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Key elements

Remember the features of DiD:

1 Time. There is always time in DiD – or said another way, events take place in
time

2 Policy change or treatment occurs at a point in time, which defines a before
and after period. We always talk about “treatment” but in DiD a policy
change is more common (epidemiologists talk about “exposure”)

3 Comparison groups. In DiD, one group receives the intervention or is
subjected to the policy change only in the post-period. These groups do not
need to be comparable
(Aside: we won’t cover triple DiD, but we could add another comparison
group or another factor resulting three differences of differences)

4 Fixed factors: We assume that important factors that area associated with
with the outcome Y are fixed during the pre and post periods (more on this in
a bit)

5 Time invariant factors. If observed, we can control for those factors that
could affect trends and vary over time

Ideally, we observe outcomes for several periods because then we can verify a
key assumption: parallel trends or constant bias
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Example

Simulated trends before and after a treatment or policy change
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Review of derivation

We assume that the outcome is determined by Yit = ci + dt + δDit + ηit ,
where i indexes the unit of observation and t indexes time

c are d are variables, not coefficients. ηit is an unexplained, random error

So the outcome depends on constant (fixed, time-invariant) factors at the
unit of observation level (ci ) and factors that depend on time (dt) but not on
unit of observation i (plus randomness)

Again. Factor(s) c do not change by time but do change by unit. Factor(s) d
do not change by unit but can change by time

We are implicitly assuming homogenous treatment effects – no covariates yet,
but also homogeneous respect to time. We saw too that we could define
treatment effect as depending on time as well (in the potential outcomes
version we did so)
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Differencing

(1) Treated group after and before: E [Yi1|Di = 1]− E [Yi0|Di = 1] =
ci + d1 + δ1 − (ci + d0 + δ0) = d1 − d0 + (δ1 − δ0) = d1 − d0 + δ

That’s a before and after comparison. The difference depends on factors that
could change over time. If they don’t change, then d1 = d0 and thus
E [Yi1|Di = 1]− E [Yi0|Di = 1] = δ. A before and after assumption must
assume that nothing else changed

(2) Control group after and before:
E [Yi1|Di = 0]− E [Yi0|Di = 0] = ci + d1 − (ci + d0) = d1 − d0

The difference of the differences (1)-(2) is = d1 − d0 + δ − (d1 − d0) = δ

The within group differencing got rid of factor c , the between group
differencing got rid of d

Note that we could have added more than one factor c or more factors d .
The point is that they were fixed either within group or between group
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What about other factors (covariates)?

If we follow the logic of differencing, then we do not need to account for any
other observed or unobserved constant (fixed, time-invariant) factors

But we could take into account factors that vary at the unit of observation
and by time (time-varying covariates)

This means that we can extend our notation to condition for a vector of
covariates Xit , although we will imposed some assumptions when using
regression analysis (exogeneity)

So now we have: Yit = ci + dt + δDit + X′
itβ + ηit

We could also ”fixed effects” variables: for example, dummy indicators for
state, hospital, county, person. It’s way of using longitudinal data to get at
causality. There is an obvious connection with DiD (more on this soon)
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Estimation

We often do a before and after comparison, even when we have more years
(more on this in later classes)

So we only need four means to estimate a DiD design

A before and after comparison of outcome Y for the treated is:
E [Ytpost ]− E [Ytpre ]. We want to compare that difference with the difference
in the control: E [Ycpost ]− E [Ycpre ]

The estimate of interest is:

∆DiD = E [Ytpost ]− E [Ytpre ]− {E [Ycpost ]− E [Ycpre ]}
No regression model here yet, but we could estimate those four means
parametrically or nonparametrically or semiparametrically

The difference above is the same as:

∆DiD = E [Ytpost ]− E [Ycpost ]− {E [Ytpre ]− E [Ycpre ]}
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Assumptions

Following Lechner (2010)

1 SUTVA. No interference (spillovers) and variation in treatment. Imagine a
DiD using CO counties as treated and controls – clearly a problem

2 Exogeneity: The covariates X are not influenced by the treatment. We saw
similar assumptions in regression adjustment, although we don’t make it
explicit

3 Common trends or constant bias. If the treated had not been treated, both
treatment and control groups would have the same trends over time (possibly
conditioning for other factors). Constant bias is the same assumption. Treated
and control groups are not equivalent/comparable, but that difference remains
constant over time

The last assumption could be divided into an assumption about observed
parallel trends before the intervention and the idea that “shocks” have a
common effect in both groups
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Example

We are going to use the minimum wage example of Angrist and Pischke (from
Card and Krueger’s 1994 paper) since it’s intuitive and current – plus we have
the data. Florida just voted to increase the minimum wage to $15 per hour

Here is the issue in a nutshell: in theory, a firm makes hiring decisions based
on wages and the contribution of employees to revenue. In the most basic
framework of a perfectly competitive market – the non-existent unicorn – a
higher minimum wage implies that firms will demand fewer workers (or hours)

Thus, a policy that helps those who can get jobs at the higher wage may
harm some workers that won’t find employment because of the higher
minimum wage

This has always been controversial. Crystal clear in theory, but real life may
deviate from the model, so obtaining empirical would be important to revise
the theory (in an ideal economics world)
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Example

