books and papers where readers

can find additional or complementary material.

This book is also intended to be a tool for faculty who teach quantitative methods and
a reference for practitioners. We wrote it because we could not find a textbook that fit the
needs of students. In our classes, we ended up assigning book chapters and papers that use
different notation and language, which makes both learning and teaching more difficult.
We had to complement those materials with extensive lecture notes and “translations” of
notation, terms, and subject-matter. Our lecture notes are the basis for this book.

Additional supplemental material for instructors include:

• Solutions to end-of-chapter exercises.
• Most of the sample datasets contain additional variables that are not part of our analy-

ses. Instructors could use these variables to expand problems sets or create examples
focusing on different research questions. In many cases, the variables have missing
values. Most textbooks use small sample datasets with non-missing values, but this
does not reflect the reality of how research is conducted, so we decided to retain miss-
ing values in some of the datasets.

• Lecture notes for most chapters. The lecture notes focus on the most important parts of
each chapter. These notes can be used as a starting point for teaching with our book.

• Errata. Despite multiple revisions and editing, the presence of a mistake converges to 1
in probability given the length of our book. We will post a complete list of errors by
chapter as we find them, including updates and clarification of some material.
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We wrote the book with a two-semester quantitative methods sequence in mind plus ad-
ditional material for review. We cover topics that should be the standard toolkit in health
services research and health/public policy doctoral programs as well as applied economet-
rics courses in economics programs, although most of our examples are about health care.

The book is divided into four parts. Parts I and II introduce the major subjects we cover,
including the potential outcomes framework and a review of statistical concepts and linear
regression. Part III focuses on estimation and inference of statistical models, including in-
terpretation of model parameters (causal or not) and discussion of nonparametric models.
In other words, Part III discusses techniques to estimate statistical models and the assump-
tions and properties of these models when applied to a sample, without assuming that
findings from these models have a causal interpretation. On the other hand, Part IV covers
the most important methods to estimate causal effects using observational data: propensity
scores and matching estimators as an alternative and complement to regression adjust-
ment, longitudinal (panel) data, difference-in-differences, regression discontinuity designs,
and instrumental variables.

Two chapters are fundamental for students to master: Chapter 3 on the potential out-
comes framework and Chapter 6 on marginal effects. Chapter 3 is the foundation to under-
stand the definition of causal effects and the identification of causal effects using a sample,
and it presents the potential outcome notation we use in the rest of the book. Chapter 6 on
marginal effects is essential for understanding the interpretation of model parameters and
to express model parameters in different metrics regardless of whether the parameters have
a causal interpretation. We provide an overview of each chapter and their connections in
Chapter 1.

We have tried to make the chapters as self-contained (modular) as possible –particularly
in Part IV– so they can be used independently, although this separation is artificial. We refer
to other material in the book when we think students would benefit from reading sections
in other chapters, but we have tried to keep such references to a minimum. Each chapter
progresses from simple to advanced, from known to unknown, and from concrete to ab-
stract without losing track of practical applications. Instructors could skip the sections that
appear towards the end of each chapter if they think the material is too advanced for their
students. However, we hope that all of the material can be covered, time permitting. Often,
“advanced” really means “unknown.” Most concepts are simple once we understand them,
and our understanding of “sophisticated” changes with time. What was a sophisticated
method a decade ago could be a standard one now.

A typical two-semester sequence for students starting a sequence of quantitative methods
would cover:

First semester: Chapters 3-6
Second semester: Chapters 9-13
Optional topics: Appendix, Chapters 2, 7 and 8

In some programs, students take a year of mathematical statistics and/or econometric
theory before taking applied methods classes. In this case, a two-semester sequence would
skip some of the background material but cover additional chapters:
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First semester: Chapters 3, 4-7
Second semester: Chapters 9-13
Optional: Chapter 8

Alternatively, the book could be used for a one-semester class on causal methods for the
analysis of observational data assuming the statistical/econometrics background material
is known:

Chapters 3, 9-13
Optional (but strongly suggested): Chapter 6





60 Estimation I: Maximum likelihood, Generalized method of moments, Bayesian estimation

Box 4.1 Notation: Writing probit and logit models

There are many ways of writing logit and probit models, with different combina-
tion of notation that might cause unnecessary confusion. In the latent approach,
we often write (omitting subscripts) Pr(y = 1|x1, ..., xp) = F(β0 + β1x1 + · · ·+ βpxp)
or more compact, Pr(y = 1|x) = F(x′β) using vectors or even Pr(y|x) = F(x′β).
In a model with few covariates, we could also write Pr(y = 1|x1, x2). As we saw in
Chapter 4, we have many choices for F(·). By convention, Pr(y = 1|x) = Λ(x′β)
denotes a logit model (Λ is capital lambda; the standard logistic CDF). A probit
model is often written as Pr(y = 1|x) = Φ(x′β) (Φ is capital phi, the standard nor-
mal CDF). Since y is an indicator or dummy variable, then E[y] = Pr(y = 1).
Therefore, we could also write the models above as E(y|x) = F(x′β). Sub-
scripts are important since they communicate data structure. We could write
Pr(yi = 1|xi) = F(x′iβ), although it is clear from the context in this chapter
that we are working with cross-sectional data. In Chapter 7 on choice mod-
els, we could have j “choices” or observations by person i, so we could write:
Pr(yi = j|xi, ) = F(x′iβ) if the choice only depends on the attributes of the
decision-maker and not the choice. If the attributes of the alternative choices
were of interest, we could include these with a subscript j: x′i j. Our preference is
to use the notation that matches the scale of estimation, which means matching
Stata or R output. For this reason, we write a logit model as log( pi

1−pi
) = x′iβ.

Note that this is the same as logit(p) = x′β or log[ Pr(yi=1|x)
Pr(yi=0|x) ] = x′iβ. For the pro-

bit model, the scale of estimation matches Pr(yi = 1|xi) = Φ(x′iβ). Be careful
with look alike Greek letters: another source of confusion is between capital phi,
Φ(·), the standard normal cumulative density function (CDF), and lower-case phi
φ(·), the standard normal probability density function (PDF). We chose to denote
probability as Pr(·), but all the expressions above could have used P(·) instead.



6 Marginal effects to interpret
regression parameters

Marginal effects are used to interpret regression parameters. They can be computed as
“what if” predictions of model outcomes under different scenarios. Model predictions
quantify the impact of changing the value of a covariate of interest. More technically,
and in most models, the marginal effect of a continuous covariate is the numerical par-
tial derivative of the expected value of the outcome with respect to a small change in the
covariate. For a discrete covariate, they are measured as incremental changes in expected
values of the outcome given a discrete change in the covariate.

Marginal effects are indispensable to interpret parameters in nonlinear models. As we
saw in Chapter 4, the scale of estimation in nonlinear models is often different than the scale
of interest. In logit models, we are interested in understanding the effect of a covariate in
the probability scale, but models are estimated in the log-odds scale. In Poisson models, we
are interested in the effect of covariates on the number of events (counts) or the rate of the
event, but Poisson models are estimated in log counts or log rates. Marginal effects allow
us to report results in various scales and metrics, regardless of whether the parameters have
a causal interpretation.

In this chapter, we focus on logit and probit models because marginal effects are often
introduced and motivated in the context of these models, but we present general algo-
rithms and examples using other statistical models, including nonparametric models. We
first motivate the need for marginal effects with simple examples in which analytical partial
derivatives can be easily calculated and interpreted. To understand how numerical partial
derivatives are calculated, we review basic calculus concepts and present algorithms to
compute numerical partial derivatives, which involve making decisions on how to hold
constant the values of other covariates. We present multiple examples using the -margins-
command to compute marginal effects. Because marginal effects are based on predictions,
the -margins- command can also be used to obtain adjusted predictions and plots. We also
show how standard errors for marginal effects are calculated.

Besides understanding the conceptual definition and practical computation of marginal
effects, an important takeaway of this chapter is that in some scales the impact of covariates
on outcomes is no longer additive and separable.

6.1 Why do we need marginal effects?

As we discussed in Chapter 2, in simple linear/OLS models, interpreting model parameters
is usually straightforward. For example, we showed that the model yi = β0 + β1age +
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Box 6.1 Semantics: Different meanings of “marginal”

The term marginal effect causes plenty of confusion in interdisciplinary collab-
orations. The term emerged from econometrics. In economics, marginal means
additional or incremental. Mathematically, it is a derivative. In producer theory, a
profit-maximizing firm stops producing a good when its marginal revenue equals
its marginal cost; that is, the revenue from an additional quantity is the same as
the cost of producing the additional quantity. For a statistician, the first concept
that comes to mind after reading marginal is not a derivative but its opposite, a
definite integral, because of marginal distributions. Given the joint probability
distribution function of random variables, the marginal probability density func-
tion of one variable can be obtained by integrating (or summing with discrete
random variables) over the domain of the other variables.

β2male + εi, assuming ε ∼ N(0, σ2), is a conditional expectation function. We can write
the model as E[yi|x] = β0 + β1age + β2male. The effect of age on the expected value of the
outcome is β1. Assuming age is measured in years, a one-year increase in age increases the
average outcome by β1. This effect is constant (linear), so the effect of a 10-year increase
is 10 × β1. A simple linear specification assumes that aging one year has the same impact
on teenagers as it does on the elderly. However, even simple linear/OLS models could have
non-constant effects, which complicates interpretation. In the model, yi = α0 + α1agei +

α2age2
i + ui, the effect of age depends on the value of age: dE[yi |x]

dage = α1 + 2α2age.
With interactions, interpretation is slightly more difficult. In the model yi = β0 +β1agei +

β2malei + β3agei × malei + εi, the effect of age is no longer constant (linear), and the
coefficient for age, β1, needs to be interpreted in relation to β3. In this model, the effect
of age depends on whether the person is male or female. As above, calculating derivatives
or incremental changes facilitates interpretation: ∂E[yi |x]

∂age = β1 + β3male and ∆E[yi |x]
∆male = β2 +

β3age. Remember that interactions apply in both directions: the effect of a change in age
on the average outcome depends on sex, but the previous model also assumes that the
incremental effect of sex depends on age.

In other models, especially nonlinear models, interpretation is more difficult. Consider
the following logit model: log( pi

1−pi
) = β0 +β1agei +β2malei. As we saw in Chapter 4, β1 is

the effect of age in the log-odds scale. The sign and the p-value of β1 provide information
on the direction of the effect and statistical significance for a null hypothesis H0 : β1 = 0,
but expressing results in the log-odds scale is of no practical interest. We could, however,
easily express results in terms of odds ratios, eβ1 or eβ2 , but odds ratios have many draw-
backs. One of this drawbacks is that odd ratios tend to be incorrectly interpreted as a ratio
of probabilities, but they are not: odds ratios are a ratio of odds. The odds of an event is the
probability that the event occurs divided by the probability that the event does not occur. If
greater than one, then the event has a larger chance of occurring than not.

It is more useful to interpret logistic models in the probability scale because research
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questions are usually focused on understanding the influence of covariates on the probabil-
ity of an event. We can go from log-odds to probabilities using the inverse logit function

Pr(yi = 1|x) =
e(β0+β1agei+β2malei)

1 + e(β0+β1agei+β2malei)
=

1
1 + e−(β0+β1agei+β2malei)

. (6.1)

To calculate the effect of age, we could take the derivative ∂Pr(yi=1|x)
∂age as with linear mod-

els. However, this derivative does not have a simple, easy to interpret expression since the
analytic derivative of f (x) = ex is also f ′(x) = ex.

More generally, suppose we estimate the following logit model:

log
(

pi

1 − pi

)
= β0 + β1x1i + · · · + βpxpi, (6.2)

which can be rewritten in the probability scale as

Pr(yi = 1|x) =
1

1 + e−(β0+β1 x1i+···+βp xpi)
. (6.3)

The marginal effect for a continuous covariate x1 is given by the expression:

∂Pr(yi = 1|x)
∂x1

= β1
eβ0+β1 x1i+···+βp xpi

(1 + e−(β0+β1 x1i+···+βp xpi))2
(6.4)

Equation 6.4 shows that the effect of an infinitesimal change in x1 on the probability of
the outcome is nonlinear – as it has to be since the outcome must be bounded between 0
and 1. The direction of the change is given by the sign of β1. It is evident from 6.4 that the
effect of x1 depends on the value of all other covariates in the model even if the underlying
model does not include interactions. In the probability scale, there are implicit interactions.
Effects are no longer additive and separable. This is an important feature shared with
other nonlinear models as we discuss in Section 6.9 and Chapter 7. The implications for
modeling are discussed in Section 6.13.

