
Week 6: Maximum Likelihood Estimation

Marcelo Coca Perraillon

University of Colorado
Anschutz Medical Campus

Health Services Research Methods I
HSMP 7607

2020

These slides are part of a forthcoming book to be published by Cambridge
University Press. For more information, go to perraillon.com/PLH. c©This
material is copyrighted. Please see the entire copyright notice on the book’s
website.

1

perraillon.com/PLH


Outline

An alternative way of estimating parameters: Maximum likelihood estimation
(MLE)

Simple examples: Bernoulli and Normal with no covariates

Adding explanatory variables

Variance estimation

Intuition about the linear model using MLE

Likelihood ratio tests, AIC, BIC to compare models

Logit and probit with a latent variable formulation

Predictions in logit and probit models

2



Bernoulli example

Suppose that we know that the following ten numbers were simulated using a
Bernoulli distribution: 0 0 0 1 1 1 0 1 1 1

We can denote them by y1, y2, ..., y10. So y1 = 0 and y10 = 1

Recall that the pdf of a Bernoulli random variable is f (y ; p) = py (1− p)1−y ,
where y ∈ {0, 1}
The probability of 1 is p while the probability of 0 is (1− p)

We want to figure out what is the p that was used to simulate the ten
numbers. That’s what we do not know

What we do know is 1) they come from a Bernoulli distribution and 2) they
are independent from each other, meaning that knowing one of them doesn’t
tell us anything about the other(s)

3



Bernoulli example

Since we know the pdf that generated the numbers is Bernoulli, we know
that the probability of the first number is py1 (1− p)1−y1

The probability of the second is py2 (1− p)1−y2 and so on...

We could replace the yi with the actual numbers. For example, the first one
is y1 = 0 so the probability is just (1− p). I’ll keep the symbols because we
are going to make the problem more general in a bit

What we do NOT know is the value of the parameter p

Since we know that they are independent we could also write down the
probability of observing all 10 numbers. That is, their joint probability

Since they are independent their joint distribution is the multiplication of the
10 pdfs. Recall: p(A ∩ B) = P(A)P(B) if A and B are independent

4



Bernoulli example

The joint probability is
[py1 (1− p)1−y1 ]× [py2 (1− p)1−y2 ]× · · · × [py10(1− p)1−y0 ]

To make notation easier we’ll use the product symbol
∏

. For example,∏2
i=1 xi = x1 ∗ x2

So we can write the joint probability or the likelihood (L) of seeing those 10
numbers as:

L(p) =
∏10

i=1 p
yi (1− p)1−yi

Again, that is the probability that we observed the 10 numbers, although we
do not know p yet

5



Bernoulli example

Here comes the key insight. We can turn this problem into a maximization
problem. What is the number p that maximizes the likelihood function L(p)
given the observed data?

That number will be the estimated parameter p that we’ll call p̂

Yet another way: we want to find the p̂ that makes the joint likelihood
of seeing those numbers as high as possible

That’s of course a calculus problem. We can take the derivative of L(p) with
respect to p and set it to zero to find the optimal p̂

Of course, the second step is to verify that it’s a maximum and not a
minimum (take second derivative) and also verify that is unique, etc. We will
skip those steps to keep this problem simple

6



Bernoulli example

Taking that derivative is complicated because we would need to use the chain
rule several times. A lot easier to make it a sum by taking the log; the log
function is a monotonic transformation, it won’t change the optimal p̂
value

We will use several properties of the log, in particular:
log(xayb) = log(xa) + log(yb) = a ∗ log(x) + b ∗ log(y)

We are going to generalize the problem by assuming we have n numbers
instead of 10. It doesn’t make it more difficult. We have:

lnL(p) =
∑n

i=1 yi ln(p) +
∑n

i=1(1− yi )ln(1− p)

Which simplifies to: lnL(p) = nȳ ln(p) + (n − nȳ)ln(1− p)

(ȳ =
∑n

i=1 yi
n ) This looks a lot easier; all we have to do is take dln(p)

dp , set it to
zero, and solve for p

7



Bernoulli example

dln(p)
dp = nȳ

p −
(n−nȳ)
(1−p) = 0

After solving, we’ll find that p̂(yi ) = ȳ =
∑n

i=1
yi
n

So that’s the MLE estimator of p. This is saying more or less the obvious:
our best guess for the p that generated the data is the proportion of 1s, in
this case p = 0.6, which is the same as E [Yi ]

We would need to verify that our estimator satisfies the three basic properties
of an estimator: bias, efficiency, and consistency (this will be in your exam)

Note that we can plug in the optimal p̂ back into the ln likelihood function:

lnL(p̂) = nȳ ln(p̂) + (n − nȳ)ln(1− p̂) = a, where a will be a number that
represents the highest likelihood we can achieve (we chose p̂ that way)

Drum roll: We just discovered logistic regression

8



Example

Simulated 100 Bernoulli rvs with p = 0.4

set obs 100

gen bernie = uniform()<0.4

sum bernie

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

bernie | 100 .46 .5009083 0 1

* We just showed that p hat is 0.46

* Let’s get the highest value of the ln likelihood

* Plug in p hat and the other values

di 100*0.46*ln(0.46) + (100-100*0.46)*ln(1-0.46)

-68.994376

Again, we just did logistic regression “by hand.” A logistic model with only a
constant (no covariates), also known as the null model

9



Replicate using the logit command

We have used logit before

logit bernie

Iteration 0: log likelihood = -68.994376

Iteration 1: log likelihood = -68.994376

Logistic regression Number of obs = 100

LR chi2(0) = -0.00

Prob > chi2 = .

