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Outline

Qualitative predictors, aka dummy variables, indicator variables,
categorical variables

ANOVA (the easier way)

Effect coding and grand mean interpretation of intercept

Contrasts

Parameter interpretation

Difference-in-difference models

Interactions
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Big picture

Qualitative variables are important in regression analysis because they
provide more flexibility in modeling

Sex, race, state, marital status, treatment group are all qualitative
variables

It’s not uncommon to create categories from a continuous variable to
make models a) easier to explain and b) relax the linearity assumption
(for instance, age categories)

Much of what we have learned so far applies to qualitative variables
but we interpret models somewhat differently

We often code qualitative variables as 0/1 but this is not the only
way of coding
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Beauty dataset again

Simplest case, two categories; for example, male or female

We will define an indicator (aka dummy) variable that is equal to 1 if
female and 0 if male

Random advice: Name your variables in a way that makes clear
which category is 1 and which is zero. Don’t create a variable called
“sex;” create a variable called female if female is 1 or male if male is 1

We will estimate the model wagei = β0 + β1femalei + εi
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Parameter interpretation

Since female is a 1/0 variable, not a lot of sense to take the
derivative (but you could, mechanically, although the derivative does
not exist since you can’t take the limit)

E [wage|female = 1] = β0 + β1, so the sum of the coefficients is the
average wage for females

E [wage|female = 0] = β0 is the average wage for males

E [wage|female = 1]− E [wage|female = 0] = β0 + β1 − β0 = β1

So β1 is the difference in average salaries between females and
males

Note once again the difference between sample and population.
What we just did will always be true in the sample. If we want to
make statements at the population level, we need the zero conditional
mean assumption again
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Stata output

In the beauty dataset, the average female salary per hour is $3 less
than that of males

reg wage female

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(1, 1258) = 137.04

Model | 2686.38669 1 2686.38669 Prob > F = 0.0000

Residual | 24661.0525 1,258 19.6033803 R-squared = 0.0982

-------------+---------------------------------- Adj R-squared = 0.0975

Total | 27347.4392 1,259 21.7215561 Root MSE = 4.4276

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

female | -3.069465 .2622068 -11.71 0.000 -3.583876 -2.555054

_cons | 7.368823 .1542417 47.77 0.000 7.066223 7.671422

------------------------------------------------------------------------------

Average salary for males: β0 = 7.368. Average salary for females:
β0 + β1 = 7.368823− 3.069465 = 4.29

The null for the Wald test is H0 : β1 = 0. If this is true, then we say
that the average wage for males and females is the same: β0
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Stata output

Verify that it’s the same as descriptive stats

tabstat wage, by(female) stats(N mean median sd min max)

Summary for variables: wage

by categories of: female (=1 if female)

female | N mean p50 sd min max

---------+------------------------------------------------------------

0 | 824 7.368823 6.41 4.592508 1.05 41.67

1 | 436 4.299358 3.75 4.097392 1.02 77.72

---------+------------------------------------------------------------

Total | 1260 6.30669 5.3 4.660639 1.02 77.72

----------------------------------------------------------------------

Even if causality makes no sense in this study, the regression model is
perfectly valid as a descriptive model
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Remember the old t-test for independent samples?

Previous Wald test is the same as the stats 101 t-test for independent
samples:

ttest wage, by(female)

Two-sample t test with equal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

0 | 824 7.368823 .1599876 4.592508 7.054791 7.682855

1 | 436 4.299358 .1962295 4.097392 3.913682 4.685034

---------+--------------------------------------------------------------------

combined | 1,260 6.30669 .1312986 4.660639 6.049102 6.564279

---------+--------------------------------------------------------------------

diff | 3.069465 .2622068 2.555054 3.583876

------------------------------------------------------------------------------

diff = mean(0) - mean(1) t = 11.7063

Ho: diff = 0 degrees of freedom = 1258

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

Same null (sign backwards) and same t = 11.7063
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More than one level

It is fairly easy to incorporate more than one category

Let’ say that we are interested in the effect of experience on wage but
for some reason we think that 0 and 10 years of experience are
equivalent and we want to compare to more than 10 years to 30 and
greater than 30 (note the different than missing part below)

* Create indicators

gen expcat = 1 if exper >0 & exper <= 10

replace expcat = 2 if exper > 10 & exper <= 30

replace expcat = 3 if exper > 30 & exper ~= .

tab expcat

expcat | Freq. Percent Cum.

