Week 8: Matching estimators and propensity scores

Marcelo Coca Perraillon

University of Colorado Anschutz Medical Campus

Health Services Research Methods I HSMP 7607 2020

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.

Outline

- Defining treatment effects (ATE, ATET, ATEC)
- Identifying treatment effects
- Estimating treatment effects
- Diagnosing and dealing with lack of complete overlap
- Using the propensity score to deal with overlap issues (assuming ignorability):
 - 1 Stratification
 - 2 Matching
 - 3 Inverse probability weighting (IPW)
- Stratification, matching, and IPW under strong ignorability: alternatives to estimating treatment effects

Important

- We are assuming ignorability (no unmeasured confounders, etc)
- We will cover propensity scores as a way to 1) define and then 2) diagnose overlap problems
- The we will use propensity score matching (PSM), inverse probability weighting (IPW), and stratification as ways to solve overlap problems by restricting estimation to a region where overlap is better
- But they are also alternative ways of performing regression adjustment when strong ignorability holds (ignorability plus overlap)
- This has important practical implications. One of them being that in many cases, when overlap holds, we are going to get very similar results to regression adjustment, although some methods have additional advantages, like IPW having "doubly" robust properties
- But again, in terms of causal inference, NONE of these methods solves ignorability. It must be assumed

Defining treatment effects

- We defined causal effects as a **comparison of potential outcomes** for unit *i* and for a group of *N* units, which we could measure in terms of expected values, although we saw that this is more general: we could compare other quantities (median, odds ratios, etc):
 - 1 Average treatment effect (ATE): $E[Y_{1i}] - E[Y_{0i}] = \frac{1}{N} \sum_{i=1}^{N} Y_{1i} - \frac{1}{N} \sum_{i=1}^{N} Y_{0i} = \frac{1}{N} \sum_{i=1}^{N} (Y_{1i} - Y_{0i}) = E[Y_{1i} - Y_{0i}]$
 - 2 Average treatment effect on the treated (ATET): $E[Y_{1i}|D_i = 1] - E[Y_{0i}|D_i = 1] = \frac{1}{\sum_{i=1}^{N} D_i} \sum_{i=1}^{N} D_i Y_{1i} - \frac{1}{\sum_{i=1}^{N} D_i} \sum_{i=1}^{N} D_i Y_{0i} = \frac{1}{\sum_{i=1}^{N} D_i} \sum_{i=1}^{N} D_i (Y_{1i} - Y_{0i}) = E[Y_{1i} - Y_{0i}|D_i = 1]$
 - 3 Average treatment effect on the control (ATEC): $E[Y_{1i}|D_i = 0] - E[Y_{0i}|D_i = 0] = E[Y_{1i} - Y_{0i}|D_i = 0]$ 4 $\frac{1}{\sum_{i=1}^{N}(1-D_i)}\sum_{i=1}^{N}(1-D_i)Y_{1i}$
- The above expressions look esoteric but it's quite simple when you realize that $\sum_{i=1}^{N} D_i$ is the number of treated units (could denote it by N^T instead) and $D_i Y_{1i}$ is Y_{1i} for treated and zero for controls (same for Y_{0i})
- For ATEC, all would be $(1 D_i)$ since we only want to include controls. So $\sum_{i=1}^{N} (1 D_i) = N^C$ and $(1 D_i)Y_i$ is Y_i for controls and zero for treated

Defining treatment effects

We can also define the average treatment effect as a function of ATET and ATEC:

 $ATE = \frac{N^{T}}{N}ATET + \frac{N^{C}}{N}ATEC$

- We also saw that with randomization ATE = ATET = ATEC
- We can define treatment effects conditioning for covariates. We saw that this would give us estimates of causal effects in cases like conditional (block) randomization; randomization is based on the value of a covariate (or more than one)
- In that case, equations are similar, but we need to condition for the vector **X**: $ATE = E[Y_{1i} - Y_{0i} | \mathbf{X}_i] = E[Y_{1i} | \mathbf{X}_i] - E[Y_{0i} | \mathbf{X}_i]$ $ATET = E[Y_{1i} - Y_{0i} | \mathbf{X}_i, D_i = 1] = E[Y_{1i} | \mathbf{X}_i, D_i = 1] - E[Y_{0i} | \mathbf{X}_i, D_i = 1]$ $ATEC = E[Y_{1i} - Y_{0i} | \mathbf{X}_i, D_i = 0] = E[Y_{1i} | \mathbf{X}_i, D_i = 0] - E[Y_{0i} | \mathbf{X}_i, D_i = 0]$

Estimating treatment effects

- So far all we did is **define** treatment effects in an abstract way
- We can now discuss how to estimate treatment effects when we can argue that they are identified given data and experiment
- Remember, the fundamental problem is that for each unit *i* we only observe Y_{1i} or Y_{0i} but not both
- We link observed and potential outcomes with $Y_i = Y_{0i} + (Y_{1i} Y_{0i})D_i$, which we could rewrite in a simpler way: $Y_i = Y_{0i}(1 D_i) + Y_{1i}D_i$
- For controls the **observed** outcome $Y_i = Y_{0i}$ and for treated units the observed outcome $Y_i = Y_{1i}$

Estimating treatment effects

- Under which circumstances a simple comparison of observed outcomes could give us estimates of treatment effects?
- We can decompose the **observed** conditional difference $E[Y_i|\mathbf{X}_i, D_1 = 1] - E[Y_i|\mathbf{X}_i, D_1 = 0]$ into two pieces: $E[Y_{1i}|\mathbf{X}_i, D_i = 1] - E[Y_{0i}|\mathbf{X}_i, D_i = 1] + E[Y_{0i}|\mathbf{X}_i, D_i = 1] - E[Y_{0i}|\mathbf{X}_i, D_i = 0]$
- The first difference is the definition of ATET, the second one is the part we called the selection bias
- If the selection bias is zero, then a comparison of observed expected values is an estimate of treatment effects since $E[Y_i | \mathbf{X}_i, D_i = 0] = E[Y_{0i} | \mathbf{X}_i, D_i = 1]$
- The left-hand side is observed, the right-hand side is a potential outcome: the outcome for the treated group had they not been treated, which we don't observe. But if the observed outcome in the control group is the same as the unobserved outcome for the treated group had they not been treated, then the selection bias is zero
- In other words, the selection bias is zero when the control group provides a good prediction of what would have happened to the treated had they not been treated (and the treated is a counterfactual for the control), conditional on X

Estimating treatment effects

- We called the main assumption relating selection bias being zero as ignorability of treatment assignment (or the conditional independence assumption, CIA, selection on observables, no unmeasured confounder): (Y_{0i}, Y_{1i}) ⊥ D_i|X_i
- That is, treatment assignment, conditional on a vector of covariates X_i, is independent of potential outcomes
- Now, this leaves us in a good place. If we can argue that the selection bias is zero, which is equivalent as saying that ignorability holds, all we have to do is find a statistical method to find two conditional expectation functions using **observed** data:

 $E[Y_i | \mathbf{X}_i, D_1 = 1]$ and $E[Y_i | \mathbf{X}_i, D_1 = 0]$

- Whether we need to condition on the vector **X** depends on the data generating process. Under simple randomization, *D* and **X** are independent, which makes them **mean independent** as well. So we could find treatment effects without having to condition on **X**. Under conditional randomization, we do need to condition on **X**
- And, of course, we need SUTVA

Big picture

- It's helpful to follow Heckman and Vytlacil (2007a) discussion on empirical research as three separate steps (paraphrasing to match our language)
 - 1 Define causal effects using potential outcomes
 - **2 Identify** causal effects from a hypothetical population data and situation (experiment or natural experience or quasi-experiment)
 - 3 Estimate models [parametric, nonparametric] from observed samples
- The introduction to today's class follows this framework
- We will focus on step 3 now: estimate models
- So how do we estimate *E*[*Y_i*|**X***_i*, *D*₁ = 1] and *E*[*Y_i*|**X***_i*, *D*₁ = 0] assuming that causal effects are identified? (In other words, assuming ignorability holds)
- Those are two conditional expectation functions, but we can combine them: $E[Y_i | \mathbf{X}_i, D_i]$