Log likelihood = -68.994376 Pseudo R2 = -0.0000

------------------------------------------------------------------------------

bernie | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | -.1603427 .2006431 -0.80 0.424 -.5535959 .2329106

------------------------------------------------------------------------------

di 1/(1+exp( .1603427 ))

.45999999

Note that Log likelihood = -68.994376 matches what we found “by hand;”
the coefficient is in the log-odds scale, but we can transform it

This is a model with no explanatory variables. We can easily make the
parameter p be a linear function of predictors

10



Some things to note

Statistical software maximizes the log likelihood numerically. Also the log
likelihood because of numerical precision. The probability of each yi is small,
so p(y1)× p(y2)× . . . p(yn) could be a very small number

The algorithm is given a starting value for some parameters (often using
using the null model)

Each iteration “improves” the maximization

The second derivatives are also computed because the second derivatives are
used to compute SEs

In many cases, we need to be mindful of the difference between the scale of
estimation and the scale of interest

Logit models report coefficients in the log-odds scale

Not the only way of deriving logit models. You could also assume a Binomial
pdf. The Bernoulli is a special case of the Binomial when the number of
trials is 1. We will see a variable approach, too

11



Plot the - ln(L) function with respect to p

12



What about the precision (standard error) of the estimate?

There is some intuition in the plot above. The precision of the estimate p̂
can be measured by the curvature of the lnL(θ) function around its peak

A flatter curve has more uncertainty. In logistic models, the variance is
function of the p

The Fisher information function, I (θ) formalizes that intuition:

I (θ) = −E [∂
2lnL(θ)
∂2θ ]

It turns out that we can calculate var(θ) using the inverse of I (θ)

For the Bernoulli, I (p̂) = n
[p̂(1−p̂)] (evaluated at p̂)

The variance is 1/I (p̂) = p̂(1−p̂)
n

Note something. Once we know p̂ we also know its variance. The Normal
distribution is unique in that the variance can change independently of the
mean

13



Logit models with covariates

In most applications we want to estimate the effect of covariates on the
probability p

So we could just make p a function of covariates: p = f (x1, x2, ..., xp)

The easiest one is to make them a linear function like
p = β0 + β1x1 + · · ·+ βpxp

But that could be a problem since we need to guarantee that p will be
bounded between 0 and 1 since it’s a probability

Enters the logistic or logit function: 1
1+e−(β0+β1x1+···+βpxp ) = e(β0+β1x1+···+βpxp )

1+e(β0+β1x1+···+βpxp )

We have now changed the maximization problem. We do not maximize the
likelihood with respect to p. Now we do it with respect to the parameters βj

The math is more difficult. We need matrix algebra. The second derivative
becomes a matrix too (the Jacobian). The logic is the same, though

14



Logistic response function
If we constrain the response to be between 0 and 1, it can’t be linear with
respect to X

twoway function y=exp(x) / (1+ exp(x)), range(-10 10) saving(l1.gph, replace)

twoway function y=exp(-x) / (1+ exp(-x)), range(-10 10) saving(l2.gph, replace)

graph combine l1.gph l2.gph, xsize(20) ysize(10)

graph export lboth.png, replace

15



Logistic or logit model

Notice a couple of things.The effect of x on π is not linear; the effect
depends on the value of x

But we can make the function linear using the so-called logit transformation

ln( π
1−π ) = x

I made you go the other way in one homework. If you solve for π you get to
the logistic response function

More general, the model is:

ln( p
1−p ) = β0 + β1X1 + · · ·+ βpXp, which transformed is

p = eβ0+β1X1+···+βpXp

1+eβ0+β1X1+···+βpXp

Can also be written as: p = 1
1+e−(β0+β1X1+···+βpXp )

16



Normal example

What about if we do the same but now we have numbers like

90.46561

105.1319

117.5445

102.7179

102.7788

107.6234

94.87266

95.48918

75.63886

87.40594

...

...

I tell you that they were simulated from a normal distribution with
parameters µ and σ2. The numbers are independent. Your job is to come up
with the best guess for the two parameters

Same problem as with the Bernoulli example. We can solve it in exactly the
same way

17



Normal example

As before, we know the pdf of a Normal random variable and because the
observations are independent we can multiply the densities:

L(µ, σ2) =
∏n

i=1
1√

2πσ2
exp (−(yi−µ)2

2σ2 )

Remember the rules of exponents, in particular eaeb = ea+b. We can write
the likelihood as:

L(µ, σ2) = ( 1√
2πσ2

)nexp(− 1
2σ2

∑n
i=1(yi − µ)2)

Alert: Perhaps you are wondering, why are we using the pdf of the normal if
we know that the probability of one number is zero? Because we can think of
the pdf as giving us the probability of yi + d when d → 0

If you recall your stats 101 classes, with a continuous rv the probability of a
number is zero

18



Normal example

After taking the ln, we have:

lnL(µ, σ2) = − n
2 ln(2πσ2)− 1

2σ2

∑n
i=1(yi − µ)2

All we have left is to take the derivative with respect to our two unknowns, µ
and σ2 and set them to zero. Let’s start with µ:
∂ln(L(µ,σ2))

∂µ = 2 1
2σ2

∑n
i=1(yi − µ) = 0

The above expression reduces to (I added theˆto emphasize that’s the
optimal):∑n

i=1(yi − µ̂) = 0

Does it look familiar? Replace µ̂ with ŷi . That’s exactly the same as the
first order condition you saw when minimizing the sum of squares (that also
the moment condition in Generalized Method of Moments, GMM)

Solving, we find that µ̂ =
∑n

i=1 yi
n = ȳ . In other words, our best guess is just

the mean of the numbers. E [Yi ] again

19



Normal example

We can also figure out the variance by taking the derivative with respect to
σ2

We will find that σ̂2 =
∑n

i=1(yi−µ̂)
n

That formula happens to be wrong. That’s a biased estimate of the variance.
We need to divide by (n − 1) instead

(What is the definition of bias?)

