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Medical cost data

We already saw that medical cost data have some unique characteristics that
have consequences for statistical modeling

Cost are non-negative and tend to be skewed to the right, with a large
portion of observations having low expenditures but a fraction having very
large expenditures

Depending on the type of cost (e.g. outpatient vs inpatient) and population
(e.g. elderly vs young), there could be a large proportion of observations with
zero costs

This shouldn't be surprising. Medical costs are related to illness, and illness
doesn't hit everybody at the same time — even with chronic conditions

Most of medical expenditures in a year are incurred by a small portion of
people

Be mindful that we are talking about medical costs, not prices — prices tend
to be closer to normally distributed, but of course they can’t be negative



Data
m MEPS 2004 data from Deb, Norton, and Manning (2017)

use http://www.stata-press.com/data/heus/heus_mepssample, clear
desc exp_* age female pcs race*

storage display  value
variable name  type format label variable label
exp_tot long %12.0g Total medical care expenses
exp_ip float %9.0g Inpatient expenses = exp_ip_fac + exp_ip_md
exp_ip_fac long %12.0g Inpatient facility expenses
exp_ip_md int %8.0g Inpatient md expenses
exp_er int %9.0g ER expenses = exp_er_fac + exp_er_md
exp_er_fac int %12.0g ER facility expenses
exp_er_md int %8.0g ER nd expenses
exp_dent int %8.0g Dental care expenses
exp_self long  %12.0g Total expenses paid by self or family
age byte  %8.0g Age
female byte %9.0g 1b_female
Female
pcsi2 double %10.0g Physical health component of SF12
race_bl byte %14.0g 1b_race_bl
Black
race_oth byte %14.0g 1b_race_oth

Other race, non-white and non-black

sum exp_tot exp_ip exp_er exp_dent exp_self

Variable | Obs Mean Std. Dev. Min Max
exp_tot | 19,386 3685.25 9768.475 [ 440524
exp_ip | 19,386 1122.972 7283.09 [ 376987
exp_er | 19,386 130.1588 685.5471 [ 20545
exp_dent | 19,386 211.2738 657.1742 [ 16275
exp_self | 19,386 685.2889 1468.705 [ 50850



Total expenditures in 2014

hist exp_tot, kdensity title("Total Expenses 2004") saving(thistl.gph, replace)

hist exp_tot if exp_tot < 100000, kdensity title("Total Expenses 2004") saving(thist2.gph, replace)
graph combine thistl.gph thist2.gph, ysize(10) xsize(20)

graph export histc.png, replace
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Exploring a bit more

m Check percentiles. It happens at all ages

* all ages
tabstat exp_tot, stats(N mean p5 pl0 p50 p75 p90 p99)

variable | N mean P5 p10 P50 P75 po0 P99
exp_tot | 19386  3685.25 [ [ 952 3507 8940 41373
* older than 75
tabstat exp_tot if age >75, stats(N mean p5 pl0 p50 p75 p90 p99)
variable | N mean p5 p10 P50 p75 P90 P99
exp_tot | 1285 8900.486 374 764 4159 9594 22161 71343
gen zero = 0

replace zero = 1 if exp_tot =

tab zero
zero | Freq. Percent Cum.
ol 15,946 82.26 82.26
11 3,440 17.74 100.00
Total | 19,386 100.00

tab zero if age > 75

zero | Freq. Percent Cum.
o1l 1,267 98.60 98.60
11 18 1.40 100.00

Total | 1,285 100.00



It's not just the zeroes
m The “excess’ zeroes pose a statistical problem, but the distribution is skewed
without the zeroes as well

tabstat exp_tot if exp_tot >0, stats(N mean sd p5 pl0 p50 p75 p90 p99 min max)

variable | N mean sd p5 p10 p50 p75 P90
exp_tot | 15946 4480.262 10604.14 83 153 1537 4482 10476
variable | P99 min max
exp_tot | 44065 2 440524

hist exp_tot if exp_tot >0, kdemsity
graph export noz.png, replace
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Modeling cost data

m Say that we want to estimate a model like this with total expenditure during
the year as the dependent/outcome variable:

exp_tot; =
Bo + P1rage; + Bafemale; + B3 pcs; + Barace_bl; + PBsrace_oth; + Beeth_hisp; + €;

m We want to understand factors that affect E[exp-tot|X] as a function of age,
sex, physical functioning, and race/ethnicity

m We could use our trusty linear/OLS model since we know that it's an
unbiased conditional expectation function

m But we know that SEs are not correct since costs do not distribute normal
and there are likely heteroskedastic problems

m At the very least we need to use robust SEs (robust option in reg command)



Linear/OLS model

m Interpretation is straightforward. We can check the residuals and predictions

reg exp_tot age i.female pcs race* eth_hisp, robust

Linear regression Number of obs = 19,386
F(6, 19379) = 198.97
Prob > F = 0.0000
R-squared = 0.1283
Root MSE = 9121.6
| Robust
exp_tot | Coef. Std. Err. t P>t [95% Conf. Intervall
age | 53.67021 5.448849 9.85 0.000 42.98999 64.35042
|
female |
Female | 545.4941 138.9665 3.93 0.000 273.1078 817.8804
pesi2 | -255.709 13.96654 -18.31 0.000 -283.0846 -228.3334
race_bl | -1208.192 181.9308 -6.64 0.000 -1564.793 -851.5923
race_oth | -1583.594 195.7612 -8.09 0.000 -1967.303 -1199.885
eth_hisp | -1704.833 135.9056 -12.54  0.000 -1971.219  -1438.446
_cons | 14140.71 950.2784 14.88 0.000 12278.08 16003.34
. predict yhat
(option xb assumed; fitted values)
. sum yhat
Variable | Obs Mean Std. Dev. Min Max
yhat | 19,386 3685.25 3499.218 -3592.533  17268.99