------------+-----------------------------------

1 | 424 33.76 33.76

2 | 594 47.29 81.05

3 | 238 18.95 100.00

------------+-----------------------------------

Total | 1,256 100.00
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More than one level

We could code indicator variables directly but I wanted to show you a
handy way in Stata

tab expcat, gen(expcat)

sum expcat1-expcat3

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

expcat1 | 1,256 .3375796 .4730727 0 1

expcat2 | 1,256 .4729299 .4994655 0 1

expcat3 | 1,256 .1894904 .3920538 0 1

list exper expcat1-expcat3 in 1/5

+-------------------------------------+

| exper expcat1 expcat2 expcat3 |

|-------------------------------------|

1. | 30 0 1 0 |

2. | 28 0 1 0 |

3. | 35 0 0 1 |

4. | 38 0 0 1 |

5. | 27 0 1 0 |

+-------------------------------------+
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Average salary by level of experience

We can estimate the model
wagei = β0 + β1expcat2i + β2expcat3i + εi

reg wage expcat2 expcat3

Source | SS df MS Number of obs = 1,256

-------------+---------------------------------- F(2, 1253) = 38.94

Model | 1596.55872 2 798.279361 Prob > F = 0.0000

Residual | 25684.7847 1,253 20.498631 R-squared = 0.0585

-------------+---------------------------------- Adj R-squared = 0.0570

Total | 27281.3434 1,255 21.7381222 Root MSE = 4.5275

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

expcat2 | 2.217522 .287846 7.70 0.000 1.652809 2.782235

expcat3 | 2.697418 .3667077 7.36 0.000 1.977989 3.416847

_cons | 4.759599 .2198768 21.65 0.000 4.328232 5.190966

------------------------------------------------------------------------------
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Need to choose a reference category

We leave one category out because otherwise we have perfect
collinearity; if you don’t do it, Stata will drop one

. reg wage expcat1 expcat2 expcat3

note: expcat1 omitted because of collinearity

Source | SS df MS Number of obs = 1,256

-------------+---------------------------------- F(2, 1253) = 38.94

Model | 1596.55872 2 798.279361 Prob > F = 0.0000

Residual | 25684.7847 1,253 20.498631 R-squared = 0.0585

-------------+---------------------------------- Adj R-squared = 0.0570

Total | 27281.3434 1,255 21.7381222 Root MSE = 4.5275

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

expcat1 | 0 (omitted)

expcat2 | 2.217522 .287846 7.70 0.000 1.652809 2.782235

expcat3 | 2.697418 .3667077 7.36 0.000 1.977989 3.416847

_cons | 4.759599 .2198768 21.65 0.000 4.328232 5.190966

------------------------------------------------------------------------------

12



Parameter interpretation

The intercept, β0, is the average wage for individuals in the reference
category 0-10

The average salary for individuals with more than 30 years of
experience is $2.70 higher than for those with 0-10 years of experience

Never forget (!!!!!): always a comparison relative to the
reference category

Get used to interpret models this way:

E [wage|expcat3 = 1] = β0 + β2 and E [wage|expcat1 = 1] = β0

E [wage|expcat3 = 1]− E [wage|expcat1 = 1] = β2

So, comparisons to reference level
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Inference

The Wald test H0 : β2 = 0. If not rejected, then people with over 30
years of experience make the same average salary than those with
0-10 years of experience

The F test is comparing the full model to the restricted model so the
null hypothesis is that β2 = β3 = 0; the alternative is that at least
one is not equal to zero

That’s the ANOVA test: if all coefficients are equal to zero, then
the average wage is the same for all levels of experience

ANOVA is a comparison of means when the number of groups > 2;
an extension of the t-test. But its name, Analysis of Variance, comes
fro the way the test was developed: as a comparison of (residual)
variance (SSE)
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ANOVA should be equivalent to LRT (asymptotically)

Do a LRT instead

qui reg wage expcat1 expcat2 expcat3

est sto full

qui reg wage if e(sample)

est sto red

lrtest red full

Likelihood-ratio test LR chi2(2) = 75.74

(Assumption: red nested in full) Prob > chi2 = 0.0000

We need the e(sample) because the models have different sample
sizes since there are missings in experience categories (Stata produces
an error message)
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Digression ANOVA and parameter interpretation

When you learn about ANOVA, it is usually presented as a model in
which the intercept is supposed to represent the grand mean rather
than the mean of the reference category as we just saw

