Week 6: Interpreting model results: Marginal and incremental effects

Marcelo Coca Perraillon

University of Colorado Anschutz Medical Campus

Health Services Research Methods I HSMP 7607 2020

These slides are part of a forthcoming book to be published by Cambridge University Press. For more information, go to perraillon.com/PLH. ©This material is copyrighted. Please see the entire copyright notice on the book's website.

Outline

- Alternative title for today's class: it's all about (counterfactual) predictions to interpret model coefficients in the scale of interest
- Marginal vs incremental effects
- Analytical vs numerical derivatives, one- and two-sided
- Delta-method standard errors
- Replicating margins command output
- Interactions in logistic models
- Testing interactions in logistic models in the probability scale with margins command SEs (delta method)
- GLM models, two-part models

- In a simple linear model like $y = \beta_0 + \beta_1 age + \beta_2 male + \epsilon$ we can easily interpret the coefficients
- It became more difficult when we had non-linear terms, for example: $y = \beta_0 + \beta_1 age + \beta_2 age^2 + \beta_3 male + \epsilon$
- We saw that using the **analytical derivative** made interpretation a lot easier: $\frac{\partial E[y|age,male]}{\partial age} = \beta_1 + 2\beta_2 age$
- No single effect of age, the effect depends on age; that is, one effect at age 20, another at 50, etc. Or you could say that the difference (not effect) in E[Y|X] at different ages depends on the value of age (when you change age by a small amount)
- You can find the effect or the difference by plugging in numbers for age in the above expression: $\frac{\partial E[y|age,male]}{\partial age}\Big|_{age=a} = \beta_1 + 2\beta_2(a)$

- With interactions, it was more complicated: $y = \beta_0 + \beta_1 age + \beta_2 male + \beta_3 male * age$
- But similar in the sense that the effect of age now depends on sex; or the other way around, the effect of sex depends on age
- \blacksquare With simple models, taking the derivative still helps with interpretation
- With a dummy variable, we calculated **incremental effects** (differences or contrasts from 1 vs 0, holding other covariates constant): $\frac{\Delta E[y|age,male]}{\Delta male} = \beta_2 + \beta_3 age$
- Centering also helps with parameter interpretation: $y = \beta_0 + \beta_1(age - m) + \beta_2male + \beta_3male * (age - m)$
- If m is average age, then β_2 is E[Y|X] for males versus females of average age. What is β_1 ?

- In the logistic model, things got complicated very quickly: $log(\frac{p}{1-p}) = \beta_0 + \beta_1 age + \beta_2 male$
- We could present odds ratios: e^{β1} and e^{β2} but we know that odds ratios can be misleading since they tend to be interpreted as relative probabilities, which in general they are not
- A simple example with no covariates: The probability of death in a control group is 0.40. The probability of death in the treatment group is 0.20
- The odds ratio is: $\frac{\frac{0.2}{1-0.2}}{\frac{1-0.2}{1-0.4}} = 0.375$. The treatment reduces the odds of death by a factor of 0.375. Or in reverse, the odds of death are 2.67 higher in the control group $(\frac{1}{0.375})$
- But that's not the **relative risk**, even though most people would forget that they are odds ratios and interpret the odds ratio as a relative risk. The relative risk is $\frac{0.2}{0.4} = 0.5$. The **probability** of death is reduced by half in the treatment group

- Note something else that is important. With odds ratios and relative risks, we don't have a sense of the magnitude
- Same example but now the probability of death in the control group is 0.0004 and 0.0002 in the treatment group. The odds ratio is still 0.375 and the relative risk is still 0.5
- The **magnitudes** are of course quite different. A difference of (0.0004-0.0002) 0.0002 or 0.02 percent points, which is not a big difference in the scale we care about
- As we will see, marginal effects in non-linear models are a way of presenting model results in the scale of interest, not in the estimation scale. In the case of logit and probit models, we would like to know differences in probabilities, which is more informative than odds ratios and relative risks
- The same issue arises in other models like Poisson, negative binomial, probit and so on

It's about numerical derivatives

- The main idea of marginal effects is to use the estimated model to make predictions changing the value of a covariate to evaluate its effect on the outcome
- Incremental changes are easier to understand: a variable changes from 0 to 1. With continous variables, we need derivatives
- Our goal will be to take numerical derivatives of functions for which analytical derivatives are complicated
- As we saw, in the model $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$ we can take the derivative with respect to X: $\frac{dE[Y_i|X_i]}{dX} = \beta_1 + 2\beta_2 X_i$
- In the logistic model, our estimation scale is the log-odds but we would like to interpret our model in the probability scale
- We saw that in the probability scale our model is $p(Y = 1 | \mathbf{X}; \beta) = \frac{1}{1 + e^{-}(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}$
- **Please note**: In these notes, P(X) really means P(Y = 1|X) or P(Y|X)