. qui reg exp_tot age female pcs

. predict res, rstandard



Linear/OLS model

m Not good at all. Predictions are negative, residuals not even close to normal,
some large residuals. Unlikely that different specifications or covariates can
account for shape of residuals

qnorm res, saving(qno.gph, replace)
kdensity res, saving(hisres.gph, replace)

graph combine gno.gph hisres.gph
graph export res.png, replace
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Transformations

m You probably learned in intro classes that transformations of the outcome
variable can improve model fit when there are violations of linear/OLS
assumptions

m The most common for cost data is to take the log (the natural log; often we
don't distinguish between log and In) of the cost since taking the log of
skewed data tend to produce distributions that look normal

m We will focus on the natural log (In), but the In transformation is part of the
Box-cox type of transformation, given by:

o _ JE5E ifa#£0
In(y) ifA=0

m Box-cox models use MLE to find the parameter to transform the model (or
outcome). See Stata help for command -boxcox-



Log transformation

m The most common transformation —the knee-jerk transformation— with

skewed data is to use /n(y) (called log-level model since we leave the
covariates as they are)

m /n(0) is undefined so we need to add 1 to the cost data without losing much,
but it's a bit odd

m The outcome looks closer to normal but we have that peak for costs equal to
1 (the previous zeroes)

gen lexp = log(i+exp_tot)

kdensity lexp, title("ln(exp_tot + 1)")
graph export lexp.png, replace
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Ln transformation
m Residuals look better, not great, but much better. Would be excellent
without the zeroes

qui reg lexp age female pcs racex
predict resl, rstandard

qnorm resl, saving(qnol.gph, replace)
kdensity resl, saving(hisresl.gph, replace)
graph combine gnol.gph hisresl.gph

graph export resl.png, replace
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Log transformation

m Note that the issue are the zeroes, transformed into /n(1). If we restricted

the analysis to expenditures greater than zero, the In transformation would be

very reasonable. Box-Cox suggests so as well. In the output below 6 would
be the Box-Cox A. We reject the null that is zero but it's close to zero

m See do file for today (the Box-Cox model doesn't change conclusions in terms

of SEs and p-values in this example)

boxcox exp_totl age female pcs race* eth_hisp if exp_tot > 0, model(lhsonly) lrtest molog nologlr

Fitting comparison model
Fitting full model
Fitting comparison models for LR tests

Number of obs = 15,946
LR chi2(6) = 4916.94
Log likelihood = -143350.1 Prob > chi2 = 0.000
exp_totl | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
/theta | .0640056 .0039185 16.33 0.000 .0563255 .0716857
<>
Test Restricted LR statistic P-value
HO: log likelihood chi2 Prob > chi2
theta = -1 -179058.31 71416.43 0.000
theta = 0 -143483.87 267.54 0.000
theta = 1 -169451.21 52202.23 0.000




Log transformation - interpretation

m Below is the fitted model (including observations with zero total
expenditure). Now we need to face another problem: how do we interpret
the coefficients in the $ scale?

m The estimated model is E[In(Y)|X] = fo + B1.X1 + - - + 5;X;

reg lexp age female pcs race* eth_hisp

Source | ss af MS Number of obs = 19,386
F(6, 19379) = 1254.91

Model | 53406.9521 6 8901.15868 Prob > F = 0.0000
Residual | 137456.862 19,379 7.09308336 R-squared = 0.2798
Adj R-squared =  0.2796

Total | 190863.814 19,385 9.8459538 Root MSE = 2.6633
lexp | Coef. Std. Err. t  Pltl [95% Conf. Intervall

age | .0435419  .0012345  35.27  0.000 0411221 .0459616
female | 1.093938 .0386264  28.32  0.000 1.018227  1.169649
pesi2 | -.0654314  .0019186 -34.10  0.000 -.069192  -.0616708
race bl | ~-1.020951 .0577763 -17.67 0.000  -1.134197  -.907704
race_oth | -.774305 .0792569  -9.77 0.000  -.9296554 -.6189545
eth_hisp | -1.793879  .0484721 -37.01 0.000  -1.888888 -1.698869
_cons | 7.181796  .1349736  53.21  0.000 6.917236  7.446356

. di 100%(exp(_b[eth_hisp]) -1 )
-83.368614



Ln transformation - interpretation

m There is a shortcut (approximation) to interpret log-level model coefficients

m For continuous variables, we can interpret them as percent changes. For
example, an additional point in the PCS12 score decreases expenditure by
about 6.5%, holding other factors constant. An additional year of age
increases expenditures by about 4.35%

m For dummy variables, we use A%Y ~ 100(eﬁf -1)

m So average expenditure for Hispanics is 83% lower than for whites, adjusting
for other factors

m It's a convenient way to interpret models, but we may still want to
interpret models in the orginal scale, $

m (There is a modification for dummy variables called the “Kennedy
transformation” ; see DNM)



Ln transformation

m The log transformation is not an innocent transformation. The problem is
easier to see using using the population model
In(Y)=Fo+ 1 X1 +---+BiXj+¢

m Taking the exponent on both sides:
Y = e(BotBriXit-+BiXj+e) — alBotBrXot--+BiX)) o€

m If we now take the conditional expectation we get:
E[Y|X] = elPotfXat+8X) E[e€|X] = e x MX1 x ... x %% x E[e¢|X]

m So taking the exponent of the estimated model is not going to give us what
we want, although we could find a solution by trying to come up with E[e€|X]

m The bottom line of the story is that with the linear/OLS model we estimated
E[In(Y)|X], but E[In(Y)|X] # In(E[Y|X])

m If we could instead estimate In(E[Y|X]), exponentiation would give us what
we want: eEIYIXD) — F[y|X]