The grand mean in the previous example would be the average wage
regardless of experience (or the unconditional mean)

This is because coding indicator variables as 1/0 is not the only way
of coding indicator variables

Example: Data on cholesterol levels by age group. We want to test if
the average cholesterol level is the same for all five age groups

16



Cholesterol data
* Dummy variables coded as 0/1 - in the model the constant is cholesterol for 10-29 (180.51)

tabstat chol, by(agegrp) stats(N mean sd min max)

agegrp | N mean sd min max

-------+--------------------------------------------------

10-19 | 15 180.5198 9.959015 165.2215 204.7666

20-29 | 15 188.7233 10.20568 170.6993 208.6496

30-39 | 15 202.0608 10.38802 185.6186 220.5073

40-59 | 15 210.6704 10.1015 196.3125 233.7877

60-79 | 15 219.282 10.96153 196.7426 237.3754

-------+--------------------------------------------------

Total | 75 200.2513 17.40287 165.2215 237.3754

----------------------------------------------------------

reg chol ageg2 ageg3 ageg4 ageg5

Source | SS df MS Number of obs = 75

-------------+---------------------------------- F(4, 70) = 35.02

Model | 14943.3997 4 3735.84993 Prob > F = 0.0000

Residual | 7468.21971 70 106.688853 R-squared = 0.6668

-------------+---------------------------------- Adj R-squared = 0.6477

Total | 22411.6194 74 302.859722 Root MSE = 10.329

------------------------------------------------------------------------------

chol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ageg2 | 8.203575 3.771628 2.18 0.033 .6812991 15.72585

ageg3 | 21.54105 3.771628 5.71 0.000 14.01878 29.06333

ageg4 | 30.15067 3.771628 7.99 0.000 22.6284 37.67295

ageg5 | 38.76221 3.771628 10.28 0.000 31.23993 46.28448

_cons | 180.5198 2.666944 67.69 0.000 175.2007 185.8388

------------------------------------------------------------------------------
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Effect coding
If in the age group of interest, code as 1, if not zero. Same as before.
But the reference category is coded as -1. Constant now is the grand
mean

gen age2029 = 0

replace age2029 = 1 if agegrp == 2

replace age2029 = -1 if agegrp == 1

gen age3039 = 0

replace age3039 = 1 if agegrp == 3

replace age3039 = -1 if agegrp == 1

...

. reg chol age2029 age3039 age4059 age6079

Source | SS df MS Number of obs = 75

-------------+---------------------------------- F(4, 70) = 35.02

Model | 14943.3997 4 3735.84993 Prob > F = 0.0000

Residual | 7468.21971 70 106.688853 R-squared = 0.6668

-------------+---------------------------------- Adj R-squared = 0.6477

Total | 22411.6194 74 302.859722 Root MSE = 10.329

------------------------------------------------------------------------------

chol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age2029 | -11.52793 2.385387 -4.83 0.000 -16.28543 -6.770423

age3039 | 1.809552 2.385387 0.76 0.451 -2.947953 6.567057

age4059 | 10.41917 2.385387 4.37 0.000 5.661668 15.17668

age6079 | 19.0307 2.385387 7.98 0.000 14.2732 23.78821

_cons | 200.2513 1.192694 167.90 0.000 197.8725 202.63

------------------------------------------------------------------------------
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Effect coding

ANOVA test doesn’t change

Parameters are interpreted as deviations from the grand mean, which
means that the interpretation of the Wald test does change

Now the Wald test is testing if average cholesterol for each age group
is different from the grand mean, not different from the reference
category

Warning: This only works for balanced; data in which all categories
have the same number of observations. With unbalanced data, the
intercept is no longer the grand mean

Not the only way of coding; there are more schemes

Lesson: what you want to test drives how you code the data
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Wage by experience agan using the anova command

Stata of course has an anova command

anova wage expcat2 expcat3

Number of obs = 1,256 R-squared = 0.0585

Root MSE = 4.52754 Adj R-squared = 0.0570

Source | Partial SS df MS F Prob>F

-----------+----------------------------------------------------

Model | 1596.5587 2 798.27936 38.94 0.0000

|

expcat2 | 1216.5794 1 1216.5794 59.35 0.0000

expcat3 | 1109.1269 1 1109.1269 54.11 0.0000

|

Residual | 25684.785 1,253 20.498631

-----------+----------------------------------------------------

Total | 27281.343 1,255 21.738122

test expcat2 expcat3

Source | Partial SS df MS F Prob>F

----------------+----------------------------------------------------

expcat2 expcat3 | 1596.5587 2 798.27936 38.94 0.0000

Residual | 25684.785 1,253 20.498631
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Wage by experience agan using the anova command