In 1992, New Jersey raised the state minimum wage by about 19%, a
relatively large increase (from $4.25 to $5.05)

(Aside: The current national minimum wage is $7.25. A minimum wage of
$15 is $31,200 per year)

Fast food chains are large employers that usually pay minimum wages, so
card and Krueger obtained data from February 1992 (before or pre period)
and November 1992 (the after or post period)

They used data from similar fast food restaurants in Pennsylvania, which did
not change the minimum wage ($4.25)

So we have the key elements of a basic, two-period DiD: time, a policy
change or treatment, a treated group, and a treatment that is applied to only
one group in the post-period

(Notation: in Chapter 5, Angrist and Pischke use γ instead of c and λ
instead of d . They are variables, not parameters. They use three indexes:
store i , state s, and time t. But there are only two states, one treated and
one not treated, so they could have used only two indexes: i and t)
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Data

We will use the same dataset (CardKrueger1994.dta), although some
numbers do not match. I removed stores with missing values (see do file).
The outcome for stores that closed is 0

rename t post

describe

Contains data from H:\Teaching\Methods 2020\lectures\Week 9 difference-in-differences\DiD\code\CardK

> rueger1994.dta

obs: 820 Dataset from Card&Krueger (1994)

vars: 8 27 May 2011 20:36

----------------------------------------------------------------------------------------------------

storage display value

variable name type format label variable label

----------------------------------------------------------------------------------------------------

id int %8.0g Store ID

post byte %8.0g Feb. 1992 = 0; Nov. 1992 = 1

treated long %8.0g treated New Jersey = 1; Pennsylvania = 0

fte float %9.0g Output: Full Time Employment

bk byte %8.0g Burger King == 1

kfc byte %8.0g Kentuky Fried Chiken == 1

roys byte %8.0g Roy Rogers == 1

wendys byte %8.0g Wendy’s == 1

----------------------------------------------------------------------------------------------------

Sorted by: id post
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Structure

We have longitudinal (as opposed to cross-sectional data)

For each store i , we have two observations (balanced data). So two pairs of
observation are treated or controls for both periods

list id fte treated post bk kfc roys wendys in 1/10, sep(2) nolabel

+-------------------------------------------------------+

| id fte treated post bk kfc roys wendys |

|-------------------------------------------------------|

1. | 1 31 1 0 1 0 0 0 |

2. | 1 40 1 1 1 0 0 0 |

|-------------------------------------------------------|

3. | 2 13 1 0 1 0 0 0 |

4. | 2 12.5 1 1 1 0 0 0 |

|-------------------------------------------------------|

5. | 3 12.5 1 0 0 1 0 0 |

6. | 3 7.5 1 1 0 1 0 0 |

|-------------------------------------------------------|

7. | 4 16 1 0 0 0 1 0 |

8. | 4 20 1 1 0 0 1 0 |

|-------------------------------------------------------|

9. | 5 20 1 0 0 0 1 0 |

10. | 5 25 1 1 0 0 1 0 |

+-------------------------------------------------------+
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Baseline

Characteristics before the policy change

sum treated bk kfc roys wendys if treated ==1 & post ==0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

treated | 315 1 0 1 1

bk | 315 .4095238 .4925283 0 1

kfc | 315 .215873 .4120812 0 1

roys | 315 .247619 .4323161 0 1

wendys | 315 .1269841 .333485 0 1

sum treated bk kfc roys wendys if treated ==0 & post ==0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

treated | 76 0 0 0 0

bk | 76 .4473684 .500526 0 1

kfc | 76 .1578947 .3670652 0 1

roys | 76 .2236842 .4194817 0 1

wendys | 76 .1710526 .379057 0 1
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Estimator

Estimate and compare means

* Treated

sum fte if treated ==1 & post==1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

fte | 315 17.49921 8.809567 0 55.5

scalar y_tpost = r(mean)

sum fte if treated ==1 & post==0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

fte | 315 17.04683 8.812696 3 80

scalar y_tpre = r(mean)

* Control

sum fte if treated ==0 & post==1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

fte | 76 17.52303 7.960023 0 38.25

scalar y_cpost = r(mean)

sum fte if treated ==0 & post==0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

fte | 76 20.01316 11.8232 4.5 67.5

scalar y_cpre = r(mean)

* DiD estimator

di y_tpost - y_tpre - (y_cpost - y_cpre)

2.9425125
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Intuition

Full-time equivalent in the treated state (NJ) actually increased (slightly)
before and after (17.50 vs 17.04). But this could be due to other factors that
changed that we are not controlling for

That’s why we have a control. Employment decreased in the control state
(PA; from 20.01 to 17.52)

The key assumption here are that at the state-level, we control for
state-specific fixed effects ci because of the first differencing

NJ and PA are different states with different baseline levels of employment
(17.04 vs 20.01), but we assume that whichever factors are different between
the states reminded constant. Not the factors themselves, but the
difference (d1 − d0) (THIS IS IMPORTANT - sorry for yelling)

That’s the constant bias part or the parallel trend that we can’t test in this
example

If we suspect that there are factors that changed within states or between
states that would affect the constant bias, we should control for them adding
them to X in a regression approach
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Estimation

Remember regression adjustment using the command -teffects ra- approach,
semiparametrically. We could do the same here. However, the most common
strategy is a parametric model:

FTEit = β0 + β1Di + β2Postt + β3(Di × Postt) + εit

Treatment D doesn’t depend on time (a fast food restaurant i is treated or
control in both periods), while Post depends on time but it’s the same by
store i

This is a saturated model; we will get four predicted means, which replicates
what we did with the -summarize- command

But now we can test if the DiD estimator is statistically significant:
H0 : β3 = 0

Is this model correct? Maybe. We haven’t checked residuals. Don’t forget
this. What is the consequence? Maybe SEs are not correct
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Regression approach

DiD estimator is not statistically significant at 0.05

reg fte i.treated##i.post, robust

Linear regression Number of obs = 782

F(3, 778) = 1.42

Prob > F = 0.2341

R-squared = 0.0084

Root MSE = 9.0693

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated |

NJ | -2.966332 1.439264 -2.06 0.040 -5.791633 -.1410318

1.post | -2.490132 1.628318 -1.53 0.127 -5.686548 .7062852

|

treated#post |

NJ#1 | 2.942513 1.773501 1.66 0.097 -.5389025 6.423928

|

_cons | 20.01316 1.350721 14.82 0.000 17.36167 22.66465

------------------------------------------------------------------------------
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Predictions with marginal effects
Remember, marginal effects are predictions

* Predictive margins

margins treated, at(post=(0 1))

Adjusted predictions Number of obs = 782

Model VCE : Robust

Expression : Linear prediction, predict()

1._at : post = 0

2._at : post = 1

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_at#treated |

1#PA | 20.01316 1.350721 14.82 0.000 17.36167 22.66465

1#NJ | 17.04683 .4970232 34.30 0.000 16.07116 18.02249

2#PA | 17.52303 .909379 19.27 0.000 15.7379 19.30815

2#NJ | 17.49921 .4968467 35.22 0.000 16.52389 18.47453

------------------------------------------------------------------------------

* Marginal effects

margins, dydx(treated) at(post=(0 1))

Conditional marginal effects Number of obs = 782

Model VCE : Robust

Expression : Linear prediction, predict()

dy/dx w.r.t. : 1.treated

1._at : post = 0

2._at : post = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

0.treated | (base outcome)

-------------+----------------------------------------------------------------

1.treated |

_at |

1 | -2.966332 1.439264 -2.06 0.040 -5.791633 -.1410318

2 | -.02382 1.036256 -0.02 0.982 -2.058009 2.010369

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level. 19



Model interpretation reminder

In general, we can show that the model is a differences of differences (using a
version without covariates; with covariates we need to hold them constant)

E [Y ] Treated in post period: β0 + β1 + β2 + β3

E [Y ] Treated in pre period: β0 + β1

(1) Difference treated post - pre: β2 + β3

E [Y ] Control in post period: β0 + β2

E [Y ] Control in pre period: β0

(2) Difference control post - pre: β2

Difference of differences (1)-(2): ∆DiD = β3

Caution: Interacted models are not difference-in-differences research
designs, but interactions with dummy variables are difference-in-differences
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We can do the same with incremental effects

The model is:

E [FTEit |Di ,Postt ] = β0 + β1Di + β2Postt + β3(Di × Postt)

Incremental effect: ∆E [FTEit |Di ,Postt ]
∆Postt

= β2 + β3Di

So β2 is the effect or difference in average employment for the control (PA)
before and after (17.52 - 20.01 = -2.96).

β2 + β3 is the difference in average employment for the treated before and
after: 17.49921− 17.04683 = −2.490132 + 2.942513 = .452381 (first is from
sum command, second from coefficients)

β3 by itself is the difference of the difference

Don’t underestimate this. You could have done in the other way
∆E [FTEit |Di ,Postt ]

∆Di
= β1 + β3Post
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Adding covariates
There is a difference between chain restaurants in PA and NJ, so we could
control for this adding dummies for type of chain

We will leave Burger King as reference since it’s the largest (doesn’t really
matter since we care about the β3). We can write the model as:
FTEit = β0 + β1Di + β2Postt + β3(Di × Postt) + αi + εit

Note the αi . That’s a shortcut for writing dummy variables

reg fte i.treated##i.post kfc roys wendys, robust

Linear regression Number of obs = 782

F(6, 775) = 56.25

Prob > F = 0.0000

R-squared = 0.1898

Root MSE = 8.2137

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated |

NJ | -2.375187 1.281091 -1.85 0.064 -4.890007 .1396337

1.post | -2.490132 1.43552 -1.73 0.083 -5.308099 .3278363

|

treated#post |

NJ#1 | 2.942513 1.572405 1.87 0.062 -.1441661 6.029191

|

kfc | -10.17891 .6112341 -16.65 0.000 -11.37878 -8.979042

roys | -1.902694 .821605 -2.32 0.021 -3.515529 -.2898592

wendys | -1.010944 .9793684 -1.03 0.302 -2.933473 .9115851

_cons | 22.21888 1.327919 16.73 0.000 19.61214 24.82563

------------------------------------------------------------------------------
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What just happened?