Since working with analytical derivatives in nonlinear models is not as simple as in
linear/OLS models, we will calculate numerical derivatives to interpret parameters. The
numerical partial derivative is the marginal effect. If the variable of interest is discrete,
such as an indicator or dummy variable, we want to understand the impact of changing the
indicator variable from 0 to 1, which we call the incremental effect.

6.1.1 Metrics: Odds ratio, relative risk, risk difference

We first review the metrics (or effect measures) that can be obtained from logit (or probit)
models since we will discuss marginal effects in the context of these models. In particular,
the difference between odds ratios, relative risks, and risk differences tends to confuse
students even though they are just different ways of quantifying comparisons.

Consider a simple example: the probability of death in a control group is 0.40, while

the probability of death in the treatment group is 0.20. This implies an odds ratio=
0.2

1−0.2
0.4

1−0.4
=
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0.375 or that treatment reduces the odds of death by a factor of 0.375. Inversely, the odds of
death are 2.67 higher in the control group ( 1

0.375 ). But neither metric is a relative risk (rela-
tive probabilities), even though that is how odds ratio is sometimes incorrectly interpreted.
The relative risk is 0.2

0.4 = 0.5, which means that the probability of death is reduced by half
in the treatment group (or the probability of death is 2 times higher in the control group).
The risk difference is the difference between the probabilities: -0.2 (0.4-0.2), implying a
20 percentage point decline.

Something else is critically important: odds ratios and relative risks do not provide a
good sense of the magnitude of the relationship. Assume now that the probability of death
in the control group is 0.00004 and 0.00002 in the treatment group. The odds-ratio is
still 0.375 and the relative risk is still 0.5. However, the risk difference which is how
we will express marginal and incremental effects, gives a better sense of the magnitude:
0.00002 − 0.00004 = −0.00002 or -0.002 percentage points. The practical implications
are very different. Think about this example next time you read that a treatment increases
the chances of something else happening by a factor of X, followed by a statement about
statistical significance. Are they referring to odds or probabilities? Is the practical implica-
tion consistent with what the headline suggests? The practical significance of the finding
is better understood in the context of the difference in probabilities or with knowledge of
the underlying chance of the outcome.

In section 6.7.2, we will use logit and probit models to express results in these metrics,
but they are not the only possibilities. For example, we could also use percent change:
the treatment reduces the probability of death by 50%: (0.2-0.4)/0.4. Note that the percent
change is the relative risk minus 1 multiplied by 100: Pt−Pc

Pc
= ( Pt

Pc
−1)×100, where Pc is the

probability of the outcome in the control group and Pt is the probability in the treatment
group. In applied work, it is useful to communicate results in different metrics.

6.2 Analytical and numerical derivatives

In this section, we review the definition of analytical derivatives because numerical deriva-
tives closely follow the analytical definition. In the next section, we present an algorithm
that applies the analytical definition to obtain a numerical approximation using model pre-
dictions and observed data.

6.2.1 One-sided derivative

To understand how to calculate numerical derivatives, it is helpful to review basic calculus.
An analytical derivative is a rate of change; it measures the slope of the tangent line that
touches a curve at some point x0 in the curve. The slope of a line is m =

y1−y0
x1−x0

=
∆y
∆x , that is,

the change in y relative to the change in x. The derivative follows the same concept, except
that the change around a point x0 is extremely small (infinitesimal). It is the change in y
when the change in x at x = x0 tends to zero. It is a limit:
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f ′(x = x0) ≡ lim
h→0

f (x0 + h) − f (x0)
h

(6.5)

If you look at the numerator closely, f (x0 + h)− f (x0) is the change in y; that is, ∆y. The
denominator is the change in x: ∆x = (x0 + h)− x0 = h. If the function had other variables,
we would consider them as fixed or constant when evaluating the partial impact when x
changes. All the formulas for the derivative of a function can be derived using the definition
above by taking the limit of the change in x (h in Equation 6.5), although shortcuts and
rules like the product rule or the power rule simplify derivations. For example, recall that
the derivative of f (x) = x2 + a is f ′(x) = 2x, because:

f ′(x = x0) = lim
h→0

(x0 + h)2 + a − x2
0 − a

h
=

x2
0 + 2x0h + h2 − x2

0

h

=
2x0h + h2

h
=2x0 + h

=2x0

(6.6)

For a function to be differentiable, it must be continuous or “smooth” at every point x0.
If a function has a discontinuity at some point x0, we could still analyze the change in y
by changing h in one direction, by either taking a right-hand limit (limh→0+ ) or a left-hand
limit (limh→0− ). A function is differentiable at x0 if the right-hand side and left-hand side
derivatives exist and are equal.

We could also use the definition of the derivative to calculate the numerical derivative
of a function. Using Equation 6.5, we plug in a small number for h to approximate the
derivative at a point x0. We would have:

f ′(x = x0) ≈
f (x0 + h) − f (x0)

h
,

which is just Equation 6.5 evaluated at h instead of the limit of h.
Consider a simple example to provide some intuition. Suppose f (x) = x2 and x0 = 2.

Using h = 0.0001, the numerical derivative is

f ′(x = 2) ≈
(2 + 0.0001)2 − 22

0.0001
= 4.0001, (6.7)

which is close to the actual derivative of 4: f ′(x = 2) = 2x = 2 × 2 = 4. Keep in mind
that this is a one-sided computation. We increased x at x0 by a small amount, but we could
have decreased x as well (subtracting by 0.0001, you should get 3.9999).

Computationally, it is not trivial to come up with a number h that is “small but large
enough” so that the computations are numerically accurate. The examples we cover in this
chapter are not as simple as Equation 6.7, where we do not lose much numerical precision.
Here, we know how much we lose (because we know the analytic derivative at x0 = 2 is
4): (4−4.001) = 0.0001 = h. We could reduce the loss by making h smaller, but in general,
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we do not want to make it too small either because we could lose numerical precision. We
discuss numerical precision in section 6.14.1.

6.2.2 Two-sided, centered derivative

There is another way of defining a derivative, and this is the definition Stata uses to esti-
mate marginal effects because it has computational advantages. A two-sided derivative is
calculated using both a positive and negative small change h around a point x0:

f ′2(x = x0) ≈
f (x0 + h) − f (x0) − [ f (x0 − h) − f (x0)]

2h
=

f (x0 + h) − f (x0 − h)
2h

(6.8)

As with a one-sided derivative, the choice of a small h is still an important consideration,
but we highlight the advantage of this definition with an example. If we use 6.8 to evaluate
the derivative of f (x) = x2 at x0 = 2 with h = 0.0001, we would find that the numerical
derivative is exactly 4, which matches the analytical partial derivative evaluated at x0 = 2.

In the following examples, we first calculate marginal effects “by hand” and then com-
pare our results to those obtained with the -margins- command. Our calculations will be
very close, but Stata also implements an additional iterative procedure that changes the
value of h to achieve better numerical accuracy (Section 6.14.1). This can slow down the
calculation of marginal effects in some models.

6.3 Average marginal effects

In the previous section, we reviewed the definition of an analytical partial derivative and
evaluated the derivative at a particular point numerically by choosing a value for h. In this
section, we present an algorithm that applies the same ideas to obtain partial numerical
derivatives using a logit regression model.

The algorithm consists of five step and computes the the partial numerical derivative for
a small change in x1, assuming x1 is a continuous variable:

1. Estimate the logit model log( pi
1−pi

) = β0 + β1x1i + · · · + βpxpi.
2. Increase the value of the variable x1 by a “small” amount h: x1 = x1 + h. h depends

on the units of x1: h = (|x̄1| + 0.0001) × 0.0001, where x̄1 is the mean of x1. For each
observation i, calculate predictions ŷ1i in the probability scale keeping all other covariate
values (x2i, . . . , xpi) as observed.

3. Decrease the value of the variable x1 by the same small amount h for each observation
i. Calculate predictions ŷ0i in the probability scale using values for all covariates as
observed

4. For each observation i, calculate the difference of the two predictions divided by 2h:
(ŷi1 − ŷi0)/2h

5. The average of this difference is the numerical derivative: E[ ŷ1i−ŷ0i
2h ] ≈ ∂Pr(yi=1|x;β)

∂x1
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Conceptually, this procedure follows the two-sided numerical derivative (Equation 6.8)
and predictions from the logit model correspond to Equation 6.4. The small change h =

(|x̄1| + 0.0001) × 0.0001 is the same small initial change used by Stata (0.0001 is the same
as 10−4 in scientific notation; in computer language, it is 1e-4). Since the unit of measure-
ment of a variable matters (e.g., age in years versus age in decades), it makes sense that
the “small” change depends on the mean of the covariate, x̄1. These predictions can be
conceptualized as “counterfactual” predictions, even at the risk of confusing this approach
with the potential outcomes framework of Chapter 3. However, it is important to under-
stand that we use the estimated model to make “what if” predictions by changing the value
of a covariate. Said in other words, we use the estimated model to understand implications
of the model in a scale that is different from the estimation scale.

This algorithm is general, in the sense that the same procedure could be applied to other
regression models. We simply estimate a different model in step 1 and calculate the corre-
sponding predictions in steps 2 and 3 using the model estimates.

To show how to implement the algorithm, we use an extract from the 2016-2017 Na-
tional Health and Nutrition Examination Survey (NHANES). The outcome of interest is
the probability that a respondent has high cholesterol (hyperlipidemia), defined as total
blood cholesterol higher than 200 milligrams per deciliter. We are interested in under-
standing how age affects the probability of high cholesterol. Other covariates of interest
are sex and and indicator variable equal to 1 if the respondent has any health insurance
coverage. Besides changes in diet, medications are effective in treating this condition. We
do not observe whether a person is taking medications to lower cholesterol in this sample.
However, health insurance coverage could be a proxy for access to medications, as these
drugs require a prescription and are expensive. Below is a description of the data:

use "nhanes_cholesterol",clear

describe

storage display value

variable name type format label variable label

----------------------------------------------------------------------------------

highchol float %9.0g 1 if total cholesterol > 200 mg/dL

age double %12.0g Age: continuous

male double %12.0g 1 if male

insured float %9.0g 1 if any insurance

summarize highchol age male insured

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

highchol | 5,214 .3214423 .4670749 0 1

age | 5,214 48.44208 19.57075 16 80

male | 5,214 .4854239 .4998354 0 1

insured | 5,214 .8632528 .3436132 0 1

lpoly highchol age, deg(2) jitter(3)

Figure 6.1 shows the relationship between age and the probability of high cholesterol
using a kernel-weighted local polynomial regression. The graph shows that the expected
value of high cholesterol (i.e., probability) conditional on age increases at a steady rate until
about age 55, when it starts to decline. Note that children and teens can have high choles-
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terol, although the upper-left corner points show that there are fewer teen respondents with
high cholesterol.

To implement the algorithm, we first estimate the following logit model:

log
(

highcholi
1 − highcholi

)
= β0 + β1agei + β2malei + β3insuredi (6.9)

Next, we implement steps 2 to 5 to calculate the marginal effect of age on the probability
of high cholesterol:

1 preserve

2 quietly summarize age

3 scalar h = (abs(r(mean))+0.0001)*0.0001

4 quietly logit highchol age male insured

5 clonevar age_c = age

6 replace age = age_c + scalar(h)

7 predict double hc_1 if e(sample)

8 replace age = age_c - scalar(h)

9 predict double hc_0 if e(sample)

10 generate double dydx = (hc_1-hc_0)/(2*scalar(h))

11 summarize dydx

12 restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 5,214 .0036087 .0004465 .0025876 .0042398

We used preserve to save the current data in memory because in this example we do
not want to keep the variables created after the preserve command. The command restore
restores the dataset to the version before the command preserve was executed. Since we
need to change the value of age twice, we use the command clonevar in line 5 to create a
replica of age. By default, the command predict calculates predictions from a logit model
in the probability scale. Note that the variable dydx is the difference in predictions (in the
probability scale) divided by the small change for each observation. The average marginal
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effect is the mean of the individual marginal effects: .0036087. The interpretation is that
a small increase in age increases the probability of high cholesterol by 0.36 percentage
points, holding other covariates constant.