Duan's smearing factor

From the previous slide, we could retransform the model back into the $ scale
if we find E[e®|X]
The answer is just there in the formula: we can use the residuals of the
model, € to estimate E[ef|X]
If we assume that the error distributes normal the correction factor is

152
Dnorm = e2°’
To relax the normality assumption, we can use Duan’s smearing factor
instead: Dgmear = S04 &

i=1 n

Note that in these formulas the residual is the residual of the log-level model
After we find the smearing factor, E[Y|X] = eX'P X Demear

Since we already know that marginal effects are based on predictions and we
just found a way of calculating predictions in the dollar scale, we can then get
marginal effects



Duan's smearing factor

m The steps are straightforward:

1 Estimate the log-level model

2 Estimate the model residuals €&

3 Take the exponent of the residuals: e

4 The mean of step 3) is the smearing factor Dsmear

m With the smearing factor in hand we can obtain predictions in the $ scale
m Again: this means that we can also find marginal effects in the $ scale
m Marginal and incremental effects are predictions



Example

m Below is example for positive expenditure where the Duan’s smearing factor
works best

qui reg lexp age female pcs race* eth_hisp if exp_tot > 0
predict epsilonhat, residual

* Predictions in 1ln scale
predict lyhat

* Exponent of predictions
gen explyhat = exp(lyhat)

* Duan’s smearing factor

egen dduan = mean(exp(epsilonhat))
* Transform exponent of predictions
gen yhatduan = explyhat * dduan

sum yhatduan exp_tot if exp_tot > 0

Variable | Obs Mean Std. Dev. Min Max
yhatduan | 15,946 5090.052 5602.295  448.9315 65638.84
exp_tot | 15,946 4480.262 10604.14 2 440524
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Generalized Linear Models

m Rather than using retransformations that have many issues we can use
Generalized Linear Models (GLM) that do not require retransformations
(although with a catch)

m We will only scratch the surface of GLMs, but they are simple to implement
with the tools we have learned. In fact, all the models we used so far are
special cases of GLM models

m GLMs offer a unified theory for a class of regression models that have a
distribution in the exponential family of distributions

m And it happens that the normal, binomial/bernoulli , probit, Poisson, and
Gamma distributions are part of the exponential family

21



Generalized Linear Models - elements

m |'ll follow Hardin and Hilbe (2018) in describing the key elements of GLMs

1 A random component for the response Y that follows a distribution
belonging to the exponential family (think of the error term € in linear models)

2 A linear systematic component relating the predictors X and coefficients,
n=Xp=po+ X+ +BX

3 A link function relating the linear predictors to the fitted predictors. Function
is monotonic, one-to-one, and differentiable. We can link the E[Y] to the
linear predictors: E[Y] =g *(n) = g *(X’8) = p. In the linear/OLS model
the function is the identify function: E[Y] = X'

4 The variance may change with the covariates only as a function of the mean

5 There is one Iterative Reweighted Least Squares algorithm (IRLS) (to compute
estimates) that fits all members of the class

m We will focus on 1 to 3; 4 and 5 are more technical

m Although IRLS unifies GLM, Stata’s default is MLE estimation. You can
requests models to be estimated using IRLS with the irls option
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Exponential family

The exponential family density function can be written as

Fly;0,0) = e{”’%jﬁ”)w(y,qﬁ)}

(Go back to basics: a probability density function gives you the values that
a random variable can take —domain, support— and their probabilities)

The 0 parameter is the location parameter that relates to the mean
(location), while the parameter ¢ relates to the scale (variance)

If we observe y1, ...y, independent observations we can write the
log-likehood function as well:

(0,6, y1 - yn) = Sy {252 + (v, 9)}
Now, this is still a bit too abstract but the key is that by changing how we

define 6 and ¢ and how parameters relate to 8, we can estimate different
pdf’s that generate different models

Essentially defining 6 and ¢ defines different distributions, like the normal
(Gaussian), binomial, Gamma, etc

23



GLM - normal/Gaussian family

m A GLM model with a Gaussian/normal family and an identity link is our
standard linear/OLS model

m The Gaussian/normal density function in the exponential-family form means
2
that 6 = p and b(0) = &

f(y; p,0%) = ol U8 — tin(amo?)}
m That’s the normal density that we saw in the MLE class written in a different
) _=w)?
way. In the MLE class it was f(y; pu,0?) = \/2;7e 207
—in(2mo?) _ _ 1 ' :
m We only need to show that e™2 = oo but that’s straightforward

x -
once you remember two of the rules of exponents: av = ¥/aX and a~* = L
a

m So if we assume a GLM with Gaussian family the likelihood function will be
the same as before

24



GLM - normal/Gaussian family

With covariates, we make p a function of parameters
The identity link implies p = E[Y] = X'
Contrary to logistic regression, we don't need to worry about other links to

constraint the values of Y. With logistic regression, we use the logit
transofrmation but here it's just the identify function

The log-likelihood becomes:

s, 0% y) = Y1 {2X 02 — 2 — Lin(2mo?)}

Again, this is in fact the same log-likelihood function we saw in the MLE
class for the vanilla linear/OLS model

