Week 9: Difference-in-differences II

Marcelo Coca Perraillon

University of Colorado Anschutz Medical Campus

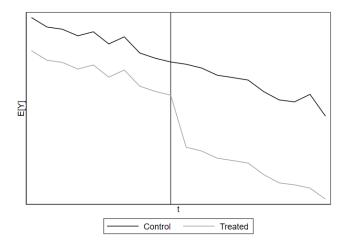
Health Services Research Methods I HSMP 7607 2020

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.

Outline

- Key elements
- Assumptions
- Two periods
- Estimating each separately
- Regression approach
- Adding "fixed effects"
- Testing parallel trends assumption

Key elements


- Remember the features of DiD:
 - **1 Time**. There is always time in DiD or said another way, events take place in time
 - 2 Policy change or treatment occurs at a point in time, which defines a before and after period. We always talk about "treatment" but in DiD a policy change is more common (epidemiologists talk about "exposure")
 - **3 Comparison groups**. In DiD, one group receives the intervention or is subjected to the policy change *only in the post-period*. These groups do not need to be comparable

(Aside: we won't cover triple DiD, but we could add another comparison group or another factor resulting three differences of differences)

- **4** Fixed factors: We assume that important factors that area associated with with the outcome Y are fixed during the pre and post periods (more on this in a bit)
- **5 Time invariant factors**. If observed, we can control for those factors that could affect trends and vary over time
- Ideally, we observe outcomes for several periods because then we can verify a key assumption: parallel trends or constant bias

Example

■ Simulated trends before and after a treatment or policy change

Review of derivation

- We assume that the outcome is determined by $Y_{it} = c_i + d_t + \delta D_{it} + \eta_{it}$, where *i* indexes the unit of observation and *t* indexes time
- c are d are variables, not coefficients. η_{it} is an unexplained, random error
- So the outcome depends on **constant** (fixed, time-invariant) factors at the unit of observation level (*c_i*) and factors that depend on time (*d_t*) but not on unit of observation *i* (plus randomness)
- Again. Factor(s) c do not change by time but do change by unit. Factor(s) d do not change by unit but can change by time
- We are implicitly assuming homogenous treatment effects no covariates yet, but also homogeneous respect to time. We saw too that we could define treatment effect as depending on time as well (in the potential outcomes version we did so)

Differencing

- (1) Treated group after and before: $E[Y_{i1}|D_i = 1] E[Y_{i0}|D_i = 1] = c_i + d_1 + \delta_1 (c_i + d_0 + \delta_0) = d_1 d_0 + (\delta_1 \delta_0) = d_1 d_0 + \delta$
- That's a before and after comparison. The difference depends on factors that could change over time. If they don't change, then $d_1 = d_0$ and thus $E[Y_{i1}|D_i = 1] E[Y_{i0}|D_i = 1] = \delta$. A before and after assumption must assume that nothing else changed

(2) Control group after and before:

 $E[Y_{i1}|D_i = 0] - E[Y_{i0}|D_i = 0] = c_i + d_1 - (c_i + d_0) = d_1 - d_0$

- The difference of the differences (1)-(2) is $= d_1 d_0 + \delta (d_1 d_0) = \delta$
- The within group differencing got rid of factor c, the between group differencing got rid of d
- Note that we could have added more than one factor c or more factors d. The point is that they were fixed either within group or between group

What about other factors (covariates)?

- If we follow the logic of differencing, then we do not need to account for any other observed or unobserved constant (fixed, time-invariant) factors
- But we could take into account factors that vary at the unit of observation and by time (time-varying covariates)
- This means that we can extend our notation to condition for a vector of covariates X_{it}, although we will imposed some assumptions when using regression analysis (exogeneity)
- So now we have: $Y_{it} = c_i + d_t + \delta D_{it} + \mathbf{X}'_{it}\beta + \eta_{it}$
- We could also "fixed effects" variables: for example, dummy indicators for state, hospital, county, person. It's way of using longitudinal data to get at causality. There is an obvious connection with DiD (more on this soon)

Estimation

- We often do a before and after comparison, even when we have more years (more on this in later classes)
- So we only need four means to estimate a DiD design
- A before and after comparison of outcome Y for the treated is: $E[Y_{tpost}] - E[Y_{tpre}]$. We want to compare that difference with the difference in the control: $E[Y_{cpost}] - E[Y_{cpre}]$
- The estimate of interest is:

 $\Delta_{DiD} = E[Y_{tpost}] - E[Y_{tpre}] - \{E[Y_{cpost}] - E[Y_{cpre}]\}$

- No regression model here yet, but we could estimate those four means parametrically or nonparametrically or semiparametrically
- The difference above is the same as:

 $\Delta_{DiD} = E[Y_{tpost}] - E[Y_{cpost}] - \{E[Y_{tpre}] - E[Y_{cpre}]\}$

Assumptions

■ Following Lechner (2010)

- **1 SUTVA**. No interference (spillovers) and variation in treatment. Imagine a DiD using CO counties as treated and controls clearly a problem
- 2 Exogeneity: The covariates X are not influenced by the treatment. We saw similar assumptions in regression adjustment, although we don't make it explicit
- **3 Common trends** or constant bias. If the treated had not been treated, both treatment and control groups would have the same trends over time (possibly conditioning for other factors). Constant bias is the same assumption. Treated and control groups are not equivalent/comparable, but that difference remains constant over time
- The last assumption could be divided into an assumption about observed parallel trends before the intervention and the idea that "shocks" have a common effect in both groups

Example

- We are going to use the minimum wage example of Angrist and Pischke (from Card and Krueger's 1994 paper) since it's intuitive and current – plus we have the data. Florida just voted to increase the minimum wage to \$15 per hour
- Here is the issue in a nutshell: in theory, a firm makes hiring decisions based on wages and the contribution of employees to revenue. In the most basic framework of a perfectly competitive market – the non-existent unicorn – a higher minimum wage implies that firms will demand fewer workers (or hours)
- Thus, a policy that helps those who can get jobs at the higher wage may harm some workers that won't find employment *because* of the higher minimum wage
- This has always been controversial. Crystal clear in theory, but real life may deviate from the model, so obtaining empirical would be important to revise the theory (in an ideal economics world)

Example

- In 1992, New Jersey raised the state minimum wage by about 19%, a relatively large increase (from \$4.25 to \$5.05)
- (Aside: The current national minimum wage is \$7.25. A minimum wage of \$15 is \$31,200 per year)
- Fast food chains are large employers that usually pay minimum wages, so card and Krueger obtained data from February 1992 (before or pre period) and November 1992 (the after or post period)
- They used data from similar fast food restaurants in Pennsylvania, which did not change the minimum wage (\$4.25)
- So we have the key elements of a basic, two-period DiD: time, a policy change or treatment, a treated group, and a treatment that is applied to only one group in the post-period
- (Notation: in Chapter 5, Angrist and Pischke use γ instead of c and λ instead of d. They are variables, not parameters. They use three indexes: store i, state s, and time t. But there are only two states, one treated and one not treated, so they could have used only two indexes: i and t)

Data

We will use the same dataset (CardKrueger1994.dta), although some numbers do not match. I removed stores with missing values (see do file). The outcome for stores that closed is 0

rename t post describe Contains data from H:\Teaching\Methods 2020\lectures\Week 9 difference-in-differences\DiD\code\CardK > rueger1994.dta Dataset from Card&Krueger (1994) obs: 820 vars: 8 27 May 2011 20:36 value storage display variable name type format label variable label id int %8.0g Store ID post byte %8.0g Feb. 1992 = 0; Nov. 1992 = 1 treated %8.0g treated New Jersey = 1; Pennsylvania = 0 long float %9.0g Output: Full Time Employment fte Burger King == 1 bk bvte %8.0g kfc Kentuky Fried Chiken == 1 bvte %8.0g rovs bvte %8.0g Rov Rogers == 1 Wendy's == 1 wendvs bvte %8.0g