It's about numerical derivatives

- We know that for a function $y = e^X$ the derivative with respect to X is $\frac{dy}{dX} = e^X$ so the above expression is not going to simplify
- In fact, the effect of X₁ depends on the value of X₁ and the values of all other covariates:

$$\frac{\partial p(Y|\mathbf{X};\beta)}{\partial X_1} = \beta_1 \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{(1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)})^2}$$

- We would need to choose values for all the covariates in the model to calculate the effect of X_1
- Please make sure that you absorb this because it's the most important complication of model interpretation when we move away from the world linear additive effects (which in applied research is often): the effect of one variable depends on the value of **all** the other covariates in the model
- Rather than calculating analytical derivatives, we we will approximate the analytical derivative **numerically** using the definition of the derivative to compute the **average effect** of X₁ on p

Derivatives

The analytical derivative is a limit:

$$f'(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

All the formulas for the derivative can be derived using the definition and taking the limit. For example, an easy one for $f(x) = X^2$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{x} = \frac{2xh + h^2}{h} = 2x + h = 2x$$

- Numerically, that is, without finding the analytical formula, we could use the definition plugging in a number for *h* that is small enough. In that case: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx \frac{f(x+h) - f(x)}{h}$
- Computationally, it's not trivial to come up with a number *h* that is small but "large enough" so that computations are numerically accurate
- For more on choosing *h* see Gould, Pitblado, and Poi (2010), Chapter 1 and Greene (2017) Appendix E

Two-sided derivatives

- The above approximation to the analytical derivative f'(x) ≈ f(x+h)-f(x)/h is not the only way to define a derivative
- A two-sided derivative calculates a positive and negative small change h:
- $f_2'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$
- The same issues about how to choose a small h remain
- We will calculate marginal effects "by hand" and then we will use the margins command
- We will use both definitions of the derivative but Stata uses the two-sided version
- Our calculations will be very close but Stata uses an additional iterative procedure that changes the value of h to achieve numerical accuracy

Digression: Is it a unit change?

- In a model like y = β₀ + β₁x + ε we have have said that β₁ is the change in E[y|X] for a one unit change in x. And that's fine when the change is constant (linear)
- In the model y = β₀ + β₁x + β₂x² + ε, the marginal effect/change is no longer for a 1 unit change even though most people would interpret it that way when using marginal effects. Do it by hand:
- Start with *x* = *x*⁰. Then change by one unit to *x*⁰ + 1 and compare the two predictions for *y*

 $y^{1} - y^{0} = \beta + \beta_{1}(x^{0} + 1) + \beta_{2}(x^{0} + 1)^{2} - \beta_{0} - \beta_{1}x^{0} - \beta_{2}(x^{0})^{2}$

• You will find: $y^1 - y^0 = \beta_1 + 2\beta_2 x^0 + \beta_2$, which is not the same as $dy/dx = \beta_1 + 2\beta_2 x$ evaluated at $x = x^0$. There is the extra β_2 term lingering there

Digression: Is it a unit change?

- Easier to get some intuition if we use the definition of the derivative: $\lim_{h \to 0} \frac{\beta_0 + \beta_1(x+h) + \beta_2(x+h)^2 - \beta_0 - \beta_1 x - \beta_2 x}{h} = \beta_1 + 2\beta_2 x + \beta_2 h$
- β_2 is the coefficient for x^2 , the curvature. The smaller β_2 the smaller the curvature and closer to a straight line
- So they are closer when the curve looks more like a line
- Conclusion: marginal effects for continuous variables are very small changes in x, not unit changes. It's a derivative, which is a limit then h → 0
- Both are unit (or multiples of units) changes if straight lines

Simple example of marginal effects

We are going to first use marginal effects where we don't quite need them to illustrate some ideas, in particular how to estimate standard errors. Suppose we estimate this linear/OLS model:

 $bw_i = \beta_0 + \beta_1 smoke_i + \beta_2 mage + \beta_3 smoke_i * mage_i + \epsilon_i$

What is the effect of mother's age on birthweight? What is the effect of smoking? We have done this many times:

 $\begin{array}{l} \frac{\partial E[bw|\mathbf{X}]}{\partial mage} = \hat{\beta}_2 + \hat{\beta}_3 \textit{smoke} \\ \frac{\Delta E[bw|\mathbf{X}]}{\Delta \textit{smoke}} = \hat{\beta}_1 + \hat{\beta}_3 \textit{mage} \end{array}$

- A marginal effect and an incremental effect, respectively
- Note that each of them is a function of the estimated parameters $\hat{\beta}' = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_2)$ and the data
- In this case, we can just use the coefficients and the formulas above to find marginal and incremental effects

What about standard errors?