Now the maximization problem is finding the vector 3 that maximizes the
log-likelihood function. As before, Stata will do it numerically using the -glm-
command, but the algorithm will be different than in the MLE class (you
don’t need to worry about that part)
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Example

m At the start of the class we estimated the linear/OLS model below using the
-reg- command

reg exp_tot age i.female pcs race* eth_hisp, robust

Linear regression Number of obs = 19,386
F(6, 19379) = 198.97
Prob > F = 0.0000
R-squared = 0.1283
Root MSE 9121.6
| Robust

exp_tot | Coef.  Std. Err. t P>t] [95% Conf. Intervall
age | 53.67021 5.448849 9.85 0.000 42.98999 64.35042

|

female |
Female | 545.4941 138.9665 3.93 0.000 273.1078 817.8804
pesi2 | -255.709 13.96654 -18.31 0.000 -283.0846 -228.3334
race_bl | -1208.192 181.9308 -6.64 0.000 -1564.793 -851.5923
race_oth | -1583.594 195.7612 -8.09 0.000 -1967.303 -1199.885
eth_hisp | -1704.833 135.9056 -12.54 0.000 -1971.219 -1438.446
_cons | 14140.71 950.2784 14.88 0.000 12278.08 16003.34
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Example

m The same model is a GLM with Gaussian/normal family and identify link

m The “pseudo-likelihood” refers to the way GLM estimates the variance: it's a
function of the mean (Nelder and Lee, 1992)

. glm exp_tot age i.female pcs race* eth_hisp, family(gaussian) link(identity) vce(robust)

Iteration 0: log pseudolikelihood = -204273.44

Generalized linear models Number of obs = 19,386
Optimization : ML Residual df = 19,379
Scale parameter =  8.32e+07
Deviance = 1.61242e+12 (1/df) Deviance =  8.32e+07
Pearson = 1.61242e+12 (1/df) Pearson = 8.32e+07

Variance function: V(u) = [Gaussian]

Link function : gl = [Identity]
AIC 21.07505
Log pseudolikelihood = -204273.4396 BIC 1.61e+12

| Robust
exp_tot | Coef.  Std. Err. z P>z [95% Conf. Intervall
age | 53.67021  5.448006 9.85  0.000 42.99231 64.3481
|
female |

Female | 545.4941 138.945 3.93  0.000 273.1669 817.8213
pesi2 | -255.709  13.96438 -18.31 0.000  -283.0787 -228.3393
race_bl | -1208.192  181.9027 -6.64 0.000  -1564.715 -851.6697
race_oth | -1583.594  195.7309 -8.09 0.000  -1967.219  -1199.968
eth_hisp | -1704.833 135.8846 -12.55 0.000  -1971.161 -1438.504
_cons |  14140.71  950.1314 14.88  0.000 12278.49 16002.94
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GLM Gaussian family with identity link

m | used the robust SEs in both models

m ldentical models. Note that in GLM the Wald test is z not t-student
(asymptotically equivalent — that is, consistent)

m The deviance/Pearson statistics is analogous to the residual sum of squares

m We get BIC and AIC, although the formulas are slightly different for the GLM
model in Stata

m So what do we gain from using a GLM with identity link and Gaussian
family?
m Not much really. BUT, we are about to gain something

m What about changing the link function? Let's use the log link instead
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GLM Gaussian family with log link

m The log-likelihood with the identity link was:

m (p,0%y) = Z?:l{ny/ﬁi_g(/B)Q/Q - % — Lin(2n0?)}

m The log-likelihood with the log link is:
//(%02;}/) _ zfjﬁl{yfeXP(X/ﬂ)—(SXP(X'B))2/2 _ ;7,22 _ %/n(27r02)}

m So we changed 1 = X'f to In(u) = X', or equivalent to In(E[Y]) = X'
since u = E[Y] = eX'P)

m This may seem trivial, but in doing so we just got rid of the
retransformation problem

m With GLM, we estimate /n(E[Y]) = X’8, which means that if we take the
exponent we have E[Y] = X'#

m Remember, the problem with linear/OLS log-evel models is that we model
Ellog(Y)] = X8 and E[In(Y)|X] # In(E[Y|X])



GLM with log link

m The coefficients are in the In scale, taking the exponent they become relative

rates. Ignoring covariates (or fixing them at some value):
/n(E[Yfemale]) - /n(E[Ymale]) = Bfemaleu SO

glm exp_tot age i.female pcs race* eth_hisp, family(gaussian) link(log) robust nolog

Iteration 7:

log pseudolikelihood = -204234.56

Generalized linear models Number of obs = 19,386
Optimization : ML Residual df = 19,379
Scale parameter =  8.29e+07
Deviance = 1.60596e+12 (1/df) Deviance = 8.29e+07
Pearson = 1.60596e+12 (1/df) Pearson = 8.29e+07

Variance function: V(u) = [Gaussian]

Link function  : g(u) = 1n(u) [Log]
AIC 21.07104
Log pseudolikelihood = -204234.5627 BIC 1.61e+12
| Robust
exp_tot | Coef. Std. Err. z P>zl [95% Conf. Intervall
age | .012103 .0023217 5.21 0.000 .0075526 .0166534
|
female |

Female | .0534459 .0605223 0.88 0.377 -.0651757 .1720675
pcsi2 | -.0431595 .0026255 -16.44 0.000 -.0483054 -.0380136
race_bl | -.1941958 .0639167 -3.04 0.002 -.3194703 -.0689213
race_oth | -.3461089 .107184 -3.23 0.001 -.5561856 -.1360322
eth_hisp | -.4321407 .0772245 -5.60 0.000 -.583498 -.2807834
_cons | 9.699521 .2632714 38.30 0.000 9.203118 10.19592