Sorted by: id post

Structure

- We have longitudinal (as opposed to cross-sectional data)
- For each store *i*, we have two observations (balanced data). So two pairs of observation are treated or controls for both periods

	+							+
	id	fte	treated	post			-	
1.	1	31	1	0	1	0	0	 0
2.	1	40	1	1	1	0	0	0
3.		13	1			·		
4.		12.5	1	1	1	0	0	0
5.	3	12.5	1	0	0	1	0	0
6.	3	7.5	1	1	0	1	0	0
7.	4	16	1	0	0	0	1	0
8.	4	20	1	1	0	0	1	0
9.	1 5	20	1	0		 0	1	ا
10.	5	25	1	1	ŏ	o	1	0
	+							+

list id fte treated post bk kfc roys wendys in 1/10, sep(2) nolabel

Baseline

Characteristics before the policy change

sum treated bk kfc roys wendys if treated ==1 & post ==0

Variable	1	Obs	Mean	Std. Dev.	Min	Max
treated	1	315	1	0	1	1
bk	1	315	.4095238	.4925283	0	1
kfc	1	315	.215873	.4120812	0	1
roys	1	315	.247619	.4323161	0	1
wendys	1	315	.1269841	.333485	0	1

sum treated bk kfc roys wendys if treated ==0 & post ==0

Variable	1	Obs	Mean	Std. Dev.	Min	Max
treated	1	76	0	0	0	0
bk	1	76	.4473684	.500526	0	1
kfc	1	76	.1578947	.3670652	0	1
roys	1	76	.2236842	.4194817	0	1
wendys	1	76	.1710526	.379057	0	1

Estimator

Estimate and compare means

Variable		Mean								
	315		8.809567							
sum fte if treated ==1 & post==0										
Variable										
+ fte			8.812696		80					
scalar y_tpre = r(m	iean)									
* Control										
sum fte if treated		st==1								
			Std. Dev.							
++										
fte scalar y_cpost = r(76 mean)	17.52303								
fte	76 mean) ==0 & po	17.52303	7.960023	0	38.25					
fte scalar y_cpost = r(sum fte if treated	76 mean) ==0 & po Obs	17.52303 est==0 Mean	7.960023 Std. Dev.	0 Min	38.25 38.25 Max					
fte scalar y_cpost = r(sum fte if treated Variable	76 mean) ==0 & po Obs 76	17.52303 st==0 Mean	7.960023 Std. Dev.	0 Min	38.25 Max					

2.9425125

Intuition

- Full-time equivalent in the treated state (NJ) actually *increased* (slightly) before and after (17.50 vs 17.04). But this could be due to other factors that changed that we are not controlling for
- That's why we have a control. Employment *decreased* in the control state (PA; from 20.01 to 17.52)
- The key assumption here are that at the state-level, we control for state-specific **fixed effects** *c*_{*i*} because of the first differencing
- NJ and PA are different states with different baseline levels of employment (17.04 vs 20.01), but we assume that whichever factors are different between the states reminded constant. Not the factors themselves, but the difference $(d_1 d_0)$ (THIS IS IMPORTANT sorry for yelling)
- That's the constant bias part or the parallel trend that we can't test in this example
- If we suspect that there are factors that changed within states or between states that would affect the constant bias, we should control for them adding them to X in a regression approach

Estimation

Remember regression adjustment using the command -teffects ra- approach, semiparametrically. We could do the same here. However, the most common strategy is a parametric model:

 $FTE_{it} = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t) + \epsilon_{it}$

- Treatment D doesn't depend on time (a fast food restaurant i is treated or control in both periods), while Post depends on time but it's the same by store i
- This is a saturated model; we will get four predicted means, which replicates what we did with the -summarize- command
- But now we can test if the DiD estimator is statistically significant: $H_0: \beta_3 = 0$
- Is this model correct? Maybe. We haven't checked residuals. Don't forget this. What is the consequence? Maybe SEs are not correct

Regression approach

DiD estimator is not statistically significant at 0.05

reg fte i.treated##i.post, robust

Linear regressi	ion			Number o F(3, 778 Prob > F R-square Root MSE) = d =	782 1.42 0.2341 0.0084 9.0693
 fte	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
treated NJ 1.post		1.439264 1.628318	-2.06 -1.53		-5.791633 -5.686548	1410318 .7062852
 treated#post NJ#1	2.942513	1.773501	1.66	0.097	5389025	6.423928
 _cons	20.01316	1.350721	14.82	0.000	17.36167	22.66465

Predictions with marginal effects

Remember, marginal effects are predictions

	<pre>* Predictive margins margins treated, at(post=(0 1))</pre>										
Adjusted pre			//			Number	of	obs	=	78	2
Model VCE	:	Robust									
		Linear prediction, predict()									
1at			=		0						
2at	;		post = 1								
											-
		Margin									
_at#treated											-
1#PA	1	20.01316	1.3507	21	14.82	0.000		17.3	6167	22.6646	5
1#NJ		17.04683	34.30	0.000		16.0	7116	18.0224	.9		
2#PA		17.52303	.9093	379	19.27	0.000		15.	7379	19.3081	.5
2#NJ		17.49921	.49684	67	35.22	0.000		16.5	2389	18.4745	53
* Marginal effects											
margins, dyd				1))							
Conditional			ts			Number	of	obs	=	78	2
Model VCE											
Expression			iction,	predi	ict()						
dy/dx w.r.t.											
1at											
2at		post			1						_
	I		Delta-me	thod							
		dy/dx									
0.treated	Ì	(base outc	ome)								-
1.treated											-
	_at										
			1,4392	64	-2.06	0.040		-5.79	1633	141031	8
	1 -2.966332 1.439264 -2.06 0.040 -5.7916331410318 2 02382 1.036256 -0.02 0.982 -2.058009 2.010369										
											-

Note: dy/dx for factor levels is the discrete change from the base level.

Model interpretation reminder

In general, we can show that the model is a differences of differences (using a version without covariates; with covariates we need to hold them constant)

E[Y] Treated in post period: $\beta_0 + \beta_1 + \beta_2 + \beta_3$

- E[Y] Treated in pre period: $\beta_0 + \beta_1$
- (1) Difference treated post pre: $\beta_2 + \beta_3$

```
E[Y] Control in post period: \beta_0 + \beta_2
E[Y] Control in pre period: \beta_0
(2) Difference control post - pre: \beta_2
```

Difference of differences (1)-(2): $\Delta_{DiD} = \beta_3$

 Caution: Interacted models are not difference-in-differences research designs, but interactions with dummy variables are difference-in-differences

We can do the same with incremental effects

The model is:

 $E[FTE_{it}|D_i, Post_t] = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t)$

• Incremental effect: $\frac{\Delta E[FTE_{it}|D_i,Post_t]}{\Delta Post_t} = \beta_2 + \beta_3 D_i$

- So β_2 is the effect or difference in average employment for the *control* (PA) before and after (17.52 20.01 = -2.96).
- $\beta_2 + \beta_3$ is the difference in average employment for the *treated* before and after: 17.49921 17.04683 = -2.490132 + 2.942513 = .452381 (first is from sum command, second from coefficients)
- β_3 by itself is the difference of the difference
- Don't underestimate this. You could have done in the other way $\frac{\Delta E[FTE_{it}|D_i,Post_t]}{\Delta D_i} = \beta_1 + \beta_3 Post$

Adding covariates

- There is a difference between chain restaurants in PA and NJ, so we could control for this adding dummies for type of chain
- We will leave Burger King as reference since it's the largest (doesn't really matter since we care about the β_3). We can write the model as: $FTE_{it} = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t) + \alpha_i + \epsilon_{it}$
- Note the α_i . That's a shortcut for writing dummy variables

reg fte i.trea	ted##i.post 1	kfc roys wer	ndys, robu	ıst				
Linear regress	ion			Number o	of obs =	782		
				F(6, 77	5) =	56.25		
				Prob > 1	7 =	0.0000		
				R-square	ed =	0.1898		
				Root MSI	E =	8.2137		
		Robust						
fte	Coei.	Std. Err.	t	P> t	[95% Conf	. Interval]		
treated								
NJ	-2.375187	1.281091	-1.85	0.064	-4.890007	.1396337		
1.post	-2.490132	1.43552	-1.73	0.083	-5.308099	.3278363		
•								
treated#post								
NJ#1	2.942513	1.572405	1.87	0.062	1441661	6.029191		
1								
kfc	-10.17891	.6112341	-16.65	0.000	-11.37878	-8.979042		
roys	-1.902694	.821605	-2.32	0.021	-3.515529	2898592		
wendys	-1.010944	.9793684	-1.03	0.302	-2.933473	.9115851		
_cons	22.21888	1.327919	16.73	0.000	19.61214	24.82563		

What just happened?