Regression adjustment, parametric

■ This is the old fashioned, vanilla linear/OLS regression model:

 $Y_i = \beta_0 + \beta_1 D_i + \mathbf{X}'_i \beta + \epsilon_i \text{ or } E[Y_i | \mathbf{X}_i, D_i] = \beta_0 + \beta_1 D_i + \mathbf{X}'_i \beta$

- Can this model estimate causal effects even if they are identified? Well, it depends
- First, the model must be correctly specific. That includes the assumption of homogeneous treatment effects. We could add interactions and try other model fits, but we never have certainty that the model is correctly specified (should we add quadratic terms, multiple interactions? Are effects additive and separable?)
- Second, the assumption that Y_i ~ N(0, σ²) could be wrong. So could be other assumptions about the model, like iid errors and homoskedasticity. We saw a bunch of alternatives: logit, probit, and GLMs in general. The regression model needs to consider characteristics of the data generating process, which is very important for inference (standard errors)
- Third, when we use observational data, we need to worry about the assumption we haven't mentioned yet: overlap. Implicitly, we extrapolate information from controls to treated and vice versa

Regression adjustment, semiparametric

- We also saw that we could estimate **nonparametric or semiparametric** models. This follows straight for the idea that we could estimate models separately for *E*[*Y_i*|**X***_i*, *D*₁ = 1] and *E*[*Y_i*|**X***_i*, *D*₁ = 0]
- That's what we did with the command -teffects ra-
- The advantage of this method is that it runs stratified models, so it's equivalent to fully interacted models that take into account treatment heterogeneity
- They are also didactically great because it makes it explicit that estimating treatment effects is a prediction problem
- We used linear/OLS models, but we could have estimated $E[Y_i | \mathbf{X}_i, D_1 = 1]$ and $E[Y_i | \mathbf{X}_i, D_1 = 0]$ using other models
- Alternatives are logit, probit, GLMs, or even nonparametric or semiparametric models like kernel estimators or series estimators: commands -npregress kernel- and -npregress series-

Observational data and overlap

- Overlap: for all $X_i \in \varphi$, where φ is the support (domain) of the covariates X_i , $0 < P(D_i = 1 | X_i) < 1$
- This just means that for each variable in the vector **X**_i, the probability of treatment should not be 0 (or close to 0) or 1 (or close to 1). Note that **X**_i could contain **interactions** between two or more variables
- This would rule out cases in which, say, treated units are old and control units are young. Something like $P(D_i = 1 | age_i = 20) \approx 0$
- We don't worry about overlap with randomization because randomization guarantees that the **distribution** of covariates is the same in treated and control units. Note that this is a stronger result than just mean independence. Treated and controls could have the same mean (balance) but they could have bad overlap, affecting variance
- Overlap is tied to the concept of the **propensity score**. The propensity score is defined as $e(\mathbf{X}_i) \equiv P(D_i = 1 | \mathbf{X}_i)$, the propensity to receive treatment

The propensity score and overlap

- We already saw that we can use the propensity score to diagnose overlap problems since we *define* overlap using the propensity score
- The propensity score is a summary score: if a group of control and a group of treated units have the same propensity score, then they have the same distribution of X, where X are the variables used to estimate the propensity score (we will see more formally that it's also a balancing score)
- Once we diagnose the problem, we can use the propensity score to find a solution for the overlap problem. All are versions of the same idea: restrict estimation to the region where there is good overlap:
 - 1 Stratification by the propensity score
 - 2 Matching using the propensity score
 - 3 Inverse probability weighting (IPW) with some restrictions
- IPW requires a bit more thought. If overlap doesn't hold, IPW wouldn't be defined for some observations. Recall that $IPW_i = \frac{1}{P(D_i=1|\mathbf{X}_i)}$ if $D_i = 1$ and $IPW_i = \frac{1}{1-P(D_i=1|\mathbf{X}_i)}$ if $D_i = 0$. So $P(D_i = 1|\mathbf{X}_i)$ can be 1 or 0 in the denominator (or very close to 1 or 0)

Data

- We will use a dataset from Gelman, Hill, and Vihtari (2020) (it's a fantastic book)
- Data for children born in the 80s, 290 received special services early in life; 4091 are controls. Children were targeted because they were born prematurely or had low birth weight (≤ 2500) and lived in an intervention city
- Outcome is a cognitive score (ppvtr36)

```
desc ppvtr36 bwg hispanic black bmarr lths hs ltcoll workdur prenatal male ///
> first bw preterm momage dayskidh
```

variable name	storage type	display format	value label	variable label
ppvtr36	float	%9.0g		ppvtr.36
bw	byte	%8.0g		
hispanic	byte	%8.0g		
black	byte	%8.0g		
bmarr	byte	%8.0g		b.marr
lths	byte	%8.0g		
hs	byte	%8.0g		
ltcoll	byte	%8.0g		
workdur	byte	%8.0g		work.dur
prenatal	byte	%8.0g		
male	byte	%8.0g		
first	byte	%8.0g		
bw	float	%9.0g		
preterm	float	%9.0g		
momage	byte	%8.0g		
dayskidh	float	%9.0g		

Checking balance

- We could compare means and standard deviations or any other metric as a typical Table 1 of any paper
- A convenient summary is to use standardized differences (normalized differences) and variance ratios
- Standardized difference: $\Delta_X = \frac{\bar{X}_1 \bar{X}_0}{\sqrt{S_0^2 + S_1^2}}$
- **Variance ratio**: $\frac{S_1^2}{S_0^2}$
- Rule of thumb is that a standardized difference greater than 0.25 means that a regression model adjusting for covariates would be sensitive to model specification (because of lack of balance, overlap)
- No rule for variance ratios (ideally, close to 1). Differences in variances but good balance is not a major problem
- Note that the standardized difference is similar to the two-sample t-test: $T = \frac{\bar{X_1} - \bar{X_0}}{\sqrt{S_0^2/N_0 + S_1^2/N_1}}$. Larger sample sizes would decrease T, but larger sample sizes would not make a difference in terms of model specification problems

Checking balance: -teffects-

- In Stata, we can use the -teffects- command to check for balance, but it's unfortunate that the only way to use it is to actually estimate a propensity score type of model or some other tool like matching
- We don't want to see the outcome when we try different models to check for balance
- There are some user-written commands out there but we will stick with -teffects- but will run it quietly
- We will also use a user-written command -coefplot- (type "findit coefplot" to install it) to display standardized differences and variance ratio plots

Balance

Just once so you see what I mean. Note the pstolerance option. We are doing inverse probability weighting, but just because we want to check balance; we would get an error term because some propensity scores are close to zero

teffects ipw (ppvtr36) (treat bug hispanic black bmarr 1ths hs ltcoll workdur prenatal /// male first bw preterm momage dayskidh), pstolerance(1e-50) tebalance summarize