The symbolic option helps you see what Stata is testing and how it’s
coded

Type “help anova” for more details

test expcat2 expcat3, symbolic

expcat2

0 -r2

1 r2

expcat3

0 -r4

1 r4

_cons 0
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A slide for Sue
Your professor was doing was is called a “two-way factorial ANOVA.”
Time has three levels and group had two. Then there was an
interaction
y = β0 + β1group1 + β2time48 + β3time72 + β4group1 ∗ time48 +
β5group1 ∗ time72 + ε
Source | SS df MS Number of obs = 24

-------------+---------------------------------- F(5, 18) = 8.02

Model | 23.1264022 5 4.62528044 Prob > F = 0.0004

Residual | 10.3745437 18 .576363542 R-squared = 0.6903

-------------+---------------------------------- Adj R-squared = 0.6043

Total | 33.500946 23 1.45656287 Root MSE = .75919

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.groupn | .89375 .5368256 1.66 0.113 -.2340788 2.021579

|

time |

48 | -.817 .5368256 -1.52 0.145 -1.944829 .3108288

72 | -2.2905 .5368256 -4.27 0.000 -3.418329 -1.162671

|

groupn#time |

1 48 | -.69425 .7591861 -0.91 0.373 -2.289241 .9007408

1 72 | .23975 .7591861 0.32 0.756 -1.355241 1.834741

|

_cons | 6.06825 .3795931 15.99 0.000 5.270755 6.865745

------------------------------------------------------------------------------
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A slide for Sue

Using ANOVA

The test for the time row is a test of “main effects” for time. That is,
whether the mean y is the same for all times regardless of group

You can do the using the F test comparing nested models . Because
of small sample sizes, the LRT will be a bit different

anova y i.groupn i.time i.groupn#i.time

Number of obs = 24 R-squared = 0.6903

Root MSE = .759186 Adj R-squared = 0.6043

Source | Partial SS df MS F Prob>F

------------+----------------------------------------------------

Model | 23.126402 5 4.6252804 8.02 0.0004

|

groupn | 3.3056104 1 3.3056104 5.74 0.0277

time | 18.879579 2 9.4397895 16.38 0.0001

groupn#time | .94121275 2 .47060637 0.82 0.4577

|

Residual | 10.374544 18 .57636354

------------+----------------------------------------------------

Total | 33.500946 23 1.4565629
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A slide for Sue

Replicate test

qui anova y i.groupn i.time i.groupn#i.time

test time

Source | Partial SS df MS F Prob>F

-----------+----------------------------------------------------

time | 18.879579 2 9.4397895 16.38 0.0001

Residual | 10.374544 18 .57636354

test time, symbolic

groupn

0 0

1 0

time

24 -(r4+r5)

48 r4

72 r5

groupn#time

0 24 -1/2 (r4+r5)

0 48 1/2 r4

0 72 1/2 r5

1 24 -1/2 (r4+r5)

1 48 1/2 r4

1 72 1/2 r5

_cons 0
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Adding covariates

Let’s add experience (linearly) to the model:
wagei = β0 + β1femalei + β2experi + εi

Same interpretation as before, with the addition that β1 is the average
difference in salaries of females versus males holding experience
constant or after taking into account the effect of experience

Let’s say we hold exper constant at exper = 10

E [wage|female = 1; exper = 10] = β0 + β1 + β2 ∗ 10 and
E [wage|female = 0; exper = 10] = β0 + β2 ∗ 10

So E [wage|female = 1]− E [wage|female = 0] = β1

Same as before (this would be ANCOVA, by the way). The partialling
out interpretation of adjusting still holds (try it)
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Factor syntax in Stata

The other reason I created the expcat variable with 1, 2, 3 for each
category of experience is because Stata has a convenient syntax so
you don’t have to create dummy variables

It’s called factor variables. For more, type help fvvarlist in Stata

Use it with caution. I much prefer you do it the longer way
(creating dummy variables) until you understand what you are doing

But it does save time (once you understand what you are doing)
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Factor variables

reg wage i.expcat

<...>

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

expcat |

2 | 2.217522 .287846 7.70 0.000 1.652809 2.782235

3 | 2.697418 .3667077 7.36 0.000 1.977989 3.416847

|

_cons | 4.759599 .2198768 21.65 0.000 4.328232 5.190966

------------------------------------------------------------------------------

* Change the reference category to second level

reg wage ib2.expcat

<..>

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

expcat |

1 | -2.217522 .287846 -7.70 0.000 -2.782235 -1.652809

3 | .4798956 .3473301 1.38 0.167 -.201517 1.161308

|

_cons | 6.977121 .1857673 37.56 0.000 6.612672 7.34157

------------------------------------------------------------------------------
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Things to never forget

If you change the reference level you change the Wald test

What is the difference between the Wald test for the coefficient of
expcat3 in the above models?