- We could also calculate the variance of the marginal effects (the square is the standard errors)
- The variance is also a function of the parameters, of course. For the first one above:

 $\mathsf{var}(\tfrac{\partial E[\mathit{bw}|\mathbf{X}]}{\partial \mathit{mage}}) = \mathit{var}(\hat{\beta}_2) + \mathit{smoke}^2 \mathit{var}(\hat{\beta}_3) + 2 * \mathit{smoke} * \mathit{cov}(\hat{\beta}_2, \hat{\beta}_3)$

- I just used basic rules of variances: $var(aX) = a^2 var(x)$ and var(X + Y) = var(X) + var(Y) + 2cov(X, Y)
- So the variance for non-smokers is just var(β̂₂) while the variance for those who smoked is var(β̂₂) + var(β̂₃) + 2 * cov(β̂₂, β̂₃)
- We can estimate our model and use the variance-covariance matrix for calculations

Standard error of marginal effects

 I created interactions by hand because it makes the variance-covariance shorter and easier to display than using the factor variable syntax

```
use https://www.stata-press.com/data/r16/cattaneo2, clear
gen sm_age = mbsmoke * mage
qui reg bweight mbsmoke mage sm_age
matrix list e(V)
symmetric e(V)[4,4]
           mbsmoke
                           mage
                                    sm_age
                                                  _cons
mbsmoke 10733.267
  mage 71.343306 2.6610229
sm age -403.72658 -2.6610229
                                15,868305
 cons -1997.5365 -71.343306
                                71.343306
                                             1997.5365
* var(beta2)
di e(V)[2.2]
2 6610229
* var (beta3)
di e(V)[3.3]
15.868305
* covariance b2.b3
di e(V)[3.2]
-2 6610229
* whem smoke is 0 variance of marginal effect is
di sqrt(e(V)[2,2])
1 6312642
* when smoke is 1
. di sqrt(e(V)[2,2] + e(V)[3,3] + 2*e(V)[3,2])
3.6341825
```

Standard error of marginal effects with margins command

- We can match the SEs using the margins command (note that here we need to use the factor variable syntax or you won't get the correct marginal effects)
- But note that Stata tells you that SEs are Delta Method standard errors, no the analytical SEs as above, although in this easy case they are exactly the same

```
qui reg bweight i.mbsmoke##c.mage
margins, dvdx(mage) at(mbsmoke=(0 1)) vsquish
Average marginal effects
                                            Number of obs
                                                                   4,642
                                                             -
Model VCE
           : 0LS
Expression : Linear prediction, predict()
dy/dx w.r.t. : mage
1. at.
      : mbsmoke
2._at
          : mbsmoke
                        Delta-method
                  dy/dx Std. Err.
                                      t P>|t| [95% Conf. Interval]
mage
        _at |
         1 1
               11.36258 1.631264
                                            0.000
                                                     8.164523
                                                                 14.56063
              -3.950895 3.634182
                                     -1.09
                                            0.277
                                                     -11.07562
                                                                 3.173831
```

Big picture

- To recap using margins in a simple model like a linear/OLS model with interactions
- We can do two things **analytically**:
 - 1 We can calculate marginal effects
 - 2 We can calculate standard errors
- But in other models both marginal effects and standard errors are more complicated functions of parameters. Look again at the effect of one variable in the probability scale for a logistic model:

$$\frac{\partial p(Y|\mathbf{X};\beta)}{\partial X_1} = \beta_1 \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{(1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)})^2}$$

- Therefore, we will use:
 - 1 Numerical derivatives to approximate analytical derivatives
 - 2 The **delta method** to approximate standard error using the reported asymptopic errors (variance-covariance matrix)
- That's why Stata uses the delta method (default). In the example above, the analytical method and delta method approximation are the same
- In essence, we go from analytical to numerical methods when working with more complicated marginal or incremental effects

Aside: Delta method versus unconditional variance-covariance estimation

- I'll focus on the delta method today but it's not the only option
- The vce(unconditional) option estimates margins variances using the linearization method which accounts for heteroskedasticiy and clustering
- So this is the option to use with survey data or could use it with models estimated with the robust option
- But remember that this is an option for margins, not for the estimated model. In most cases for modeling we pay attention to the model SEs, not margins SEs (with some exceptions we will see later in this class)

Delta method

- As we saw above, the issue is calculating standard errors of function of coefficients
- The delta method allows us to approximate the mean and variance of a function of random variables using a first-order Taylor approximation (you know that estimated parameters are random variables, right?)
- \blacksquare In this case, we are just interested in the variance and not the mean
- Let's say $G(\beta)$ is a function of the parameters β , the delta method tell us that

 $var(G(\beta)) \approx \triangledown G(\beta) cov(\beta) \triangledown G(\beta)'$