- That is what an economist would call adding "chain type fixed effects"
- Now, the treatment effect didn't change at all. But why would it change? We are comparing the same restaurants before and after, so chain type couldn't affect the difference-in-difference
- Chain type is not a confounder since chain type is not changing before and after

tab chaintype treated if post ==0 New Jersey = 1; Pennsylvania = 0									
chaintype	PA	NJ		Total					
+-		129	÷.	163					
2									
	12	68		80					
3	17	78		95					
4	13	40	L	53					
+-			+-						
Total	76	315	L	391					
1	New Jersey	= 1;							
1	Pennsylvania	= 0							
chaintype	PA	NJ	L	Total					
+-			+-						
1	34	129	1	163					
2	12	68	1	80					
3	17	78	İ.	95					
4	13	40	Ì.	53					
Total	76	315	L	391					

Variance explained

- But note that the precision of the estimate did change p-value for β_3 is smaller now
- Note too that R² increased we are explaining more of the variability in FTE because chain type does affect FTE
- Remember the traffic in Chicago example. The outcome by itself has a variance. We can explain some of this variance with a regression model
- The type of chain is correlated with FTE, so we will explain more of the variance by adding chain type fixed effects, which improves the model
- Yet, chain type is not going to change our estimate of treatment effects
- My former boss of three weeks used to say something like "Add XYZ to the model to soak up variance"
- Now, don't forget that we are talking about linear regression here. Careful with non-linear models. In logit/probit models, for example, the variance is fixed, so there is nothing to "soak up"

Making connections: variance explained

• Compare $\sqrt{var(fte)}$ observed (9.09) with model Root MSE = 8.2137. R^2 is the variance explained adjusted for degrees of freedom

tabstat fte, by(chaintype) stats(N mean sd)
Summary for variables: fte
 by categories of: chaintype

chaintype	N	mean	sd						
	160 190 106	20.25844 10.02656 18.32895 19.28066	4.822526 9.195105 8.754706						
Total 782 17.56362 9.090051 * Reminder									
<pre>qui reg fte i.tres * Save root MSE scalar rmse = e(rr * Save outcome vai </pre>	nse)	•	c roys wendys						
<pre>* Save outcome variance qui sum fte scalar yvar = r(sd)^2 * R² i 1 ((2))(700 7)) ((2) (100 1))</pre>									

```
di 1-( (rmse<sup>2</sup>)*(782-7)) / (yvar*(782-1))
.18978931
```

Checking assumptions

- As we have discussed before, there are some assumptions that are "exclusion restrictions" that you need to argue about
- Other assumptions can be tested with data, or at least you can see if the data seems consistent with an assumption, even though it may not guaranteed that the assumption is valid
- The parallel trends assumption is one of them
- Graphically showing that trends are parallel is a good first step, but we can test the assumption as well
- We will see adjusted and unadjusted plots sometimes we may need to adjust for factors that affect the difference in trends

Data

- We are going to use a sample dataset with economic data by country (the dataset itself is not that interesting; just an example)
- Each country has data from 1995 to 2011. I renamed some variables (and added some noise)

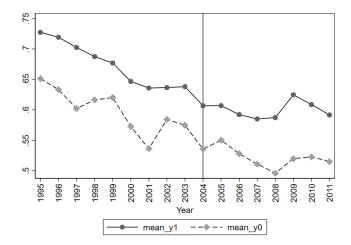

list year year2 country y treated in 1/20

	+				+
	year	year2	country	У	treated
1.	1995	1	AUS	.7845408	0
2.	1996	2	AUS	.7145114	0
з.	1997	3	AUS	.6829197	0
4.	1998	4	AUS	.5660708	0
5.	1999	5	AUS	.5964009	0
6.	2000	6	AUS	.6703118	0
7.	2001	7	AUS	.602838	0
8.	2002	8	AUS	.6675223	0
9.	2003	9	AUS	.5423564	0
10.	2004	10	AUS	.5826657	0
11.	2005	11	AUS	.6592514	0
12.	2006	12	AUS	.6497246	0
13.	2007	13	AUS	.5503935	0
14.	2008	14	AUS	.6061184	0
15.	2009	15	AUS	.5784074	0
16.	2010	16	AUS	.6350716	o i
17.	2011	17	AUS	.5618598	0 1
18.	1995	1	BRA	.7384017	1 1
19.	1996	2	BRA	.7255375	1 1
20.	1 1997	3	BRA	.7221702	1 1
	+				+

Raw data

Raw data by year for treated (blue) and controls (red)

scatter y year if treated ==1, mcolor(blue) legend(off) || ///
scatter y year if treated ==0, mcolor(red) msize(small) jitter(2)
graph export raw.png, replace


Plotting average trends

- We want to plot E[Y] by year for each treated group as the first step
- Several ways to do this: first, the longish, "manual" way
- Pay attention to the prefix "by year:" (could be "bysort year")
- Check the label option "angle"

```
* By year, calculate means
sort year
by year: egen mean_y1 = mean(y) if treated==1
by year: egen mean_y0 = mean(y) if treated==0
* Plot
scatter mean_y1 year, connect(1) sort || scatter mean_y0 year, sort connect(1) ///
xline(2004) xlabel(1995(1)2011, angle(vertical))
graph export trends1.png, replace
```

Plotting average trends

Policy change takes place in 2004

Plotting average trends - using a regression model

- All we did was calculate the mean of Y by year and group
- We could do the same with a saturated regression model. The model would estimate many parameters: dummy variables for each year, one for treated, and their interactions
- Writing down the model can get messy:

$$Y_{it} = \alpha_0 + \sum_{j=1996}^{2011} \beta_j \operatorname{Year}_j + \alpha D_i + \sum_{j=1996}^{2011} \gamma_j (\operatorname{Year}_j \times D_i) + \epsilon_{it}$$

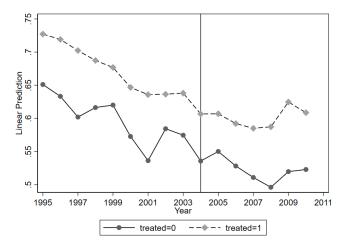
- Not very elegant but as long as you can communicate what you did...
- Borrowing from ANOVA type notation, we could write: Y_{it} = α_i + γ_t + δ_{it}.
 Each Greek letter represent a set of dummies as before, δ_{it} is their interaction. More elegant