That is what an economist would call adding “chain type fixed effects”

Now, the treatment effect didn’t change at all. But why would it change?
We are comparing the same restaurants before and after, so chain type
couldn’t affect the difference-in-difference

Chain type is not a confounder since chain type is not changing before and
after

tab chaintype treated if post ==0

| New Jersey = 1;

| Pennsylvania = 0

chaintype | PA NJ | Total

-----------+----------------------+----------

1 | 34 129 | 163

2 | 12 68 | 80

3 | 17 78 | 95

4 | 13 40 | 53

-----------+----------------------+----------

Total | 76 315 | 391

| New Jersey = 1;

| Pennsylvania = 0

chaintype | PA NJ | Total

-----------+----------------------+----------

1 | 34 129 | 163

2 | 12 68 | 80

3 | 17 78 | 95

4 | 13 40 | 53

-----------+----------------------+----------

Total | 76 315 | 391
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Variance explained

But note that the precision of the estimate did change - p-value for β3 is
smaller now

Note too that R2 increased – we are explaining more of the variability in FTE
because chain type does affect FTE

Remember the traffic in Chicago example. The outcome by itself has a
variance. We can explain some of this variance with a regression model

The type of chain is correlated with FTE, so we will explain more of the
variance by adding chain type fixed effects, which improves the model

Yet, chain type is not going to change our estimate of treatment effects

My former boss of three weeks used to say something like “Add XYZ to the
model to soak up variance”

Now, don’t forget that we are talking about linear regression here. Careful
with non-linear models. In logit/probit models, for example, the variance is
fixed, so there is nothing to “soak up”
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Making connections: variance explained

Compare
√
var(fte) observed (9.09) with model Root MSE = 8.2137. R2 is

the variance explained adjusted for degrees of freedom

tabstat fte, by(chaintype) stats(N mean sd)

Summary for variables: fte

by categories of: chaintype

chaintype | N mean sd

----------+------------------------------

1 | 326 20.25844 8.757839

2 | 160 10.02656 4.822526

3 | 190 18.32895 9.195105

4 | 106 19.28066 8.754706

----------+------------------------------

Total | 782 17.56362 9.090051

-----------------------------------------

* Reminder

qui reg fte i.treated##i.post kfc roys wendys

* Save root MSE

scalar rmse = e(rmse)

* Save outcome variance

qui sum fte

scalar yvar = r(sd)^2

* R^2

di 1-( (rmse^2)*(782-7)) / (yvar*(782-1))

.18978931
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Checking assumptions

As we have discussed before, there are some assumptions that are “exclusion
restrictions” that you need to argue about

Other assumptions can be tested with data, or at least you can see if the
data seems consistent with an assumption, even though it may not
guaranteed that the assumption is valid

The parallel trends assumption is one of them

Graphically showing that trends are parallel is a good first step, but we can
test the assumption as well

We will see adjusted and unadjusted plots – sometimes we may need to
adjust for factors that affect the difference in trends
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Data
We are going to use a sample dataset with economic data by country (the
dataset itself is not that interesting; just an example)

Each country has data from 1995 to 2011. I renamed some variables (and
added some noise)

list year year2 country y treated in 1/20

+---------------------------------------------+

| year year2 country y treated |

|---------------------------------------------|

1. | 1995 1 AUS .7845408 0 |

2. | 1996 2 AUS .7145114 0 |

3. | 1997 3 AUS .6829197 0 |

4. | 1998 4 AUS .5660708 0 |

5. | 1999 5 AUS .5964009 0 |

|---------------------------------------------|

6. | 2000 6 AUS .6703118 0 |

7. | 2001 7 AUS .602838 0 |

8. | 2002 8 AUS .6675223 0 |

9. | 2003 9 AUS .5423564 0 |

10. | 2004 10 AUS .5826657 0 |

|---------------------------------------------|

11. | 2005 11 AUS .6592514 0 |

12. | 2006 12 AUS .6497246 0 |

13. | 2007 13 AUS .5503935 0 |

14. | 2008 14 AUS .6061184 0 |

15. | 2009 15 AUS .5784074 0 |

|---------------------------------------------|

16. | 2010 16 AUS .6350716 0 |

17. | 2011 17 AUS .5618598 0 |

18. | 1995 1 BRA .7384017 1 |

19. | 1996 2 BRA .7255375 1 |

20. | 1997 3 BRA .7221702 1 |

+---------------------------------------------+
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Raw data
Raw data by year for treated (blue) and controls (red)

scatter y year if treated ==1, mcolor(blue) legend(off) || ///

scatter y year if treated ==0, mcolor(red) msize(small) jitter(2)

graph export raw.png, replace
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Plotting average trends

We want to plot E [Y ] by year for each treated group as the first step

Several ways to do this: first, the longish, “manual” way

Pay attention to the prefix “by year:” (could be “bysort year”)

Check the label option “angle”

* By year, calculate means

sort year

by year: egen mean_y1 = mean(y) if treated==1

by year: egen mean_y0 = mean(y) if treated==0

* Plot

scatter mean_y1 year, connect(l) sort || scatter mean_y0 year, sort connect(l) ///

xline(2004) xlabel(1995(1)2011, angle(vertical))

graph export trends1.png, replace
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Plotting average trends

Policy change takes place in 2004
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Plotting average trends - using a regression model

All we did was calculate the mean of Y by year and group

We could do the same with a saturated regression model. The model
would estimate many parameters: dummy variables for each year, one for
treated, and their interactions

Writing down the model can get messy:

Yit = α0 +
∑2011

j=1996 βjYearj + αDi +
∑2011

j=1996 γj(Yearj × Di ) + εit

Not very elegant but as long as you can communicate what you did...