This is not unusual in MLE. The MLE estimate of the variance is often
biased but it is easy to correct them (and less of a problem with large
samples)

20



Normal example Stata

We just figured out that the best guess is to calculate the sample mean and
sample variance

We can easily verify in Stata

clear

set seed 1234567

set obs 100

gen ynorm = rnormal(100, 10)

sum ynorm

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

ynorm | 100 98.52294 10.03931 74.16368 123.5079

reg ynorm

<... output omitted ...>

------------------------------------------------------------------------------

ynorm | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | 98.52294 1.003931 98.14 0.000 96.53092 100.515

------------------------------------------------------------------------------

Drum roll 2: We just did linear regression “by hand” (although without
covariates)

21



Linear regression: adding covariates

What about if I told you that the number I generated is a linear function of
one variable, say, x1? In other words, I’m saying that the mean of the normal
distribution is µ = β0 + β1x1

Now we want to find the parameters β0, β1, σ
2 that maximize the likelihood

function. Once we know the optimal β̂0, β̂1 we find the optimal µ̂

The likelihood function is now:

L(β0, β1, σ
2) = 1√

2πσ2
exp(− 1

2σ2

∑n
i=1(yi − β0 − β1x1i )

2)

The ln likelihood is:

lnL(µ, σ2) = − n
2 ln(2πσ2)− 1

2σ2

∑n
i=1(yi − β0 − β1x1i )

2

22



Linear regression

If we take the derivatives with respect to β0 and β1 we will find exactly the
same first order conditions as with. For example, with respect to β1:∑n

i=1 x1(yi − β0 − β1x1) = 0

All the algebraic properties of OLS still hold true here

The MLE estimate of σ2 will be biased but we divide by (n-p-1) instead as
we saw before

So what do we gain with MLE?

We do gain a lot in the understanding of linear regression (more in a
little bit)

23



The regression command again

The regression command does not use MLE but it does give you the log
likelihood

sysuse auto, clear

qui reg price weight mpg

ereturn list

scalars:

e(N) = 74

e(df_m) = 2

e(df_r) = 71

e(F) = 14.7398153853841

e(r2) = .2933891231947529

e(rmse) = 2514.028573297152

e(mss) = 186321279.739451

e(rss) = 448744116.3821706

e(r2_a) = .27348459145376

e(ll) = -682.8636883111164

e(ll_0) = -695.7128688987767

e(rank) = 3

The log likelihood of the estimated model is stored in e(ll). The log
likelihood of the null model (with no covariates) is stored in e(ll0).

From the numbers above e(ll) > e(ll0)

24



The regression command again

Stata uses a formula to go from SSE to log likelihood. Remember, SSE is
Stata is stored in the scalar r(rss)

sysuse auto, clear

qui reg price weight mpg

* Save sample size and SSE

local N = e(N)

local rss = e(rss)

* Use formula

local ll = -0.5*‘N’*(ln(2*_pi)+ln(‘rss’/‘N’)+1)

display %20.6f ‘ll’

-682.863688

display %20.6f e(ll)

-682.863688

The formula is ll = −0.5N(ln(2π) + ln(SSE
N ) + 1)

25



Easy MLE in Stata

To estimate in MLE using Stata you need to write a program but Stata now
makes it a lot easier (for teaching purposes) with the mlexp command

mlexp (ln(normalden(price, {xb: weight mpg _cons}, {sigma})))

initial: log likelihood = -<inf> (could not be evaluated)

feasible: log likelihood = -803.76324

rescale: log likelihood = -729.85758

rescale eq: log likelihood = -697.2346

Iteration 0: log likelihood = -697.2346

Iteration 1: log likelihood = -687.4506

Iteration 2: log likelihood = -682.92425

Iteration 3: log likelihood = -682.86401

Iteration 4: log likelihood = -682.86369

Iteration 5: log likelihood = -682.86369

Maximum likelihood estimation

Log likelihood = -682.86369 Number of obs = 74

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

xb |

weight | 1.746559 .6282189 2.78 0.005 .5152727 2.977846

mpg | -49.51222 84.39157 -0.59 0.557 -214.9167 115.8922

_cons | 1946.069 3523.382 0.55 0.581 -4959.634 8851.771

-------------+----------------------------------------------------------------

/sigma | 2462.542 202.4197 12.17 0.000 2065.806 2859.277

------------------------------------------------------------------------------

26



Almost same

The SEs are slightly different and so is Root MSE. Stata is using the second
derivatives to calculate SEs using MLE

. reg price weight mpg

Source | SS df MS Number of obs = 74

-------------+---------------------------------- F(2, 71) = 14.74

Model | 186321280 2 93160639.9 Prob > F = 0.0000

Residual | 448744116 71 6320339.67 R-squared = 0.2934

-------------+---------------------------------- Adj R-squared = 0.2735

Total | 635065396 73 8699525.97 Root MSE = 2514

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

weight | 1.746559 .6413538 2.72 0.008 .467736 3.025382

mpg | -49.51222 86.15604 -0.57 0.567 -221.3025 122.278

_cons | 1946.069 3597.05 0.54 0.590 -5226.245 9118.382

------------------------------------------------------------------------------

27



But they are consistent

The auto dataset has only 74 obs. What about we use the MEPS that has
about 15000? (That’s really an overkill but just to make the point)