Regression model

reg y i.year##i.treated

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		SS				r of obs	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Model	1 13068712	33	034263246	- r(33, 6 Prob	209) > F	= 0.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Total 2.26811783 322 .007043844 Rott MSE = .06274 y Coef. Std. Err. t P> t [95% Conf. Interval] year 1996 0178561 .0256117 -1.070 0.486 0682651 .032553 1997 0409013 .0256117 -1.92 0.056 0984094 .0013278 1998 0347811 .0256117 -1.36 0.176 0681496 .0013278 1999 0310305 .0256117 -3.06 0.002 1283376 0280195 2001 07484285 .0256117 -4.48 0.000 1528376 0280195 2002 066716 .0256117 -4.48 0.000 165271 0644459 2004 114868 .0256117 -5.47 0.000 1543242 06506167 2005 1010288 .0256117 -5.47 0.000 1736624 0725443					- AdiF	-squared	= 0.4413
year 1996 0178561 .0256117 -0.70 0.4860682651 .032553 1997 0490813 0.256117 -1.92 0.0560994904 0.013278 1998 0347811 0.256117 -1.36 0.1760681902 .015528 1999 0310305 0.256117 -1.21 0.2270814396 .0193786 2000 0784285 .0256117 -4.48 0.0001562271064459 2001 114868 0.256117 -4.48 0.0001562271064459 2002 0667116 0.256117 -4.61 0.000156227106459 2003 076474 0.256117 -4.51 0.00015143490506167 2006 122553 0.256117 -4.80 0.00015143490506167 2006 122553 0.256117 -4.80 0.00015143490506167 2006 122553 0.256117 -5.47 0.00013652720680991 2005 122553 0.256117 -5.47 0.00013645272065091 2006 122553 0.256117 -5.47 0.00015143490506167 2009 1313859 0.256117 -5.47 0.00015143490506167 2009 1313859 0.256117 -5.13 0.00011817950809769 2010 1281985 0.256117 -5.31 0.00017860750777894 2011 1281985 0.256117 -5.13 0.0001840750777894 2014 .0760852 .0298367 2.55 0.011 .0173605 .13481 1.treated .0760852 .0298367 2.55 0.571 .01736267 .09283 1997 1 .0242146 0.421955 0.23 0.8170732687 .09283 1998 1 0020724 0.421955 -0.46 0.6470283944 .072839 1999 1 01333 0.421955 -0.46 0.647028394 .0072839 2001 103483 0.421955 -0.560 .578088047 .0780977 2001 0283483 0.421955 -0.560 .5780581218 .0089779 2001 02833 0.421955 -0.560 .5780581218 .0089779 2001 028483 0.421955 -0.560 .578059501 .00567 .059740 .053794 2009 0.01343 0.421955 -0.560 .578059501 .015785 .059740 .053794 2001 028483 0.421955 -0.560 .578059501 .015785 .05578 .05570 .0560 .0578 .059740 .055783 2000 0.009720 .0421955 -0.560 .57805570 .0561 .0561 .0561 .0561 .0578 -0.59580 .05578 .05570 .0560 .0560 .0560 .0560 .0560 .0560 .0560 .0560 .0578 .05950 .0558				.007043844	4 Root	MSE	06274
year . 1996 0178561 .0256117 -0.70 0.486 0682651 .032553 1997 0490813 .0256117 -1.92 0.056 0994904 .0013278 1998 0347811 .0256117 -1.92 0.056 0994904 .0013278 1998 0347811 .0256117 -1.21 0.227 0814396 .0193786 2000 0784285 .0256117 -3.06 0.002 128376 0264195 2001 014486 .0256117 -4.48 0.000 1652771 064459 2002 0664716 .0256117 -2.60 0.010 1171206 016325 2003 0764574 .0256117 -4.80 0.000 165827 065091 2005 I1101258 .0256117 -5.40 0.000 164349 0075443 2007 I1401936 .0256117 -5.47 0.000 187849 085075 077784 2010 </td <td></td> <td></td> <td></td> <td>t</td> <td></td> <td></td> <td></td>				t			
1996 0178561 .0256117 -0.70 0.486 0822651 .023253 1997 0490813 .0256117 -1.92 0.056 0994904 .0013278 1998 0347811 .0256117 -1.36 0.176 0851902 .015628 1999 0347811 .0256117 -1.21 0.227 0814396 .0193786 2000 074285 .0256117 -1.48 0.000 158376 0280195 2001 114888 .0256117 -4.48 0.000 1652771 064459 2003 0764574 .0256117 -2.99 0.003 1568665 0260484 2004 1154181 .0256117 -5.44 0.000 1514394 .0561671 2005 110228 .0256117 -5.47 0.000 1373624 .02774443 2006 1229533 .0256117 -5.47 0.000 181785 .0387861 2008 1231985 .0256117 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
1998 0347811 .0256117 -1.36 0.176 08181902 .015628 1999 0310305 .0256117 -1.21 0.227 0814396 .0193786 2000 0784285 .0256117 -1.36 0.1002 1288376 0220195 2001 01742285 .0256117 -4.48 0.0000 1582771 0644459 2002 0674574 .0256117 -2.69 0.0103 1586272 065091 2003 0764574 .0256117 -2.49 0.000 158272 .065091 2005 110258 .0256117 -4.49 0.000 158262 .06506167 2006 1121983 .0256117 -5.47 0.000 158262 .065091 2008 1229533 .0256117 -5.47 0.000 187656 .0897845 2009 1381985 .0256117 -5.13 0.000 187657 0897845 2010 1281985 .0266117			.0256117	-0.70	0.486	0682651	.032553
1999 0310305 .0256117 -1.21 0.227 0814396 .0193786 2000 0784285 .0266117 -3.06 .0.02 128376 0280195 2001 0764285 .0266117 -4.48 .0.002 158277 064459 2002 0667116 .0256117 -2.40 0.010 1171206 0163025 2003 0667416 .0256117 -2.40 0.000 1658271 0665091 2004 1154181 .0266117 -4.51 0.000 1658272 065091 2005 1010288 .0256117 -4.80 0.000 1134394 0056434 2006 1210328 .0256117 -5.47 0.000 138795 08097845 2009 1313859 .0256117 -5.13 0.000 181795 0809769 2010 1281985 .0256117 -5.31 0.000 1786075 0777894 2011 1281985 .0256117 -5.31	1997	0490813	.0256117	-1.92	0.056	0994904	.0013278
2000 0784285 .0256117 -3.06 0.002 128376 0260195 2001 014368 .0256117 -4.48 0.000 1652771 064459 2002 0645716 .0256117 -2.60 0.010 1171206 0163025 2003 0764574 .0256117 -2.59 0.003 1263865 0260484 2004 115411 .0256117 -4.51 0.000 165427 065091 2005 1010258 .0256117 -4.80 0.000 154349 05056167 2006 122053 .0256117 -5.47 0.000 1373624 0725443 2007 1401936 .0256117 -5.47 0.000 181795 0897845 2008 1502 .0256117 -5.31 0.000 181795 0897879 2010 1281985 .0256117 -5.31 0.000 186075 0897854 2011 1281985 .0256117 -5.31 <t< td=""><td>1998 </td><td>0347811</td><td>.0256117</td><td>-1.36</td><td>0.176</td><td>0851902</td><td>.015628</td></t<>	1998	0347811	.0256117	-1.36	0.176	0851902	.015628
2001 114868 .0256117 -4.48 0.000 1652771 064459 2002 0667116 .0256117 -2.60 0.010 1171206 0163025 2003 076474 .0256117 -2.99 0.003 1154361 .026044 2004 1154181 .0256117 -4.51 0.000 1658272 0650091 2005 101288 .0256117 -4.80 0.000 1514349 0506167 2006 1229533 .0256117 -5.47 0.000 1514349 0506167 2006 123953 .0256117 -5.13 0.000 128692 085744 2009 1313859 .0256117 -5.13 0.000 1864027 085643 2010 1281985 .0256117 -5.01 0.000 1864027 .085643 1 .0760852 .0298367 2.55 0.011	1999	0310305	.0256117	-1.21	0.227	0814396	.0193786
2002 0667116 .0256117 -2.60 0.010 1171206 0183025 2003 0764574 .0256117 -2.99 0.003 1268665 0260484 2004 1154181 .0256117 -4.61 0.000 1658272 .0650091 2005 1010288 .0256117 -4.61 0.000 1513439 05506167 2006 125283 .0256117 -4.60 0.000 1733624 0725443 2007 1401936 .0256117 -5.47 0.000 181795 08097845 2008 15302 .0256117 -5.13 0.000 181795 0809769 2010 1281985 .0256117 -5.11 0.000 186075 0777794 2011 1359933 .0256117 -5.31 0.000 186075 0827642 year#treated .00760852 .0298367 2.55 0.011 .0173605 .13481 year#treated .007807 .0421955	2000	0784285	.0256117	-3.06	0.002	1288376	0280195
2003 0764574 .0256117 -2.99 0.003 1258665 0260484 2004 1154181 .0256117 -4.51 0.000 1658272 0650911 2005 110228 .0256117 -3.94 0.000 1514394 0506167 2006 11229533 .0256117 -4.80 0.000 1514394 0506167 2006 1129563 .0256117 -5.47 0.000 136324 0275443 2008 15502 .0256117 -6.05 0.000 181795 089769 2010 1231985 .0256117 -5.11 0.000 181795 089769 2011 1231985 .0256117 -5.31 0.000 181795 089769 2011 1231985 .0256117 -5.31 0.000 181795 089769 2011 1359933 .0256117 -5.31 0.000 184795 085764 1.treated .0760852 .0298367 2.55	2001	114868	.0256117	-4.48	0.000	1652771	064459