E[ Yfemale]
E [Ymale]
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GLM with log link

m Check relative costs

qui glm exp_tot age i.female pcs i.racex i.eth_hisp, family(gaussian) link(log) vce(robust)

* Take the exponent of the coefficient for female
di exp(_b[1.female])
1.0548999

* Check with predictive margins
margins i.female, post

Predictive margins Number of obs = 19,386
Model VCE  : Robust
Expression : Predicted mean exp_tot, predict()

| Delta-method

| Margin  Std. Err. z P>zl [95% Conf. Intervall

female |
Male | 3738.88  168.7492  22.16  0.000 3408.138  4069.622
Female | 3944.144 105.9751  37.22  0.000 3736.437  4151.852

. di _b[1.female]/_b[0.female]
1.0548999



GLM with log link

m With the eform option you can get the coefficients as relative rates or
relative costs in this case

glm exp_tot age i.female pcs i.race* i.eth_hisp, ///
family(gaussian) link(log) vce(robust) nolog eform

Generalized linear models Number of obs = 19,386
Optimization : ML Residual df = 19,379
Scale parameter =  8.29e+07
Deviance = 1.60596e+12 (1/df) Deviance =  8.29e+07
Pearson = 1.60596e+12 (1/df) Pearson = 8.29e+07
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = 1n(w) [Log
AIC = 21.07104
Log pseudolikelihood = -204234.5627 BIC = 1.61e+12
| Robust
exp_tot | exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
age | 1.012177 .00235 5.21  0.000 1.007581 1.016793
|
female |
Female | 1.0549 .063845 0.88 0.377 9369028 1.187758
pesi2 | .9577586  .0025146 -16.44  0.000 .9528427 9626998
|
race_bl |
Black race |  .8234966  .0526352  -3.04  0.002 . 7265338 .9334001
|
race_oth |
Other race |  .7074355  .0758257  -3.23  0.001 .5733921 .8728145
|
eth_hisp |
Hispanic | 649118  .0501278  -5.60  0.000 .5579433 . 7551919
|

_cons 16309.79 4130.803 38.30 0.000 9928.033 26793.74




GLM with log link - Marginal effects

m With the log link, marginal effects are 8§[Y] B eX'?

m But we now have a bag of tricks and can use margins (note that | use factor
variable syntax for all dummy variables)

. qui glm exp_tot age i.female pcs i.racex i.eth_hisp, family(gaussian) link(identity) vce(ro
> bust)

. margins, dydx(+)

Average marginal effects Number of obs = 19,386
Model VCE  : Robust
Expression : Predicted mean exp_tot, predict()

dy/dx w.r.t. : age 1.female pcsi2 1.race_bl 1.race_oth 1.eth_hisp

| Delta-method

| dy/dx  Std. Err. z P>|z| [95% Conf. Intervall
age | 53.67021 5.448006 9.85 0.000 42.99231 64.3481

|

female |
Female | 545.4941 138.945 3.93 0.000 273.1669 817.8213
pesi2 | -255.709 13.96438 -18.31 0.000 -283.0787 -228.3393

|

race_bl |
Black race | -1208.192 181.9027 -6.64 0.000 -1564.715 -851.6697

|

race_oth |
Other race | -1583.594  195.7309 -8.09  0.000 -1967.219  -1199.968

|

eth_hisp |
Hispanic | -1704.833 135.8846 -12.55 0.000 -1971.161 -1438.504

Note: dy/dx for factor levels is the discrete change from the base level.
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Big picture

m With a GLM model with Gaussian family and log link we don't have a
retransformation problem anymore

m But it doesn’t mean that we did something that makes sense.
Remember, we took the In so costs are closer to a normal distribution, which
fits the assumptions of linear/OLS model

m We don't quite achieve this by retransforming In(E[Y]). We will analyze the
model residuals below

m Now, in this particular dataset, we still need to deal with the zeroes
m Note that we didn’t have to add a 1 to the costs since we model In(E[Y])

m We will deal with the non-normal costs issue soon
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GLM with log link - Residuals

m Residuals in GLM models are of several types: Pearson, deviance and
ascombe

m We will use the deviance residuals for the linear model. As the results below
show, not good at all; in fact, it looks the same as with the linear/OLS model

qui glm exp_tot age i.female pcs i.racex i.eth_hisp, ///
family(gaussian) link(log) vce(robust) nolog
predict double resloglink if e(sample), pearson

hist resloglink, kdensity saving(glmres.gph, replace)

qnorm resloglink, saving(glmresqnorm.gph, replace)

graph combine glmres.gph glmresqnorm.gph, xsize(10) ysize(5)
graph export glmg.png, replace
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GLM - more options to solve main problem

m We know that the main source of problems is that costs do not distribute
normal

m So why not try other exponential family distributions instead of the
normal distribution?

m There is one option that is particularly appealing: the Gamma distribution

m The Gamma distribution has two parameters, the scale parameter and the
shape parameter

m The domain or support is restricted to only positive continuous numbers, like

cost data: x € (0, 00)
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Gamma distribution

m In the exponential family distribution, the density is given by:
—(—Inu — n
Flyip, ¢) = exp{ =l 4 120y, 106 jpr (1)}
m [() is the Gamma function: T'(n) = (n —1)!
m Below are some examples of Gamma distributions from Wikipedia

05 |

—— k=10.6=20
) k=20.8=20
04 k=30.8=20
k=50.8=10
| ——— k=90.8=05
- —— k=75.68=10
k=05.8=10