	12	tandardized Raw	differences Weighted	Vari Raw	ance ratio Weighted
bw	i.	-2.983154	-1.864095	.2545874	.1523872
hispanic	L	3384636	1374384	.5046336	.7920301
black	L	.4620816	.1761349	1.235165	1.111173
bmarr	L	5327536	2559087	1.143919	1.113478
lths	L	.2789109	.1534797	1.171242	1.106074
hs	L	3002187	0130743	.8326499	.9966036
ltcoll	L	0712848	15487	.8901424	.7567162
workdur	L	0638442	0016862	1.031228	1.002031
prenatal	L	1927647	0887688	3.422968	1.948011
male	L	.0228178	.1038601	1.003106	.9970652
first	L	.1238746	.0217956	1.027565	1.009207
preterm	L	2.48568	1.312396	.9106964	.3954169
momage	L	.1467263	.1121158	3.477228	2.829429
dayskidh	L	1.18667	.867865	4.272903	2.632112

mat M = r(table)

coefplot matrix(M[,1]), noci xline(0) xline(-0.25 0.25, lpattern(dash)) title("Standardized differences")
graph export stdif,png, replace
coefplot matrix(M[,3]), noci xline(1) title("Variance ratios")
graph export var.png, replace

Balance

Standardized differences

Standardized differences

Balance

Variance ratios

Balance vs overlap

- We have some balance problems between treated and controls in this dataset that would suggest regression adjustment would rely on extrapolation
- This likely translates into overlap problems, which can be due to one or more variables
- Next step is to check overlap using the propensity score since it's the definition of overlap

Overlap

Using the propensity score to check overlap

. logit treat bw hispanic black bmarr lths hs ltcoll workdur prenatal male /// > first preterm momage dayskidh, nolog

Logistic regr	ogistic regression						=	4,381
					LR chi	2(14)	=	1406.34
					Prob >	chi2	=	0.0000
Log likelihoo	d	= -364.406	3		Pseudo	R2	-	0.6587
treat	1	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
bw	i.	0044176	.0003203	-13.79	0.000	005	0455	0037898
hispanic	L	-1.008019	.3283637	-3.07	0.002	-1.	6516	3644382
black	I.	.3852354	.2395514	1.61	0.108	084	2768	.8547475
bmarr	I.	6796435	.2310288	-2.94	0.003	-1.13	2452	2268353
lths	I.	2753011	.4288705	-0.64	0.521	-1.11	5872	.5652696
hs	I.	-1.233805	.4032258	-3.06	0.002	-2.02	4113	4434971
ltcoll	I.	-1.008354	.4227533	-2.39	0.017	-1.83	6936	1797731
workdur	L	.2018587	.2149724	0.94	0.348	219	4794	.6231969
prenatal	L	6206795	.5963921	-1.04	0.298	-1.78	9587	.5482276
male	I.	0599874	.1943709	-0.31	0.758	440	9474	.3209725
first	I.	.5414952	.2146661	2.52	0.012	. 120	7574	.9622329
preterm	L	.3745637	.0495365	7.56	0.000	.277	4739	.4716535
momage	1	.1053551	.0278844	3.78	0.000	.050	7026	.1600076
dayskidh	L	0527067	.0101636	-5.19	0.000	072	6271	0327864
_cons	L	6.591678	1.424636	4.63	0.000	3.79	9443	9.383913

Note: 4 failures and 0 successes completely determined.

predict double ps if e(sample)
(option pr assumed; Pr(treat))

Overlap

- Remember that the propensity score is a summary score
- The region of overlap is [0.0181568, 0.9828839]. Note that in the control some scores are essentially zero no changes of being treated

```
tabstat ps, by(treat) stats(N mean median min max)
Summary for variables: ps
   by categories of: treat
  treat |
            Ν
                 mean
                        p50
                               min
                                      max
------
    0 1
          4091 0274727 0007289 5 28e-12 9828839
    1 1
           290 .6124459 .6476379 .0181568
                                   995504
-------
  Total |
          4381 .0661949 .0009125 5.28e-12
                                   995504
_____
```

qui teffects ipw (ppvtr36) ///

(treat bwg hispanic black bmarr lths hs ltcoll workdur prenatal male ///
first preterm momage dayskidh), pstolerance(le-50)
teffects overlap, ptl(1)
graph export overl.png, replace

Distribution of propensity scores

■ Clearly, some controls have small changes of being treated

Check birth weight

 Check the distribution in birth weight for treated and control, but standardize difference suggest other variables are problematic, like not having prenatal care

kdensity bw if treat ==1, saving(tkden.gph, replace) kdensity bw if treat ==0, saving(ckden.gph, replace) graph combine tkden.gph ckden.gph, col(1) xcommon xsize(10) ysize(10) graph export den.png, replace

Balance versus overlap

- Lack of balance is not as serious unless lack of balance is serious enough rule of thumb is 0.25 standardized difference
- Lack of overlap is more important. We could check one variable at a time of we could check the propensity score since the propensity score is a summary score
- We could also try to estimate a better model for the propensity score, say with interactions (more on this in a sec)

Balance versus overlap

Standardized differences

Figure 1. Balance and overlap

Simulated distribution of NOC scores. Panels A, B, and C show situations in which there is complete overlap but lack of balance (both average and standard deviation are different). Panel D shows distributions with both lack of balance and overlap. Panel E shows distributions with balance in means but lack of complete overlap. Panel F shows both lack of balance and overlap. The thick lines on x-axis in panels E and F show regions of overlap. Propensity scores could be used to analyze E and F, but not D. Regression adjustment and propensity scores would yield similar estimates in panels A to C, since there is complete overlap. NOC: Nursing Outcome Classification.

Regression

To make things more concrete. The issue is that the model below is probably not the best, and we haven't even dealt with model specification or residual analysis

. reg ppvtr36 treat bw hispanic black bmarr lths hs ltcoll workdur prenatal male /// > first preterm momage dayskidh, robust

Linear regres	sion			Number	of obs	=	4,381
				F(15, 4	1365)	=	158.59
				Prob >	F	=	0.0000
				R-squar	red	=	0.3356
				Root MS	SE	=	16.428
		Robust					
ppvtr36	Coef.	Std. Err.	t	P> t	L95% (Conf.	Interval
troat	+	1 227520	9 <i>11</i>	0 000	9 18/1	584	13 00775
bu	0005624	0005151	1 09	0.275	= 0004/	175	0015723
hienanic	=13 7/123	729361	-18 84	0.210	=15 17	115	-12 31131
hlash	17 0150	.729301	-10.04	0.000	-10.17	75	-12.31131
DIACK	1 =17.2159	.640063	-26.90	0.000	-10.470	5/5	-15.96106
Dmarr	3.00947	.615206	4.89	0.000	1.8033	354	4.215586
lths	-14.59204	1.043248	-13.99	0.000	-16.637	733	-12.54674
hs	-8.47883	.9122019	-9.29	0.000	-10.267	721	-6.690451
ltcoll	-6.393914	.9666583	-6.61	0.000	-8.2890	055	-4.498773
workdur	2.820732	.5621512	5.02	0.000	1.7186	531	3.922834
prenatal	4.357118	2.219644	1.96	0.050	.00548	382	8.708748
male	1.170581	.5042633	2.32	0.020	.18196	589	2.159193
first	4.604955	.5528963	8.33	0.000	3.5209	998	5.688913
preterm	.0102207	.1408463	0.07	0.942	26590	095	.2863509
momage	. 167805	.0886327	1.89	0.058	00596	501	.3415701
dayskidh	1446362	.0513661	-2.82	0.005	24533	397	0439326
_cons	87.15683	3.8615	22.57	0.000	79.586	533	94.72733

Matching

- One way to restrict the estimation to the region where there is overlap would be to find, for each treated unit, control units that are "similar" in their covariates
- If we do something like that, then the resulting sample would have good balance and overlap. The target of estimation will then be ATET. We are finding control units that are similar to the treated units to predict (impute) the counterfactual Y_{0i} for each unit *i* with $D_i = 1$
- We just need to find a way to measure similar using multiple variables (easier for few variables, like age and sex). It would make sense to use the propensity score as a measure of similarity
- Remember the main result of propensity scores: if a group of treated and control observations have the same propensity score then they have the same distribution of the covariates that entered into the estimation of the propensity score
- (We will see other ways of matching. The propensity score may not be the best, actually)