Borrowing from ANOVA type notation, we could write: Yit = αi + γt + δit .
Each Greek letter represent a set of dummies as before, δit is their
interaction. More elegant
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Regression model
reg y i.year##i.treated

Source | SS df MS Number of obs = 323

-------------+---------------------------------- F(33, 289) = 8.71

Model | 1.13068712 33 .034263246 Prob > F = 0.0000

Residual | 1.13743071 289 .003935746 R-squared = 0.4985

-------------+---------------------------------- Adj R-squared = 0.4413

Total | 2.26811783 322 .007043844 Root MSE = .06274

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

year |

1996 | -.0178561 .0256117 -0.70 0.486 -.0682651 .032553

1997 | -.0490813 .0256117 -1.92 0.056 -.0994904 .0013278

1998 | -.0347811 .0256117 -1.36 0.176 -.0851902 .015628

1999 | -.0310305 .0256117 -1.21 0.227 -.0814396 .0193786

2000 | -.0784285 .0256117 -3.06 0.002 -.1288376 -.0280195

2001 | -.114868 .0256117 -4.48 0.000 -.1652771 -.064459

2002 | -.0667116 .0256117 -2.60 0.010 -.1171206 -.0163025

2003 | -.0764574 .0256117 -2.99 0.003 -.1268665 -.0260484

2004 | -.1154181 .0256117 -4.51 0.000 -.1658272 -.0650091

2005 | -.1010258 .0256117 -3.94 0.000 -.1514349 -.0506167

2006 | -.1229533 .0256117 -4.80 0.000 -.1733624 -.0725443

2007 | -.1401936 .0256117 -5.47 0.000 -.1906026 -.0897845

2008 | -.15502 .0256117 -6.05 0.000 -.205429 -.1046109

2009 | -.1313859 .0256117 -5.13 0.000 -.181795 -.0809769

2010 | -.1281985 .0256117 -5.01 0.000 -.1786075 -.0777894

2011 | -.1359933 .0256117 -5.31 0.000 -.1864024 -.0855843

|

1.treated | .0760852 .0298367 2.55 0.011 .0173605 .13481

|

year#treated |

1996 1 | .0097807 .0421955 0.23 0.817 -.0732687 .09283

1997 1 | .0242146 .0421955 0.57 0.567 -.0588348 .1072639

1998 1 | -.0050124 .0421955 -0.12 0.906 -.0880617 .078037

1999 1 | -.01933 .0421955 -0.46 0.647 -.1023794 .0637193

2000 1 | -.0020724 .0421955 -0.05 0.961 -.0851218 .080977

2001 1 | .0234893 .0421955 0.56 0.578 -.0595601 .1065387

2002 1 | -.0239757 .0421955 -0.57 0.570 -.1070251 .0590737

...

...
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Margins to the rescue –again
Hope you start makings some connections and things start to click

We could reproduce the mean of the outcome by treated group and year with
the -margins- command. And then we can use -marginsplot- to make a
graph. This will became very helpful when we add covariates

margins treated, at(year=(1995(1)2010)) vsquish

Adjusted predictions Number of obs = 323

Model VCE : OLS

Expression : Linear prediction, predict()

1._at : year = 1995

2._at : year = 1996

...

...

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_at#treated |

1 0 | .6511415 .0181102 35.95 0.000 .6154969 .6867861

1 1 | .7272267 .0237118 30.67 0.000 .680557 .7738965

2 0 | .6332854 .0181102 34.97 0.000 .5976408 .66893

2 1 | .7191513 .0237118 30.33 0.000 .6724816 .765821

3 0 | .6020602 .0181102 33.24 0.000 .5664156 .6377048

3 1 | .70236 .0237118 29.62 0.000 .6556903 .7490297

4 0 | .6163604 .0181102 34.03 0.000 .5807158 .652005

4 1 | .6874333 .0237118 28.99 0.000 .6407635 .734103

5 0 | .620111 .0181102 34.24 0.000 .5844664 .6557556

5 1 | .6768662 .0237118 28.55 0.000 .6301965 .7235359

6 0 | .572713 .0181102 31.62 0.000 .5370684 .6083576

6 1 | .6467258 .0237118 27.27 0.000 .6000561 .6933956

7 0 | .5362735 .0181102 29.61 0.000 .5006289 .5719181

7 1 | .635848 .0237118 26.82 0.000 .5891783 .6825177

...