0.1

o 2 4 & 8 10 12 M & 18 20
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GLM with log link and Gamma family

glm exp_tot age i.female pcs i.race* i.eth_hisp, ///
family(gamma) link(log) nolog

Generalized linear models Number of obs = 19,386
Optimization : ML Residual df = 19,379
Scale parameter = 5.03282
Deviance = 29899.68159 (1/df) Deviance = 1.542891
Pearson = 97531.0098 (1/df) Pearson = 5.03282
Variance function: V(u) = u"2 [Gamma]
Link function  : g(u) = 1n(u) [Log’
AIC = 17.62673
Log likelihood = -170848.859 BIC = -161415.7
| oI
exp_tot | Coef.  Std. Err. z P>zl [95% Conf. Intervall
age | .019701 .0010318 19.09 0.000 .0176786 .0217234
|
female |
Female | 4257809 .0328566 12.96 0.000 .3613833 .4901786
pesi2 | -.0518467 .0015811 -32.79 0.000 -.0549456 -.0487477
|
race_bl |
Black race | -.3074785 .0488381 -6.30 0.000 -.4031994 -.2117577
|
race_oth |
Other race | -.5623746 .0667827 -8.42  0.000 -.6932663  -.4314829
|
eth_hisp |
Hispanic | -.7306073 .0409377 -17.85 0.000 -.8108436 -.650371
_cons | 9.471185 .1109449 85.37 0.000 9.2563737 9.688633

. di exp(_b[1.female])
1.5307854



GLM with log link and Gamma family - margins

margins, dydx(*)

Average marginal effects Number of obs = 19,386
Model VCE : OIM
Expression : Predicted mean exp_tot, predict()

dy/dx w.r.t. : age 1.female pcsi2 1.race_bl i.race_oth 1.eth_hisp

| Delta-method

| dy/dx  Std. Err. z P>zl [95% Conf. Intervall
age | 78.83696 5.019498 15.71  0.000 68.99892  88.67499

|

female |
Female | 1618.632 132.952 12.17  0.000 1358.051 1879.214
pesi2 | -207.4731  10.17648 -20.39 0.000  -227.4186 -187.5276

|

race_bl |
Black race | -1107.139 162.2786 -6.82 0.000  -1425.199 -789.0789

|

race_oth |
Other race | ~-1771.944 171.8934 -10.31 0.000  -2108.849  -1435.039

|

eth_hisp |
Hispanic | -2306.634 123.1464 -18.73 0.000  -2547.996 -2065.271

Note: dy/dx for factor levels is the discrete change from the base level.
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GLM with log link and Gamma family - residuals

m We use ascombe residuals since these residuals follow an almost normal
distribution. Not great —those zeroes!— but much better otherwise

qui glm exp_tot age i.female pcs i.racex i.eth_hisp, ///
family(gamma) link(log) nolog

predict double resgammalog if e(sample), anscombe

* Plot

hist resgammalog, kdensity saving(glmg.gph, replace)

qnorm resgammalog, saving(glmgl.gph, replace)

graph combine glmg.gph glmgl.gph, xsize(10) ysize(5)

graph export resgammalog.png, replace

Density
Anscombe residual
]

5 R
Anscomes residua’ Inversz Nermal
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No zeroes

m Let's estimate the model for only those with non-zero expenditure; tails a bit

off
m Not bad, not great

glm exp_tot age i.female pcs i.racex i.eth_hisp if exp_tot > 0 , ///
family(gamma) link(log) nolog
predict double resgammalogl if e(sample), anscombe

hist resgammalogl, kdensity saving(glmgl.gph, replace)
qnorm resgammalogl, saving(glmgll.gph, replace)

graph combine glmgl.gph glmgll.gph, xsize(10) ysize(5)
graph export resgammalogl.png, replace

5
s

Anseombe residual

2 0
Inversz Nermal

2 4
Anscomes residul
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Big picture

m We started the search for a better model because cost data violated the
assumptions of the standard linear/OLS model

m We ended up with a GLM with Gamma family and log link as a possible
solution

m Our estimates of effects are quite different. This is due to effects being
nonlinear with GLM models

m We get better SEs with log-level models and GLMs

m We also get better SEs with log-level models, but then have the
retransformation problem, although we could interpret coefficients as percent
changes

m In this example, with large sample size, nothing we did changed conclusions
(all p-values are very low)

m We could present parameters that are easier to interpret (dollar scale)
but based conclusions on models with better SEs
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Changing family changes parameters estimates -
nonlinearity

xxx Same with only one dummy variable, we are essentially stratifying the sample
tabstat exp_tot if exp_tot >0, by(female)
female | mean
_______ P,
Male | 4144.966
Female | 4712.789
_______ P
qui reg exp_tot i.female if exp_tot > 0
margins female

| Delta-method

| Margin  Std. Err. t P>t [95% Conf. Intervall

female |
Male | 4144.966 131.1843  31.60  0.000 3887.83  4402.102
Female | 4712.789 109.2459  43.14  0.000 4498.655  4926.923

qui glm exp_tot i.female if exp_tot > 0, family(gamma) /*1link(log)*/ nolog
margins female

| Delta-method

[ Margin  Std. Err. z P>zl [95% Conf. Intervall

female |
Male | 4144.966 123.5248  33.56 0.000 3902.862  4387.071
Female | 4712.796 116.9595  40.29  0.000 4483.56  4942.033

qui glm exp_tot i.female if exp_tot > O, family(gamma) link(log) nolog
margins female

| Delta-method
| Margin  Std. Err. z P>zl [95% Conf. Intervall

female |
Male | 4144.966 123.6304  33.53  0.000 3902.655  4387.277
Female | 4712.789 117.0592  40.26  0.000 4483.357 4942.22