In the first model the null is that the average for those with
experience level of 3 (more than 30 years) is the same as the average
salary of those with 0-10 years of experience. We reject that null

In the second, we are comparing level 3 to level 2, the reference
category. We do not reject that null

Another way of creating different comparison with categorical
variables is contrasts (more on that in one sec)
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Things to never forget II

This has to be the most common mistake and source of confusion
when using dummy variables

How do we test if experience is related to wages?

In the model wage = β0 + β1exper + ε we would use the Wald test
for exper (assumed to be linearly related to wage)

But now we have wage = β0 + β1expercat2 + β1expercat3 + ε

We need to test all of them jointly: H0 : β1 = β2 = 0. If not
rejected, the average wage is the same regardless of experience level

In this simple model, that’s the F test

Think about a full and reduced model using either an F test or a
LRT. Or a Wald test using the test command
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Several equivalent tests

reg wage expcat2 expcat3

Source | SS df MS Number of obs = 1,256

-------------+---------------------------------- F(2, 1253) = 38.94

Model | 1596.55872 2 798.279361 Prob > F = 0.0000

Residual | 25684.7847 1,253 20.498631 R-squared = 0.0585

-------------+---------------------------------- Adj R-squared = 0.0570

Total | 27281.3434 1,255 21.7381222 Root MSE = 4.5275

<...>

test expcat2 expcat3

( 1) expcat2 = 0

( 2) expcat3 = 0

F( 2, 1253) = 38.94

Prob > F = 0.0000

qui reg wage expcat2 expcat3

est sto f

qui reg wage if e(sample)

est sto r

lrtest f r

Likelihood-ratio test LR chi2(2) = 75.74

(Assumption: r nested in f) Prob > chi2 = 0.0000

* chi-squared = (numerator degrees of freedom) * F

di 2*38.94

* 77.88
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Contrasts

This is one of those cultural issues in methods: if you were trained in
economics, you have never heard about contrasts (ever, I have asked
about 13 people so far)

More common in psychology and stats and a bit old-fashioned. The
researchers who still use ANOVA instead of regressions tend to use
contrasts (or those who tend to use SAS, but this is anecdotal)

In stats, you cover contrasts in design and analysis of experiments

It involves linear combination of parameters (so to speak) to make
comparisons

Stata has a post-estimation command called contrasts that can be
used to replicate what we did so far and much more (type “help
contrast”)
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Contrasts

qui reg wage i.expcat

contrast r.expcat

------------------------------------------------

| df F P>F

-------------+----------------------------------

expcat |

(2 vs 1) | 1 59.35 0.0000

(3 vs 1) | 1 54.11 0.0000

Joint | 2 38.94 0.0000

|

Denominator | 1253

------------------------------------------------

contrast a.expcat

------------------------------------------------

| df F P>F

-------------+----------------------------------

expcat |

(1 vs 2) | 1 59.35 0.0000

(2 vs 3) | 1 1.91 0.1673

Joint | 2 38.94 0.0000

|

Denominator | 1253

------------------------------------------------
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Let’s bring beauty back

We had to wait until now to actually measure the effect of looks on
wages because looks was measured as a qualitative variable

Check all p-values. Does beauty affect wages? Notice something odd?

tab looks, gen(look)

reg wage look2-look5

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(4, 1255) = 2.58

Model | 223.237407 4 55.8093518 Prob > F = 0.0357

Residual | 27124.2018 1,255 21.6129098 R-squared = 0.0082

-------------+---------------------------------- Adj R-squared = 0.0050

Total | 27347.4392 1,259 21.7215561 Root MSE = 4.649

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

look2 | .7072643 1.347121 0.53 0.600 -1.935593 3.350122

look3 | 1.88306 1.300948 1.45 0.148 -.6692133 4.435333

look4 | 1.677802 1.312215 1.28 0.201 -.8965743 4.252179

look5 | 2.766883 1.673336 1.65 0.098 -.5159616 6.049727

_cons | 4.621538 1.289392 3.58 0.000 2.091937 7.15114

------------------------------------------------------------------------------
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Let’s bring beauty back