• $\nabla G(\beta)$ is the gradient or the vector of partial derivatives of $G(\beta)$ (the Jacobian), which in this case is the partial derivative of the predictions with respect to coefficients and evaluated at $\hat{\beta}$. $var(G(\beta))$ in conditional on the data **X**

Delta method

- It looks a bit more complicated than what it is
- Think of it this way: marginal effects are a function of parameters. The delta methods gives us an approximation to the variance of that function – we called it G(β)
- One needed component in that calculation is the variance-covariance matrix $cov(\beta)$, which we obtain after estimating any model
- The second component is the Jacobian. The Jacobian is a matrix of partial derivatives of the margins or marginal effects with respect to each estimated parameter. For $\frac{\partial E[bw|\mathbf{X}]}{\partial mbsmoke}$ above using margins (not marginal effects), the Jacobian would be a 2 × 6 matrix in Stata because using the factor syntax the reference levels are included
- The Jacobian elements will be functions of coefficients

Replicate delta method SEs

■ We will use Stata's stored Jacobian after margins

<pre>qui reg bweight i.mbsmoke##c.mage margins mbsmoke, nofvlabel Predictive margins</pre>								
		Delta-method Std. Err.	t				Interval]	
mbsmoke	·							
0	3409.435	9.221561	369.72	0.000	3391.	356	3427.514	
1	3132.374	19.85928	157.73	0.000	3093	3.44	3171.308	
<pre>* Stored Jacobian from margins matrix list r(Jacobian) r(Jacobian)[2,6]</pre>								
	mbsmoke	mbsmoke	mage	e co.1	nage		c.mage	
0.mbsmoke	0	0	26.504524	1	0		0	
1.mbsmoke	0	1	26.504524	1	0	26.	504524	

_cons 1 1

* Save it

matrix J = r(Jacobian)

Replicate delta method SEs

The relevant calculation is matrix Vrep = J*e(V)*J', which matches margin's r(V) (not the same as e(V) from the reg model)

```
* Stored variance-covariance matrix from reg model
matrix list e(V)
symmetric e(V)[6.6]
                     Ob
                                   1
                                                    Oh mhsmoke#
                                                                   1 mbsmoke#
                mbsmoke
                             mbsmoke
                                             mage
                                                       co.mage
                                                                     c.mage
                                                                                    cons
Ob mbsmoke
                      0
1.mbsmoke
                      0
                          10733.267
                      0
                          71 343306
                                        2 6610229
      mage
Ob.mbsmoke#
                      0
                                   0
                                                0
  co.mage
                                                             0
1.mbsmoke#
                         -403.72658
                                       -2.6610229
    c.mage
                      0
                                                             0
                                                                  15.868305
    _cons
                      0
                         -1997.5365
                                       -71.343306
                                                             0
                                                                  71.343306
                                                                                1997.5365
* Replicate delta method variance (of margins)
matrix Vrep = J*e(V)*J'
matrix list Vrep
symmetric Vrep[2,2]
                    0.
                                1.
              mbsmoke
                          mbsmoke
0.mbsmoke
          85.037195
1.mbsmoke -1.631e-13 394.39086
* match margin output SE for nonsmoker
di sqrt(Vrep[1,1])
9.2215614
* matches stored variance
matrix list r(V)
symmetric r(V)[2,2]
                    0
                                1
              mbsmoke
                          mbsmoke
0 mbsmoke
          85 037195
1.mbsmoke -1.631e-13
                       394.39086
```

Data

- We will use birth weight data from Wooldridge (bcuse bwght)
- I created an indicator for low birth weight. Very low birth weight is about 50 ounces (1,500 grams) but here I used 100 ounces

■ About 15% of children (mean of lw)

bwght	bii	th weight	, ounces						
faminc	198	38 family	income, \$100	0s					
motheduc	mothe	er's yrs o	f educ						
cigs		cigs sm	ked per day	while preg					
gen lw	= 0								
replace lw	= 1 if	bwght < 1	00 & bwght ~						
		0							
sum lw fami	sum lw faminc motheduc cigs								
Variabl	.e	Obs	Mean	Std. Dev.	Min	Max			
	+								
1	w I	1,388	.1491354	.3563503	0	1			
famin	ic	1,388	29.02666	18.73928	.5	65			
mothedu	ic	1,387	12.93583	2.376728	2	18			
cig	sl	1,388	2.087176	5.972688	0	50			

Logit/logistic model

We will model low birth weight as a function of cigarettes, mother's education, and family income

 $log(\frac{lw_i}{1-lw_i}) = \beta_0 + \beta_1 cigs_i + \beta_2 faminc_i + \beta_3 motheduc_i$

logit lw cigs faminc motheduc, nolog

Logistic regres		Number of obs = LR chi2(3) = Prob > chi2 = Pseudo R2 =		24.63 0.0000		
lw	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
cigs faminc motheduc _cons	.0449006 0080855 .0031552 -1.678173	.0104436 .004801 .037153 .4497551	4.30 -1.68 0.08 -3.73	0.000 0.092 0.932 0.000	.0244316 0174953 0696634 -2.559676	.0653696 .0013243 .0759738 7966687