Many ways of matching, many ways of getting confused

- Over the years, many variants of matching have been proposed. And there are many decisions one can make with matching. Main issues:
 - **1 Measure of similarity**: propensity score, Malahanobis, other metrics based on variance ("exact matching" could fit here)
 - 2 Replacement or not: Once a treated unit is matched with a control unit, can the control unit be a match for another treated unit? If no, then without replacement. If yes, with replacement
 - **3** Number of matches: 1 to 1, 1 to N or variable? If 1 to 1, usually called pair matching. Nearest-neighbor matching with replacement is common: For each treated unit, find the *k* closest observations (we define *k* a priori) in the control group. A control can be used multiple times. In case of ties, use all ties as matches
 - **4 Caliper matching (radius)**: Use only controls with a distance smaller than a number *c*, the "caliper" (tries to avoid bad matches)
- Even more, we could also use different algorithms to perform the match: greedy, optimal, "genetic" algorithms
- We will focus on common ones and the ones that Stata implemented: commands -teffects psmatch- and -teffects nnmatch-

Classic: 1 to 1 matching without replacement, nearest neighbor (pair matching)

- Simple algorithm (sometimes called "greedy" algorithm)
 - 1 Sort treated units randomly
 - 2 For the first treated unit i = 1, calculate the absolute difference between i's propensity score and each of the control units' propensity scores
 - 3 Match i = 1 to the control unit with the smallest absolute difference
 - 4 Remove the matched control from the pool of potential controls
 - 5 Repeat for i = 2
- The result will be a dataset with $N^T \times 2$ observations
- Different implementations have different options for number of matches.
 With enough controls, a 1:1 match would discard too many observations

Matching

Matches: 1 to 5; 3 to 6; 2 to 7

1:1 Matching, no replacement

- We will use the user-written command -psmatch2-
- Type ssc install psmatch2, replace
- The command performs different types of matching including some that are similar to the ones in -teffects psmatch- and -teffects nnmatch- but not exactly the same
- We will only use it for 1:1 matching without replacement
- Matched sample will be $290 \times 2 = 580$

1:1 Matching, no replacement

. psmatch2 treat bw hispanic black bmarr 1ths hs ltcoll workdur prenatal male ///
> first preterm momage dayskidh, n(1) logit out(ppvtr36) noreplacement

Logistic	regres	sion			Number LR chi Prob >	of obs = 2(14) = chi2 =	4,381 1406.34 0.0000	
Log like	lihood	= -364.4063			Pseudo	R2 =	0.6587	
t	reat	Coef.	Std. Err.	z	P> z	[95% Conf	Interval]	
	bw	0044176	.0003203	-13.79	0.000	0050455	0037898	
hisp	anic	-1.008019	.3283637	-3.07	0.002	-1.6516	3644382	
b	lack	.3852354	.2395514	1.61	0.108	0842768	.8547475	
····								
Note: 4	failure	s and 0 succ	esses compl	Letely def	termined	•		
	Variabl	.e Sample	Treat	ed Co	ontrols	Difference	S.E.	T-stat
	ppvtr3	6 Unmatched	92.11379	901 86.0	0280498	6.08574029	1.21935202	4.99
		ATT	92.11379	901 81.6	5837432	10.4300469	1.6297464	6.40
	Variabl ppvtr3	e Sample 6 Unmatched ATT	Treat	ed Co 901 86.0 901 81.6	ontrols 0280498 5837432	Difference 6.08574029 10.4300469	S.E. 1.21935202 1.6297464	T-stat 4.99 6.40

Note: S.E. does not take into account that the propensity score is estimated. tab treat _weight

| psmatch2: | weight of | matched | controls treat | 1 1 Total -----0 1 290 I 290 290 | 1 1 290 _____ Total | 580 I 580

1:1 Matching, no replacement

* Replicate * Raw, unmatched reg ppvtr36 treat MS Number of obs = 4,381 Source | SS df -----F(1, 4379) -24.91 Model | 10029.5409 1 10029.5409 Prob > F = 0.0000 Residual | 1763142.34 4,379 402.63584 R-squared = 0.0057 Adj R-squared = 0.0054 Total | 1773171.88 4,380 404.833763 Root MSE = 20.066 Coef. Std. Err. t P>|t| [95% Conf. Interval] ppvtr36 | 6.08574 1.219352 3.695193 8 476287 treat | 4.99 0.000 cons | 86.02805 .3137195 274.22 0.000 85.413 86 6431 * ATE, matched reg ppvtr36 treat if _weight== 1 Source | SS df MS Number of obs = 580 -----F(1, 578) 40.96 = Model | 15773.9524 1 15773.9524 Prob > F 0.0000 = R-squared Residual | 222605.505 578 385.130631 0.0662 = -----Adi R-squared = 0.0646 Total | 238379.457 579 411.708907 Root MSE 19 625

ppvtr36	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
treat	10.43005	1.629746	6.40	0.000	7.2291	13.6309
_cons	81.68374	1.152405	70.88		79.42033	83.9471

Check balance

```
* Check balance (make sure you understand this; just using teffects to calculate
* balance statistics)
qui teffects psmatch (ppvtr36) (treat bw hispanic black bmarr lths hs ltcoll workdur prenatal male ///
first preterm momage dayskidh) if _weight ==1, nneighbor(1)
tebalance summarize
mat M = r(table)
coefplot matrix(M[,2]), noci xline(0) xline(-0.25 0.25, lpattern(dash)) title("Standardized differences after 1:1 matching")
graph export stdif_m.png, replace
```


Standardized differences after 1:1 matching

Check balance

. sum bw hispanic black bmarr momage dayskidh if treat ==1

Variable	Obs	Mean	Std. Dev.	Min	Max
	+				
bw	l 290	2008.648	283.3048	1515	2500
hispanic	290	.0931034	.2910796	0	1
black	290	.5034483	.5008524	0	1
bmarr	290	.4310345	.496077	0	1
momage	I 290	24.44483	5.87341	13	41
	+				
dayskidh	290	14.68621	11.28376	1	71

. sum bw hispanic black bmarr momage dayskidh if treat ==0 & _weight ==1

Variable	l Obs	Mean	Std. Dev.	. Min	Max
	+				
bw	290	2240.512	326.1465	1502.55	3033.45
hispanic	290	.1482759	.3559875	0	1
black	290	.4310345	.496077	0	1
bmarr	290	.5068966	.5008167	0	1
momage	I 290	23.62759	3.353343	17	31
	+				
dayskidh	290	10.44443	13.77704	0	100

Matches are not identical

This is important to understand the propensity scores. Two matched units may have different covariate values. On average, matched units are similar
 Below are two matches with their propensity score differing by only 0.00027

. 11st	bw nispan	11	c black bma first pre	81 81	rr itns term mom	n	s itco ge day	ns	i worr kidh .	.P	dif	i	enatal m f_id==4	1a1 115	.e /// 6 _id	=	= 3989	
2.	+ bw 2240		hispanic 0	 	black 1	1	bmarr 0		lths 1	1	hs 0	1	ltcoll 0		workdur 0	1	prenatal 1	F
	male 1 +	1	first 0	 	prete	r:	m 3 		momag 2	ge 22			dayski	dh 4	L L .	0	_pdif 0027962	 +
3659.	bw 2182.95 male 0	 	hispanic 0 first 0	 	black 0 prete	r	bmarr 1 m 7		lths 1 momag	l J ze	hs 0		ltcoll 0 dayski	 14	workdur 1 . .	1	prenatal 1 _pdif	