...
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Marginsplot
Note that -marginsplot- takes options to modify graphs

marginsplot, noci xlabel(1995(2)2011) title("") xline(2004)

graph export trends2.png, replace
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Testing parallel trends - two pre-periods

To test trends we need at least two pre-intervention observations

Suppose that we only had two data points in the pre-period: 1995 and 2004
(we assume that the intervention took place at the end of 2004)

A test of parallel trends would reduce to testing if the change in E [Y ] from
1995 to 2004 is the same in both groups. We don’t know what happened in
between those years

We could estimate this model (with data for only 1995 and 2004):

Yit = β0 + β1Y 2004t + β2Di + β3(Y 2004t × Di ) + εit

Y 2004 is a dummy that equals 1 if 2004 and 0 if 1995

If β3 = 0, them the difference in the treated and control group outcome is
the same in both years

Confused? Write it down!: ∆E [Y ]
∆Y 2004 = β1 + β3D

(Caution: Same as DiD estimator, but it’s not a DiD design. In the
pre-period, there was no treatment)
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Two periods

We do not reject the null, change is the same (p-value: 0.908)

. reg y i.year##i.treated if inlist(year, 1995, 2004)

Source | SS df MS Number of obs = 38

-------------+---------------------------------- F(3, 34) = 14.12

Model | .178571428 3 .059523809 Prob > F = 0.0000

Residual | .143355272 34 .004216332 R-squared = 0.5547

-------------+---------------------------------- Adj R-squared = 0.5154

Total | .3219267 37 .008700722 Root MSE = .06493

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

year |

2004 | -.1154181 .0265089 -4.35 0.000 -.1692907 -.0615455

|

1.treated | .0760852 .0308819 2.46 0.019 .0133256 .1388449

|

year#treated |

2004 1 | -.0050697 .0436737 -0.12 0.908 -.0938253 .0836858

|

_cons | .6511415 .0187446 34.74 0.000 .6130478 .6892352

------------------------------------------------------------------------------

36



Two periods
We can see this graphically with handy -maringsplot- as before

margins treated, at(year=(1995 2004)) vsquish

Adjusted predictions Number of obs = 38

Model VCE : OLS

Expression : Linear prediction, predict()

1._at : year = 1995

2._at : year = 2004

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_at#treated |

1 0 | .6511415 .0187446 34.74 0.000 .6130478 .6892352

1 1 | .7272267 .0245425 29.63 0.000 .6773504 .777103

2 0 | .5357234 .0187446 28.58 0.000 .4976297 .573817

2 1 | .6067389 .0245425 24.72 0.000 .5568626 .6566152

------------------------------------------------------------------------------

marginsplot, noci

graph export twop.png, replace
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Testing parallel trends - more periods

Now, we could extend the same logic for all the periods, but there is one
problem: that would be a lot to ask

It’s unrealistic to expect that the difference between the groups is going to be
the same at every single point in time. We want it to be parallel, not the
same

Rather than such a stringent test, we could accept some year to year
variability instead. We could “smooth” the trend by giving it some structure

The most straightforward is a linear trend:

Yit = β0 + β1Yeart + β2Di + β3(Yeart × Di ) + εit

It looks like the same model but it’s not. Key difference is Year is not a
dummy variable but the actual year (continuous: 1995, 1996, etc)

Same result if year is 1, 2, 3...

If β3 =, then both groups have the same slope. That is, E [Y ] has been
changing at the same rate
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More periods

We again don’t reject the null (p-value: 0.54). Same slope

Careful. We need to restrict estimation to the before period

reg y c.year##i.treated if year <= 2004

Source | SS df MS Number of obs = 190

-------------+---------------------------------- F(3, 186) = 42.98

Model | .469401667 3 .156467222 Prob > F = 0.0000

Residual | .67705273 186 .003640068 R-squared = 0.4094

-------------+---------------------------------- Adj R-squared = 0.3999

Total | 1.1464544 189 .006065896 Root MSE = .06033

--------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

year | -.0110593 .0019175 -5.77 0.000 -.0148421 -.0072764

1.treated | 4.205181 6.31665 0.67 0.506 -8.256307 16.66667

|

treated#c.year |

1 | -.0020656 .0031591 -0.65 0.514 -.0082979 .0041667

|

_cons | 22.70572 3.834061 5.92 0.000 15.14189 30.26956

--------------------------------------------------------------------------------
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Graph model using predictions
line yhat year if year <= 2004 & treated ==1, sort || ///

line yhat year if year <= 2004 & treated ==0, sort || ///

scatter y year if year <=2004, msize(vsmall) legend(off)

graph export lin1.png, replace
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Graph model using -marginsplot-
qui reg y c.year##i.treated if year <= 2004

qui margins treated, at(year=(1995(1)2004))

marginsplot, noci xlabel(1995(2)2004) title("")

graph export linmar.png, replace
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Other specifications, covariates

Trends could be non-linear. Maybe the best fitting model is a quadratic
trends model or other functional form

Remember that the difference between the groups may not be parallel in the
raw, unadjusted data, but they could become parallel after “holding” other
variables constant or after “taking into account” the effect of other variables

Said another way, the trends could become parallel conditional on other
covariates

This is a common situation. The parallel trends test may fail with raw data
(unadjusted) but it could pass when we control for covariates

“Passing” here means that we do not reject the null

We have all the tools to do this

42



Test parallel trends – adjusted

We need to add covariates to our model:

Yit = β0 + β1Yeart + β2Di + β3(Yeart × Di ) + X′β + εit

Those covariates could be time-varying or “fixed effects” so we could have a
model like:

Yit = β0 + β1Yeart + β2Di + β3(Yeart × Di ) + X′
itβ + λi + εit

Remember, λi is a shortcut for a set of dummy/indicator variables. It’s not
another intercept

That is, λi =
∑k

j=2 γjZij = γ2Zi2 + · · ·+ γkZik , where k are the levels or
categories of the variable Z