Odds ratios

- We can show odds ratios: An additional cigarette increases the odds of low birth weight by 4.6%
- Of course, we now know that it does NOT mean that an additional cigarette increases the *relative probability* of low birth weight by 4.6% or that it's even a *difference* in probability, which is what we want
- Recall that the ratio of two numbers gives you percent changes. Percent change is $\frac{(a2-a1)}{a1} = c$ or $c \times 100$. Rewrite as: $\frac{a2}{a1} = c + 1$. So from the ratio of two numbers, subtract 1 and multiply by 100 to get percent change

logit, or

Logistic regre	ssion	Number of c LR chi2(3) Prob > chi2	-	1,387 24.63 0.0000		
Log likelihood	= -572.15891		Pseudo R2	=	0.0211	
lw	Odds Ratio	Std. Err.	z	P> z	95% Conf.	Interval]
cigs	1.045924	.0109232	4.30	0.000 1	.024733	1.067554
faminc	.9919471	.0047623	-1.68	0.092 .	9826569	1.001325
motheduc	1.00316	.0372704	0.08	0.932 .	9327077	1.078934
_cons	.1867149	.083976	-3.73	0.000 .	0773298	.4508283

Model

- We can also run our trusty linear/OLS model with the caveat that SEs are likely not right (but probably close) and that since low birth probability is (relatively) low we should be more careful
- Now, in the probability scale, an extra cigarette increases the probability of low birth weight by 0.7 percent points. With 10 cigarettes, 7 percent points (linear effects)

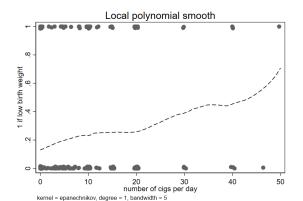
reg lw cigs faminc motheduc, robust

Linear regressi	on			Number of ob: F(3, 1383) Prob > F R-squared Root MSE	s = = = =	1,387 6.51 0.0002 0.0212 .35304
 w	Coef.	Robust Std. Err.	t	P> t [9	5% Conf.	Interval]
cigs faminc motheduc _cons	.007757 0009345 .0005403 .1531912	.0020677 .0005785 .0042972 .0532648	3.75 -1.62 0.13 2.88	0.10600	037009 020693 078895 487027	.0118131 .0002004 .00897 .2576797

A plot is always helpful

- A plot will help you understand the shape of the relationship of interest but remember that other variables may change the shape. The linearity suggest LPM or logit/probit are going to be similar
- Could use lowess, but Kernel-weighted local polynomial smoothing (lpoly) is another nonparametric option

lpoly lw cigs, bw(5) deg(1)
graph export l.png, replace



Average Marginal Effect (AME) algorithm

- This is the algorithm to compute the numerical one-sided derivative $\frac{\partial p(\mathbf{X};\beta)}{\partial x}$ in the probability scale
 - 1 Estimate the model
 - 2 For each observation *i*, calculate predictions in the probability scale using values of all the covariates as observed, let's call them \hat{Y}_{i0}
 - Increase x variable by a "small" amount h (x = x + h) and calculate predictions again, denoted Ŷ_{i1}. h depends on the units of x:
 h = (|x̄| + 0.001) × 0.001, where x̄ is the mean of x
 - 4 Calculate the difference in the two predictions as a fraction of h for each observation i: $(\hat{Y}_{i1} \hat{Y}_{i0})/h$
 - **5** The average numerical derivative is $E[\frac{\hat{Y}_{i1} \hat{Y}_{i0}}{h}] \approx \frac{\partial p(Y|\mathbf{X};\beta)}{\partial x}$
- Note that this algorithm follows the definition of the one-sided derivative. Also, note the connection with predicting counterfactuals in treatment effects
- Stata calculates two-sided derivatives. Steps 2 and 3 are different. One prediction is for x = x h and the other is for x = x + h, with $\Delta x = 2h$ in the denominator

Average Marginal Effect (AME)

Let's calculate AME for the cigarette variable using the typical formula for the analytical derivative

```
* Compute the initial "small change" h
qui sum cigs
scalar h = (abs(r(mean))+.0001)*.0001
di h
*.00020873
preserve
  qui logit lw cigs faminc motheduc, nolog
  * as is
  predict double lw 0 if e(sample)
  * Change cigs by a bit
  replace cigs = cigs + scalar(h)
  predict lw_1 if e(sample)
  * For each obs
  gen double dvdx = (lw 1-lw 0)/scalar(h)
 * Average
  sum dvdx
restore
   Variable |
                    Obs
                              Mean
                                      Std Dev
                                                    Min
                                                               Max
-----
       dvdx |
                  1.387
                          .0055768
                                      .0012444
                                                .0040507
                                                          .0113006
```