OLS version:

use heus_mepssample.dta, clear

gen lexp = log(exp_tot +1)

reg lexp age female

Source | SS df MS Number of obs = 19,386

-------------+---------------------------------- F(2, 19383) = 2219.86

Model | 35570.262 2 17785.131 Prob > F = 0.0000

Residual | 155293.552 19,383 8.01184298 R-squared = 0.1864

-------------+---------------------------------- Adj R-squared = 0.1863

Total | 190863.814 19,385 9.8459538 Root MSE = 2.8305

------------------------------------------------------------------------------

lexp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0692295 .0011701 59.16 0.000 .0669359 .0715231

female | 1.158043 .040891 28.32 0.000 1.077893 1.238193

_cons | 2.176568 .0603543 36.06 0.000 2.058268 2.294868

------------------------------------------------------------------------------

28



Compare to MLE version

mlexp (ln(normalden(lexp, {xb: age female _cons} , {sigma})))

initial: log likelihood = -<inf> (could not be evaluated)

feasible: log likelihood = -1539127.9

rescale: log likelihood = -52965.16

rescale eq: log likelihood = -52965.16

Iteration 0: log likelihood = -52965.16

Iteration 1: log likelihood = -48279.366

Iteration 2: log likelihood = -47689.334

Iteration 3: log likelihood = -47676.448

Iteration 4: log likelihood = -47676.408

Iteration 5: log likelihood = -47676.408

Maximum likelihood estimation

Log likelihood = -47676.408 Number of obs = 19,386

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

xb |

age | .0692295 .0011701 59.17 0.000 .0669362 .0715227

female | 1.158043 .0408878 28.32 0.000 1.077905 1.238182

_cons | 2.176568 .0603497 36.07 0.000 2.058285 2.294851

-------------+----------------------------------------------------------------

/sigma | 2.830301 .0143739 196.91 0.000 2.802129 2.858473

------------------------------------------------------------------------------

29



Numerical methods

Stata uses numerical methods to maximize the likelihood. There are many
and some work better than others in some situations. Type “help mle” for
the gory details

A classic one is the Newton-Raphson algorithm

The idea requires Taylor expansions (a way to approximate nonlinear
functions using linear functions)

The steps are:

1 Make a guess about the parameters, say just one parameter θ0

2 Approximate the log likelihood function using Taylor series at θ0 and set it
equal to zero (easier to solve because it’s a linear function)

3 Find the new θ, say, θ1. Check if the log likelihood has improved
4 Repeat until the -2 log likelihood changes by only a small amount, say 0.02

The idea of using -2 log likelihood < 0.02 is that that amount would not
change the statistical significance -2 log likelihood is in the Chi-square scale
(more on this in a sec)

30



Why is the log likelihood function negative?
The likelihood function L(p) is a small number since it’s the joint likelihood
of observing the outcome values

twoway function y =log(x), range(-2 2) xline(0 1) yline(0) ///

color(red) title("y = log(x)")

graph export logy.png, replace

31



What do we get using MLE?

1) It is clear that we are modeling a conditional expectation function:
E [Y |X ]

Perhaps this got lost but it’s worth repeating. We started with the normal
density:

f (y ;µ, σ) = 1√
2πσ2

exp (−(yi−µ)2

2σ2 )

We then said that the mean µ is a function of one or more covariates x
and we made no assumptions about the distribution of x :

f (y ;µ, σ) = 1√
2πσ2

exp (−(yi−(β0+β1xi ))2

2σ2 )

That’s why I said many times that the assumption ε ∼ N(0, σ2) is the same
as saying that the assumption is y ∼ N(β0 + β1x , σ

2), since µ = β0 + β1x

Note that with MLE we did not assume anything about the errors. In
fact, the errors are not even in the equations. It’s a different of deriving the
simple linear model

32



What do we get from MLE?

2) It is clear from the start of setting up the problem that we are assuming
that Y distributes normal conditional on the values of X . Remember the
example of heights for men and women. In some cases, perfectly valid to
use a linear model even if the distribution of Y does not look like a
normal

3) It is clear that we assume that the observations are independent;
otherwise, we cannot multiply the densities

4) The value of the optimal log likelihood function gives us a measure of the
goodness of fit, much like SSR (i.e. the explained part) did. By comparing
the log likelihood of alternative models, we will test if the reduced model is
adequate like we did with the F test

5) The curvature of the log likelihood function provides information about
the precision of the estimates (i.e. standard errors)

33



What do we get from MLE?