In the minimum wage example, k = 4 because they were 4 chain brands. We
need to leave one out as the reference category

In some models we could add “time fixed effects” (that is, dummy for each
year), so we would write λt instead of λi
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Test parallel trends – adjusted

The parallel trends tends “passes” again

reg y c.year##i.treated comlang log_distw if year <= 2004

Source | SS df MS Number of obs = 190

-------------+---------------------------------- F(5, 184) = 26.89

Model | .48402909 5 .096805818 Prob > F = 0.0000

Residual | .662425307 184 .003600138 R-squared = 0.4222

-------------+---------------------------------- Adj R-squared = 0.4065

Total | 1.1464544 189 .006065896 Root MSE = .06

--------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

year | -.0110056 .0019072 -5.77 0.000 -.0147683 -.0072429

1.treated | 4.259519 6.282601 0.68 0.499 -8.135678 16.65472

|

treated#c.year |

1 | -.0020969 .0031421 -0.67 0.505 -.0082961 .0041023

|

comlang | .0330957 .0570804 0.58 0.563 -.0795205 .1457119

log_distw | .0109464 .0078496 1.39 0.165 -.0045403 .0264331

_cons | 22.50697 3.814596 5.90 0.000 14.981 30.03294

--------------------------------------------------------------------------------
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Adjusted plot
Leaving covariates as observed

reg y c.year##i.treated comlang log_distw if year <= 2004

margins treated, at(year=(1995(1)2004))

marginsplot, noci xlabel(1995(2)2004) title("Adjusted")

graph export paradj.png, replace
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Adjusted plot

Holding them at means (careful with syntax, you don’t want the atmeans
option; don’t want to hold year at the mean)

margins treated, at(year=(1995(1)2004) (mean) comlang log_distw)

Adjusted predictions Number of obs = 190

Model VCE : OLS

Expression : Linear prediction, predict()

1._at : year = 1995

comlang = .0804251 (mean)

log_distw = 8.392976 (mean)

2._at : year = 1996

comlang = .0804251 (mean)

log_distw = 8.392976 (mean)

...

...

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_at#treated |

1 0 | .6452383 .0103865 62.12 0.000 .6247463 .6657303

1 1 | .7214602 .0138074 52.25 0.000 .694219 .7487014

2 0 | .6342326 .0088813 71.41 0.000 .6167104 .6517549

..

..
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At means graph
For graph, same syntax as before

marginsplot, noci xlabel(1995(2)2004) title("Adjusted - means")

graph export paradj_mean.png, replace
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More on parametrization

So far we have seen the standard parametric DiD regression model:
Yit = β0 + β1Di + β2Postt + β3(Di × Postt) + εit

We can extend the model adding fixed effects (favorite not so magic powder):

Yit = β0 + β1Di + β2Postt + β3(Di × Postt) + αi + εit

We can also control for variables that we think could affect the evolution of
the trends between treatment and control groups (remember, variables that
affect the difference between trends):

Yit = β0 + β1Di + β2Postt + β3(Di × Postt) + αi + Xitβ + εit

If some variables in X do not change over time, they won’t affect the DiD
estimator (like chain type)

48



More on parametrization

But we could define variables in a different way, with an implicit interaction
term – this will be more useful when we have multiple periods

So far we defined the treatment variable (or policy change) Di as 1 if the unit
(chain, country, state, person, etc) was treated and 0 otherwise

Di is the same in both periods. If the unit is treated, then its treatment
indicator Di is 1 in the pre and the post, even though we know that in the
pre period no unit is treated

We could instead define treatment in a different way. Let’s define D1i as 1
for the treated group only in the post period, and 0 otherwise. The DiD
parametric model becomes:

Yit = γ0 + γ1Di + γ2Postt + β3D1it + εit

In some papers, authors could write D1i instead of D1it , which would make
it clearer that D 6= D1

There is no explicit interaction, but it’s the same DiD estimator, we just
defined the interaction as D1 since here D1 ≡ D × Post. Kind of trivial
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The model as before

Model we estimated before

reg fte i.treated##i.post, robust

Linear regression Number of obs = 782

F(3, 778) = 1.42

Prob > F = 0.2341

R-squared = 0.0084

Root MSE = 9.0693

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated |

NJ | -2.966332 1.439264 -2.06 0.040 -5.791633 -.1410318

1.post | -2.490132 1.628318 -1.53 0.127 -5.686548 .7062852

|

treated#post |

NJ#1 | 2.942513 1.773501 1.66 0.097 -.5389025 6.423928

|

_cons | 20.01316 1.350721 14.82 0.000 17.36167 22.66465

------------------------------------------------------------------------------
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Coding the interaction

New model with new coded variable that is trivially the same as the
interaction

gen treatp = treated

replace treatp = 0 if treated ==1 & post ==0

reg fte post treated treatp, robust

Linear regression Number of obs = 782

F(3, 778) = 1.42

Prob > F = 0.2341

R-squared = 0.0084

Root MSE = 9.0693

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

post | -2.490132 1.628318 -1.53 0.127 -5.686548 .7062852

treated | -2.966332 1.439264 -2.06 0.040 -5.791633 -.1410318

treatp | 2.942513 1.773501 1.66 0.097 -.5389025 6.423928

_cons | 20.01316 1.350721 14.82 0.000 17.36167 22.66465

------------------------------------------------------------------------------
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Coding the interaction