2004 1154181 .0256117 -4.51 0.000 165272 0650091 2005 1010258 .0256117 -3.94 0.000 151349 0506167 2006 1229533 .0256117 -4.80 0.000 1733624 0725443 2007 1401936 .0256117 -6.480 0.000 1733624 0725443 2008 1502 .0256117 -6.50 0.000 205429 0809769 2009 131859 .0256117 -5.13 0.000 181795 0850976 2010 1281985 .0256117 -5.31 0.000 186075 0777894 2011 1281985 .026117 -5.31 0.000 186075 .0777894 2011 1670852 .0298367 2.55 0.011 .0173605 .13481 _year#treated .097607 .0421955 0.23 0.817 0732687 .09283 1997 .0242146 .0421955	2002	0667116	.0256117	-2.60	0.010	1171206	0163025
2005 1010288 .0256117 -3.94 0.000 1513439 0506167 2006 1229533 .0256117 -6.05 0.000 1733624 0725443 2007 1610386 .0256117 -5.47 0.000 1906026 0897945 2008 15502 .0256117 -5.47 0.000 1296026 0897945 2009 131385 .0256117 -5.13 0.000 181795 08977994 2010 1281985 .0256117 -5.31 0.000 181795 0897693 2011 1359933 .0266117 -5.31 0.000 181795 0897694 2011 .0760852 .0298367 2.55 0.011 .0173605 .13481 year#treated .0067067 .0421955 0.23 0.817 0532687 .09283 1997 .0027414 .0421955 -0.12 <t< td=""><td>2003 </td><td>0764574</td><td>.0256117</td><td>-2.99</td><td>0.003</td><td>1268665</td><td>0260484</td></t<>	2003	0764574	.0256117	-2.99	0.003	1268665	0260484
2006 1229533 .0256117 -4.80 0.000 1733624 0725443 2007 1401936 .0256117 -6.05 0.000 1906026 0897845 2008 1401936 .0256117 -6.05 0.000 126429 0897845 2009 1313859 .0256117 -6.05 0.000 1278675 0897769 2010 131985 .0256117 -5.13 0.000 1786075 0077894 2011 1359933 .0256117 -5.31 0.000 1864024 0855843 1 .1treated .0760852 .0298367 2.55 0.011 .0173605 .13481 year#treated .0097807 .0421955 0.23 0.817 0732687 .09283 1996 1 .0097807 .0421955 -0.12 0.906 080617 .072839 1997 1 .0242146 .0421955 -0.12 0.906 080617 .073074 .0637193 1999 1 01933	2004	1154181	.0256117	-4.51	0.000	1658272	0650091
2007 1401936 .0256117 -5.47 0.000 1960026 0897845 2008 15502 .0256117 -6.05 0.000 205429 1046109 2009 1313859 .0256117 -5.13 0.000 181795 0807769 2010 1281985 .0256117 -5.13 0.000 186705 08077694 2011 1359933 .0256117 -5.31 0.000 1864074 085843 1.treated .0760852 .0298367 2.55 0.011 .0173605 .13181 year#treated .0097807 .0421955 0.23 0.817 0732687 .09283 1997 .0294346 .0421955 0.577 .05677 .0568348 .1072639 1998 00133 .0421955 -0.46 0.647 0023794 .0637193 2000 0020724 .0421955 -0.58 0.578 0595601 .0680977 2000	2005	1010258	.0256117	-3.94	0.000	1514349	0506167
2008 15502 .0256117 -6.05 0.000 205429 0464109 2009 1313859 .0256117 -5.13 0.000 181795 0809769 2010 1213985 .0256117 -5.01 0.000 1786075 0777894 2011 1359933 .0256117 -5.31 0.000 1864024 0855843 1	2006	1229533	.0256117	-4.80	0.000	1733624	0725443
2009 1313859 .0256117 -5.13 0.000 181795 080777894 2010 1281985 .0256117 -5.01 0.000 1786075 07777894 2011 135993 .0256117 -5.31 0.000 1864024 0855843 1.treated .0760852 .0298367 2.55 0.011 .0173605 .13481 year#treated - - .0242145 0.23 0.817 0732687 .09283 1997 1 .0242146 .0421955 0.57 0.5677 088047 .0772839 1998 1 01933 .0421955 -0.46 0.647 023794 .0637193 2000 1 0020724 .0421955 -0.56 0.578 05851218 .00637193 2001 1 0024383 .0421955 -0.56 0.578 05851218 .00637193 2001 1 023483 .0421955 0.560 .578 0595601 .1065387 </td <td>2007 </td> <td>1401936</td> <td>.0256117</td> <td>-5.47</td> <td>0.000</td> <td>1906026</td> <td>0897845</td>	2007	1401936	.0256117	-5.47	0.000	1906026	0897845
2010 1281985 .0256117 -5.01 0.000 1786075 0777894 2011 1359933 .0256117 -5.31 0.000 186024 0855843 1.treated .0760852 .0298367 2.55 0.011 .0173605 .13481 year#treated . . .0097807 .0421955 0.23 0.817 0732687 .09283 1997 1 .00421955 0.57 0.5667 088041 .1072839 1998 1 0042146 .0421955 -0.12 0.906 088047 .0637193 1999 1 01933 .0421955 -0.16 0.647 02374 .0637193 2000 1 0020724 .0421955 -0.56 0.561 0851218 .0603713 2000 1 0020724 .0421955 0.561 055601 .1065387	2008	15502	.0256117	-6.05	0.000	205429	1046109
2011 1359933 .0266117 -5.31 0.000 1864024 0855843 1.treated .0760852 .0298367 2.55 0.011 .0173605 .13481 year#treated - .0097807 .0421955 0.23 0.817 0732687 .09283 1996 1 .0097807 .0421955 0.57 0.567 0588348 .1072639 1997 1 .0242146 .0421955 -0.12 0.906 080617 .070371 1999 1 01933 .0421955 -0.46 0.647 028734 .0637193 2000 1 0020724 .0421955 -0.56 0.578 05851218 .080977 2001 1 .0224843 .0421955 -0.56 0.578 05851218 .080977 2001 1 .0224838 .0421955 0.566 0.578 05851218 .080977	2009	1313859	.0256117	-5.13	0.000	181795	0809769
1.treated .0760852 .0298367 2.55 0.011 .0173605 .13481 year#treated .0097807 .0421955 0.23 0.817 0732687 .09283 1996 1 .0242146 .0421955 0.57 0.567 058348 .1072639 1997 1 .0242146 .0421955 012 0.906 0880617 .076307 1999 1 01933 .0421955 -0.46 0.647 1023794 .0637193 2000 1 0020724 .0421955 -0.05 0.961 0595601 .1065387 2001 1 022483 .0421955 0.578 0595601 .1065387	2010	1281985	.0256117	-5.01	0.000	1786075	0777894
year#treated 1996 1 .0097807 .0421955 0.23 0.8170732687 .09283 1997 1 .0242146 0421955 0.57 0.567058348 .1072839 1998 1 .0050124 .0421955 -0.12 0.9060880617 .078037 1999 1 .01933 .0421955 -0.46 0.6471023794 .0637193 2000 1 01938 .0421955 -0.56 0.5610551218 .080977 2001 1 .022483 .0421955 0.568 0.5780595601 .1065387	2011	1359933	.0256117	-5.31	0.000	1864024	0855843
1996 1 .0097807 .0421955 0.23 0.817 0732687 .09283 1997 1 .0242146 .0421955 0.57 0.567 .058047 .072639 1998 1 0050124 .0421955 -0.12 0.906 .0880617 .078037 1999 1 01933 .0421955 -0.46 0.647 1023794 .0637193 2000 1 002074 .0421955 -0.56 0.561 0851218 .080977 2001 1 00234893 .0421955 0.566 0.578 05595601 .1065387	1.treated	.0760852	.0298367	2.55	0.011	.0173605	.13481
1997 1 0.242146 0.421955 0.57 0.567 -0.588348 .1072639 1998 1 0050124 0.421955 -0.12 0.906 -0.880617 .078037 1999 1 01933 0.421955 -0.46 0.647 1023794 .0637193 2000 1 002724 0.421955 -0.05 0.961 0851218 .080977 2001 1 0234893 .0421955 0.56 0.578 05595601 .1065387	year#treated						
1998 1 0050124 .0421955 -0.12 0.906 0880617 .078037 1999 1 01933 .0421955 -0.46 0.647 1023794 .0637193 2000 1 0020724 .0421955 -0.05 0.961 0851218 .080977 2001 1 0234893 .0421955 0.568 0.578 0595601 .1065387	1996 1	.0097807	.0421955	0.23	0.817	0732687	.09283
1999 1 01933 .0421955 -0.46 0.6471023794 .0637193 2000 1 0020724 .0421955 -0.05 0.9610851218 .080977 2001 1 .0234893 .0421955 0.568 0.5780595601 .1065387	1997 1	.0242146	.0421955	0.57	0.567	0588348	
1999 1 01933 .0421955 -0.46 0.6471023794 .0637193 2000 1 0020724 .0421955 -0.05 0.9610851218 .080977 2001 1 .0234893 .0421955 0.568 0.5780595601 .1065387			.0421955	-0.12	0.906	0880617	.078037
2001 1 .0234893 .0421955 0.56 0.5780595601 .1065387	1999 1	01933				1023794	.0637193
	2000 1	0020724	.0421955	-0.05	0.961	0851218	.080977
2002 1 0239757 .0421955 -0.57 0.5701070251 .0590737	2001 1	.0234893	.0421955	0.56	0.578	0595601	.1065387
	2002 1	0239757	.0421955	-0.57	0.570	1070251	.0590737