Caveats

- There are probably thousands of studies that have used some version of the above analysis, but there are many problems with this strategy
 - 1 Standard errors do not take into account that the propensity score has been estimated (bootstrapping was the usual solution, but turns out that it doesn't quite work)
 - 2 Not very efficient since we discard thousand of potential controls (could do 1:N matching instead)
- The above issues are important and remember that this is an iterative process. Try different models, check balance. Choose the best approach that balances data
- Other important issues:
 - 1 As we saw, the propensity score balances on average, but other distance metrics could be better (i.e. Malahanobis)
 - 2 We could for example mimic conditional randomization by using other covariates to block
- There are strong arguments against PSM. For example, subtle papers like King and Nielsen (2019) "Why PSM Should Not Be Used for Matching"

The propensity score model

- Before we continue, we need to discuss the propensity score model itself
- So far, we have been estimating a simple one, but the specification of the propensity score matters. Usual suggestions:
 - 1 Include confounders. No need to include variables correlated with just the outcome or just the treatment
 - **2** Start with a simple (parsimonious model)
 - **3** If balance not acceptable, consider quadratic terms, categorizing continuous variables, interactions
- Iterative process. Repeat 3)
- Careful with empty cells in some cases (low sample sizes in some interactions)
- Many decisions: remember, you want balance and good overlap, not the decision that produces the result you want
- When lack of overlap is severe, may need to discard observations by restricting estimation to the region where there is overlap. Several options have been propose, like cardinality matching (Visconti and Zubizarreta, 2018)

Ways to restrict to overlap region

■ From Visconti and Zubizarreta (2018)

Algorithm 1 Matching with standard matching methods.

0. Specify the covariate balance requirements (e.g., mean balance).

Repeat:

- 1. Estimate the propensity score or another summary of the covariates.
- 2. Trim extreme observations according to the summary measure.
- 3. Match on the summary measure (e.g., using nearest neighbor matching).
- 4. Assess covariate balance.

Until:

The matched sample satisfies the covariate balance requirements.

Algorithm 2 Matching with cardinality matching.

- 0. Specify the covariate balance requirements (e.g., mean balance).
- 1. Find the largest matched sample that satisfies the covariate balance requirements.
- 2. Rematch the matched sample to minimize covariate distances between matched units.

Stata's -teffects psmatch-

- Stata's -teffects psmatch- command implements a different version of matching
- It performs a *k* nearest neighbor matching in which treated units are matched with **at least** *k* controls with replacement
- There is no check on overlap region, so one must be careful
- Stata does check for propensity scores close to zero

 As we saw before, some propensity scores are too low. We can force teffects to continue by increasing the tolerance value (pstolerance option)

```
* Error
teffects psmatch (ppvtr36) (treat bw hispanic black bmarr 1ths hs 1tcoll workdur prenatal male ///
first preterm momage dayskidh) , nneighbor(1)
there are 232 propensity scores less than 1.00e-05
treatment overlap assumption has been violated; use the osample() option to identify the
observations
r(459):
teffects psmatch (ppvtr36) (treat bw hispanic black bmarr 1ths hs 1tcoll workdur prenatal
> male ///
>
               first preterm momage dayskidh) , nneighbor(1) pstolerance(1e-50)
Treatment-effects estimation
                                       Number of obs
                                                             4.381
Estimator
            : propensity-score matching Matches: requested =
                                                                1
                                                                1
Outcome model : matching
                                                    min =
Treatment model: logit
                                                    max =
_____
                       AT Robust
    ppytr36 |
            Coef.
                       Std. Err.
                                        P>|z|
                                                [95% Conf. Interval]
                                   z
------
ATE
     treat |
  (1 vs 0) |
              3531638 1 428366
                                               -2 446383
                                                           3 15271
                                  0.25
                                        0 805
```

Note that the balance is not good at all. The lack of overlap problem is severe in this dataset

tebalance summarize note: refitting the model using the generate() option

Covariate balance summary

	Raw	Matched
Number of obs =	4,381	8,762
Treated obs =	290	4,381
Control obs =	4,091	4,381

	12	tandardized	differences	Varia	nce ratio
	1	Raw	Matched	Raw	Matched
bw	i	-2.983154	-1.827003	. 2545874	.054266
hispanic		3384636	6073668	.5046336	.1371829
black	1	.4620816	6451967	1.235165	.2753288
bmarr	1	5327536	.6834454	1.143919	.2889577
lths	I.	.2789109	6155638	1.171242	.3297026
hs	I.	3002187	1.148684	.8326499	.3932727
ltcoll	I.	0712848	5759349	.8901424	.1280602
workdur	L	0638442	.7952702	1.031228	.291495
prenatal	L	1927647	.0930047	3.422968	.3300719
male	I.	.0228178	1.035419	1.003106	.3176788
first	I.	.1238746	926912	1.027565	.23562
preterm	I.	2.48568	.9517999	.9106964	.2013297
momage	I.	.1467263	1.478464	3.477228	.7966889
dayskidh	L	1.18667	3.104121	4.272903	1.269045

- Need to restrict to a region of overlap. Could use the propensity score, although we could use other strategies, including trimming based on bw for example
- We will use the propensity score for now. Note that we drop some treated units

```
capture drop ps
qui logit treat bw hispanic black bmarr 1ths hs 1tcoll workdur prenatal male ///
first preterm momage dayskidh, nolog
predict double ps if e(sample)
tabstat ps, by(treat) stats (N min max)
Summary for variables: ps
   by categories of: treat
  treat |
               N
                     min
                             max
-----
     0 1
            4091 5.28e-12 .9828839
     1 1
             290 .0181568
                          995504
_____
  Total |
            4381 5.28e-12
                         995504
------
```

```
gen keep = 1 if ps >= .0181568 & ps <= .9828839
tab treat keep
```


- Need to restrict to a region of overlap. Could use the propensity score, although we could use other strategies, including trimming based on bw for example
- We will use the propensity score. Note that we drop some treated units

```
capture drop ps
qui logit treat bw hispanic black bmarr 1ths hs 1tcoll workdur prenatal male ///
first preterm momage dayskidh, nolog
predict double ps if e (sample)
tabstat ps, by(treat) stats (N min max)
gen keep = 1 if ps >= .0181568 & ps <= .9828839
tab treat keep
```

	1	keep		
treat	1	1	Tota	L
	+		+	-
0	1	572	573	2
1	1	283	283	3
	+		+	-
Total	1	855	855	5

teffects psmatch (first preterm Treatment-effects Estimator : p Outcome model : m Treatment model: 1	ppvtr36) (tre momage daysk estimation ropensity-sco atching ogit	at bw hispanic idh) if keep == re matching	black bmarr =1, nneighbo Number of Matches: r	lths hs lt r(1) obs = equested = min = max =	coll workdur 855 1 1 1	prenatal	male	///
	AT	Robust						
ppvtr36	Coef. Std	. Err. z	P> z	[95% Conf.	Interval]			
ATE treat (1 vs 0) 8	.045777 1.2	59327 6.39	0.000	5.577541	10.51401			
tebalance summariz	e							
	Standardized	differences	Vari	ance ratio				
	l Raw	Matched	Raw	Matched				
by	-1.394722	2597216	.6006019	.4301904				
hispanic	0650134	0179936	.8470438	.9587302				
black	.0698415	3134383	1.008199	.8622675				
bmarr	141656	.3399337	.9847759	.9090142				
lths	.0908845	0310145	1.033483	.9874854				
hs	1289964	.2140523	.904266	1.097288				
ltcoll	0278215	1618443	.9542544	.7026459				
workdur	.005303	.0905067	1.00003	.9662639				
prenatal	1223482	.0082554	1.980514	.9455728				
male	076909	.0820815	1.0083	.9888843				
first	.0311325	2686938	1.004758	.8823296				
preterm	1.061327	.0654548	.5034276	.3864448				
momage	.100821	.2402564	2.852832	2.220045				
dayskidh	.6435155	. 483438	1.107973	.8175438				