What changed now?

reg wage look1 look2 look4 look5

*same as

*reg wage ib3.looks

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(4, 1255) = 2.58

Model | 223.237407 4 55.8093518 Prob > F = 0.0357

Residual | 27124.2018 1,255 21.6129098 R-squared = 0.0082

-------------+---------------------------------- Adj R-squared = 0.0050

Total | 27347.4392 1,259 21.7215561 Root MSE = 4.649

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

look1 | -1.88306 1.300948 -1.45 0.148 -4.435333 .6692133

look2 | -1.175796 .4267767 -2.76 0.006 -2.01307 -.3385211

look4 | -.2052577 .2988493 -0.69 0.492 -.791557 .3810416

look5 | .8838227 1.080489 0.82 0.414 -1.235941 3.003586

_cons | 6.504598 .1730167 37.60 0.000 6.165164 6.844032

------------------------------------------------------------------------------
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Let’s bring beauty back

One problem with the previous model is that looks = 1 has very low
sample size (n = 13); we would be better off comparing above
average looks to the rest

desc abvavg

...

abvavg byte %8.0g =1 if looks >=4

reg wage abvavg

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(1, 1258) = 0.06

Model | 1.19891395 1 1.19891395 Prob > F = 0.8144

Residual | 27346.2403 1,258 21.7378698 R-squared = 0.0000

-------------+---------------------------------- Adj R-squared = -0.0008

Total | 27347.4392 1,259 21.7215561 Root MSE = 4.6624

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | .0670626 .2855582 0.23 0.814 -.4931602 .6272853

_cons | 6.286306 .1574377 39.93 0.000 5.977436 6.595175

------------------------------------------------------------------------------

Still, shaky evidence. Look at R2. Clearly we need to explain more of
the variance; let’s ignore statistical significance and focus on
coefficients
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Let’s bring beauty back

Adding female indicator

reg wage abvavg female

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(2, 1257) = 68.76

Model | 2696.97554 2 1348.48777 Prob > F = 0.0000

Residual | 24650.4636 1,257 19.6105518 R-squared = 0.0986

-------------+---------------------------------- Adj R-squared = 0.0972

Total | 27347.4392 1,259 21.7215561 Root MSE = 4.4284

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | .1994742 .2714608 0.73 0.463 -.333092 .7320404

female | -3.077489 .262482 -11.72 0.000 -3.59244 -2.562538

_cons | 7.310966 .1732013 42.21 0.000 6.97117 7.650761

------------------------------------------------------------------------------

Both are indicator variables, how do we interpret them?

(Look at the p-value for abvage. What changed?)
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Interpretation

The model is wagei = β0 + β1abvavgi + β2femalei + εi

β0 is the average wage for males rated as being of below average
looks (holding sex constant)

The other coefficients are interpreted as before, holding the other
constant and in relation to their reference category

β1 is the average wage for those rated as having above average looks
compared to those rated as having below average looks, holding the
effect of sex constant (it is like a weighted average)

Note other things: What is the average wage for females rated as
having above average looks? It’s β0 + β1 + β2

(It won’t be exactly the same as using the summarize command but
will be close. To get exact values, we need interactions)
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Expected value for above avg looks and females

Not the same as summarize command but close enough

reg wage abvavg female

....

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | .1994742 .2714608 0.73 0.463 -.333092 .7320404

female | -3.077489 .262482 -11.72 0.000 -3.59244 -2.562538

_cons | 7.310966 .1732013 42.21 0.000 6.97117 7.650761

------------------------------------------------------------------------------

di _b[_cons] + _b[abvavg] + _b[female]

4.4329506

sum wage if abvavg ==1 & female ==1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 144 4.698264 6.436829 1.16 77.72

In a second, we will get it exactly right
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Interactions

When we did descriptive stats we saw that the effect of looks on
wages was different for males and females

In the model above, the effect of looks on wage does not depend
on sex; it’s the effect of above average looks once sex has been taken
into account

The partialling out interpretation still holds

reg wage female

predict wage_r, res

reg abvavg female

predict abvavg_r, res

reg wage_r abvavg_r

------------------------------------------------------------------------------

wage_r | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg_r | .1994742 .2713529 0.74 0.462 -.3328799 .7318283