Changing family changes parameters estimates -

nonlinearity

m Only one continuous variable

qui reg exp_tot age if exp_tot > O
margins, dydx(age)

| Delta-method
| dy/dx  Std. Err. t P>t [95% Conf. Intervall

age | 124.8428 4.670387 26.73 0.000 115.6883 133.9973

qui glm exp_tot age if exp_tot > 0, family(gamma) /*link(log)*/ nolog
margins, dydx(age)

| Delta-method
| dy/dx Std. Err. z P>|z]| [95% Conf. Intervall

age | 141.9435 12.99029 10.93 0.000 116.483 167.404

qui glm exp_tot age if exp_tot > 0, family(gamma) link(log) nolog
margins, dydx(age)

| Delta-method
| dy/dx  Std. Err. z P>zl [95% Conf. Intervall

age | 122.8156 6.838548 17.96 0.000 109.4123 136.2189
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Changing family changes parameters estimates -
nonlinearity
m One assumes a linear relationship, GLM with gamma and log link assumes a
nonlinear relationship in the dollar scale

m Note that the marginal effects at age = 52 are nearly identical, as shown by
the slope of the curve

qui reg exp_tot age if exp_tot > 0
predict double yhatols if e(sampple)
margins, dydx(age) at(age=53)

| Delta-method
| dy/dx  Std. Err. t P>t]| [95% Conf. Intervall

age | 124.8428 4.670387 26.73 0.000 115.6883 133.9973

qui glm exp_tot age if exp_tot > 0, family(gamma) link(log) nolog
predict double yhatglmgamma if e(sample)
margins, dydx(age) at(age=52)

| Delta-method

| dy/dx  Std. Err. z P>zl [95% Conf. Intervall
age | 123.5738 6.333483  19.51  0.000 111.1604  135.9872
line yhatols age, sort || line yhatglmgamma age, color(red) sort xline(52) ///

legend(off)
graph export gi.png, replace
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Nonlinearity

m Same as in logistic models. In the probability scale, nonlinear even if we enter
age as linear in the model. Here, nonlinear in the dollar scale

10000
)

5000
L

20 40 60 80 100
Age
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Nonlinearity

m Without the log link, even more nonlinear, that's why marginal effects were
so different (remember, marginal effects are averages). Blue line is the GLM
with Gamma but identity link

qui glm exp_tot age if exp_tot > 0, family(gamma) /*link(log)*/ nolog
predict double yhatnolog if e(sample)
line yhatnolog age, sort

line yhatglmgamma age, color(red) sort ///
legend(off) || line yhatnolog age, sort color(blue)
graph export g2.png, replace
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Changing family changes parameters estimates -

nonlinearity

m Two variables interacting in a nonlinear ways (no additive, separate effects as

in linear/OLS models)

qui reg exp_tot i.female age if exp_tot > O
margins, dydx(x)

| Delta-method

| dy/dx  Std. Err. t P>t [95% Conf. Intervall

female |
Female | 624.5558 167.0181 3.74 0.000 297.1815 951.9301
age | 125.0642 4.668862 26.79 0.000 115.9127 134.2157

Note: dy/dx for factor levels is the discrete change from the base level.
qui glm exp_tot i.female age if exp_tot > 0, family(gamma) /*link(log)*/ nolog
margins, dydx(x)

| Delta-method

[ dy/dx  Std. Err. z P>zl [95% Conf. Intervall

female |
Female |  503.465 201.5864 2.50 0.013 108.363 898.567
age | 142.1625 13.46262  10.56  0.000 115.7763  168.5488

Note: dy/dx for factor levels is the discrete change from the base level.
qui glm exp_tot i.female age if exp_tot > 0, family(gamma) link(log) nolog
margins, dydx(x)

| Delta-method

[ dy/dx  Std. Err. z P>zl [95% Conf. Intervall

female |
Female | 919.9011  189.7723 4.85  0.000 547.9542  1291.848
age | 126.0328  7.37149  17.10  0.000 111.5849  140.4806

Wadne Awlfde dom fantnm VTowaleo 4o +he A4 onmatre choanme fonm +ha haoe 1 awal
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Choosing family and links

m How do we choose the best family and link in this problem?

m Previous work shows that GLM with Gamma link is a good fitting option but
all datasets are different so “previous research” (often using simulations and
particular datasets) is not a good guide

m We could compare models using BIC and AIC

m There are some formal tests (using Box-Cox) and the modified Park test (we
won't cover them)

m A model with Gamma family but with different links will most likely be the
winner
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Compare models

m Gamma with log link

/// Compare models

* Null

qui glm exp_tot, family(gamm
est sto nullm

* Log links

qui glm exp_tot age i.female
est sto glmgammalog

qui glm exp_tot age i.female
est sto glmgaulog

* Gamma with other link

qui glm exp_tot age i.female
est sto glmgammapower5

* Poisson

qui glm exp_tot age i.female
est sto glmpoisoonlog

a) link(log)

pcs i.racex

pcs i.racex

pcs i.race+

pcs i.racex

seems the best fitting one

i

i.

i.

i.