We now use the -margins- command to replicate our “manual” calculations. We first
estimate the same logit model using the quietly prefix since we are not interested in seeing
the output of the logit command.

quietly logit highchol age male insured

margins, dydx(age)

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0036087 .0003255 11.09 0.000 .0029708 .0042467

------------------------------------------------------------------------------

In this case, the -margins- output matches the manual calculation of marginal effects
for a continuous variable (.0036087), although they may not always exactly match; the
values could be off by some decimals. The reason is that Stata uses an algorithm to ensure
numerical precision (see Section 6.14.1). Note that Stata also calculates the standard error
and confidence intervals for the marginal effect, which are usually not the same as the
standard error of the corresponding model coefficient. We explain how to estimate standard
errors for marginal and incremental effects in Section 6.12.

6.4 Average incremental effects

The discussion so far focused on marginal effects for continuous variables. Calculating
incremental effects for indicator variables is simpler, although it follows a similar concep-
tual idea. We want to understand model implications when an indicator or dummy variable
changes from 0 to 1 – female to male; uninsured to insured. Because indicator variables are
commonly coded as 0 or 1, the denominator of the rate of change is 1. Below, we calculate
the incremental effect for male:

1 preserve

2 quietly logit highchol age male insured

3 replace male = 0

4 predict double hc_0 if e(sample)

5 replace male = 1

6 predict double hc_1 if e(sample)

7 generate double dydx = (hc_1-hc_0)

8 summarize dydx

9 restore
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Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 5,214 -.0504936 .0059993 -.0591639 -.0389134

The incremental effect is -.0504936, which means that a male respondent is 5.04 per-
centage points less likely to have high cholesterol than a female respondent, holding age
and insurance status constant.

Using the -margins- command with the dydx(male) option, we can replicate our manual
calculation of the incremental effect:

quietly logit highchol age i.male i.insured

margins, dydx(male)

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : 1.male

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.male | -.0504936 .0127817 -3.95 0.000 -.0755452 -.0254419

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

In contrast to the marginal effect of a continuous variable, the manual calculation and
the -margins- command of incremental effects will exactly match because there is no need
to fine-tune the infinitesimal change h in the covariate. Be mindful of the note at the end of
the output:

Note: dy/dx for factor levels is the discrete change from the base level.

This is Stata’s way of letting us know that it considered the variable male to be an indi-
cator variable. Stata knows this because the model we estimated used the factor variable
operator i. If we had omitted the operator, Stata would have assumed male to be a con-
tinuous variable. Instead of an incremental effect, we would have obtained the marginal
effect by changing male by a small amount, as though it were continuous. When using the
-margins- command, always use the factor variable operator when estimating models.

We can also obtain the marginal or incremental effect for all variables at once using the
wildcard operator *:

quietly logit highchol age i.male i.insured

margins, dydx(*)

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age 1.male 1.insured

------------------------------------------------------------------------------

| Delta-method
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Box 6.2 Semantics: Marginal and incremental effects and other terms

In this chapter, we use two separate terms depending on whether a variable is
continuous or discrete. Marginal effects refers to the effect of a continuous vari-
ables and are conceptualized as two-sided numerical derivatives. Incremental
effects refers to the effect of discrete variables, conceptualized as the change
in the outcome when the indicator variable switches from 0 to 1. However, we
often use the term “marginal effects” to refer to both, although we make the
distinction when needed. Another name for marginal effects is average partial
effects, which includes effects of continuous and discrete covariates. In the con-
text of logit or probit models, marginal effects are also called average predicted
probabilities.

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0036087 .0003255 11.09 0.000 .0029708 .0042467

1.male | -.0504936 .0127817 -3.95 0.000 -.0755452 -.0254419

1.insured | -.0371851 .0196002 -1.90 0.058 -.0756008 .0012307

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Holding age and sex constant, insured individuals are 3.71 percentage points less likely
to have high cholesterol.

6.5 Holding constant the value of other covariates

One consequence of computing numerical marginal and incremental effects using esti-
mated models and data is that we need to decide how to fix or hold constant the values of
the other covariates. In the preceding examples, we left the value of the other covariates at
their observed values. In steps 2 and 3 of the algorithm to obtain marginal effects (Section
6.3), predictions were calculated for each observation i; in our example, each NHANES
respondent.

With analytical derivatives, other covariates become constants, but numerical derivatives
involve model predictions, and it is clear from Equation 6.1 that predictions will change if
we used different values for covariates. We have several options. We could leave covariates
at their observed values (as we did so far) or hold them at their means or at representative
values that could be of scientific interest. For dummy variables, holding covariates at their
means implies using a value that is, for example, the proportion of females in the sample
if the variable is an indicator for female.

In practice, the choice of values for the other covariates usually does not matter when
calculating marginal or incremental effects, the difference between predictions. It is easier
to understand the impact of other covariates using simple linear/OLS model. In Step 4
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of the algorithm, we took the difference between two predictions for each observation
i: (ŷi1 − ŷi0)/2h = 1

2h (ŷi1 − ŷi0). Suppose, for example, that we had estimate the model
yi = β0 + β1agei + β3xi + εi and want to calculate the marginal effect of age. Then step 4 of
the algorithm for an observation i would be:

1
2h

(ŷi1 − ŷi0) =
1
2h

[β̂0 + β̂1(agei + h) + β̂3xi − (β̂0 + β̂1(agei − h) + β̂3xi)]

=
1
2h

[β̂1(agei + h) − β̂1(agei − h)]

= β̂1

(6.10)

The expression 6.10 shows that the covariate x will cancel out, as would any other co-
variate in the model in this simple example with no interactions. Although we use the
values of covariates as they were observed, we use the same values when calculating the
“what if” prediction for each observation i. Therefore, as long as the same values for the
covariates are used to calculate the predictions, the other covariates and their estimated
coefficients will cancel out when taking the difference.

In logit (and other nonlinear models), there could be a difference, although it tends to be
small in practice. The difference is due to the fact that the other covariates do not cancel
when taking the difference out because of the non-linearity induced by the (inverse) logit
function (Equation 6.1). There is no general rule that tells us the direction or the magnitude
of the difference, only that in practice the difference tends to be small (Chapter 17 in
Greene, 2018 for an argument using second order Taylor series).

We interpret average marginal and incremental effects as “holding other covariates con-
stant” because for each observation i we are not changing the value of the other covariates
when calculating marginal effects, even if by default Stata does not hold other covariates
constant at the same values for all observations. However, we could hold covariates con-
stant at different values for all observations. For example, the marginal effect of age holding
male and insured at their sample mean is:

quietly logit highchol age i.male i.insured

margins, dydx(age) at((mean) male insured)

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

at : 0.male = .5145761 (mean)

1.male = .4854239 (mean)

0.insured = .1367472 (mean)

1.insured = .8632528 (mean)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0036125 .0003253 11.10 0.000 .0029749 .0042501

------------------------------------------------------------------------------
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A small increase in age increases the probability of high cholesterol by 0.36 percentage
points, holding male and insurance status at their means. This is almost identical to the
result we obtained (.0036087) when we left sex and insured as they were observed.

It is always a good idea to carefully read the -margins- command output. Stata tells us
that the numerical derivative was with respect to age (dy/dx w.r.t. : age) at specific
values of male and insured, and it shows the specific values it uses. The example above
is not the same as margins, dydx(age) atmeans because Stata would also calculate the
numerical derivative at the mean of age.

We could also evaluate marginal effects holding other covariates at specific values that
could be of scientific interest. For example, it may be of interest to calculate the marginal
effect of age for males who do not have health insurance:

margins, dydx(age) at(male=(1) insured=(0))

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

at : male = 1

insured = 0

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .003644 .0003561 10.23 0.000 .002946 .0043419

------------------------------------------------------------------------------

As before, we do not see a large change when we hold covariates at specific values. The
code below replicates the above -margins- result:

1 preserve

2 quietly summarize age

3 scalar h = (abs(r(mean))+0.0001)*0.0001

4 quietly logit highchol age male insured

5 clonevar age_c = age

6 replace male = 1

7 replace insured = 0

8 replace age = age_c + scalar(h)

9 predict double hc_1 if e(sample)

10 replace age = age_c - scalar(h)

11 predict double hc_0 if e(sample)

12 generate double dydx = (hc_1-hc_0)/(2*scalar(h))

13 summarize dydx

14 restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 5,214 .003644 .0004217 .0028666 .0041956

In lines 6 and 7, we set the values for male = 1 and insured = 0, which we used for all
the predictions.

Using the at() option is also helpful to further understand the implications of nonlinear
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models. In the linear/OLS model yi = α0 + α1agei + α2malei, the effect of age is the same
regardless of whether an observation is male or female because the model does not include
interaction terms between age and male. We would obtain the same effect for age when
male is 1 than when male is 0. However, in the logit model log( pi

1−pi
) = β0+β1agei+β2malei,

this is no longer the case in the probability scale even if the model does not have explicit
interactions between age and male in the log-odds scale (see Equation 6.4). Thus, the
marginal effect with respect to age at all combinations of male and insurance yields four
different estimates:

quietly logit highchol age i.male i.insured, nolog

margins, dydx(age) at(male=(0 1) insured=(0 1)) vsquish

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

1._at : male = 0

insured = 0

2._at : male = 0

insured = 1

3._at : male = 1

insured = 0

4._at : male = 1

insured = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0038945 .000368 10.58 0.000 .0031732 .0046158

2 | .0037208 .0003345 11.12 0.000 .0030652 .0043765

3 | .003644 .0003561 10.23 0.000 .002946 .0043419

4 | .0034227 .0003092 11.07 0.000 .0028167 .0040286

------------------------------------------------------------------------------

(The option vsquish suppresses extra blank lines so the output is more compact.)
Evaluating numerical derivatives at specific values of covariates is particularly helpful in

models with interactions since interacted models assume that the effect of interest depends
on the value of other covariate(s). Of course, we could have added interactions in the model
above. We discuss interactions in the context of logit models in Sections 6.10 and 6.13.

6.6 Evaluating the derivative at specific values of the
variable of interest

In the previous section, we were fixing the value of other covariates. However, we could
also be interested in evaluating the numerical derivative at specific values of the variable
of interest. For example, we may be interested in understanding how the relationship be-
tween age and the probability of high cholesterol changes at different ages since Figure 6.1
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suggests a nonlinear relationship. In effect, we are now interested in the partial numerical
derivative corresponding to the partial analytical derivative

∂Pr(highchol = 1|x)
∂age

∣∣∣∣
age=a

, (6.11)

where a is a specific age.
The value at which the marginal effect is evaluated matters because the relationship be-

tween the variable of interest and the outcome may change signs or have a strong curvature.
Another way to think of this is that the second derivative may change sign and magnitude
depending on where it is evaluated. As an aside, it is also possible to obtain the second
derivative numerically; see (Gould et al., 2006, Chapter 1).

Below, we evaluate the marginal effect of age at different values of age:

quietly logit highchol age male insured

margins, dydx(age) at(age=(16 40 55 75 80)) vsquish

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

1._at : age = 16

2._at : age = 40

3._at : age = 55

4._at : age = 75

5._at : age = 80

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0028243 .000182 15.52 0.000 .0024676 .003181

2 | .0034622 .0003024 11.45 0.000 .0028694 .004055

3 | .0038028 .0003657 10.40 0.000 .003086 .0045196

4 | .0041194 .0004105 10.04 0.000 .0033149 .004924

5 | .0041669 .0004122 10.11 0.000 .0033591 .0049748

------------------------------------------------------------------------------

Once again, even though age is linear on the log-odds scale, we obtain different marginal
effects (rates of change in the probability scale). The change in the probability of high
cholesterol is lower at age 16 (.28 percentage points) than at age 75 (0.42 percentage
points), holding sex and insurance status constant. However, the relationship between age
and the probability of high cholesterol may be better modeled by explicitly specifying age
nonlinearly using a quadratic term, which is statistically significant (not shown here):

quietly logit highchol c.age##c.age male insured

margins, dydx(age) at(age=(16 40 55 75 80)) vsquish

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age
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tFig. 6.2 Marginal effect of age evaluated at different ages

1._at : age = 16

2._at : age = 40

3._at : age = 55

4._at : age = 75

5._at : age = 80

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0085765 .0003743 22.91 0.000 .0078429 .00931

2 | .0096673 .0006128 15.78 0.000 .0084663 .0108683

3 | .000232 .0005074 0.46 0.647 -.0007625 .0012265

4 | -.0116031 .000974 -11.91 0.000 -.013512 -.0096941

5 | -.0128063 .0007878 -16.26 0.000 -.0143504 -.0112622

------------------------------------------------------------------------------

We see the change in sign and the peak close to age 55, where the partial derivative is
close to zero. The nonlinear relationship between the marginal effect of age and the value
of age is apparent in Figure 6.1, which shows that the marginal effect of age is positive in
some age ranges and then turns negative, which corresponds to the previous results.