_cons | 4.66e-09 .1247059 0.00 1.000 -.2446544 .2446544

------------------------------------------------------------------------------

To make the effect of looks depend on sex, we need to add
interactions
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Interactions

A model with interactions is:

wagei = β0 + β1abvavg + β2female + β3abvavg ∗ femalei + εi

And here is where things get a bit complicated. Never
underestimate the power of interactions to get you all confused

The easy part: we are just making the effect of looks depend on sex,
so the effect is different for males than females. Or the other way
around, the effect of sex depends on looks

The difficult part: interpreting the parameters and not getting things
backwards because interactions go in both directions

We will cover several strategies
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Interactions

Female of above average looks: β0 + β1 + β2 + β3

Female of below average looks: β0 + β2

So (1) β1 + β3 is the difference in female average salaries for those of
above average looks compared to those of below average looks

Male of above average looks: β0 + β1

Male of below average looks: β0

So (2) β1 is the difference in male average salary for those of above
average looks compared to those males of below average looks

Both (1) and (2) are differences. And β3 is the difference (1) - (2), so
β3 is a difference of differences: It is the additional effect of above
average looks for females versus males
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Interactions

The model again:

wagei = β0 + β1abvavg + β2female + β3abvavg ∗ femalei + εi

One mechanic way of remembering: β3 is only “on” if both
abvavg = 1 and female = 1; if either one is zero, β3 is out of the
picture

So it’s the incremental/additional effect of above average looks for
females versus males as we just worked it out

To make things more confusing, it is also the incremental or
additional effect of being female for those with above average looks
compared to those with below average looks

That’s how you can get easily confused

About taking derivatives when you are not supposed to take
derivatives... (don’t tell anybody)
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Digression: difference-in-difference models

Suppose you have data for a treatment group T before and
intervention and after an intervention, where post is a dummy
variable equal to one if in the post period

You run the following model (omitting subscripts):

y = β0 + β1T + β2post + β3T ∗ post + ε

β1 is the treatment effect in the pre-period. What is β3?

(Treated post-period - treated pre-period)
= β0 + β1 + β2 + β3 − β0 − β1 = β2 + β3

(Control post-period - control pre-period) = β0 + β2 − β0
So β3 is (Treated post-period - treated pre-period) - (Control
post-period - control pre-period)

β3 is a difference-in-difference. If β3 = 0 then there is no treatment
effect in the post-period
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Interactions

The model with interactions: β3 = 0.62;

gen abv_fem = abvavg*female

reg wage abvavg female abv_fem

Source | SS df MS Number of obs = 1,260

-------------+---------------------------------- F(3, 1256) = 46.25

Model | 2720.71294 3 906.904314 Prob > F = 0.0000

Residual | 24626.7262 1,256 19.6072661 R-squared = 0.0995

-------------+---------------------------------- Adj R-squared = 0.0973

Total | 27347.4392 1,259 21.7215561 Root MSE = 4.428

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | -.0256877 .3399345 -0.08 0.940 -.6925898 .6412143

female | -3.273637 .3172773 -10.32 0.000 -3.896088 -2.651185

abv_fem | .6213146 .5646815 1.10 0.271 -.4865083 1.729138

_cons | 7.376273 .1830757 40.29 0.000 7.017106 7.735441

------------------------------------------------------------------------------

Effect of looks depends on sex:

For females: (1) β̂1 + β̂3 = −.0256877 + .6213146 = .5956269

For males: (2) β̂1 = −.0256877
44



Interactions: careful with tests

Again, careful with tests. If we want to test if the effect of above
average looks for males is significant, we can just look at the p-value
for the coefficient of abvavg looks

If we want to test if the effect is significant for females, we need to
test H0 : β1 = β3 = 0

qui reg wage abvavg female abv_fem

test abvavg abv_fem

( 1) abvavg = 0

( 2) abv_fem = 0

F( 2, 1256) = 0.88

Prob > F = 0.4170

This seems fairly complicated but it all starts with a clear
understanding of the meaning of the model parameters
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Interactions, graphically
The more accurate graph is the one with dots: only four predicted
values are possible but the lines help visualize the change

predict wagehat

scatter wagehat abvavg if female ==1, color(pink) || scatter wagehat abvavg if female ==0, color(blue) ///

legend(off) saving(int1.gph, replace)

line wagehat abvavg if female ==1, sort color(pink) || line wagehat abvavg if female ==0, color(blue) ///

legend(off) saving(int2.gph, replace)

graph combine int1.gph int2.gph
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In case you miss it...