Better when you want to use margins

reg fte i.post i.treated i.post#i.treated, robust nofvlabel

Linear regression Number of obs = 782

F(3, 778) = 1.42

Prob > F = 0.2341

R-squared = 0.0084

Root MSE = 9.0693

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.post | -2.490132 1.628318 -1.53 0.127 -5.686548 .7062852

1.treated | -2.966332 1.439264 -2.06 0.040 -5.791633 -.1410318

|

post#treated |

1 1 | 2.942513 1.773501 1.66 0.097 -.5389025 6.423928

|

_cons | 20.01316 1.350721 14.82 0.000 17.36167 22.66465

------------------------------------------------------------------------------
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More on parametrization

This is all somewhat trivial, but it can be confusing

We could also say that we are adding “time fixed effects” in the model,
which is of course the same as the post variable, with time coded with
different values. So the model is:

Yit = γ0 + γ1Di + δt + β3D1i + εit

Furthermore, in this example, we could add “state fixed effects” as well.
That’s (trivially, again) just Di . So:

Yit = γ0 + αi + δt + β3D1it + εit

NOT TRIVIAL(!): The part that is not trivial is that when we have
multiple periods not just two, δt would control for ”time trends” and D1 is
more general because it could accommodate different timing of treatment
for some units

Furthermore, with more periods, we could interact αs and δt to have
”state-specific time trends,” which is often described as a robustness check
when there are multiple periods: the DiD estimator shouldn’t change (see
Angrist and Pischke page 238)
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Cat hair, bear claws, and a pinch of fixed effects

First, last, and only cartoon to appear in my class notes
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Time and state fixed effects
Note below that I arbitrarily gave states an id of 4 and 8. Stata of course will
code dummies so we go back to the same model

Again, trivial in the sense that we are essentially recoding variables that are
equivalent, but they are different ways of understanding DiD. It does make a
difference with more time periods or states. Model below has time and state
fixed effects: Yit = γ0 + αi + λt + δDit + ηit

gen time = 1 if post ==0

replace time = 2 if post ==1

gen stateid = 4 if treated == 1

replace stateid = 8 if treated == 0

* Time and state fixed effects

reg fte i.time i.stateid treatp, robust

Linear regression Number of obs = 782

F(3, 778) = 1.42

Prob > F = 0.2341

R-squared = 0.0084

Root MSE = 9.0693

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

2.time | -2.490132 1.628318 -1.53 0.127 -5.686548 .7062852

2.stateid | 2.966332 1.439264 2.06 0.040 .1410318 5.791633

treatp | 2.942513 1.773501 1.66 0.097 -.5389025 6.423928

_cons | 17.04683 .4970232 34.30 0.000 16.07116 18.02249

------------------------------------------------------------------------------
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Big picture

Careful with words and notation. Make sure you understand what fixed
effects mean and what they are doing (or not) in the model

They are not magic powders and the notation can be confusing. Sometimes
papers are not clear and you need to infer what they did

Same model could appear completely different. For example,
Yit = β0 + β1Di + β2Postt + β3(Di × Postt) + εit versus
Yit = γ0 + αi + δt + β3Dit + ηit

Yist = αs + δt + β3Dist + ηist

Hopefully at some point in a paper the authors explain that D is defined as
Di × Postt , but writing Dit rather than Di helps

The second model could be written in a different way too. Something like:

Yit = γ0 +
∑

s Statei +
∑

t Yeart + γDit + ηit or:

Yit =
∑

s Statei +
∑

t Yeart + γDit + ηit
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Going back to basics

You can put all dummies in a model as long as you don’t estimate a constant

* Generate dummies by state

qui tab stateid, gen(st)

reg fte st1 st2 i.time treatp, robust noconstant

Linear regression Number of obs = 801

F(4, 797) = 783.71

Prob > F = 0.0000

R-squared = 0.7937

Root MSE = 9.003

------------------------------------------------------------------------------

| Robust

fte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

st1 | 17.06518 .4838665 35.27 0.000 16.11538 18.01499

st2 | 19.94872 1.317281 15.14 0.000 17.36297 22.53447

2.time | -2.40651 1.594091 -1.51 0.132 -5.535623 .7226031

treatp | 2.913982 1.736818 1.68 0.094 -.4952963 6.323261

------------------------------------------------------------------------------
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Extensions

Estimating models with many fixed effects (too many dummies): You’ll
see next semester that fixed-effects models in longitudinal data estimate
“within” type estimators without having to estimate many dummy
coefficients

In this class, we just use the -reg- command. But a better alternative with
many dummies is the -xtreg- command that estimates random- and
fixed-effects models

Nonlinear models: Logit/Probit, Poisson. Some tricky problems estimating
fixed effects, and some vexing identification issues

Synthetic controls: Essentially, chose controls so pre-trends are similar using
a weighted set of controls

DiD with inverse propensity score weights: Use IPW to make groups
more equivalent – same issues about overlap, doubly robust

Combining DiD and RDD: more comparable groups

Nonparametric estimation: Rather than making parametric assumptions
and assume homogeneity, we cold use more flexible models
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