 An additional cigarette increases the probability of low birth weight by 0.56 percent points

Average Marginal Effect (AME)

Replicate using margins command

• Very close but Stata uses the two-sided derivative. The formula $h = (|\bar{x}| + .0001) \times .0001$ is how Stata calculates the initial small change. In this case, .00020873

Average Marginal Effect (AME) the (almost) Stata way

```
* Two-sided derivative
preserve
  qui logit lw cigs faminc motheduc
  * Define small change for cigs
  qui sum cigs
  scalar h = (abs(r(mean))+0.0001)*0.0001
  * Duplicte variable
  clonevar cigs_c = cigs
  * Small negative change
  replace cigs = cigs_c - scalar(h)
  predict double lw_0 if e(sample)
  * Small positive change
  replace cigs = cigs_c + scalar(h)
  predict double lw_1 if e(sample)
  gen double dydx = (lw_1-lw_0)/(2*scalar(h))
  sum dvdx
restore
sum dvdx
   Variable |
                    Obs
                               Mean
                                       Std Dev
                                                      Min
                                                                Max
_____
       dvdx |
                  1.387
                           .0055771
                                        .001245
                                                 .0040404
                                                            .0112832
```

Remember, Stata has an iterative procedure to ensure numerical accuracy. This is one reason the margins command for some complex models can be slow. Note SEs are not too off, although they are not delta method SEs

AME for indicator variables (incremental effects)

- Understanding marginal effects it's easier with dummy variables; that's why I have focused on continuous variables
- With dummy variables we don't have to do a "small" change. We change from 0 to 1, but the logic is the same, except that we don't need a two-sided change
- Notice the connection with treatment effects prediction of counterfactuals?

Max

```
gen
      smoked = 0
replace smoked = 1 if cigs > 0 & cigs ~=.
* Incremental change
preserve
  qui logit lw smoked faminc motheduc
  * Nobody smokes
  replace smoked = 0
  predict double lw 0 if e(sample)
  * Everybody smokes
  replace smoked = 1
  predict double lw 1 if e(sample)
  gen double dydx = (lw_1-lw_0)
  sum dvdx
restore
   Variable | Obs Mean Std. Dev. Min
-----+-----+
      dydx | 1,387 .118284 .0105063 .0935378 .1363816
```

AME for indicator variables

• We can of course also use the margins command with caution

* Wrong qui logit lw smoked faminc motheduc, nolog margins, dvdx(smoked) Delta-method dy/dx Std. Err. z P>|z| [95% Conf. Interval] _____ 0988076 0230959 4 28 0 000 0535405 smoked | * Right qui logit lw i.smoked faminc motheduc, nolog margins, dydx(smoked) Delta-method dy/dx Std. Err. z P>|z| [95% Conf. Interval] 1.smoked .118284 .0322576 3.67 0.000 .0550602 .1815078

Note: dy/dx for factor levels is the discrete change from the base level.

- Even though same margins statement, different results. The first one is not what we wanted. We did not use the factor syntax in the first model so Stata didn't go from 0 to 1; instead it used a "small" change
- Smoking increases the probability of low birth weight by almost 12% points (yikes)

Predicted margins (adjusted means)

- With indicator variables, we can also get what Stata calls predictive margins (not marginal effects). Marginal effects are their difference. You may know them as adjusted means
- With the post option Stata "posts" results as postestimation results so we can use them in tables or for calculations

```
qui logit lw i.smoked faminc motheduc, nolog
margins smoked, post
                                            Number of obs = 1,387
Predictive margins
Model VCE : OIM
Expression : Pr(lw), predict()
                        Delta-method
                 Margin Std. Err.
                                        z P>|z|
                                                      [95% Conf. Interval]
     smoked |
         0 1
              .1305183 .0099014 13.18 0.000
                                                      .1111118
                                                                 .1499248
                                                      .1891584
                .2488023 .0304311
                                   8.18 0.000
                                                                 .3084461
*ereturn list
matrix list e(b)
e(b)[1.2]
           0
                     1
      smoked
                 smoked
v1 .13051827 .24880226
* marginal effects
di e(b)[1.2] - e(b)[1.1]
.11828399
```

Marginal effects, relative risks, odds ratios - adjusted

■ Since we have the adjusted probabilities, we can use them to express results as marginal effects (difference/contrasts) $(P_t - P_c)$, relative risks $(\frac{P_t}{P_c})$, or

```
odds ratios \left(\frac{\frac{P_{t}}{P_{c}}}{\frac{P_{c}}{1-P_{c}}}\right)

. * marginal effects

. di e(b)[1,2] - e(b)[1,1]

.11828399

. * relative risks

. di e(b)[1,2] / e(b)[1,1]

1.902639

. * odds ratios

. di (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))
```