. mat M = r(table)

mat M = r(table)

coefplot matrix(M[,2]), noci xline(0) xline(-0.25 0.25, lpattern(dash)) title("Standardiz ed differences - k neighbor matching") graph export stdifk.png, replace

- We could try other specifications of the propensity score to see if balance improves
- Still some problems with days in hospital, but nothing extreme
- Interesting enough, similar results to regression adjustment
- As I said before, lack of overlap doesn't automatically means that regression adjustment is wrong

Different propensity score model

teffects psmatch (ppvtr36) (treat c.bw##(i.hispanic i.black c.momage c.dayskidh) bmarr lths ///
hs ltcoll workdur prenatal male first preterm) if keep ==1, nneighbor(1)

Treatment-eff	ects estimati	Number o	f obs	=	855		
Estimator	: propensit	y-score matcl	ning	Matches:	requested	=	1
Outcome model	: matching				min	=	1
Treatment mode	el: logit				max	=	1
	I	AI Robust					
ppvtr36	Coef.	Std. Err.	z	P> z	[95% Co	nf. Int	erval]
ATE	I						
treat	I						
(1 vs 0)	7.564289	2.020666	3.74	0.000	3.60385	7 11	.52472

qui tebalance summarize
mat M = r(table)
coefplot matrix(M[,2]), noci xline(0) xline(-0.25 0.25, lpattern(dash)) title("Standardized differences - k neighbor matching")
graph export stdifk_int.png, replace

Different propensity score model

- Much better balance. We should explore other models to detect overlap region as well
- As I said, this is an iterative process

- Instead of the propensity score as a metric of similarity, we could use another metric. One is the Malahanobis distance (Rubin, 1980)
- Malahanobis is simply a measure of the distance between two vectors of data: M(X₁, X₂) = √(X₁ − X₂)Σ⁻¹(X₁ − X₂)
- Σ is the covariance matrix. If Σ is the identity matrix, then Malahanobis is the Euclidean distance
- Euclidean distance between (y_1, x_1) and (y_2, x_2) is $d(y, x) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ (Pythagorean theorem)
- If X₁ and X₂ are vectors of data, a smaller *M*(X₁, X₂) implies that observations are more similar in covariates values X
- So as the propensity score, Malahanobis can be used as a measure of similarity, with the advantage that the matched observations are going to be more closely matched, not just matched on average

teffects nnmatch (ppvtr36 bw hispanic black bmarr 1ths hs ltcoll workdur prenatal male /// first preterm momage dayskidh) (treat), nneighbor(1) tebalance summarize

Treatment-effects	est	imatior	1			Number (of obs =	4,381
Estimator :	near	est-nei	ghbo	or match	ing	Matches	: requested =	1
Outcome model : 1	natc	hing					min =	1
Distance metric: 1	Maha	lanobis	5				max =	1
I			AI R	lobust				
ppvtr36	C	oef.	Std.	Err.	z	P> z	[95% Conf.	Interval]
ATE								
treat								
(1 vs 0) 3	8.88	6109	1.47	4341	6.03	0.000	5.996453	11.77576
tebalance summari:	ze							
	St	andardi	zed	differe	nces	Va	ariance ratio	
	1	F	law	Mato	hed	Ra	aw Matched	
bw	1	-2.9831	54	-2.368	282	. 25458	74 .1437058	
hispanic	1	33846	336	2499	663	.504633	.6221699	
black	1	.46208	816	. 192	254	1.23510	55 1.136648	
bmarr	1	53275	536	1851	049	1.1439	19 1.100719	
lths	1	.27891	09	.0854	561	1.17124	42 1.063502	
hs	1	30021	87	0685	629	.832649	.9719941	
ltcoll	1	07128	348	019	315	.890143	.9694677	
workdur	1	06384	142	.018	842	1.0312	.9904492	
prenatal	1	19276	647	.001	895	3.4229	.9848435	
male	1	.02281	78	.0744	934	1.00310	.995244	
first	1	.12387	46	.0809	175	1.0275	55 1.018515	
preterm	1	2.485	68	1.724	164	.910690	.5250509	
momage	1	.14672	263	.0970	095	3.4772	28 1.684246	
dayskidh	1	1.186	67	.6236	645	4.2729	1.185832	

1 As before, we need to restrict region of overlap. Let's use bw instead of the propensity score

tabstat bw, by(treat) stats(N mean sd min max)

Summary for variables: bw by categories of: treat

max	min	sd	mean	N	I	treat
					-+-	
7597.8	1502.55	561.4815	3335.268	4091		0
2500	1515	283.3048	2008.648	290		1
					-+-	
7597.8	1502.55	639.1361	3247.453	4381	I	Total

gen keep1 = 1 if bw >= 1500 & bw <= 3000 tab treat keep1

teffects nnmatch (ppvtr36 bw hispanic black bmarr lths hs ltcoll workdur prenatal male first /// preterm momage dayskidh) (treat) if keep1 ==1, nneighbor(1)

Treatment-eff	ects	estimatio	Number o	f obs	=	1,320		
Estimator	:	nearest-ne	ighbor matchi	ing	Matches:	requested	=	1
Outcome model	:	matching				min	=	1
Distance metr	ic:	Mahalanobi	s			max	=	1
	1		AI Robust					
ppvtr36	I	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
	+							
ATE	1							
treat	1							
(1 vs 0)	1	10.29988	1.368308	7.53	0.000	7.61804	2	12.98171

tebalance summarize

	13	Standardized	differences	Varia	riance ratio	
	I	Raw	Matched	Raw	Matched	
	+-					
bw	I.	-2.008488	-1.272001	.724186	.5429634	
hispanic	L	2688362	1046097	.5603778	.8118967	
black	L	.257156	.0430653	1.067346	1.015228	
bmarr	L	3324808	1080212	1.020362	1.017085	
lths	L	.1930087	.0563812	1.096464	1.029957	
hs	L	2949933	0561583	.8333505	.9728451	
ltcoll	L	0573106	0039269	.909349	.9935394	
workdur	L	.0242883	.0092262	.9942454	.9967681	
prenatal	L	112584	.0045582	1.812482	.9744437	
male	L	0736482	0424846	1.010007	1.004785	
first	L	.0705086	.0091229	1.012425	1.001612	
preterm	L	1.649226	1.112493	.5965296	.465296	
momage	L	.1905657	.0955412	3.280781	1.815981	
dayskidh	L	.8504919	.4556944	1.585644	.9601355	

Where are we?

- Many different ways of matching, many decisions that can affect results. No clear answers on the best strategy
- If you this about it, we could have restricted the estimation to the region of overlap and then run a regression model
- Knowledge about the subject is important when deciding what should be carefully balanced. And all depends on the dataset. In this dataset, there is a severe overlap problem, mostly birth weight
- Many approaches are reasonable we found similar results
- With -teffects nnmatch- we could force an exact match with the ematch(varlist) option on some variables (or by creating categorical variables)
- But don't lose track of big picture: the goal is to restrict estimation to a region where comparisons are possible, and then make those comparisons
- Careful that R, SAS, Stata implement different versions of matching

Matching as an imputation and weighting scheme

- One way to frame matching is that we are imputing (predicting) the conterfactual by assigning weights to units
- In a general way, we can write:

 $\begin{aligned} ATE_{matched} &= \frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_{1i} - \hat{Y}_{0i}) \\ ATET_{matched} &= \frac{1}{N_T} \sum_{i=1}^{N} w_i (Y_i - \hat{Y}_{0i}) \end{aligned}$

- If $D_i = 1$ then $\hat{Y}_{1i} = Y_i$. If $D_i = 0$ then $\hat{Y}_{0i} = Y_i$
- For ATET, we don't need to impute Y_i
- Matching uses different ways of imputing Y₀i for treated units (or Y₁i for control units)
- The other way of understanding matching is that it is a weighting scheme. With exact matching, for example, $w_{ij} = 1/N_{matched}$ if $X_1 = X_0$ and $w_{ij} = 0$ if $X_1 \neq X_0$ (*i* indexes treated units and *j* indexes controls)