Margins to the rescue – again


- Hope you start makings some connections and things start to click
- We could reproduce the mean of the outcome by treated group and year with the -margins- command. And then we can use -marginsplot- to make a graph. This will became very helpful when we add covariates

Expression 1at	ictions : OLS		-	Number of	obs =	323		
Delta-method								
	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]		
at#treated	1							
1 0	6511415	.0181102	35.95	0.000	.6154969	.6867861		
1 1	.7272267	.0237118	30.67	0.000	.680557	.7738965		
2 0	.6332854	.0181102	34.97	0.000	.5976408	.66893		
2 1	.7191513	.0237118	30.33	0.000	.6724816	.765821		
3 0	.6020602	.0181102	33.24	0.000	.5664156	.6377048		
3 1	.70236	.0237118	29.62	0.000	.6556903	.7490297		
4 0	.6163604	.0181102	34.03	0.000	.5807158	.652005		
4 1	.6874333	.0237118	28.99	0.000	.6407635	.734103		
5 0	.620111	.0181102	34.24	0.000	.5844664	.6557556		
5 1	.6768662	.0237118	28.55	0.000	.6301965	.7235359		
6 0	.572713	.0181102	31.62	0.000	.5370684	.6083576		
6 1	.6467258	.0237118	27.27	0.000	.6000561	.6933956		
7 0	.5362735	.0181102	29.61	0.000	.5006289	.5719181		
7 1	.635848	.0237118	26.82	0.000	.5891783	.6825177		

Marginsplot

■ Note that -marginsplot- takes options to modify graphs

marginsplot, noci xlabel(1995(2)2011) title("") xline(2004)
graph export trends2.png, replace

Testing parallel trends - two pre-periods

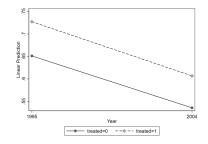
- To test trends we need at least two pre-intervention observations
- Suppose that we only had two data points in the pre-period: 1995 and 2004 (we assume that the intervention took place at the end of 2004)
- A test of parallel trends would reduce to testing if the change in *E*[*Y*] from 1995 to 2004 is the same in both groups. We don't know what happened in between those years
- We could estimate this model (with data for only 1995 and 2004): $Y_{it} = \beta_0 + \beta_1 Y 2004_t + \beta_2 D_i + \beta_3 (Y 2004_t \times D_i) + \epsilon_{it}$
- Y2004 is a dummy that equals 1 if 2004 and 0 if 1995
- If $\beta_3 = 0$, them the difference in the treated and control group outcome is the same in both years
- Confused? Write it down!: $\frac{\Delta E[Y]}{\Delta Y 2004} = \beta_1 + \beta_3 D$
- (Caution: Same as DiD estimator, but it's not a DiD design. In the pre-period, there was no treatment)

Two periods

■ We do not reject the null, change is the same (p-value: 0.908)

. reg y i.year##i.treated if inlist(year, 1995, 2004)

Source	SS	df	MS	Number of obs	= 38
				F(3, 34)	= 14.12
Model	.178571428	3	.059523809	Prob > F	= 0.0000
Residual	.143355272	34	.004216332	R-squared	= 0.5547
+-				Adj R-squared	= 0.5154
Total	.3219267	37	.008700722	Root MSE	= .06493
v I	Coef	Std Frr	t P	> t [95% Co	nf. Interval]
vear					
2004	1154181	.0265089	-4.35 0	.000169290	70615455
2004	.1104101	.0200000	4.00 0	.000 .105250	.0010400
1.treated	.0760852	.0308819	2.46 0	.019 .013325	6 .1388449
i.					
year#treated					
2004 1	0050697	.0436737	-0.12 0	.908093825	3.0836858
1					
_cons	.6511415	.0187446	34.74 0	.000 .613047	8 .6892352


Two periods

■ We can see this graphically with handy -maringsplot- as before

margins trea							
Adjusted predictions				Number of	obs =	38	
Model VCE	: (DLS					
Expression	: I	Linear pred:	iction, pred:	ict()			
1at	: 3	year	=	1995			
2at	: 3	year	-	2004			
	1	I	Delta-method				
	1	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
	+	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
_at#treated	 + 1	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
_at#treated 1 0	 + 1 	Margin 	Std. Err.	t 34.74	P> t 0.000	[95% Conf.	. 6892352
-	 + 1 						
1 0	į.	.6511415	.0187446	34.74	0.000	.6130478	. 6892352
1 0 1 1	Ì	.6511415 .7272267	.0187446	34.74 29.63	0.000	.6130478 .6773504	.6892352

marginsplot, noci

graph export twop.png, replace

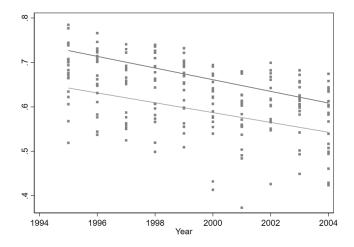
Testing parallel trends - more periods

- Now, we could extend the same logic for all the periods, but there is one problem: that would be a lot to ask
- It's unrealistic to expect that the difference between the groups is going to be the same at every single point in time. We want it to be parallel, not the same
- Rather than such a stringent test, we could accept some year to year variability instead. We could "smooth" the trend by giving it some structure
- The most straightforward is a linear trend:

 $Y_{it} = \beta_0 + \beta_1 \operatorname{Year}_t + \beta_2 D_i + \beta_3 (\operatorname{Year}_t \times D_i) + \epsilon_{it}$

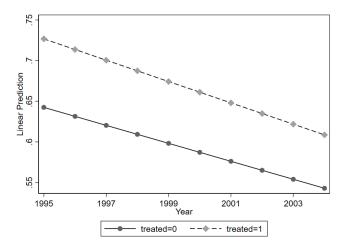
- It looks like the same model but it's not. Key difference is Year is not a dummy variable but the actual year (continuous: 1995, 1996, etc)
- Same result if year is 1, 2, 3...
- If $\beta_3 =$, then both groups have the same slope. That is, E[Y] has been changing at the same rate

More periods


We again don't reject the null (p-value: 0.54). Same slope
Careful. We need to restrict estimation to the before period

reg y c.year##i.treated if year <= 2004

Source	SS	df	MS	Number	of obs	-	190
+				F(3, 18	36)	=	42.98
Model	.469401667	3.1	56467222	Prob >	F	=	0.0000
Residual	.67705273	186 .0	03640068	R-squar	red	=	0.4094
+				Adj R-s	quared	=	0.3999
Total	1.1464544	189 .0	06065896	Root MS	SE .	=	.06033
У	Coef.	Std. Err.		P> t		Conf.	Interval]
year	0110593	.0019175	-5.77	0.000	0148		0072764
1.treated	4.205181	6.31665	0.67	0.506	-8.256	5307	16.66667
	I						
treated#c.year							
1	0020656	.0031591	-0.65	0.514	0082	2979	.0041667
	I						
_cons	22.70572	3.834061	5.92	0.000	15.14	1189	30.26956


Graph model using predictions

line yhat year if year <= 2004 & treated ==1, sort || /// line yhat year if year <= 2004 & treated ==0, sort || /// scatter y year if year <=2004, msize(vsmall) legend(off) graph export lin1.pmg, replace

Graph model using -marginsplot-

qui reg y c.year##i.treated if year <= 2004
qui margins treated, at(year=(1995(1)2004))
marginsplot, noci xlabel(1995(2)2004) title("")
graph export linmar.png, replace</pre>

Other specifications, covariates

- Trends could be non-linear. Maybe the best fitting model is a quadratic trends model or other functional form
- Remember that the difference between the groups may not be parallel in the raw, unadjusted data, but they could become parallel after "holding" other variables constant or after "taking into account" the effect of other variables
- Said another way, the trends could become parallel conditional on other covariates
- This is a common situation. The parallel trends test may fail with raw data (unadjusted) but it could pass when we control for covariates
- "Passing" here means that we **do not** reject the null
- We have all the tools to do this

Test parallel trends – adjusted

We need to add covariates to our model:

 $Y_{it} = \beta_0 + \beta_1 \operatorname{Year}_t + \beta_2 D_i + \beta_3 (\operatorname{Year}_t \times D_i) + \mathbf{X}' \beta + \epsilon_{it}$

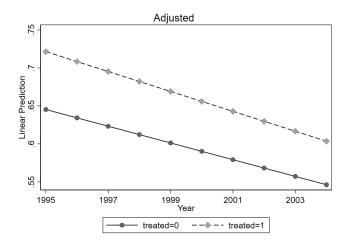
Those covariates could be time-varying or "fixed effects" so we could have a model like:

 $Y_{it} = \beta_0 + \beta_1 \operatorname{Year}_t + \beta_2 D_i + \beta_3 (\operatorname{Year}_t \times D_i) + \mathbf{X}'_{it}\beta + \lambda_i + \epsilon_{it}$

- Remember, λ_i is a shortcut for a set of dummy/indicator variables. It's not another intercept
- That is, $\lambda_i = \sum_{j=2}^k \gamma_j Z_{ij} = \gamma_2 Z_{i2} + \cdots + \gamma_k Z_{ik}$, where k are the levels or categories of the variable Z
- In the minimum wage example, k = 4 because they were 4 chain brands. We need to leave one out as the reference category
- In some models we could add "time fixed effects" (that is, dummy for each year), so we would write λ_t instead of λ_i

Test parallel trends – adjusted

■ The parallel trends tends "passes" again


reg y c.year##i.treated comlang log_distw if year <= 2004

Source	SS	df	MS	Number of obs	=	190
+				F(5, 184)	=	26.89
Model	.48402909	5.	096805818	Prob > F	=	0.0000
Residual	.662425307	184 .	003600138	R-squared	-	0.4222
+-				Adj R-squared	=	0.4065
Total	1.1464544	189 .	006065896	Root MSE	-	.06
у	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
	+					
year	0110056	.0019072	-5.77	0.000014	7683	0072429
1.treated	4.259519	6.282601	0.68	0.499 -8.13	5678	16.65472
	I					
treated#c.year	I					
1	0020969	.0031421	-0.67	0.505008	2961	.0041023
	I					
comlang	.0330957	.0570804	0.58	0.563079	5205	.1457119
log_distw	.0109464	.0078496	1.39	0.165004	5403	.0264331
_cons	22.50697	3.814596	5.90	0.000 14	.981	30.03294

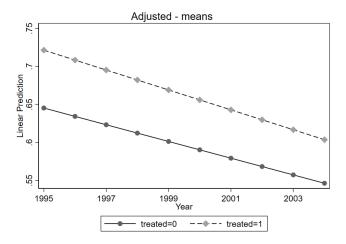
Adjusted plot

```
    Leaving covariates as observed
```

reg y c.year##i.treated comlang log_distw if year <= 2004 margins treated, at(year=(1995(1)2004)) marginsplot, noci xlabel(1995(2)2004) title("Adjusted") graph export paradj.png, replace

Adjusted plot

 Holding them at means (careful with syntax, you don't want the atmeans option; don't want to hold year at the mean)


margins trea Adjusted pre Model VCE Expression	dio :	tions OLS				g log_distw) er of obs =	190
1at		year	-	1995			
		comlang	-	.0804251	(mean)		
		log_distw	-	8.392976	(mean)		
2at	:	year	-	1996			
		comlang	-	.0804251	(mean)		
		log_distw	-	8.392976	(mean)		
	1		Delta-meth	hod			
	Т	Margin	Std. Er	r. t	P> t	[95% Conf	Interval]
	-+-						
_at#treated	1						
1 0		.6452383	.010386	5 62.1	2 0.000	.6247463	.6657303
1 1	1	.7214602	.0138074	4 52.2	5 0.000	.694219	.7487014
2 0	1	.6342326	.0088813	3 71.4	1 0.000	.6167104	.6517549

. .