Graphs are always helpful for interpretation. The postestimation command -marginsplot-
can be used to graph the output of the -margins- command:

quietly {

logit highchol c.age##c.age male insured

margins, dydx(age) at(age=(16(5)80)) vsquish

marginsplot, yline(0)

}

Figure 6.2 shows the marginal effect of age on the probability of high cholesterol evalu-
ated at age 16 to 80 by increments of 5. The slope or partial derivative of age turns negative
at about age 56.
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6.7 Predictive margins

Marginal and incremental effects are based on “what if” model predictions. So far, we took
the difference of these predictions, but we may be interested in exploring the predictions
themselves. We could use these predictions to calculate different metrics that quantify the
effect of variables on the outcome.

For example, when estimating incremental effects, we calculated predictions for each
observation after male was set to 0 and then again after setting it to 1. The average of these
counterfactual predictions yields what Stata calls predictive margins. The incremental
effect of a dummy variable is the difference between the two predictive margins. Step 5 of
the algorithm in section 6.3 calculates the average of the marginal effect as E[ ŷ1i−ŷ0i

2h ]. For
incremental effects h = 1 so step 5 simplifies to: E[ŷ1i] − E[ŷ0i]; the expected value of the
difference is the same as the difference in expected values.

Below, we compute predictive margins for insured:

quietly logit highchol c.age##c.age i.male i.insured

margins insured, post

Predictive margins Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

insured |

0 | .3287234 .017535 18.75 0.000 .2943554 .3630914

1 | .3203157 .0067516 47.44 0.000 .3070827 .3335486

------------------------------------------------------------------------------

The average predicted probability of high cholesterol if none of the respondents were
insured is .3287234, but if all were insured, the predictive probability falls to .3203157.
Note that predictive margins are calculated without the dydx() option. The post option
allows us to store the margins estimates in the matrix e(b) so they can be used later.

We can verify that the difference between predicted probabilities is identical to the in-
cremental effect (-.0084077):

matrix list e(b)

e(b)[1,2]

0. 1.

insured insured

y1 .3287234 .32031569

display e(b)[1,2] - e(b)[1,1]

-.0084077

quietly logit highchol c.age##c.age i.male i.insured

margins, dydx(insured)

Average marginal effects Number of obs = 5,214
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Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : 1.insured

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.insured | -.0084077 .0188789 -0.45 0.656 -.0454096 .0285942

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Predictive margins are also called adjusted predictions. In this example, we controlled
for age and sex, although we did not hold these covariates fixed at any specific value. In the
context of linear/OLS models, predictive margins are also referred to as adjusted means.

6.7.1 Predictive margins for a continuous variable

We cannot calculate predictive margins for continuous variables using the syntax presented
in the previous section because a continuous variable takes an infinite number of values.
However, we can still use the -margins- command by choosing specific values with the at
option:

quietly logit highchol c.age##c.age i.male i.insured

quietly margins, at(age=(16(1)80) (mean) male insured)

marginsplot, recastci(rarea) plotopts(msymbol(none))

Keep in mind that this is the third syntax variation of the -margins- command in this
chapter. There is no variable following margins and no dydx() option. Here, we calculated
model predictions for each age 16 to 80 at one-year intervals, and we held male and insured
at their sample mean. We used the quietly prefix because the output is long, reflecting each
age-specific estimate. The -marginsplot- command plots the predictions from -margins-
(Figure 6.3). We specified -marginplots- options recastci() and plotopts to change how
the confidence intervals and the line are displayed.

The difference between Figure 6.2 and Figure 6.3 is illuminating. Both depict model
implications, but they do so in different ways. Figure 6.2 plots the rates of change (marginal
effects) and Figure 6.3 plots adjusted predictions. Note that the highest probability occurs
at between age 55-56, which corresponds to the point when the marginal effect in Figure
6.2 becomes negative. We will use adjusted plots in subsequent chapters, especially in
Chapter 11 to graph adjusted difference-in-difference models.

6.7.2 Odds ratios, relative risks, and risk differences redux

We now return to the discussion of Section 6.1.1 to show that odds ratios, relative risks, and
risk differences can also be calculated using predictive margins. We use the post option to
store predictive margins in matrix e(b) and then calculate relative risks and odds ratios:

quietly logit highchol c.age##c.age i.male i.insured

quietly margins male, post
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matrix list e(b)

e(b)[1,2]

0. 1.

male male

y1 .34410891 .29744087

* Relative risk

display e(b)[1,2] / e(b)[1,1]

.86438004

* Odds ratio

display (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))

.80696293

For reference, here is the model with all the coefficients in the odds scale:

logit highchol c.age##c.age i.male i.insured, nolog or

Logistic regression Number of obs = 5,214

LR chi2(4) = 341.11

Prob > chi2 = 0.0000

Log likelihood = -3103.5878 Pseudo R2 = 0.0521

------------------------------------------------------------------------------

highchol | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | 1.162948 .0115219 15.24 0.000 1.140584 1.185751

|

c.age#c.age | .9986372 .0000981 -13.89 0.000 .9984449 .9988294

|

1.male | .7964702 .0489286 -3.70 0.000 .7061203 .8983807

1.insured | .9599968 .0876252 -0.45 0.655 .8027404 1.14806

_cons | .0140093 .0034685 -17.24 0.000 .0086232 .0227595

------------------------------------------------------------------------------

Note: _cons estimates baseline odds.

Estimating a logit model with the or option displays coefficients as odds ratios (the
exponent of the estimated coefficients). The odds ratio for male from the model, .7964702,
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is close to .80696293 which we calculated with predictive margins. The estimates will not
be the same because of differences in how the other covariates are fixed. In the calculations
above, we left covariates as observed. These are “adjusted” metrics because we include
other covariates in the model. (In epidemiology, unadjusted estimates are called “crude”
estimates.)

6.7.3 Predictive margins in unadjusted models

With unadjusted models, as in the example in section 6.1.1, using predictive margins and
model-based odds ratios produce the same results:

logit highchol i.male, nolog or

Logistic regression Number of obs = 5,214

LR chi2(1) = 12.51

Prob > chi2 = 0.0004

Log likelihood = -3267.8863 Pseudo R2 = 0.0019

------------------------------------------------------------------------------

highchol | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.male | .8104241 .0482285 -3.53 0.000 .7212024 .9106836

_cons | .5235662 .0212832 -15.92 0.000 .4834704 .5669872

------------------------------------------------------------------------------

Note: _cons estimates baseline odds.

quietly margins male, post

* marginal effects

display e(b)[1,2] - e(b)[1,1]

-.04573921

* relative risks

display e(b)[1,2] / e(b)[1,1]

.8668999

* odds ratios

display (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))

.81042411

6.7.4 Connection between relative risks and odds ratios

After exploring some examples, it should be apparent by now that relative risks are not the
same as odds ratios. But in some circumstances they yield similar estimates. Suppose Pt is
the probability of an outcome in the treatment group and Pc is the probability in the control
group. The odds ratio is:

OR =

Pt
1−Pt

Pc
1−Pc

=
Pt

Pc
×

1 − Pc

1 − Pt
(6.12)

If 1−Pc
1−Pt = 1, then the odds-ratio is the same as the relative risk Pt

Pc . Trivially, this is
the case when Pc ≈ Pt, but also when both are close to zero. This is why relative risks
and odds ratios are close when an outcome is a rare event. However, odds ratios become
significantly larger than relative risks when the probability of the outcome (or baseline
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risk) is larger and Pc , Pt, which amplifies the problem of interpreting odds ratios as
relative probabilities.

The baseline risk in epidemiology is the probability of the outcome at baseline or usually
the control group. Rearranging Equation 6.12 in terms of the baseline probability yields,
p0: OR =

RR−RR∗p0
1−RR∗p0

, following Grant (2014). Figure 6.4 depicts the relationship between
odds ratios and relative risk at different baseline probabilities. The odds ratio is plotted on
the y-axis and relative risk on the x-axis. The solid black line is the diagonal, in which odds
ratios and relative risks are the same. As the baseline risk increases–that is, the outcome is
less “rare”– the odds-ratio and the relative risk diverge from the solid diagonal line. The
more common the event, the larger the difference. With a baseline risk of 0.25, a relative
risk of 3 translates to an odds ratio greater than 8. Thus, it would be very misleading to
interpret an odds ratio as a relative risk (see Problem 6.2).

6.8 Probit models

In probit models, marginal effects can be calculated using the same algorithm that we
introduced in Section 6.3. The only difference is that predictions are calculated using a
different cumulative density function (CDF). As we saw in Chapter 4, the estimation scale
in probit models are z scores that need to be converted into a probability. The z scores are
given by the index function z = β0 + β1x1i + · · · + βpxpi. Therefore, predictions in probit
models are given by:

Pr(ŷi = 1|xi) = Φ(β̂0 + β̂1x1i + · · · + β̂pxpi), (6.13)

where Φ(·) is the standard normal CDF. As with logit, predictions can be calculated
directly using Stata’s predict post-estimation command or manually using the standard
normal CDF function in Stata, normal(z):
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quietly probit highchol age i.male i.insured

gen double phat1_norm = normal(_b[_cons] + _b[age]*age

+ _b[1.male]*male + _b[1.insured]*insured)

predict double phat1

sum phat1_norm phat1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

phat1_norm | 5,214 .3212466 .0743214 .1840628 .5044238

phat1 | 5,214 .3212466 .0743214 .1840628 .5044238

Analytically, for a general probit model, the marginal effect for a continuous covariate
x1 is:

∂Pr(yi = 1|x)
∂x1

= β1φ(β0 + β1x1i + · · · + βpxpi) (6.14)

In Equation 6.14, φ(z) is the standard normal probability density function (PDF),
which is the first derivative of the standard normal CDF: φ(z)=Φ′(z). The direction of the
effect is given by β1. As with the logit model, the marginal effect of x1 depends on the
value of all other covariates in the model even if no explicit interactions were included.

Although at first glance Equation 6.14 does not resemble the marginal effect for the logit
model (Equation 6.4), they are in fact related. In Equation 6.4, the term multiplying β1 is
the standard logistic PDF. The connection between logit and probit models is clearer in
the latent variable approach to derive these models (Chapter 4).

We can write either a probit or logit model as Pr(Y = 1|x) = F(x′β) using the gen-
eral notation, F(·) to denote a CDF (see Notation Box 4.1 for a review of notation). The
marginal effect for either model applying the chain rule is:

∂Pr(y = 1|x)
∂x j

=
dF(x′β)
d(x′β)

∂(x′β)
∂x j

= f (x′β) × β j, (6.15)

where f (·) is the PDF, which is the first derivative of the CDF. This highlights the fact that
predicted probabilities and marginal effects are both based on PDFs – probit using φ(·) and
logit using λ(·), the logistic PDF.

If the index function z = x′β also includes interaction terms for x, for example z =

β0 + β1x1 + β2x2 + β3x1 × x2; then Equation 6.15 tells us that the marginal effect of x1 is:

∂Pr(y = 1|x)
∂x1

= f (x′β)× (β1 + β3x2) = φ(β0 + β1x1 + β2x2 + β3x1 × x2)(β1 + β3x2) (6.16)

Equation 6.16 highlights an important fact about interaction terms in probit (and logit)
models models. The sign of the interaction term in the estimation scale (i.e. the sign of β3)
might not provide information about the direction of effects in the probability scale. The
sign in Equation 6.16 is determined by the sign of the expression (β1+β3x2), which depends
on all of the terms in the expression, and it could potentially change sign at certain values
of x2. We discuss how to interpret interactions in the probability scale in Section 6.10.
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6.8.1 Predicted margins and odds ratios for probit models

Returning to predictive margins, it should be apparent that we can also express probit
estimates as odds ratios, relative risks, and risk differences because they can be computed
from predictions. As with the logit model, we just use the saved predictive margins to
obtain each metric:

quietly probit highchol c.age##c.age i.male i.insured

quietly margins male, post

* marginal effects

display e(b)[1,2] - e(b)[1,1]

-.04423684

* relative risks

display e(b)[1,2] / e(b)[1,1]

.87103902

* odds ratios

display (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))

.81608842

These are slightly different than the estimates of Section 6.7.2, but note that without
covariates, we get the same results as we did with the logit model:

quietly probit highchol i.male, nolog

quietly margins male, post

* marginal effects

display e(b)[1,2] - e(b)[1,1]

-.0457392

* relative risks

display e(b)[1,2] / e(b)[1,1]

.86689992

* odds ratios

display (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))

.81042414

This example shows that it is indeed possible to obtain odds ratios from probit models.
We computed them here for didactic purposes because there is still a widespread misun-
derstanding regarding the differences between logit and probit models. In the probability
scale, probit and logit models are practically the same. One subtle advantage of probit
models is that probit models force us to interpret models in the probability scale, which is
the scale of interest. On the other hand, we can do the same with logit models. Whether one
chooses a normal or logistic CDF to estimate a dichotomous model is about preferences
and custom; the difference is usually very small as long as models are interpreted in the
probability scale. In economics journals, a logit model is less common than a probit model
(but if used, it is commonly interpreted on the probability scale using marginal effects).
In medical journals both are used, although logit models are commonly interpreted on the
odds scale.
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6.9 Marginal effects for other regression models

Although in this chapter we focused on logit and probit models, it is straightforward to
apply the definition of marginal effects to other models using the same algorithm described
in Section 6.3. In most situations, if predictions can be obtained from a statistical model,
then it is possible to calculate marginal effects.