6) MLE is much more general than OLS. You will use MLE for logit, Probit,
Poisson, mixture models, survival models. Pretty much all the standard
models an applied researcher needs

7) Learning to model using likelihood ratio tests is more useful for more type
of models than using the SSE for nested models (although you need to use
the test command with the robust option in reg)

8) AIC and BIC to compare non-nested models are based on the log
likelihood function

Here is a more detailed proof of MLE for the normal:
https://www.statlect.com/fundamentals-of-statistics/

normal-distribution-maximum-likelihood

34

https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood
https://www.statlect.com/fundamentals-of-statistics/normal-distribution-maximum-likelihood


Likelihood ratio test (LRT)

The null H0 is that the restricted (constrained) model is adequate

The alternative H1 is that the full (unconstrained) model is adequate

The likelihood ratio test compares the log-likelihoods of both models and can
be written as:

LR = −2[L(RM)− L(FM)], where L(RM) is the log-likelihood of the
restricted model and L(FM) that of the full model

Under the null that the restricted model is adequate, the test statistics LR
distributes χ2 with degrees of freedom given by df = dffull − dfrestricted ; that
is, the difference in degrees of freedom between the restricted and full models

35



Likelihood ratio test: sketch of theory

The theory of LRTs is a bit dense but the intuition is not that difficult to
understand

We could re-write as LR = −2L(RM
FM ) since log( a

b ) = log(a)− log(b)

So we are comparing the likelihood of the reduced model to the full model
and wondering if the reduced model alone is just fine. Sounds familiar? Not
that different from the F test comparing SSEs of nested models

Keep in mind that the estimated model parameters are those that
maximized the value of the likelihood

The more theoretical part is to figure out how the LRT distributes and under
which conditions the LRT is valid (models must be nested)

36



Recall the F test

We have LR = −2L(RM
FM )

The F test was F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)

Both are using a measure of fit to compare models

With MLE, we want to know if reaching a higher likelihood is due to chance
under the null

With the F test, we want to know if the additional reduction in the residual
variance is due to chance under the null

The requirement is that models must be nested

37



Example

Compare the likelihood and other criteria

use "GPA1.dta", clear

rename colGPA colgpa

rename hsGPA hsgpa

quietly {

reg colgpa

est sto m1

reg colgpa hsgpa

est sto m2

reg colgpa hsgpa skipped

est sto m3

}

est table m1 m2 m3, star stat(r2 r2_a ll bic aic) b(%7.3f)

-----------------------------------------------------

Variable | m1 m2 m3

-------------+---------------------------------------

hsgpa | 0.482*** 0.459***

skipped | -0.077**

_cons | 3.057*** 1.415*** 1.579***

-------------+---------------------------------------

r2 | 0.000 0.172 0.223

r2_a | 0.000 0.166 0.211

ll | -60.257 -46.963 -42.493

bic | 125.462 103.823 99.832

aic | 122.513 97.925 90.985

-----------------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001

38



Example

LR tests

lrtest m3 m2

Likelihood-ratio test LR chi2(1) = 8.94

(Assumption: m2 nested in m3) Prob > chi2 = 0.0028

. lrtest m3 m1

Likelihood-ratio test LR chi2(2) = 35.53

(Assumption: m1 nested in m3) Prob > chi2 = 0.0000

It seems logical that LRT and F-test comparing nested models should be
equivalent (asymptotically)

39



LRT and F-tests

Compare tests

qui reg colgpa

est sto m0

scalar ll0 = e(ll)

reg colgpa male campus

Source | SS df MS Number of obs = 141

-------------+---------------------------------- F(2, 138) = 0.62

Model | .171856209 2 .085928105 Prob > F = 0.5413

Residual | 19.2342432 138 .139378574 R-squared = 0.0089

-------------+---------------------------------- Adj R-squared = -0.0055

Total | 19.4060994 140 .138614996 Root MSE = .37333

...

est sto m1

scalar ll1 = e(ll)

lrtest m0 m1

Likelihood-ratio test LR chi2(2) = 1.25

(Assumption: m0 nested in m1) Prob > chi2 = 0.5341

* By hand

di -2*[ll0 - ll1]

1.2542272

p-value of both 0.5341 (I chose bad predictors so p-values would be high)

40



Information criteria to compare models

A common way to compare models is by using the so-called information
criterion. It’s a measure that balances bias and variance or accuracy (fit)
and simplicity (parsimony)

The first one proposed is the Akaike Information Criterion (AIC). In the
context of the linear model (estimated using OLS), it is:

AICp = n ∗ ln(
SSEp

n ) + 2 ∗ p
p is the number of estimated parameters (including the constant), n is the
number of observations, and SSE is the residual sum of squares (recall SST
= SSR + SSE)

The smaller the AIC the better. When is a model going to be better? The
larger the sample size, the lower the unexplained variance, the fewer
parameters we use

Usually, we compare models with the same sample size, n, or maybe a small
difference in n (a covarite may have some missings)

41



Log-likelihood and AIC

That 2 ∗ p is a penalty much like in adjusted R2. The more parameters we
estimate the better the model has to be to justify the additional estimated
parameters

We just saw the formula linking the log-likehood to SSE:

ll = −0.5 ∗ n ∗ [ln(2 ∗ π) + ln(SEE/n] + 1

We could solve for SSE and plug in to get AIC as a function of the
log-likelihood

That’s one one way to get some intuition on AIC

42



Information theory

AIC comes from information theory. Suppose that we know the population
process that generated the data but we are using a model to represent that
process

Think of simulating some data and then using imperfect models to represent
the data. There will be some information lost

If we knew the true data generating process, we could find a way to estimate
how much information we are losing in each model and thus choose the
model that doesn’t lose as much information

But we never know the true model/process. Akaike, in 1974, showed that
his information criterion, now called AIC, tells how much more information is
lost comparing one model to the other using the estimated log-likelihood

43



Some caveats

1 Valid asymptotically

2 Balance between goodness of fit and parsimony (simplicity). The penalty is
incurred to avoid overfitting models because models with more parameters
will always fit the data better. If you use as many parameters as data points,
model fit is perfect (essentially, the estimated model is a perfect
representation of the data)