.eth_hisp,

eth_hisp,

eth_hisp,

eth_hisp,

family(gamma) link(log)

family(gaussian) link(log)

family(gamma) link(power 0.5)

family(poisson) scale(x2) link(log)

estimates stats nullm glmgammalog glmgaulog glmgammapower5 glmpoisoonlog

. estimates stats nullm glmgammalog glmgaulog glmgammapower5 glmpoisoonlog

Akaike’s information criterion and Bayesian information criterion

Model | N 11(null) 11(model) df AIC BIC

nullm | 19,386 -178585.6 1 357173.3 357181.2
glmgammalog | 19,386 -170848.9 7 341711.7 341766.8
glmgaulog | 19,386 -204234.6 7 408483.1 408538.2
glmgammapo™5 | 19,386 -170864.8 7 341743.6 341798.7
glmpoisoon™g | 19,386 -6.06e+07 7 1.21e+08  1.21e+08
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GLM further topics

Different combinations of families and links produce different models. Be
careful interpreting coefficients since the choice of link affects estimation scale

Count data? Either Poisson or negative binomial models (log link). Logit
model? Binomial family with logit link. Probit? Binomial family with probit
link (see next slide)

One interesting thing about some models is that you can estimate an
“offset.” The offset has a coefficient constrained to be equal to 1. So we
estimate n = X'8+1

Poisson models are used to model count data (length of stay, number of
deaths). With number of deaths, for example, we may want to use a
denominator, say, population size in each county or hospital to model death
rate rather than death counts

The offset is the population and then the Poisson model is modeling a rate
rather than a count:

log(deaths_count) = By + 1 x log(popsize) + S1mask_use

log (deaths-count) — 3, + 1 mask use
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GLM combinations and other Stata commands

m From Stata manual

m Note that GLM with Gamma links are used to model survival data (-streg-
command). The Weibull model, used in survival analysis, has been proposed
to model cost data as well

Some family () and link() combinations result in models already fit by Stata. These are

family () link()
gaussian identity
gaussian identity
binomial cloglog
binomial probit
binomial logit
poisson log
nbinomial log

gamma log

Options

nothing | irls | irls vee(oim)

t(var) vce(hac nwest #)
viactor (#,)

nothing | irls vecel(oim)
nothing | irls vce(oim)
nothing | irls I irls vee(oim)
nothing | irls | irls vee(oim)

nothing | irls vcel(oim)
scale(l)

Equivalent Stata command

Tegress

newey, t(var) lag(#) (see note 1)

cloglog (see note 2)
probit (see nole 2)
logit or logistic (see note 3)
poisson (see note 3)

nbreg (see note 4)
streg, dist(exp) nohr (see note 5)



Two-part models

m Although we found the best fitting model with reasonable assumptions about
the data generating process (Gamma is more realistic with cost data), we saw
that the excess zeroes are a problem in this dataset

m A large proportion of zeroes are most command with inpatient data and with
younger people — few people are hospitalized in a given year, so they will have
zeroes

m It would be more unusual to find a large proportion of zeroes in outpatient
costs in the Medicare population over 65 for example

m There is a class of models that seem odd but can deal with excess zeroes:
two-part models

m Simple idea: estimate two models, one for the zeroes and one for the
non-zeroes. Predictions are a combination of both models

m (There are other options: Tobit models, mixture models; for count data:
Zero Inflated Poisson or ZIP models)
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Two-part models

1) Estimate the probability that the cost is greater than zero conditional on
covariates: P(Y; > 0|X;). This part could estimated using logit or probit
models

2) For those observations with non-zero costs, estimate the expected costs
conditional on covariates: E(Y;|y; > 0,X;). This part can be model with
linear models/OLS, GLM, or log-level models

m Predictions are obtained combining both parts (multiplication):
P(Y; > 0|X;) x E(Yilyi > 0,X;)

m And since we know that marginal effects are predictions, we can interpret
models using marginal effects
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Two-part model example

m Easy to estimate two-part models. See notes on lecture about marginal
effects on how to compute them “by hand”

m Stata has a user-written command, twopm (install it typing: findit twopm)
gen nonzero = 0
1 if exp_tot > 0 & exp_tot "= .

replace nonzero

* First part
qui logit nonzero age i.female pcs i.racex i.eth_hisp, nolog
predict double pnonzero

* Second part
qui glm exp_tot age i.female pcs i.race* i.eth_hisp, family(gamma) link(log)
predict double exphat

* Predictions
gen tpmhat = pnonzero * exphat

* Compare with observed
sum exp_tot tpmhat

Variable | Obs Mean Std. Dev. Min Max
exp_tot | 19,386 3685.25 9768.475 [ 440524
tpmhat | 19,386 3709.48 5250.387 70.83586 70825.74
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Two-part model example -twopm- command

twopm exp_tot age i.female pcs i.race* i.eth_hisp, ///
firstpart(logit, nolog) secondpart(glm, family(gamma) link(log) nolog)
margins, dydx(x)

Average marginal effects Number of obs = 19,386

Expression : twopm combined expected values, predict(
dy/dx w.r.t. : age 1.female pcsi2 1.race_bl i.race_oth 1.eth_hisp

| Delta-method

| dy/dx  Std. Err. z P>zl [95% Conf. Intervall
age |  64.59912  3.903919 16.55  0.000 56.94758  72.25066

|

female |
Female | 1078.981 112.5954 9.58  0.000 858.2979 1299.664
pesi2 | -188.0581  7.781285 -24.17 0.000  -203.3091  -172.807

|

race_bl |
Black race | -913.5817 144.9708  -6.30 0.000  -1197.719  -629.4443

|

race_oth |
Other race | -1625.517 150.2068 -10.82 0.000  -1919.917  -1331.117

|

eth_hisp |
Hispanic | -1863.469  112.566 ~-16.55 0.000  -2084.095 -1642.844

Note: dy/dx for factor levels is the discrete change from the base level.