2.2064252

- See how relative risks and odds ratios are not the same?
- Please make sure you understand the calculations above. For the nth time: odds ratios are NOT relative probabilities. Repeat after me... (you can do the same with probit, of course)

Marginal effects, relative risks, odds ratios - unadjusted

■ This would be the "unadjusted" version

logit lw i.smoked, nolog or <... output omitted ...> lw | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -----1.smoked | 2.36004 .4228805 4.79 0.000 1.661109 3.353056 _cons | .1484375 .0129025 -21.95 0.000 .1251858 .1760079 Note: _cons estimates baseline odds. margins smoked, post Number of obs = Adjusted predictions 1,388 Model VCE : OIM Expression : Pr(lw), predict() Delta-method Margin Std. Err. z P>|z| [95% Conf. Interval] smoked | 0 1 1292517 0097827 13 21 0 000 .1100779 1484255 259434 0301042 8 62 0 000 .2004308 3184371 * marginal effects di e(b)[1.2] - e(b)[1.1] 13018226 * unadjusted relative risks di e(b)[1.2] / e(b)[1.1] 2.0071996 * unadjusted odds ratios di (e(b)[1,2]/(1-e(b)[1,2]))/ (e(b)[1,1]/(1-e(b)[1,1])) 2.3600402

 Make sure you digest this. It will be in the midterm. Note that Stata's title is the default, but not correct in this case (Adjusted predictions)

Odds ratios are not relative risks

- Again, odds ratios are not relative risks
- When are they going to be the same?

$$OR = \frac{\frac{P_t}{1-P_t}}{\frac{P_c}{1-P_c}} = \frac{P_t}{P_c} \times \frac{1-P_c}{1-P_t}$$

- One case is if $P_t \approx P_c$, although that's not an interesting case
- The more interesting case is $\frac{1-P_c}{1-Pt} \approx 1$, which would happen if both P_c and P_t are low probability events
- Probit model: One advantage of probit models is that unlike logit models, the only meaningful way to understand model results is to use marginal effects, so that would prevent you from presenting odds ratios

Marginal Effect at the Mean (MEM) and Marginal effects at representative values (MER)

- We have left the values of the covariates **as they were observed** rather than holding them fixed at a certain value
- We can also calculate marginal effects at different value of the covariates, for example at the mean of each covariate or at some other value (MEM and MER, in Stata lingo)
- There is some discussion about which way is better. For example, does it make sense to hold male at 0.6 male? In a sense, yes. We are giving makes the value of the proportion in the sample, 0.6. In another sense, it seems odd
- Don't waste too much time thinking about this. When we calculate marginal effects (not margins), it doesn't really matter at which value we hold the other covariates constant because we are taking differences in effects
- In general, the difference will be so small that it is better to spend mental resources somewhere else

Marginal effects at means (MEM)

 Same algorithm except that now we set value for covariates before making predictions to hold them constant – of course, adjusted means will be different

```
qui sum faminc
scalar fincbar = r(mean)
qui sum motheduc
scalar medbar = r(mean)
preserve
   aui sum cigs
   scalar h = (abs(r(mean))+0.0001)*0.0001
   qui logit lw cigs faminc motheduc, nolog
   clonevar cigs_c = cigs
   * Replace with means
   replace faminc = scalar(fincbar)
   replace motheduc = scalar(medbar)
   * Small negative change
   replace cigs = cigs_c - scalar(h)
   predict double lw_0 if e(sample)
   * Small positive change change
   replace cigs = cigs_c + scalar(h)
   predict double lw_1 if e(sample)
   gen double dydx = (lw_1-lw_0)/(2*scalar(h))
   sum dydx
restore
```

See these slides for more https://clas.ucdenver.edu/marcelo-perraillon/sites/default/ files/attached-files/week_13_margins.pdf

At means option - be careful

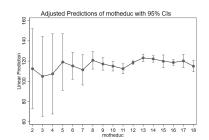
As I said before, be careful with the margins command. A small change in syntax makes a big difference. Read output!

margins, dydx(cigs) at((mean) faminc motheduc) Average marginal effects Number of obs = 1.387 Model VCE · OTM Expression : Pr(lw), predict() dv/dx w.r.t. : cigs at : faminc = 29.04218 (mean) motheduc = 12,93583 (mean) Delta-method dv/dx Std. Err. z P>|z| [95% Conf. Interval] -----0012843 4 33 0 000 0030458 cigs | 005563 0080801 * Not same as margins, dydx(cigs) atmeans Number of obs = Conditional marginal effects 1.387 Model VCE : 0TM Expression : Pr(lw), predict() dy/dx w.r.t. : cigs at. : cigs = 2.088681 (mean) faminc = 29.04218 (mean) = 12.93583 (mean) motheduc <... output omitted ...>