3 Most important: AIC is a relative measure that compares one model to
another to choose the one that loses less information. It’s not a measure of
how good a model is. You may have two bad fitting models (say, super low
R2). AIC helps you choose the best among terrible options

44



AIC and F-tests

Note that AIC is similar to the F-test we used to compare nested models.
One way of writing the F-test was

F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)

Also, the F-test can be written in terms of the R2: F =
(R2

p−R
2
q )/(p−q)

(1−R2p)/(n−p−1)

We are essentially comparing SSE (or R2) in relationship to the number of
estimated parameters

AIC is helpful because we can use it to compare non-nested models,
although there is no statistical test like F test or MLE

AIC is a relative measure. The absolute value doesn’t tell us much; we
use it compare related models

Obviously, it wouldn’t make much sense to compare models with different
outcomes or different datasets

45



AIC with log-likelihood

We also saw that we can use the likelihood ratio test to compare models and
that the F-test and the LRT are asymptotically equivalent

Stata’s way to calculate AIC (except in GLM models) is AIC = −2ll + 2k

k is the number of parameters, ll is the log-likelihood function. 2k is the
penalty due to the number of parameters; the more parameters, the higher
AIC must be to compensate

Maybe the best way to summarize is that we are essentially comparing the
log-likelihood of related models

46



Bayesian Information Criterion (BIC)

The more commonly used information criterion is BIC:

BIC = −2ll + ln(n) ∗ k
Note that we now add ln(n) in the penalty term rather than 2

If n = 8, ln(8) = 2.079. So in most applications, the BIC penalty is always
higher than the AIC penalty but it has a limit because the log function
“flattens”

ln(50) = 3.91, ln(100) = 4.60, ln(500) = 6.21, ln(1000) = 6.91, ln(2000) =
7.6

The more observations we have, the lower the growth of the penalty ln(n) ∗ k

47



Logit and probit: Latent variable approach

There is yet another way to derive logit and probit models. A way that
connects both into the same framework

Suppose that there is a latent (unobserved) and continuous variable y∗ that
take values from −∞ to +∞. We assume that the latent variable is a
function of covariates X. For simplicity, let’s just assume a linear relationship
and just one covariate: y∗i = β0 + β1xi + u

u plays the same role as ε in the linear model: a source of random error

We do not observe the latent variable y∗, we only observe if an event
happens or not but whether the event happens depends on the value of the
latent variable. We use yi to denote the observed variable, which we assume
is coded as 1 or 0

If yi∗ > 0 then yi = 1. If yi∗ ≤ 0 then yi = 0. Note that in this case 0 is a
threshold

Think of y∗ as intelligence and y is whether a person answers a question
correctly or not. Or think of the latent variable a measure of disease severity.
If it crosses 0 the person dies

48



Latent variable approach

Because of the way we set up the problem, we can write the probability of
y = 1 conditional on the covariate x as:

P(y = 1|x) = P(y∗ > 0|x)

Since we assumed that y∗i = β0 + β1xi + u the above equation becomes

P(y = 1|x) = P(β0 + β1xi + u > 0|x) = P(u < [β0 + β1xi ]|X ) =
F ([β0 + β1xi ]|x)

So the probability of observing y = 1 depends on the distribution of u, the
error component of the latent variable y∗. We could calculate that
probability if we knew the cumulative distribution function F ()

It’s obvious that we need to make a strong assumption about the distribution
of y∗ in order to calculate P(y = 1|x) (note that
P(y = 0|x) = 1− P(y = 1|x))

49



Latent variable approach

In econometrics this type of model is called index function models (in this
case a single index)

Two common assumptions about u are used: u distributes either standard
logistic or standard normal

Both distributions have a mean of 0 and constant variance. In the standard
logistic the variance var(u) = π2

3 . In the standard normal var(u) = 1

The idea of fixing the variance is not that trivial in the sense that if we don’t
fix it, then we can’t estimate it because we only observe a 0 or 1 and the
probability of 1 depends on the sign on y∗ but not the scale (variance)

In other words, we don’t have information to estimate var(u) yet we lose
nothing by fixing it because P(y = 1|x)does not depend on var(u)

50



Latent variable approach

Remember that the cumulative distribution function (cdf) gives you
P(X < a). Remember too that to calculate the probability we need to
integrate the density f(t) from −∞ to a:

∫ a

−∞ f (t)dt

If we assume standard normal cdf, our model becomes

P(y = 1|x) =
∫ β0+β1x

−∞
1

2π e
(− t2

2 )dt

And that’s the probit model. Note that because we use the cdf, the
probability will obviously be constrained between 0 and 1 because since it’s a
cdf

If we assume that u distributes standard logistic then our model becomes

P(y = 1|x) = eβ0+β1x

1+eβ0+β1x
, which we saw before as the logit transformation

Remember that there are two different concepts: logistic response function
and logistic distribution. The standard logistic cdf happens to have the
above formula (the pdf is different)

51



Estimation

Estimation is straightforward with MLE. We did it for the logistic model
already

For probit, the likelihood is just like writing P(y = 1|x) above because that’s
the probability of seeing the data. We need to multiply n times and also
consider that the probability of 0 is 1− P(y = 1|x). If we take the log, it’s a
sum

This is often a source of confusion but remember that the likelihood function
is the probability of seeing the data given assumptions about the distribution
of the data

So what is the probability of observing a data point y = 1? It’s

P(y = 1|x) =
∫ β0+β1x

−∞
1

2π e
(− t2

2 )dt

What is the probability of observing a data point y = 0? It’s

P(y = 0|x) = 1−
∫ β0+β1x

−∞
1

2π e
(− t2

2 )dt

For the logit, we would do the same, but we would arrive to the same place
as before