Below, we show how to interpret parameters using the Poisson model introduced in
Chapter 4. Poisson and negative binomial models are used to model counts and rates
(counts with a denominator). The scale of estimation in the Poisson model is the log of
the counts, which can be transformed into relative rates. However, we are often interested
in differences of average counts, not relative rates, because differences in average counts
give us a better sense of magnitudes.

In this example, we seek to understand if the number of prescription medications taken
are associated with having health insurance. We use a sample from the NHANES restricted
to those who have high cholesterol and are younger than 65 since most people over age
65 are insured because of Medicare program. (We return to this dataset in Chapter 7, to
correct for overdispertion, which refers to the outcome having a larger variance than what
is expected if the outcome followed a Poisson distribution.)

Below are some basic descriptive statistics:

use "nhanes_hyperlipidemia_rx",clear

keep if age < 65

lowess ndrugs insured, jitter(3)

tabstat ndrugs, by(insured) stats(N mean median sd min max)

Summary for variables: ndrugs

by categories of: insured (1 if any insurance)

insured | N mean p50 sd min max

---------+------------------------------------------------------------

0 | 601 .7271215 0 1.588106 0 16

1 | 2417 1.586678 1 2.339738 0 20

---------+------------------------------------------------------------

Total | 3018 1.415507 0 2.236806 0 20

----------------------------------------------------------------------

display 1.586678/.7271215

2.182136

display 1.586678-.7271215

.8595565

Figure 6.5 depicts what we expected: those with health insurance use more prescrip-
tion medications on average than those without health insurance. We could use difference
metrics to describe this finding: on average people with health insurance use 2.18 times
more prescription medications, or about 0.86 more medications on average (see calcula-
tions above). Estimation of a Poisson model with only insurance status yields:

poisson ndrugs i.insured, irr nolog

Poisson regression Number of obs = 3,018
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LR chi2(1) = 293.35

Prob > chi2 = 0.0000

Log likelihood = -6141.2386 Pseudo R2 = 0.0233

------------------------------------------------------------------------------

ndrugs | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.insured | 2.182136 .1101727 15.46 0.000 1.976541 2.409115

_cons | .7271215 .0347829 -6.66 0.000 .6620465 .7985929

------------------------------------------------------------------------------

Note: _cons estimates baseline incidence rate.

where the option irr returns the exponent of the estimated coefficient (“irr” stands for
incidence-rate ratios) which is the same as the relative rate we computed manually. The
effect in terms of average differences can be obtained using the -margins- command with
the dydx() option:

quietly poisson ndrugs i.insured

margins, dydx(insured)

Conditional marginal effects Number of obs = 3,018

Model VCE : OIM

Expression : Predicted number of events, predict()

dy/dx w.r.t. : 1.insured

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.insured | .8595562 .0432009 19.90 0.000 .774884 .9442285

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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Because we do not control for other covariates, the effect of insurance expressed in terms
of average differences matches our manual calculation.

To complete this discussion, we show more formally how to interpret coefficients from
Poisson and negative binomial models with a more general but simple model:

log(E[yi|xi]) = α0 + α1x1i + α2Di, (6.17)

where x1 is a continuous variable and D is a dummy variable. Equation 6.17 matches the
estimation scale, so it is our preferred way of writing a Poisson or negative binomial model.

It is straightforward to interpret parameters as relative risks or relative expected counts
(incidence-rate ratios) by taking the exponent of model parameters. To see why, we write
down Equation 6.17 when D = 1, which we denote as log(E[y1]), and when D = 0,
denoted as log(E[y0]). We then take the difference and simplify:

log(E[y1]) − log(E[y0]) = log
(

E[y1]
E[y0]

)
= α2 (6.18)

After taking the exponent on both sides, we have E[y1]/E[y0] = eα2 . Therefore, the
exponent of the coefficient can be interpreted as a relative expected count (or a rate if the
model includes an offset) holding other covariates constant. You can show that eβ1 is the
relative expected count when the continuous variable x1 increases by one unit (Problem
6.9; recall that we are working on the log scale).

However, we are often interested in understanding models implications in average counts
or rates because these scales match research questions. For a continuous variable, we would
could compute the partial derivative ∂E[y|x]/∂x1. To do this analytically, we could use an
implicit derivative (see section ?? of Appendix) or by solving for E[yi] in Equation 6.17
before calculating the derivative. Either way, we obtain:

∂E[y|x]
∂x1

= α1e(α0+α1 x1+α2D) (6.19)

Thus, as with logit and probit models, Equation 6.19 shows that in the count scale the
effect of one variable depends on the value of the other variables even if interaction terms
are not included in the log scale. When calculating marginal effects using Poisson models,
we obtain the numerical (average) derivative corresponding to the analytical derivative of
expression 6.19.

6.10 Interaction terms in logit models

In this section, we consider models with explicit interactions in both the odds scale and the
probability scale using marginal effects. The notation can get cumbersome, but interpreting
interactions in different scales is extremely important in applied work, and marginal effects
greatly simplifies the interpretation of interactions.
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6.10.1 Interaction terms on the odds scale

In logit models, an interaction term is as a ratio of odds ratios in the odds scale. The
challenge of interpreting interaction terms in logit models is easier to understand using an
example with two indicator variables. Consider the following model, omitting subscripts
to simplify the notation:

log
(

p
1 − p

)
= β0 + β1HighS chool + β2male + β3HighS chool ∗ male (6.20)

The variable HighSchool equals 1 if a person has at least a high-school degree (we call
these individuals “educated” to now simplify the language). The variable male equals 1 if
the person is male.

On the log-odds scale, we can interpret this model as usual. The effect of having a high-
school degree or more on the log-odds of an event depends on sex (and vice versa). The
model for males is: log( pm

1−pm
) = β0 + β1HighS chool + β2 + β3HighS chool. The model for

females is: log( p f

1−p f
) = β0 + β1HighS chool. The difference between males and females

is: log( pm
1−pm

) − log( p f

1−p f
) = β2 + β3HighS chool, which shows that the the effect of sex on

the log-odds of the outcome depends on the level of education. We can rewrite this model
using odds applying properties of logarithms, in particular log(a) − log(b) = log(a/b):

Pm
1−Pm

P f

1−P f

= eβ2+β3HighS chool. (6.21)

On the log-odds scale, the interaction is analogous to a difference of differences esti-
mate of the impact of education on males versus females, as in linear/OLS. To see this, we
can work out the differences:

1. Difference males - females: log( pm
1−pm

) − log( p f

1−p f
) = β2 + β3HighS chool

2. Difference male - female for educated: log( pme
1−pme

) − log( p f e

1−p f e
) = β2 + β3

3. Difference male - female for uneducated: log( pmu
1−pmu

) − log( p f u

1−p f u
) = β2

4. The difference of differences (2)-(3) is: log( pme
1−pme

)−log( p f e

1−p f e
)−[log( pmu

1−pmu
)−log( p f u

1−p f u
)] =

β3

We can now turn the difference of differences (4) expressed in the log-odds scale into
odds. We apply properties of logarithms again as before (twice) to obtain:

Pme
1−Pme

P f e

1−P f e

/ Pmu
1−Pmu

P f u

1−P f u

= eβ3 (6.22)

Equation 6.22 tells us that in the odds scale an interaction is a ratio of odds ratios. If
greater than 1, the odds of outcome for the educated are higher than for the uneducated, but
it would be hard to make any sense of magnitudes. In published research, authors prefer to
stratify models by sex or education rather than attempting to interpret a ratio of odds ratios.



89 Interaction terms in logit models

With a continuous variable, the logic is the same, but one changes the continuous variable
by one unit (see Chapter 4, Section 4.2).

6.10.2 Computing marginal effects with interaction terms

Using marginal or incremental effects, interactions are much easier to understand and to
communicate. Returning to our example of high cholesterol, recall that there are biological
reasons that suggest that the effect of age on high cholesterol is different for males and
females. This can be modeled by including an interaction between age and sex. To simplify
the exposition, we drop the insurance variable, which was not statistically significant, and
do not add quadratic term for age (Problem 6.7).

We estimate the following model:

log
(

highcholi
1 − highcholi

)
= β0 + β1agei + β2male + β3agei × malei (6.23)

The model in Equation 6.23 is not easy to interpret in the odds scale as we discussed in
the previous section. One option would be to stratify by sex to simplify the interpretation
(Problem 6.10). However, interpreting models with interactions using marginal effects is
much easier. The marginal effects of age for males and females from this model are:

quietly logit highchol c.age##i.male

margins, dydx(age) at(male=(0 1))

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

1._at : male = 0

2._at : male = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0060482 .0004241 14.26 0.000 .005217 .0068794

2 | .0007907 .0004604 1.72 0.086 -.0001118 .0016931

------------------------------------------------------------------------------

A small increase in age increases the probability of high cholesterol by 0.08 percentage
points for males, while age has a larger effect for females, 0.60 percentage points. As
always, make sure you carefully read the output. In particular, pay attention to how Stata
labels the output. The marginal effect of age for males is labeled as 2 (indicated by the line
that starts with 2._at).

As we noted before, Equation 6.4 –the marginal effect of a continuous variable in the
probability scale– shows that the marginal effect depends on the other covariates in the
model even if we do not explicitly include interactions. We emphasize this point again
here. We estimate marginal effects in a model without interactions:
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tFig. 6.6 Predicted probability of high cholesterol by sex in models with and without interactions

quietly logit highchol c.age i.male

margins, dydx(age) at(male=(0 1)) vsquish

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age

1._at : male = 0

2._at : male = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0036297 .0003333 10.89 0.000 .0029764 .0042829

2 | .0033527 .0003099 10.82 0.000 .0027454 .0039601

------------------------------------------------------------------------------

The output above shows two different effects with no interactions, although the differ-
ence is not nearly as large as before. One way to think about interactions in logit or probit
models is that interactions add another layer of nonlinearity in the probability scale (see
Equation 6.16 of the probit model).

Graphically, with interactions, we estimate two separate curves that could cross each
other. However, in nonlinear models, even without interactions, the two curves can diverge
and can have different average slopes in the probability scale, which is reflected in the
marginal effects. Figure 6.6 depicts the difference.
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6.11 “Missing” interaction terms in the -margins-
output

In the code and output below, we estimate a model with interactions and then request
the marginal effects for all the variables in the model. We obtain one marginal effect and
one incremental effect, but we estimated a model with three coefficients (excluding the
intercept), not two. Why is the marginal effect of the interaction not included? The reason
is that Stata is using the algorithms we discussed in Section 6.3, changing the values of
age by a small amount and the value of male to 0 and then 1 before making predictions,
and it does so in all terms in the model that include age or the male variable, including
the interaction tern. In other words, the effect of age is an average over the values of sex,
and vice versa. Showing effects over the value of the other covariate could be useful to
summarize effects, but if we think that interactions are meaningful, we want to evaluate
them at specific values of the other covariate using the at() option. It is better to always
use the factor variable syntax when estimating models that will be interpreted using the
-margins- command because then Stata understands that a variable is associated with more
than one coefficient in the model:

quietly logit highchol c.age##i.male

margins, dydx(*)

Average marginal effects Number of obs = 5,214

Model VCE : OIM

Expression : Pr(highchol), predict()

dy/dx w.r.t. : age 1.male

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0034858 .0003117 11.18 0.000 .0028748 .0040967

1.male | -.0491543 .0127204 -3.86 0.000 -.0740857 -.0242228

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

If you program interactions manually, you will obtain an uninterpretable marginal effect
for the interaction. For example:

* Uninterpretable marginal effect for the interaction term

generate age_male = age*male

quietly logit highchol age male age_male

margins, dydx(*)

6.12 Standard errors

We have shown how “what if” predictions can be used to calculate numerical derivatives
and incremental effects. We can also estimate the standard errors (variance) of the predic-
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tions and, by extension, standard errors of marginal and incremental effects (their differ-
ences). Predictions are a function of estimated coefficients and the data. In this section, we
show two methods to calculate standard errors of predictions.