Inverse Probability Weighting

- We saw this in the intro class and homework. We use the propensity score as an inverse weight
- Assuming $\hat{p}(\mathbf{x}_i)$ is the predicted propensity score, for ATE $ipw_i = \frac{1}{\hat{\rho}(\mathbf{x}_i)}$ if $D_i = 1$ and $ipw_i = \frac{1}{1-\hat{\rho}(\mathbf{x}_i)}$ if $D_i = 0$
- We can also define weights to get ATET and ATEC
- ATET: $ipw_i = 1$ if $D_i = 1$ and $ipw_i = \frac{\hat{\rho}(\mathbf{x}_i)}{1 \hat{\rho}(\mathbf{x}_i)}$ if $D_i = 0$
- ATEC: $ipw_i = \frac{1-\hat{\rho}(\mathbf{x}_i)}{\hat{\rho}(\mathbf{x}_i)}$ if $D_i = 1$ and $ipw_i = 1$ if $D_i = 0$
- We did IPW by hand, but we can use -teffects ipw- or -teffects ipwra-, although teffects runs stratified models
- Again, we need to restrict the region of overlap somehow. For simplicity, we will restrict weights between 1500 and 3000, although we may get large IPW weights

IPW

qui logit treat bw hispanic black bmarr 1ths hs ltcoll workdur prenatal male ///
first preterm momage dayskidh if kepl==1, nolog
predict double ps1 if e(sample)
gen ipw = 1/ps1 if treat==1
replace ipw = 1/(1-ps1) if treat==0

```
* Outcome model not controlling for covariates reg ppvtr36 treat [pw=ipw], robust
```

```
. reg ppvtr36 treat [pw=ipw], robust (sum of wgt is 2,191.88404154778)
```

Linear regression	Number of obs	-	1,320
	F(1, 1318)	-	36.77
	Prob > F	-	0.0000
	R-squared	-	0.0462
	Root MSE	-	19.217

	L.		Robust				
ppvtr36	!	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treat	ī	8.996997	1.483815	6.06	0.000	6.086099	11.90789
_cons	L	82.55631	1.013474	81.46	0.000	80.56811	84.54451

IPW - teffects

```
teffects ipw (ppvtr36) (treat bw hispanic black bmarr 1ths hs 1tcoll ///
 workdur prenatal male first preterm momage dayskidh) if keep1==1
Iteration 0: EE criterion = 2.574e-16
Iteration 1: EE criterion = 1.478e-26
Treatment-effects estimation
                                Number of obs = 1.320
Estimator
        : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
______
                  Robust
   ppvtr36 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
------
ATE
    treat |
  (1 vs 0) 8.996997 1.277541 7.04 0.000 6.493063 11.50093
------
POmean
    treat |
      0 82.55631 .936375 88.17 0.000 80.72105 84.39157
```

IPW - teffects

Still not optimal, we could further restrict to overlap region based on ps or try other models

. tebalance summarize

Covariate balance summary

	Raw	Weighted
Number of obs =	1,320	1,320.0
Treated obs =	290	434.0
Control obs =	1,030	886.0

	I	Standardized	differences	Varia	Variance ratio		
	I	Raw	Weighted	Raw	Weighted		
	-+						
bw		-2.008488	6226793	.724186	.3448521		
hispanic	I	2688362	0461161	.5603778	.9176752		
black	I	.257156	0656871	1.067346	.9807627		
bmarr	I	3324808	0437763	1.020362	1.009212		
lths	I	.1930087	.0730392	1.096464	1.041372		
hs	I	2949933	.0096082	.8333505	1.005327		
ltcoll	I	0573106	1439304	.909349	.7750979		
workdur	I	.0242883	.117083	.9942454	.9718457		
prenatal	I	112584	0381501	1.812482	1.281361		
male	I	0736482	.071718	1.010007	.9965046		
first	I	.0705086	.0366211	1.012425	1.014521		
preterm	I	1.649226	.4140395	.5965296	.2586534		
momage	I	.1905657	.1157435	3.280781	2.578142		
dayskidh	I	.8504919	.4614788	1.585644	1.137282		

IPW - teffects - ATET

ATE restricting to the previous overlap region

. teffects ipw (ppvtr36) (treat bw hispanic black bmarr lths hs ltcoll /// > workdur prenatal male first preterm momage dayskidh) if keep ==1, atet Iteration 0: EE criterion = 1.737e-24 Iteration 1: EE criterion = 1.818e-29 Treatment-effects estimation Number of obs = 855 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: logit Robust. ppvtr36 | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------ATET treat | (1 vs 0) | 10.53538 2.411306 4.37 0.000 5.809307 15 26145 ------POmean treat | 0 81 58247 2 366822 76 94358 34 47 0 000 86 22135 _____

IPW - teffects - ATET

ATE restricting to the previous overlap region

. tebalance summarize

Covariate balance summary

	Raw	Weighted
Number of obs =	855	855.0
Treated obs =	283	362.7
Control obs =	572	492.3

	Standardized		differences	Vari	ance ratio
	I	Raw	Weighted	Raw	Weighted
hu	+	-1 30/722	3778824	6006019	7075763
hispanic	i	0650134	0841342	.8470438	.8086912
black	i	.0698415	119931	1.008199	1.012672
bmarr	I	141656	055692	.9847759	.9892314
lths	I	.0908845	.0970404	1.033483	1.035198
hs	I	1289964	0933433	.904266	.9256661
ltcoll	I	0278215	079925	.9542544	.8764902
workdur	I	.005303	.246544	1.00003	.9791861
prenatal	I	1223482	1930732	1.980514	3.637795
male	I	076909	.1539902	1.0083	1.023679
first	I	.0311325	.3258814	1.004758	1.137434
preterm	I	1.061327	4482802	.5034276	.2973894
momage	I	.100821	0030976	2.852832	2.613683
dayskidh	I	.6435155	.0642314	1.107973	.76524
	_				

-teffects ipwra-

■ We didn't control for covariates in the outcome model but we could, and that would help us deal with the remaining imbalance (!)

That is, the outcome model would be

```
. reg ppvtr36 treat bw hispanic black bmarr 1ths hs 1tcoll workdur prenatal male ///
                   first preterm momage dayskidh [pw=ipw], robust
(sum of wgt is 2,191,88404154778)
Linear regression
                                                Number of obs
                                                                         1.320
                                                F(15, 1304)
                                                                         25 60
                                                Prob > F
                                                                         0 0000
                                                R-squared
                                                                         0 3512
                                                Root MSE
                                                                         15 934
                             Robust
     ppvtr36 |
                    Coef
                            Std Err
                                           ÷.
                                                P>|t|
                                                           [95% Conf. Interval]
```

 	+-						
treat	L	8.380397	1.870968	4.48	0.000	4.709961	12.05083
bw	L	0019433	.003049	-0.64	0.524	0079248	.0040381

■ This won't exactly match -teffects ipwra- since Stata runs stratified models

 Please check the code using the link below to see how you can match teffects by hand. teffects has the correct SEs, though (estimates the propensity score models and the oucome model simultaneously with GMM)

https://clas.ucdenver.edu/marcelo-perraillon/sites/default/ files/attached-files/matching_teffects_code_perraillon_0.do