52



Estimation

We can program the probit model easily with Stata

I have more examples on my site
https://clas.ucdenver.edu/marcelo-perraillon/code-and-topics

Note below that writing the likelihood makes it obvious that the betas are
shifts in the standard normal cdf scale

program probit_lf

version 12

args todo b lnf

tempvar xb lj

mleval ‘xb’ = ‘b’

* latent variable assumed cumm standard normal

qui gen double ‘lj’ = normal( ‘xb’) if $ML_y1 == 1

qui replace ‘lj’ = normal(-‘xb’) if $ML_y1 == 0

qui mlsum ‘lnf’ = ln(‘lj’)

end

53

https://clas.ucdenver.edu/marcelo-perraillon/code-and-topics


Standard logistic vs standard normal

Does it make much of a difference if we use one vs the other?

clear

set seed 123456

set obs 5000

gen u = uniform()

* Simulate logistic distribution

gen l = -ln((1 - u)/u)

sum l

* Simulated normal with same parameters

gen n = rnormal(r(mean), r(sd))

* Plot

kdensity l, bw(0.3) gen(xl dl)

kdensity n, bw(0.3) gen(xn dn)

line dl xl, sort color(red) || line dn xn, sort ///

title("Logistic (red) vs normal distribution") ytitle("Density") ///

xtitle("x") legend(off)

graph export logvsnorm.png, replace

54



Standard logistic vs standard normal normal

Assuming either one as the latent distributions makes little difference

55



Digression

Assuming standard normal cdf or logistic are not the only options

There is the complementary log-log model commonly used in discrete time
survival because the exponent of coefficients are hazard rates

Or the Gumbel model used to model extreme values

Or the Burr model. Or the Scobit model

Statistics and econometrics are large fields... Papers must be written,
dissertations must be completed

Sometimes a proposed new method goes to the Journal Article Graveyard.
Sometimes they are resurrected 30 years later when somebody discovers that
they are perfect for a particular application

So many ideas and clever people out there. See Greene (2018) for more
details

56



Example

Women’s labor force participation (inlf); main predictor is ”extra” money in
family

bcuse mroz, clear

inlf =1 if in labor force, 1975

nwifeinc (faminc - wage*hours)/1000

educ years of schooling

exper actual labor mkt exper

age woman’s age in yrs

kidslt6 # kids < 6 years

kidsge6 # kids 6-18

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

inlf | 753 .5683931 .4956295 0 1

nwifeinc | 753 20.12896 11.6348 -.0290575 96

educ | 753 12.28685 2.280246 5 17

exper | 753 10.63081 8.06913 0 45

age | 753 42.53785 8.072574 30 60

kidslt6 | 753 .2377158 .523959 0 3

kidsge6 | 753 1.353254 1.319874 0 8

57



Labor force participation
The probability of working is decreasing as a function of ”extra” income

lowess inlf nwifeinc, gen(lflow) nograph

scatter inlf nwifeinc, jitter(5) msize(small) || line lflow nwifeinc, sort ///

legend(off) saving(lblow.gph, replace)

graph export lblow.png, replace

58



Writing down the model

We want to estimate the following model:

P(inlfi = 1|nwifeinci ) = Λ(β0 + β1nwifeinci )

By convention (in economics and health economics), when we write capital
lambda, Λ(), we imply a logistic model (Λ is not a non-linear function).
When we write phi, φ(), we imply a probit model

Write the logistic model this way (no error term!):

log( inlfi
1−inlfi ) = β0 + β1nwifeinci

Or

logit(inlfi ) = β0 + β1nwifeinci

Again, write it like this: log( inlfi
1−inlfi ) = β0 + β1nwifeinci because this will

match Stata’s (or any other statistical package) output. Remember, we
are not directly estimating P(inlfi = 1|nwifeinci )

59



Estimating the model

So, we will estimate log( inlfi
1−inlfi ) = β0 + β1nwifeinci

logit inlf nwifeinc, nolog

Logistic regression Number of obs = 753

LR chi2(1) = 10.44

Prob > chi2 = 0.0012

Log likelihood = -509.65435 Pseudo R2 = 0.0101

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc | -.0207569 .0065907 -3.15 0.002 -.0336744 -.0078394

_cons | .6946059 .1521569 4.57 0.000 .396384 .9928279

------------------------------------------------------------------------------

A one thousand increase in “extra” income decreases the log-odds of
participating in the labor force by 0.021. And it’s statistically significant
(p-value = 0.002). Same Wald test as before:
−.0207569/.0065907 = −3.1494227. The difference is that the it’s not
t-student distributed but normally distributed

60



Overall significance

The χ2 (chi-square) test of the overall significance should look familiar. It
compares the current model to the null model (without covariates); the null
hypothesis is that all the cofficients in current model are zero

It’s the likelihood ratio test that we have seen before; the equivalent of
ANOVA:

* LRT

qui logit inlf nwifeinc, nolog

est sto full

qui logit inlf, nolog

est sto redu

lrtest full redu

Likelihood-ratio test LR chi2(1) = 10.44

(Assumption: redu nested in full) Prob > chi2 = 0.0012

61



What about that Pseudo R2?