6.12.1 Direct method for linear/OLS models

Consider first a simple example using a linear model:

birthweighti = β0 + β1smokei + β2momagei + β3smoke × momagei + εi

The outcome is birth weight and the covariates are an indicator for smoking (smoke),
mother’s age (momage), and the interaction between the two. We can again use derivatives
to understand the implication of the model. What is the effect of mother’s age on birth
weight? What is the effect of smoking on average birth weight? They are, respectively:

∂E[birthweight|x]
∂momage

= β̂2 + β̂3smoke (6.24)

∆E[birthweight|x]
∆smoke

= β̂1 + β̂3momage (6.25)

Each of these expressions is a function of parameters and data (the “hat” is added to the
coefficients to emphasize that we are working with estimated coefficients). We need both,
coefficient estimates and data on smoke and momage, to calculate marginal and incremental
effects.

To calculate the variance of the effects above, we just need to use basic properties of vari-
ances: var(X + Y) = var(X) + var(Y) + 2cov(X,Y), var(aX) = a2var(x), and cov(aX, bY) =

ab ∗ cov(X,Y). If we apply these properties to the marginal and incremental effects above,
we obtain:

var
(
∂E[bw|x]
∂mage

)
= var(β̂2) + smoke2var(β̂3) + 2 ∗ smoke ∗ cov(β̂2, β̂3) (6.26)

var
(
∆E[bw|x]
∆smoke

)
= var(β̂1) + mage2var(β̂3) + 2 ∗ mage ∗ cov(β̂1, β̂3) (6.27)

Therefore, the variance of the marginal effect of age for non-smokers is var(β̂2) and the
variance for those who smoked is var(β̂2) + var(β̂3) + 2 ∗ cov(β̂2, β̂3).

These expressions provide a simple way of calculating standard errors of marginal and
incremental effects. We first estimate the model and then use the estimated variance-
covariance matrix, which is stored by Stata in matrix e(V). The square root of the diagonal
elements of the variance-covariance matrix are the standard errors for coefficients reported
in the regression output. Since the formulas above involve covariances, we also need some
of the off-diagonal elements.

The code below estimates a model and displays the variance-covariance matrix we used
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for the calculations. We generate the interaction manually so the matrix e(V) is more com-
pact than the matrix using factor variable syntax.

use https://www.stata-press.com/data/r16/cattaneo2, clear

gen sm_age = mbsmoke * mage

qui reg bweight mbsmoke mage sm_age

. matrix list e(V)

symmetric e(V)[4,4]

mbsmoke mage sm_age _cons

mbsmoke 10733.267

mage 71.343306 2.6610229

sm_age -403.72658 -2.6610229 15.868305

_cons -1997.5365 -71.343306 71.343306 1997.5365

Using the stored matrix e(V) we can then calculate standard errors (Equations 6.26 and
6.27):

* Standard error for marginal effect if mbsmoke = 0

display sqrt(e(V)[2,2])

1.6312642

* Standard error for marginal effect if mbsmoke = 1

display sqrt(e(V)[2,2] + e(V)[3,3] + 2*e(V)[3,2])

3.6341825

* Standard error for incremental effect for mage = 25

display sqrt(e(V)[1,1] + (25ˆ2)*e(V)[3,3] + 2*25*e(V)[3,1])

21.555255

We can replicate the calculations above using the margins command:

quietly reg bweight i.mbsmoke##c.mage

margins, dydx(mage) at(mbsmoke=(0 1)) vsquish

Average marginal effects Number of obs = 4,642

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : mage

1._at : mbsmoke = 0

2._at : mbsmoke = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mage |

_at |

1 | 11.36258 1.631264 6.97 0.000 8.164523 14.56063

2 | -3.950895 3.634182 -1.09 0.277 -11.07562 3.173831

------------------------------------------------------------------------------

margins, dydx(mbsmoke) at(mage=(25)) vsquish

Conditional marginal effects Number of obs = 4,642

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : 1.mbsmoke

at : mage = 25
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------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mbsmoke |

smoker | -254.0217 21.55526 -11.78 0.000 -296.2802 -211.7631

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

In the margin commands, standard errors are listed in the second column, under “Delta-
Method Std. Err.” Stata does not use Equations 6.26 and 6.27, but instead uses the delta
method. In linear models, they are equivalent. However, the delta method is needed when
estimating the standard errors of marginal effects in nonlinear models as we discuss in the
next section.

6.12.2 Delta method

In this section, we show a more general way to compute standard errors for marginal af-
fects: the delta method, but the intuition is the same as in the previous section. The delta
method is necessary with nonlinear models because we do not have linear expressions like
Equations 6.26 and 6.27 for the variance of marginal and incremental effects so we cannot
use the direct method. For the logit model, we would need to calculate the variance of an
expression like Equation 6.4. For the probit model, we would need the variance of an ex-
pression like Equation 6.14 or 6.16. These expressions are both nonlinear with respect to
model coefficients. Fortunately, it is possible to “linearize” these expressions with a first-
order Taylor series expansion to yield a linearized function and calculate the variance as
we did in the previous section.

Consider for example the nonlinear function f (x) = ex, in which x is a random variable.
This function can be approximated by a tangent line at point x = a using a first-order
Taylor series expansion:

f (x = a) ≈ f (a) + f ′(a)(x − a) = ea + ea(x − a) = ea + eax − 2ea (6.28)

It might look like we do not gain much, but in fact we do. The Taylor approximation in
Equation 6.28 is linear in x (ea is just a number), so the variance of the approximation at
x = a is var(ea + eax − 2ea) = e2avar(x). Remember that the variance of a number is zero,
so var(ea) = 0 and var(bx) = b2var(x). In essence, the Taylor series expansion derives the
expression for a line that is tangent to the nonlinear function y = ex at one specific point
x = a (of course, we can change the value of a).

The definition of the derivative is related to the Taylor series expansion, but there is a
key difference. The derivative approximates the slope of a curve with a tangent line at some
point. The first-order Taylor series approximates the function itself at some point. (But
take the derivative with respected to x in Equation 6.28 and compare it to the derivative of
f (x) = ex evaluated at x = a.)
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Figure 6.7 depicts the nonlinear function and and its tangent line at a = 2. The straight
line is Equation 6.28:

twoway function y = exp(x), range(1 3) xline(2, lpattern(dash)) || ///

function y = exp(2) + exp(2)*(x-2), range(1 3) ///

color(gray) legend(off)

For marginal or incremental effects and predictive margins, we are interested in the
variance of a function of random coefficients G(β̂); therefore, we need to extend the first-
order Taylor approximation concept to vector functions. We use the variance-covariance
matrix along with the vector or matrix of partial derivatives to approximate the variance:

var[G(β̂)] ≈ G′(β̂)cov(β̂)G′(β̂)T (6.29)

G′(β̂) is the matrix of partial derivatives of G(β̂); that is, the Jacobian (or the gradient
vector), which in this case is the partial derivatives of the predictions with respect to coef-
ficients evaluated at β̂. var[G(β̂)] is conditional on the data and the superscript T indicates
a matrix transpose.

In the code below, we reproduce Stata’s calculation of standard errors for predictive
margins using the Jacobian and the variance-covariance matrix. The Jacobian is stored in
the matrix r(Jacobian) as part of the -margins- command stored results. The key calcu-
lation is the computation Vrep=J*e(V)*J’, which is Equation 6.29. The option nofvlabel
displays factor-variable values rather than labels.

quietly logit lbweight i.mbsmoke

margins mbsmoke, nofvlabel

Adjusted predictions Number of obs = 4,642

Model VCE : OIM

Expression : Pr(lbweight), predict()

------------------------------------------------------------------------------
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| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mbsmoke |

0 | .0489677 .0035109 13.95 0.000 .0420864 .055849

1 | .1099537 .0106428 10.33 0.000 .0890943 .1308131

------------------------------------------------------------------------------

* Save Jacobian from margins in J

matrix J = r(Jacobian)

* Delta method variance

matrix Vrep = J*e(V)*J’

* Match margins output SE

display sqrt(Vrep[1,1])

.00351092

display sqrt(Vrep[2,2])

.01064276

The relevant concept to understand is that the standard errors of marginal and incremen-
tal effects measure the variability of the predictions we use to interpret model implications.
In simple linear models, because of additive and separable effects, the standard errors of
marginal effects are the same as the standard errors of the corresponding coefficient. How-
ever, they are usually different in nonlinear models like logit or probit.

The part that we left unexplained is how Stata forms the Jacobian. In this example, the
rows of the Jacobian matrix correspond to the two predictive margins and the columns
correspond to the partial derivatives with respect to the coefficients β̂ of the predictive
margins. Therefore, the Jacobian matrix has two rows (two predictive margins) and two
columns since there are two coefficients, β̂1, β̂2. However, when replicating Stata’s calcu-
lation of the Jacobian below, keep in mind that Stata’s factor variable syntax includes the
baseline for smoked (column of zeroes), so the Jacobian will be a 2x3 matrix.

To simplify the notation, the estimated model is log( lw
1−lw ) = β0 + β1s, where lw is the

outcome lbweight and s is mbsmoke. The two predicted margins are:

p0 = Pr(lw = 1|s = 0) =
1

1 + e−β̂0
(6.30)

p1 = Pr(lw = 1|s = 1) =
1

1 + e−(β̂0+β̂1)
(6.31)

Therefore, the Jacobian is:

J =

 ∂p0
∂β1

∂p0
∂β0

∂p1
∂β1

∂p1
∂β0

 =

(
0 (1 − p0)p0

(1 − p1)p1 (1 − p1)p1

)
(6.32)

The calculus and algebra needed to derive matrix J are not difficult. Below, we show one
of them in steps. Do not forget the chain rule and the fact that 1/(1 + e−β̂0 ) = (1 + e−β̂0 )−1:

∂p0

∂β0
=

e−β̂0

(1 + e−β̂0 )2
=

e−β̂0

(1 + e−β̂0 )
×

1

(1 + e−β̂0 )
= (1 − p0) × p0

Below is the code to obtain the Jacobian matrix, which we compare to the one saved by
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the -margins- command (with an extra column for the baseline category of smoked). Note
that we use the inverse logit function invlogit to calculate predictions. It is the same as
using Equations 6.30 and 6.31:

quietly logit lbweight i.mbsmoke

* Predictions

scalar p0 = invlogit(_b[0b.mbsmoke] + _b[_cons])

scalar p1 = invlogit(_b[1.mbsmoke] + _b[_cons])

* Jacobian matrix

matrix J = (0,(1-p0)*p0\(1-p1)*p1,(1-p1)*p1)

. matrix list J

J[2,2]

c1 c2

r1 0 .04656987

r2 .09786389 .09786389

* Compare to margins

quietly logit lbweight i.mbsmoke

quietly margins mbsmoke

. matrix list r(Jacobian)

r(Jacobian)[2,3]

lbweight: lbweight: lbweight:

0b. 1.

mbsmoke mbsmoke _cons

0.mbsmoke 0 0 .04656987

1.mbsmoke 0 .09786389 .09786389

To calculate the standard error of the incremental effect of smoked, the procedure is
the same, except that the incremental effect is the difference between the two predictions,
(p1−p0), so we would need to calculate the partial derivatives of the difference with respect
to model coefficients. We could also use the delta method to calculate standard errors of
other metrics, like relative risks, which is just p1

p0
, and of course, marginal effects. The

delta method is a flexible tool that can be used to approximate the variance of functions of
random variables at some particular point.