-teffects ipwra-

- We could and should try different model specifications as well (interactions, etc)
- Note that with IPWRA we could tolerate some imbalance because we also control for covariates in the outcome model

```
. teffects ipwra (ppvtr36 bw hispanic black bmarr lths hs ltcoll ///
>
            workdur prenatal male first preterm momage dayskidh) ///
>
                     (treat bw hispanic black bmarr 1ths hs 1tcoll workdur prenatal
> ///
>
                     male first preterm momage dayskidh) if keep1 ==1. ate
Iteration 0: FE criterion = 2 574e-16
Iteration 1: FE criterion = 7 165e-26
Treatment-effects estimation
                                    Number of obs =
                                                       1.320
          : IPW regression adjustment
Estimator
Outcome model : linear
Treatment model: logit
                    Robust
   ppvtr36 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----
ATE
     treat |
  (1 vs 0) 8.316608 1.730835 4.80 0.000 4.924233 11.70898
------
POmean
     treat |
       0 83.15841 .8359674 99.48 0.000 81.51995 84.79688
```

Strong ignorability

- If ignorability and overlap hold (strong ignorability), it turns out that IPW is just another way of estimating *E*[*Y*_{*i*}|*Di* = 1, **X**_{*i*}] and *E*[*Y*_{*i*}|*Di* = 0, **X**_{*i*}]
- One can show that:

$$\begin{split} & E[\frac{Y_i D_i}{\hat{\rho}(\mathbf{X}_i)}] = E[Y_i | D_i = 1, \mathbf{X}_i] \text{ and} \\ & E[\frac{Y_i (1 - D_i)}{1 - \hat{\rho}(\mathbf{X}_i)}] = E[Y_i | D_i = 0, \mathbf{X}_i] \end{split}$$

- IPW is equivalent to the Horvitz and Thompson (1952) estimator for handling nonrandom sampling in surveys, in which the weight is the inverse probability of being in the sample
- Note that for the above to work, p̂(X_i) cannot be 0 or 1, which means that overlap must hold
- A similar approach can be used for ATET
- So when overlap holds and assuming that model specification in regression adjustment is correct, we shouldn't expect to find much different between IPW and regression adjustment, with bonus that IPW is can be doubly robust
- Stata also has the command -teffects aipw- for "augmented" IPW that has the doubly robust property (-teffects aipw-)

Stratification

- Create groups based on the propensity score, say quintiles
- Make comparisons within quintiles defined by the propensity score. Could combine estimation using sample sizes
- The problem is that in some quintiles balance could be bad, or in extreme cases there could be no treated or control observations
- Stratification by the propensity score has a deep connection with an alternative to regression adjustment when only one variable determines treatment (Rubin, 1977). Robust to treatment heterogeneity

Rubin (1977)

Journal of Educational Statistics Spring 1977, Volume 2, Number 1, Pp. 1-26

ASSIGNMENT TO TREATMENT GROUP ON THE BASIS OF A COVARIATE

Donald B. Rubin

Educational Testing Service

Key words: Non-Randomized Studies; Observational Studies; Covariance Adjustment; Causal Inference; Experimental Design; Treatment Assignment; Average Treatment Effects

ABSTRACT

When assignment to treatment group is made solely on the basis of the value of a covariate, X , effort should be concentrated on estimating the conditional expectations of the dependent variable Y given X in the treatment and control groups. One then averages the difference between these conditional expectations over the distribution of X in the relevant population. There is no need for concern about "other" sources of bias, e.g., unreliability of X , unmeasured background variables. If the conditional expectations are parallel and linear, the proper regression adjustment is the simple covariance adjustment. However, since the quality of the resulting estimates may be sensitive to the adequacy of the underlying model, it is wise to search for nonparallelism and nonlinearity in these conditional expectations. Blocking on the values of X is also appropriate, although the quality of the resulting estimates may be sensitive to the coarseness of the blocking employed. In order for these techniques to be useful in practice. there must be either substantial overlap in the distribution of X in the treatment groups or strong prior information.

Digression

Stratification same as interacted model

```
bcuse bwght, clear
      smoked = 0
gen
replace smoked = 1 if cigs ==0
qui reg bwght i.smoked##i.white
margins, dvdx(smoked)
Average marginal effects
                                     Number of obs = 1.388
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.smoked
                 Delta-method
          | dy/dx Std. Err. t P>|t| [95% Conf. Interval]
-----
   1.smoked 8.889065 1.488571 5.97 0.000 5.968966 11.80917
_____
Note: dy/dx for factor levels is the discrete change from the base level.
quietly {
  reg bwght i.smoked if white ==1
  scalar beta1 = _b[1.smoked]
  scalar N1 = e(N)
  reg bwght i.smoked if white ==0
  scalar beta2 = b[1.smoked]
  scalar N2 = e(N)
3
di (N1*beta1 + N2*beta2)/(N1+N2)
8 8890654
```

Stratification

• Overlap only exists in one region, the same we found before!

capture drop ps qui logit treat bw hispanic black bmarr lths hs ltcoll workdur prenatal male /// first preterm momage dayskidh, nolog predict double ps if e(sample)

xtile pscats = ps, n(5) tab pscats treat 5								
quantiles	1 1	treat						
of ps	(0 1	To	tal				
1	87	7 0	i -	877				
2	876	6 0	1	876				
3	876	6 0	1	876				
4	876	6 0	1	876				
5	580	6 290	1	876				
Total 4,091 290 4,381 tabstat ps if pscats=5, by(treat) stats(N mean max min) Summary for variables: ps by categories of: treat treat N mean max min								
0 1	586	.1802457 .9	828839	.016451				
1 1	290	.6124459	995504	.0181568				
Total 	876 6 treat if j	.3233256	995504	.0161568				

1	l	Robust				
ppvtr36	Coef.	Std. Err.	t	P> t	[95% Cont	f. Interval]
treat	9.866971	1.32997	7.42	0.000	7.256663	12.47728

Stratification

Could control for variables

. reg ppvtr36 treat bw hispanic black bmarr 1ths hs ltcoll workdur prenatal male $\,///$ > $\,$ first preterm momage dayskidh if pscats ==5, robust

Linear regression

Number of obs	=	87
F(15, 860)	=	37.3
Prob > F	=	0.000
R-squared	=	0.392
Root MSE	=	16.34

ppvtr36	1	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
treat	i.	10.45539	1.477092	7.08	0.000	7.556261	13.35452
bw	1	0012955	.002095	-0.62	0.537	0054075	.0028165
hispanic	L	-15.29031	2.348434	-6.51	0.000	-19.89965	-10.68098
black	1	-18.06875	1.321689	-13.67	0.000	-20.66286	-15.47463
bmarr	1	1.456162	1.353218	1.08	0.282	-1.199835	4.112159
lths	1	-12.13782	2.308979	-5.26	0.000	-16.66971	-7.605922
hs	1	-7.425949	2.09373	-3.55	0.000	-11.53537	-3.316531
ltcoll	1	-5.144063	2.107533	-2.44	0.015	-9.280573	-1.007553
workdur	L	4.13442	1.225533	3.37	0.001	1.729034	6.539806
prenatal	L	.1939434	3.359773	0.06	0.954	-6.400372	6.788259
male	1	1.24003	1.122819	1.10	0.270	9637574	3.443816
first	1	4.195408	1.207222	3.48	0.001	1.825962	6.564853
preterm	L	.5278955	.2720722	1.94	0.053	0061078	1.061899
momage	1	119995	.1597463	-0.75	0.453	4335333	. 1935433
dayskidh	L	2562127	.0816998	-3.14	0.002	4165671	0958583
_cons	I	100.5914	8.450377	11.90	0.000	84.0056	117.1772

Final comment

- Perhaps the most important question when thinking about matching, IPW, stratification is: why not regression adjustment? What's the problem with it?
- Lack of overlap is the problem if in fact it exists so check for it with the tools you learned in these lectures
- If strong ignorability holds (ignorability plus overlap or selection on observables plus overlap), then think about matching, IPW, stratification as alternatives to regression adjustment
- Alternatives that help you understand your data better, and alternatives that have interesting properties – like more robust to model mispecification