We can’t partition the variance into explained and unexplained as before so
we don’t have a nice R2 that goes from 0 to 1

But one way to come up with a measure of fit is to use the (log) likelihood
function to compare the current model to the model without any
explanatory variable (the null model)

The formula is: 1− llcm
llnul

, where llcm is the log-likelihood of the current model
and llnul is the log-likelihood of the null model

If the current model is as good as the null model, then llcm
llnul

is going to close

to 1 and the pseudo − R2 is going to be close to zero

In other words, adding variables doesn’t improve the likelihood. If adding
variables improves the likelihood, then the pseudo R2 will be greater than zero

62



Pseudo-R2

Replicate Pseudo R2

qui logit inlf nwifeinc, nolog

scalar ll_cm = e(ll)

qui logit inlf, nolog

scalar ll_n = e(ll)

di 1 - (ll_cm/ll_n)

.0101362

di "cm: " ll_cm " " "null: " ll_n " " "(ll_cm/ll_n): " (ll_cm/ll_n)

cm: -509.65435 null: -514.8732 (ll_cm/ll_n): .9898638

Psuedo R2 is not a measure of how good the model is at prediction; just how
better it fits compared to null model. I don’t think that calling it pseudo R2

is a good idea

Big picture: comparing the log-likelihood of models is a way of comparing
goodness of fit. If nested, we have the a test (LRT); if not nested, we have
BIC or AIC

63



Not the only pseudo R2?

Stata uses one version of pseudo R2 but there are plenty more. Other
software may use different metrics

Long and Freese (2014) have a laundry list of different pseudo R2 (it’s an
excellent book, by the way)

There is the McFadden one, MLE, Cragg and Uhler (also known as
Nagelkerke), Efron’s, Tjur’s... (page 127)

In any case, none of them have the same meaning as the R2 in linear
regression

In particular, they don’t mean that predictions are good. Recall that in
linear regression the R2 is also the square of the correlation between observed
and predicted values

See, context matters a lot

64



Let’s try a different predictor

We will estimate log( inlfi
1−inlfi ) = β0 + β1hspi , where hsp if education > 12

gen hsp = 0

replace hsp = 1 if educ > 12 & educ ~= .

logit inlf hsp, nolog

Logistic regression Number of obs = 753

LR chi2(1) = 15.08

Prob > chi2 = 0.0001

Log likelihood = -507.33524 Pseudo R2 = 0.0146

------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hsp | .6504074 .1704773 3.82 0.000 .3162781 .9845368

_cons | .0998982 .086094 1.16 0.246 -.068843 .2686393

------------------------------------------------------------------------------

The log-odds of entering the labor force is 0.65 higher for those with more
than high school education compared to those with high-school completed or
less than high-school

65



Odds ratios

Let’s do our usual math to make sense of coefficients. We just estimated the
model log( inlfi

1−inlfi ) = β0 + β1hspi

For those with hsp = 1, the model is log(
inlfhsp

1−inlfhsp ) = β0 + β1

For those with hsp = 0, the model is log(
inlfnohsp

1−inlfnohsp ) = β0

The difference of the two is log(
inlfhsp

1−inlfhsp )− log(
inlfnohsp

1−inlfnohsp ) = β1

Applying the rules of logs: log(

inlfhsp
1−inlfhsp
inlfnohsp

1−inlfnohsp

) = β1

Taking e():

inlfhsp
1−inlfhsp
inlfnohsp

1−inlfnohsp

= eβ1

66



Odds ratios

inlfhsp
1−inlfhsp
inlfnohsp

1−inlfnohsp

= eβ1

And that’s the (in)famous odds-ratio

In our example, e.6504074 = 1.92. So the odds of entering the labor force is
almost twice as high for those with more than high school education compare
to those without

That’s the way careful reporters would report this finding. And it’s correct.
The problem is that we would then interpret this as saying that the
probability of entering the labor force is twice as high for those with more
than high school

That interpretation is wrong. A ratio of odds is more often than not far
away from the ratio of probabilities

67



Predictions in the probability scale - logit and probit

We can easily calculate predictions in the probability scale

Remember, we are modeling log( p
1−p ) = β0 + β1X1 + · · ·+ βjXj

But we can solve for p:

p(X, β) = eβ0+β1X1+···+βj Xj

1+eβ0+β1X1+···+βj Xj
= 1

1+e−β0+β1X1+···+βjXj

That’s what Stata does by default when using the postestimation command
predict

Predictions after probit can be a bit confusing, but remember that the
coefficients are shifts in the cumulative standard normal (they are z scores),
so to calculate p(x , β) we need to calculate a probability given the z score

68



Calculating predictions after logit and probit models
Make sure you understanding this. Think of predictions after probit as z
scores that need to be converted into a probability

logit inlf hsp, nolog

* Predictions for logit manually

gen phat_manu = 1/(1+exp(-(_b[_cons] +_b[hsp]*hsp)))

*Same as using the inverse logit function

gen phat_invl = invlogit(_b[_cons] +_b[hsp]*hsp)

* Same as default of predict command

predict phat_pred

sum phat_manu phat_invl phat_pred

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

phat_manu | 753 .5683931 .0694388 .5249538 .6792453

phat_invl | 753 .5683931 .0694388 .5249538 .6792453

phat_pred | 753 .5683931 .0694388 .5249538 .6792453

*probit

qui probit inlf hsp, nolog

* use inverse normal

gen phat1_norm = normal(_b[_cons] + _b[hsp]*hsp)

predict phat1_predprob

predict zscore, xb

sum phat1* zscore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

phat1_norm | 753 .5683931 .0694388 .5249538 .6792453

phat1_pred~b | 753 .5683931 .0694388 .5249538 .6792453

zscore | 753 .1760512 .1813693 .0625907 .4655894

di normal(0.1760512)

* .5683

69