It is not difficult to see why the coefficients’ standard errors in a linear model (with linear
terms for all covariates) are the same as the delta method’s standard errors. When comput-
ing marginal effects, the Jacobian will consist of partial derivatives of linear functions with
respect to coefficients, so we end up with a vector with elements that are 1 for the coef-
ficient of interest and 0 for the rest, which are then multiplied by the variance-covariance
matrix and the transpose of the vector with elements 1 and 0. The delta method formula
(Equation 6.29) would “pick up” the variance of the corresponding coefficient from the
variance-covariance matrix. In the example below, the multiplication J*e(v) “selects” the
third row of the variance-covariance matrix. When J*e(v) is multiplied by J’, the ele-
ment e(V)[3,3] is obtained, which is the just variance of the coefficient of mage from the
variance-covariance matrix:

quietly reg lbweight i.mbsmoke mage
* Variance of beta_age
. display e(V)[3,3]
3.878e-07
quietly margins, dydx(mage)
matrix J = r(Jacobian)
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matrix list J
J[1,4]

0b. 1.
mbsmoke mbsmoke mage _cons

mage 0 0 1 0

* Delta method variance same as coefficient variance
matrix Vrepl = J*e(V)*J’
matrix list Vrepl
symmetric Vrepl[1,1]

mage
mage 3.878e-07

6.13 Interaction terms in nonlinear models: a special
case

Interpreting interactions on the probability scale raises interesting issues that highlight the
difference between the estimation scale and the scale of interest in nonlinear models. We
focus on the probit model and use the same data used in Karaca-Mandic et al. (2012),
although we analyze the data in a different way. As we will see, these data highlight a case
when intuition based on linear regression does not extend to nonlinear models. The issues
discussed in this section are in the context of a probit model but apply more generally to
the logit model and other nonlinear models, like GLM models with a non-identity link.

Suppose we estimate a probit model with age and sex and their interaction as covariates.
The model is:

Pr(yi = 1|xi) = Φ(β1 + β2agei + β3agei × f emalei)

webuse margex, clear

generate female = (sex==1)

sum outcome age female

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

outcome | 3,000 .1696667 .3754023 0 1

age | 3,000 39.799 11.54174 20 60

female | 3,000 .5006667 .5000829 0 1

probit outcome c.age##i.female, nolog

Probit regression Number of obs = 3,000

LR chi2(3) = 564.73

Prob > chi2 = 0.0000

Log likelihood = -1083.7069 Pseudo R2 = 0.2067

------------------------------------------------------------------------------

outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0560815 .0053044 10.57 0.000 .045685 .066478
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1.female | .4183178 .3065274 1.36 0.172 -.182465 1.0191

|

female#c.age |

1 | .001315 .0066631 0.20 0.844 -.0117445 .0143745

|

_cons | -3.691749 .2371119 -15.57 0.000 -4.15648 -3.227018

------------------------------------------------------------------------------

The output above shows that the interaction term is not statistically significant, with a p-
value = 0.844. We could reach the same conclusion with a likelihood ratio test comparing
a model with the interaction term to a model without the interaction (remember that the
Wald test and the likelihood ratio test are asymptotically equivalent):

quietly probit outcome c.age##i.female, nolog

estimate store m_full

quietly probit outcome c.age i.female, nolog

estimate store m_reduced

lrtest m_full m_reduced

Likelihood-ratio test LR chi2(1) = 0.04

(Assumption: m_reduced nested in m_full) Prob > chi2 = 0.8437

Both tests suggest the same conclusion: model fit is not improved when the interaction
term is added to the model (recall that the null in the likelihood ratio test is that the reduced
model is adequate; we do not reject the null). The common modeling approach would be
to not include the interaction term in the model, although on some occasions scientific
knowledge of the data-generating process would lead us to include an interaction regard-
less of model fit. However, let’s use marginal effects to understand model implications in
the probability scale keeping the interaction term:

quietly probit outcome c.age##i.female, nolog

margins, dydx(age) at(female=(0 1)) vsquish

Average marginal effects Number of obs = 3,000

Model VCE : OIM

Expression : Pr(outcome), predict()

dy/dx w.r.t. : age

1._at : female = 0

2._at : female = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .009059 .0009752 9.29 0.000 .0071478 .0109703

2 | .013659 .0006922 19.73 0.000 .0123023 .0150157

------------------------------------------------------------------------------

The output above shows that the marginal effect of age on the probability of the outcome
is different for males and females. The marginal effect for females is .013659, which is
higher than the marginal effect for males of .009059. Notice something else: the confidence
intervals do not overlap. This would suggest that the effect of age on the probability of the
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outcome is statistically different for males than females. We can see this graphically as
well using the marginsplot postestimation command (Figure 6.8):

quietly probit outcome c.age##i.female, nolog

margins, dydx(age) at(female=(0 1)) post

marginsplot

We could also perform a test of the statistical significance of marginal effects (using the
delta method to estimate the variance) with the contrast option:

quietly probit outcome c.age##i.female, nolog

margins, dydx(age) at(female=(0 1)) contrast(at) vsquish

Contrasts of average marginal effects Number of obs = 3,000

Model VCE : OIM

Expression : Pr(outcome), predict()

dy/dx w.r.t. : age

1._at : female = 0

2._at : female = 1

------------------------------------------------

| df chi2 P>chi2

-------------+----------------------------------

age |

_at | 1 14.80 0.0001

------------------------------------------------

We are now in a vexing situation. We have two seemingly contradictory answers about
interactions in different scales. On the estimation scale, the interaction does not improve
model fit but on the probability scale, the variability of the counterfactual prediction indi-
cates that the marginal effect of age is different for males and females. However, there is
something else we should do, which will help us resolve the apparent contradiction. The
likelihood ratio test (and the asymptotically equivalent Wald test) suggests that the interac-
tion term does not improve model fit. So let’s explore the implications of a model without
the interaction term in the probability scale:
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quietly probit outcome c.age i.female, nolog

margins, dydx(age) at(female=(0 1)) vsquish

Average marginal effects Number of obs = 3,000

Model VCE: OIM

Expression: Pr(outcome), predict()

dy/dx wrt: age

1._at: female = 0

2._at: female = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .009193 .0007025 13.09 0.000 .0078161 .01057

2 | .0135865 .0005891 23.06 0.000 .012432 .0147411

------------------------------------------------------------------------------

Once again, we find that the marginal effects are different even without the interaction
term. We can test the difference again:

quietly probit outcome c.age i.female, nolog

margins, dydx(age) at(female=(0 1)) contrast(at) vsquish

Contrasts of average marginal effects Number of obs = 3,000

Model VCE: OIM

Expression: Pr(outcome), predict()

dy/dx wrt: age

1._at: female = 0

2._at: female = 1

------------------------------------------------

| df chi2 P>chi2

-------------+----------------------------------

age |

_at | 1 56.88 0.0000

------------------------------------------------

We arrive at identical conclusions as with the model with interactions. On the probability
scale, effects are no longer additive or separable, therefore, the effect of age depends on
sex even if the model does not explicitly include an interaction term (see Equation 6.14).

For more intuition, we plot predicted probabilities for males and females in different
scales with and without interactions (Figure 6.9):

quietly probit outcome c.age##i.female, nolog

predict phat

predict zhat, xb

quietly probit outcome c.age i.female, nolog

predict phat_ni

predict zhat_ni, xb

* See the online supplemental material for the code to replicate graph

Figure 6.9 shows that models with and without an interaction term are similar when com-
pared on the same scale (z scores and probability). Clearly, the effects between males and
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females are different on the probability scale with or without an interaction term. Adding
the interaction term does not appear to change predictions, which agrees with tests of
model goodness of fit and the exploration of marginal effects. On the probability scale,
as age increases, the probability of the outcome is larger for females. Visually, at age 20,
the outcome appears to have a similar low probability. At age 60, the probability for fe-
males is much higher than for males. We can use marginal effects to calculate effects in the
probability scale without interactions at different ages:

quietly probit outcome c.age i.female, nolog

margins, dydx(age) at(female=(0 1) age=(20)) vsquish

Conditional marginal effects Number of obs = 3,000

Model VCE : OIM

Expression : Pr(outcome), predict()

dy/dx w.r.t. : age

1._at : age = 20

female = 0

2._at : age = 20

female = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0007937 .0001552 5.11 0.000 .0004894 .0010979

2 | .0024387 .0003679 6.63 0.000 .0017176 .0031597

------------------------------------------------------------------------------

margins, dydx(age) at(female=(0 1) age=(60)) vsquish

Conditional marginal effects Number of obs = 3,000
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Model VCE : OIM

Expression : Pr(outcome), predict()

dy/dx w.r.t. : age

1._at : age = 60

female = 0

2._at : age = 60

female = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age |

_at |

1 | .0216201 .0016145 13.39 0.000 .0184557 .0247844

2 | .0224025 .0011217 19.97 0.000 .0202039 .0246011

------------------------------------------------------------------------------

We calculated marginal effects at 20 and 60 separately because the output is easier to
read than calculating them together (margins, dydx(age) at(female=(0 1) age=(20 60))).
To calculate the predicted probabilities at different ages, we could use predictive margins
with:

margins female, at(age=(20 60)) vsquish

The seemingly contradictory findings are clarified when we distinguish model fit from
exploration of effects in different scales.

To provide further intuition, consider fitting a linear probability model instead. Without
an interaction term, the effect of age would be the same for males and females. With an
interaction term, we explicitly allow different effects of age for sex, thus the predicted prob-
abilities (straight lines if age is entered linearly) could cross each other. It is like estimating
two stratified models, one for females and one for males. In the linear probability model,
the interaction is statistically significant:

quietly {

regress outcome c.age i.female, robust

estimate store lpm_noint

reg outcome c.age##i.female, robust

estimate store lpm_int

predict yhat_int

}

estimates table lpm_noint lpm_int, star

----------------------------------------------

Variable | lpm_noint lpm_int

-------------+--------------------------------

age | .01135301*** .00752229***

|

female |

1 | .09640036*** -.20263792***

|

female#c.age |

1 | .0075271***

|

_cons | -.3304364*** -.19213642***
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----------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001

Figure 6.10 shows predicted probabilities by sex for the linear probability model. Model
fit increases because the evidence suggests that the best fitting model is one that allows the
lines to have different slopes. With a probit model, we did not need an explicit interaction
term to obtain a well-fitted model because even without an interaction term the effect of
one variable depends on the value of other covariates.

6.13.1 Which standard error should we use to test
interaction terms?

The question that remains is which standard error should be used to decide if the inter-
action term is retained in the model. Karaca-Mandic et al. (2012) separated the question
of goodness of fit (i.e. Wald test or likelihood ratio test) of the interaction term from the
question of testing the marginal effect at different values of the other covariate(s). For the
latter, they recommend using a test based on the delta method standard errors (as with the
contrast option above). However, Greene (2010) provides a different point of view. He
suggests building models based on goodness of fit and other traditional tools of modeling
to assess model specification. He argues that marginal effects are “neither coefficients nor
elements of the specification of the model. They are implications of the specified and esti-
mated model.... [It] seems it would be rare for a model builder to build a structural model
by hypothesizing (statistically) about partial effects and/or predictions that would be made
by that model.” We agree with Greene’s interpretation of marginal effects as model impli-
cations, although model implications may change depending on the scale.

In Chapter 11, we discuss implications of interactions in difference-in-difference de-
signs with nonlinear models. In difference-in-difference, the coefficient of interest is the
interaction term and the test of a key assumption – parallel pre-trends– is also a test of
the statistical significance of an interaction term. As the example of Section 6.13 shows,
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we could reach different conclusions about interactions if we do not explore the possibility
that interactions could be present in the scale of interest even when the interaction term is
not statistically significant in the estimation scale. Furthermore, in difference-in-difference
designs, the identification of causal effects also depends on the scale.

6.14 Additional topics

This section briefly presents some additional topics that are important to keep in mind but
not fundamental for using marginal effects in practice.

6.14.1 Numerical precision

Numerical precision is vital to obtain accurate marginal effects. We discussed the choice
of h in Section 6.2. The relevance of this choice is easier to understand with an example.
Suppose we want to calculate the numerical derivative of y = ex at x0 = 2. We know the
correct answer is dy

dx

∣∣∣∣
x=2

= ex = e2. If we set h = 10−8, we can tell that our numerical
derivative approximation is correct up to the first 8 digits:

clear

set obs 1

generate double y = exp(2)

generate double dydx = (exp(2+1e-8) - exp(2-1e-8))/(2*1e-8)

display %20.0g y

7.38905609893065041

display %20.0g dydx

7.3890560337019906

The source of error is the difference in the numerator of dydx above. This is why choos-
ing the best “small but large enough” h is important. If h is too small, then the numerator of
Equation 6.7 would be essentially zero, which means we cannot obtain the numerical ap-
proximation of the derivative. If too large, the approximation is not accurate. The -margins-
command uses an iterative procedure, first starting at the initial value of h to find a value
of h that maximizes numerical accuracy. Numerical accuracy in this context is defined as a
comparison of f (x0 + h) and f (x0). Optimal numerical accuracy is achieved if they differ
in about half their digits. See (Gould et al., 2006, Chapter 1) for more on this example and
Thisted (2017) for an introduction to numerical computation in statistics.