At means graph

■ For graph, same syntax as before

marginsplot, noci xlabel(1995(2)2004) title("Adjusted - means")
graph export paradj_mean.png, replace

More on parametrization

- So far we have seen the standard parametric DiD regression model: $Y_{it} = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t) + \epsilon_{it}$
- We can extend the model adding fixed effects (favorite not so magic powder): $Y_{it} = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t) + \alpha_i + \epsilon_{it}$
- We can also control for variables that we think could affect the evolution of the trends between treatment and control groups (remember, variables that affect the difference between trends):

 $Y_{it} = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t) + \alpha_i + \mathbf{X}_{it}\beta + \epsilon_{it}$

 If some variables in X do not change over time, they won't affect the DiD estimator (like chain type)

More on parametrization

- But we could define variables in a different way, with an **implicit** interaction term this will be more useful when we have multiple periods
- So far we defined the treatment variable (or policy change) *D_i* as 1 if the unit (chain, country, state, person, etc) was treated and 0 otherwise
- *D_i* is the **same in both periods**. If the unit is treated, then its treatment indicator *D_i* is 1 in the pre and the post, even though we know that in the pre period no unit is treated
- We could instead define treatment in a different way. Let's define *D*1_{*i*} as 1 for the treated group only in the post period, and 0 otherwise. The DiD parametric model becomes:

 $Y_{it} = \gamma_0 + \gamma_1 D_i + \gamma_2 Post_t + \beta_3 D1_{it} + \epsilon_{it}$

- In some papers, authors could write $D1_i$ instead of $D1_{it}$, which would make it clearer that $D \neq D1$
- There is no explicit interaction, but it's the same DiD estimator, we just defined the interaction as D1 since here $D1 \equiv D \times Post$. Kind of trivial

The model as before

Model we estimated before

reg fte i.treated##i.post, robust

Linear regressi	Number o: F(3, 778 Prob > F R-squared Root MSE) =	782 1.42 0.2341 0.0084 9.0693			
 fte	Coef.	Robust Std. Err.		P> t	[95% Conf.	Intervall
+- treated						
NJ	-2.966332	1.439264	-2.06	0.040	-5.791633	1410318
1.post 	-2.490132	1.628318	-1.53	0.127	-5.686548	.7062852
treated#post						
NJ#1 	2.942513	1.773501	1.66	0.097	5389025	6.423928
_cons	20.01316	1.350721	14.82	0.000	17.36167	22.66465

Coding the interaction

New model with new coded variable that is trivially the same as the interaction

<pre>gen treatp = treated replace treatp = 0 if treated ==1 & post ==0 reg fte post treated treatp, robust</pre>							
Linear regression				Number of	f obs	=	782
0				F(3, 778)	=	1.42
	Prob > F		=	0.2341			
				R-square	1	=	0.0084
				Root MSE		=	9.0693
1		Robust					
fte	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
+-							
post	-2.490132	1.628318	-1.53	0.127	-5.686	548	.7062852
treated	-2.966332	1.439264	-2.06	0.040	-5.791	633	1410318
treatp	2.942513	1.773501	1.66	0.097	5389	025	6.423928
_cons	20.01316	1.350721	14.82	0.000	17.36	167	22.66465

Coding the interaction

Better when you want to use margins

reg fte i.post i.treated i.post#i.treated, robust nofvlabel

Linear regress:	ion			Number o: F(3, 778 Prob > F R-square Root MSE) = = d =	782 1.42 0.2341 0.0084 9.0693
 fte			t	P> t	[95% Conf.	Interval]
1.post	-2.490132	1.628318	-1.53	0.127	-5.686548	.7062852
1.treated 	-2.966332	1.439264	-2.06	0.040	-5.791633	1410318
post#treated						
11	2.942513	1.773501	1.66	0.097	5389025	6.423928
_cons	20.01316	1.350721	14.82	0.000	17.36167	22.66465

More on parametrization

- This is all somewhat trivial, but it can be confusing
- We could also say that we are adding "time fixed effects" in the model, which is of course the same as the *post* variable, with time coded with different values. So the model is:

 $Y_{it} = \gamma_0 + \gamma_1 D_i + \delta_t + \beta_3 D 1_i + \epsilon_{it}$

■ Furthermore, in this example, we could add "state fixed effects" as well. That's (trivially, again) just *D_i*. So:

 $Y_{it} = \gamma_0 + \alpha_i + \delta_t + \beta_3 D \mathbf{1}_{it} + \epsilon_{it}$

- NOT TRIVIAL(!): The part that is not trivial is that when we have multiple periods not just two, δ_t would control for "time trends" and D1 is more general because it could accommodate different timing of treatment for some units
- Furthermore, with more periods, we could interact α_s and δ_t to have "state-specific time trends," which is often described as a robustness check when there are multiple periods: the DiD estimator shouldn't change (see Angrist and Pischke page 238)

Cat hair, bear claws, and a pinch of fixed effects

First, last, and only cartoon to appear in my class notes

Time and state fixed effects

- Note below that I arbitrarily gave states an id of 4 and 8. Stata of course will code dummies so we go back to the same model
- Again, trivial in the sense that we are essentially recoding variables that are equivalent, but they are different ways of understanding DiD. It does make a difference with more time periods or states. Model below has time and state fixed effects: $Y_{it} = \gamma_0 + \alpha_i + \lambda_t + \delta D_{it} + \eta_{it}$

782

```
time = 1 if post ==0
gen
replace time = 2 if post ==1
gen
       stateid = 4 if treated == 1
replace stateid = 8 if treated == 0
* Time and state fixed effects
reg fte i.time i.stateid treatp. robust
                                             Number of obs
Linear regression
                                             F(3, 778)
                                                                      1.42
                                             Proh > F
                                                                    0 2341
                                             R-squared
                                                                    0.0084
                                             Root MSE
                                                                     9.0693
                           Robust
                   Coef. Std. Err.
                                             P>|t|
                                                       [95% Conf. Interval]
        fte |
                                    t
     2.time -2.490132 1.628318
                                      -1.53 0.127
                                                    -5.686548
                                                                  .7062852
  2.stateid | 2.966332
                         1.439264
                                       2.06
                                             0.040
                                                    .1410318
                                                                  5.791633
     treatp | 2.942513
                         1.773501
                                      1.66 0.097
                                                      -.5389025
                                                                  6.423928
             17.04683
                          .4970232
                                      34.30
                                             0.000
                                                       16.07116
                                                                   18.02249
      _cons
```

Big picture

- Careful with words and notation. Make sure you understand what fixed effects mean and what they are doing (or not) in the model
- They are not magic powders and the notation can be confusing. Sometimes papers are not clear and you need to infer what they did
- Same model could appear completely different. For example, $Y_{it} = \beta_0 + \beta_1 D_i + \beta_2 Post_t + \beta_3 (D_i \times Post_t) + \epsilon_{it}$ versus $Y_{it} = \gamma_0 + \alpha_i + \delta_t + \beta_3 D_{it} + \eta_{it}$ $Y_{ist} = \alpha_s + \delta_t + \beta_3 D_{ist} + \eta_{ist}$
- Hopefully at some point in a paper the authors explain that *D* is defined as $D_i \times Post_t$, but writing D_{it} rather than D_i helps
- The second model could be written in a different way too. Something like: $Y_{it} = \gamma_0 + \sum_s State_i + \sum_t Year_t + \gamma D_{it} + \eta_{it}$ or: $Y_{it} = \sum_s State_i + \sum_t Year_t + \gamma D_{it} + \eta_{it}$

Going back to basics

You can put all dummies in a model as long as you don't estimate a constant

* Generate dummies by state qui tab stateid, gen(st)

reg fte st1 st2 i.time treatp, robust noconstant

Linear regressi	on			Number of	obs =	801	
				F(4, 797)	-	783.71	
				Prob > F	=	0.0000	
				R-squared	. =	0.7937	
				Root MSE	=	9.003	
1		Robust					
fte	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
+-							
st1	17.06518	.4838665	35.27	0.000	16.11538	18.01499	
st2	19.94872	1.317281	15.14	0.000	17.36297	22.53447	
2.time	-2.40651	1.594091	-1.51	0.132	-5.535623	.7226031	
treatp	2.913982	1.736818	1.68	0.094	4952963	6.323261	
-							

Extensions

- Estimating models with many fixed effects (too many dummies): You'll see next semester that fixed-effects models in longitudinal data estimate "within" type estimators without having to estimate many dummy coefficients
- In this class, we just use the -reg- command. But a better alternative with many dummies is the -xtreg- command that estimates random- and fixed-effects models
- **Nonlinear models**: Logit/Probit, Poisson. Some tricky problems estimating fixed effects, and some vexing identification issues
- Synthetic controls: Essentially, chose controls so pre-trends are similar using a weighted set of controls
- DiD with inverse propensity score weights: Use IPW to make groups more equivalent – same issues about overlap, doubly robust
- Combining DiD and RDD: more comparable groups
- **Nonparametric estimation**: Rather than making parametric assumptions and assume homogeneity, we cold use more flexible models