With a fully interacted model, we get four predicted means that are
the same as creating a table with summary statistics by level of above
average looks and sex:

bysort abvavg female: sum wage

-> abvavg = 0, female = 0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 585 7.376273 4.557269 1.05 38.86

-> abvavg = 0, female = 1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 292 4.102637 2.149043 1.02 12.12

-> abvavg = 1, female = 0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 239 7.350586 4.687264 1.46 41.67

-> abvavg = 1, female = 1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

wage | 144 4.698264 6.436829 1.16 77.72

47



Interactions and stratification

What about if we estimated models separately for males and females?
After all, we just saw that the effect is different for males and females

reg wage abvavg if female == 1

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | .5956269 .4167332 1.43 0.154 -.2234394 1.414693

_cons | 4.102637 .2394948 17.13 0.000 3.631923 4.573351

------------------------------------------------------------------------------

reg wage abvavg if female == 0

------------------------------------------------------------------------------

wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

abvavg | -.0256877 .3527762 -0.07 0.942 -.718136 .6667605

_cons | 7.376273 .1899917 38.82 0.000 7.003347 7.749199

------------------------------------------------------------------------------

Never forget: The model with interactions is equivalent to a
stratified model. If we had more covariates, say experience and
education, you would need interactions between the female indicator
and both experience and education (triple highlight this)
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A more complex model

wagei = β0 + β1abvavg + β2exper + β3female + β4abvavg ∗
femalei + β5exper ∗ female + εi

Model for males (keeping other vars constant):

β0 + β1 ¯abvavg + β2 ¯exper

Model for females (keeping other vars constant):

β0 + β1 ¯abvavg + β2 ¯exper + β3 + β4 ¯abvavg + β5 ¯exper

Testing H0 : β3 = β4 = β5 = 0 is testing whether there is any
difference in models for females and males

If there are, you may consider stratification. It is hard to present a
fully-interacted model in a paper

As I said before, never underestimate the power of interactions to get
you all confused. Get used to do some math and make sure that you
get the meaning of parameters right
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Digression

As usual, language can be confusing and there is more than one way
of teaching qualitative variables and interactions

It is common to introduce indicator/dummy variables saying that
adding an indicator variable is a model with different intercepts

Adding interactions is a model with different intercepts and different
slopes

We cover the same already without using that kind of language (see
last plot)

I don’t find that way of teaching very useful but it is a common way
of introducing these ideas
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Interactions with continuous variables

Not much changes but presentation tends to be a bit more difficult

Suppose your model is: y = β0 + β1age + β2educ + β3age ∗ educ + ε
∂y
∂age = β1 + β3 ∗ educ
As before, the effect of age on y depends on the value of education

You could present results choosing some meaningful values of
education. For example 12, 16, 21 (high school, college, graduate
school). For high school:
∂y
∂age = β1 + β3 ∗ 12

A lot easier (for presentation) making education categories instead
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Other uses of indicator variables

We saw that the relationship between wages and experience is better
described by a curve than by a line

wage = β0 + β1exper + β2exper
2 + ε

Similar to an interaction in the sense that there is no single effect of
experience on wage; the change in average wages depends on the
initial value of experience (take the derivative)

By modeling experience by categories, we can take into account the
non-linearity and make the model much easier to present

Some statisticians vehemently condemn this practice but it’s very
common
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Graphically

Compare model with a quadratic term versus indicators for levels of
experience

* Quadratic

reg wage c.exper##c.exper if wage < 30

predict wagehat2 if e(sample)

* Indicator variables

reg wage i.expcat

predict wagehatc if e(sample)

* Graph

scatter wage exper if wage < 30, color(gray) || line wagehat2 exper, color(red) sort ///

|| scatter wagehatc exper, color(blue) legend(off)

Note the use of factor syntax to quickly create quadratic terms and
interactions; I dropped high values of wages so the trend is easier to
see
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Quadratic versus indicators

We need to be careful when choosing categories
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Summary

Qualitative variables or the categorization of a continuous variable
adds a lot of flexibility in modeling

Interpretation changes somewhat; never forget that everything is
interpreted in relation to the reference category

You change the reference category and the null of the Wald test
changes

ANOVA and ANCOVA are linear models, period

Fully interacted and stratified models are equivalent

Be careful interpreting parameters
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