6.14.2 Is it a unit change?

From the discussion in this chapter, it should be clear that marginal effects are effects due
to small changes in the value of a covariate, not a unit change, as they are often described.
They are unit changes for incremental effects because we code indicator variables as 1 or
0. However, it can be confusing to then read that marginal effects are changes in average
outcome when the value of a covariate changes by “one unit” – for example, one additional
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year of life. A more precise statement is that marginal effects are approximations of the
change in the outcome when age changes by 1 year.

Whether there is a difference in the change between 1 unit and the marginal effects
approximation depends on whether the relationship between x and E[y|x] is linear or not.
To develop some intuition with a simple example, consider the model yi = β0 + β1xi +

β2x2
i + εi. We know how a very small change in x changes average outcome: dE[yi |x]

dx =

(β1 +2β2x)×∆x. We can use the definition of the analytical derivative to derive the previous
formula when x changes by a small amount h that tends to zero:

lim
h→0

β0 + β1(x + h) + β2(x + h)2 − β0 − β1x − β2x
h

= β1 + 2β2x + β2h

When h → 0, the term β2h vanishes. But if the change were a unit change, h = 1, then
β2h = β2. This gives us some insight: a very small change and a unit change will be the
same if β2 = 0. The parameter β2 is the coefficient of x2, the nonlinear term in the model,
so both are going to be the same if the relationship between E[y|x] and x is a straight line,
and they will differ when there is more curvature.

To obtain a unit change at a particular point (or on average), simply set h = 1 in step 2
of the algorithm of Section 6.3. Standard errors can be calculated using the delta method.

6.14.3 Margins over populations

To produce Figure 6.9, we calculated model predictions and plotted predicted lines by
sex (see the Stata code corresponding to this chapter). However, it also possible to use
the -marginsplot- postestimation command to quickly plot predictions taking advantage
of the over() option, which estimates marginal effects or margins at unique values of the
variable(s) specified in over(). For example, we could reproduce the third panel of Figure
6.9, titled “3) Probability, interacted,” with:

webuse margex, clear

generate female = (sex==1)

quietly probit outcome c.age##i.female

quietly margins, over(female) at(age=(20(5)60))

marginsplot

6.14.4 Nonparametric models

We have presented marginal effects as tools to interpret model parameters, but marginal
effects can also be used to interpret nonparametric models. In a model like yi = β0 +

β1x1i + · · · + β jx ji + εi, the parameters β are estimated (j+1 parameters). The expected
value of the outcome is a function of parameters for given values of covariates: E[yi|xi] =

f (xi,β), which is how we calculate predictions. Above, we made assumptions about the
shape of f (·); all variables are additive and linear. In nonparametric models, the expected
value is a function of covariates but not parameters, E[yi|xi] = g(xi). Furthermore, the
function g(·) is not known and is assumed to be an element of an infinite-dimensional
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space of functions, so we do not make assumptions about the shape of g(·). Rather than
estimating parameters, E[yi|xi] = g(xi) is estimated conditional on the values of covariates.
The estimated function E[ŷi|xi] can be used to interpret the nonparametric model, including
calculating how changes in the value of covariates change E[ŷi|xi].

The example below illustrates the use of -margins- with the -npregress kernel- com-
mand, which by default estimates a local linear regression, with bootstrapped standard
errors. Marginal and incremental effects are interpreted as usual. An increase in age in-
creases average total serum cholesterol by 0.30 mg/dl, holding sex constant. Total serum
cholesterol is 7.45 mg/ld less on average for males, holding age constant.

use nhanes_cholesterol,clear

quietly npregress kernel tcresult age i.male

margins, dydx(*) vce(bootstrap)

(running margins on estimation sample)

Bootstrap replications (50)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

Average marginal effects Number of obs = 5,214

Replications = 50

Expression: Mean function, predict()

dy/dx wrt: age 1.male

------------------------------------------------------------------------------

| Observed Bootstrap Percentile

| dy/dx std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

age | .3013848 .043669 6.90 0.000 .2083199 .3836323

1.male | -7.452098 .9628852 -7.74 0.000 -9.465876 -5.489199

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

* Compare to parametric counterpart:

regress tcresult age i.male

6.14.5 Margins for transformed covariates

Throughout this chapter, we emphasized the use of the factor variable syntax to estimate
models in order to obtain correct marginal effects in Stata. The factor syntax is flexi-
ble. For example, a model with linear and quadratic terms for age can be estimated with
c.age##c.age or c.age c.age#c.age. A model adding a cubic term (i.e., polynomial of
third degree) is estimated with:

regress tcresult i.male c.age c.age#c.age c.age#c.age#c.age

However, not all transformations can be specified with the factor syntax. For example, a
model with log(age) as a covariate needs to be specified with a transformed variable:

generate log_age = log(age)

regress tcresult log_age

One consequence of “manually” transforming a variable is that margins, dydx(log_age)
would compute the numerical equivalent of dE[tcresult|age]

dlog(age) rather than dE[tcresult|age]
dage , which is
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likely of interest. For example, in the model tcresulti = β0 + β1log(agei) + εi, the derivative
is dE[tcresult|age]

dage = β1
1
x . The option expression() can be used to obtain marginal effects and

standard errors with respect to age:

regress tcresult log_age

margins, expression(_b[log_age]*(1/age))

Predictive margins Number of obs = 5,214

Model VCE: OLS

Expression: _b[log_age]*(1/age)

------------------------------------------------------------------------------

| Delta-method

| Margin std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

_cons | .4320437 .030629 14.11 0.000 .372012 .4920754

------------------------------------------------------------------------------

When age changes by one year, the average serum cholesterol increases by approx-
imately 0.43 mg/ld. The above marginal effect is the same as evaluating the analytical
derivative at all observed ages and then taking the average:

regress tcresult log_age

generate pred1 = _b[log_age]*(1/age)

Another alternative is to obtain the derivative numerically, modifying the algorithm in
Section 6.3 by adding and subtracting h from age –rather than log(age)– and then taking the
logarithm to obtain the numerical approximation of dE[tcresult|age]

dage instead of dE[tcresult|age]
dlog(age) .

The online supplemental material for this chapter presents an example.

6.15 Summary

This chapter presented marginal and incremental effects as tools to interpret regression
models – parametric and nonparametric. Marginal effects approximate analytical deriva-
tives and incremental changes with their numerical counterparts, which are computed us-
ing what-if model predictions. We emphasized that marginal effects are rates of change,
and since marginal effects rely on model predictions, the predictions (i.e., predictive mar-
gins) can also be used to calculate different effect metrics, like relative risks with logit and
probit models. We also emphasized that most common nonlinear models are estimated in
a scale that is often not the scale of interest. This chapter showed how marginal effects and
predictive margins simplify model interpretation in different scales. The issue of different
scales allowed us to explore the counterintuitive implications of nonlinear models, particu-
larly in models with interaction terms. We will extensively use marginal effects in the rest
of the book.
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6.16 Further readings and additional material

Stata’s reference manual for the -margins- command is the best source for further options
and details. The Methods and Formulas section of the Stata manual for -margins- provide
a more general definition of marginal effects. However, precise definitions are model de-
pendent. In quantile regression (command -qreg-), for example, marginal effects are model
implications on the median of the outcome rather than the mean.

We do not cover other features like elasticities and semielasticities, which are additional
metrics to understand model implications, but we have additional material on elasticities
on our website. The online supplemental material includes examples using -predictnl- and
-lincom- to calculate standard errors for marginal effects and a replication of the analysis
in Greene (2010) using analytical derivatives to obtain average marginal effects.

For more details on derivatives, Simon and Blume (1994) and Spivak (2006) are ex-
cellent sources. Wooldridge (2010) Chapter 15, and Greene (2018), Chapter 17, are good
sources on probit and logit models, including derivations of analytical marginal and in-
cremental effects. We have used a combination of their notation so you can follow their
presentation.

Problems

6.1 Suppose you estimate the following linear/OLS model: yi = α0 + α1xi + α2zi + εi,
where x is a continuous variable and z is an indicator or dummy variable taking only
two values, 0 and 1. You estimate the model with regress y x i.z. Explain what
the following commands would calculate:

a). margins, dydx(*)
b). margins z
c). margins, at(x=(0(1)20))
d). margins, at(x=20 z=1)

6.2 In Section 6.7.2, we used a simple numerical example to calculate relative risks,
relative differences, and odds ratios. In Section 6.7.4, we showed that effects with
odds ratios are much larger than relative risk when the baseline risk is high. Repeat
the calculations in Section 6.7.2 assuming that the probability of the outcome in the
control group is 0.9 and 0.95 in the treated group. Show that the odds ratio imply a
111 percent increase for the treatment group, while the relative risk implies a modest
5.6 percent increase.

6.3 Explain the difference between Figure 6.2 and Figure 6.3.
6.4 Figure 6.1 suggests that the relationship between age and the probability of high

cholesterol is nonlinear. In a model with sex as a covariate, explore different logit
models specifications for age. For each model, use marginal effects for age to un-
derstand model implications in the probability scale. Decide which specification is
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better using Wald tests, likelihood ratio tests, or BIC for non-nested models. Plot
predictive margins to better understand each model.

a). Start with a model with age entering linearly in the log-odds scale.
b). Include a quadratic term for age.
c). Include a quadratic and cubic term for age.
d). Estimate a model with log(age) as predictor.
e). Estimate a model with

√
age as predictor.

f). Estimate a model using indicators for age in quintiles (so a model with four
dummy variables).

6.5 Use the nhanes cholesterol.dta dataset. The variable tcresult records total choles-
terol in milligrams per decilitre (mg/dL). Estimate the following linear/OLS model:
tcresulti = γ0 + γ1agei + γ2malei + ui.

a). Use analytical partial derivatives and incremental changes to interpret the effect
of age and sex on E[tcresulti|agei,malei].

b). Repeat a) using numerical marginal and incremental effects. Why are the results
the same as in a)?

c). Estimate now the following model: tcresulti = β0 + β1agei + β2malei + β3(age ×
male)i + εi.

c1). Interpret the results of: margins, dydx(age)
c2). Interpret the results of: margins, dydx(age) at(male=(0 1))
c3). In c), age enters the model linearly. Show that including a quadratic term for

age fits the model better. Repeat c1) and c2). Does the interpretation of the
-margins- findings change?

c4). Plot predictive margins for age (16 to 60 in increments of 5) for the model in
c3) (with a quadratic term for age). Use the over(male) option to plot predic-
tive margins separately for males and females. Interpret the plot.

6.6 Suppose you have the following logit model: log( pi
1−pi

) = α0 + α1x1i + α1x2i. Solve
for p and show the expression to predict the probability of the outcome when x1 = a
and x2 = b.

6.7 Use the dataset nhanes cholesterol.dta for this problem. Use age, male, and insured
as covariates.

a). Show that a quadratic term for age is justified.
b). Does the previous answers change when removing insured and sex from the

model?
c). Graph predictions using your preferred model specification.
d). Graph marginal effects for age using your preferred specification.
f). Evaluate marginal effects at different ages and graph them. Describe your find-

ings.
g). Include interactions between age and sex in a model with age modeled with a

quadratic term. Graph marginal effects and predictions for males and females in
the same graph (separate lines for each sex).

6.8 Problems set using individual derivatives.
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6.9 In Section 6.9, we presented the Poisson model log(E[yi|xi]) = α0 + α1x1i + α2Di,
where x1 is a continous variable and D is a dummy variable. We showed that the
exponent of α2 is a relative risk. Show that the exponent of α1 is a also a relative
risk when x1 changes by one unit. (Hint: write down the model with (x1 + 1) and the
model with x1 and take the difference).

6.10 Show the interacted model in 6.10.2 is equivalent to models stratified by sex (log
odds and odds ratio scales).

6.11 Use the dataset nhanes cholesterol.dta for this problem. Estimate the following logit
model for females only: logit(highcholi) = β0 +β1agei +β2age2

i +β3insuredi. We saw
that the probability of high cholesterol appears to peak around age 55 (combining
males and females). Find the exact peak in the probability scale for females using
the estimated model results (that is, parameters). To make it easier, calculate the
peak for a female who is uninsured.