Marginsplot for adjusted means

 Useful to visualize models holding covariates at some value. Handy in DiD models for adjusted trends. Note this is a linear/OLS model

margins moth Adjusted pre		uc, at((mean) ctions	faminc pari	ty)	Number	of	obs	-	1,387
Model VCE	:	OLS							
Expression	:	Linear predi	ction, predi	ct()					
at	:	faminc	= 29.	04218 (mean)				
		parity	= 1.6	33021 (mean)				
	1	E	elta-method						
		Margin	Std. Err.	t	P> t		[95% (Conf.	Interval]
motheduc	: 1								
2	i	112.4071	20.19802	5.57	0.000		72.78	466	152.0296
3	1	104.8245	20.18644	5.19	0.000		65.224	478	144.4242
< output	om	itted>							
margins moth marginsplot	led	uc, at((mean)	faminc pari	ty)					

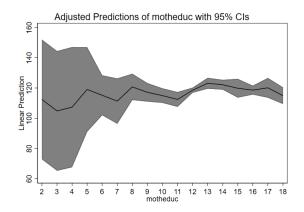


Marginsplot for adjusted means - lots of options

 Check options for marginsplot. With post options you can get the output to make your own plots too

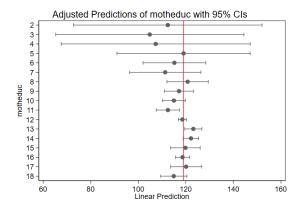
marginsplot, recast(line) recastci(rarea)
graph export marplot2.png, replace

* saved margins in e(b) *matrix list e(b)



Marginsplot for adjusted means - lots of options marginsplot is flexible

```
sum bwght
qui reg bwght i.motheduc faminc parity
margins motheduc, at((mean) faminc parity)
marginsplot, horizontal recast(scatter) xline(119, lcolor(red)) ///
xscale(range()) yscale(reverse)
graph export mhor.png. replace
```



Interactions in logistic models

- We estimated the model $log(\frac{lw_i}{1-lw_i}) = \beta_0 + \beta_1 cigs_i + \beta_2 faminc_i + \beta_3 motheduc_i$
- We didn't use interactions between cigarettes and income so we have assumed the same effect regardless of income in the **log-odds scale**
- If we add interactions, the margins command is a life saver because effects are hard to interpret otherwise
- In particular, the magnitude of effects is hard to make sense when a logistic model has interactions and we use odds ratios for interpretations
- But interactions in logistic (and probit) models have other issues: the magnitude, sign, and statistical significance of interaction in the log-odds scale may not be relevant to understand the interaction in the probability scale
- Exploring interactions with marginal effects is better (the old mfx would provide SEs for an interacted variable, but margins with the factor syntax recognizes interaction terms)

Interactions

- As usual, interactions are easier to understand with two indicator variables. Let's say more than high school (hsp) and male as in previous examples: $log(\frac{p}{1-p}) = \beta_0 + \beta_1 hsp + \beta_2 male + \beta_3 hsp * male$
- In the log-odds scale, we interpret them exactly in the same way as in the linear model and we can use derivatives and the other tricks we learned (What's β₁? β₂?)
- For males: $log(\frac{p_m}{1-p_m}) = \beta_0 + \beta_1 hsp + \beta_2 + \beta_3 hsp$
- For females: $log(\frac{p_f}{1-p_f}) = \beta_0 + \beta_1 hsp$
- Difference males females: $log(\frac{p_m}{1-p_m}) log(\frac{p_f}{1-p_f}) = \beta_2 + \beta_3 hsp$
- So the effect depends on the level of education
- Note that we can write it in terms of odds: $\frac{\frac{P_m}{1-P_m}}{\frac{P_f}{1-P_f}} = e^{\beta_2 + \beta_3 hsp}$

Interactions

- Difference males females: $log(\frac{p_m}{1-p_m}) log(\frac{p_f}{1-p_f}) = \beta_2 + \beta_3 hsp$
- Difference male female for educated: $log(\frac{p_{me}}{1-p_{me}}) log(\frac{p_{fe}}{1-p_{fe}}) = \beta_2 + \beta_3$
- Difference male female for uneducated: $log(\frac{p_{mu}}{1-p_{mu}}) log(\frac{p_{fu}}{1-p_{fu}}) = \beta_2$
- Difference in difference: $log(\frac{p_{me}}{1-p_{me}}) - log(\frac{p_{fe}}{1-p_{e}}) - [log(\frac{p_{mu}}{1-p_{mu}}) - log(\frac{p_{fu}}{1-p_{e}})] = \beta_3$
- So same as with linear model. In the log-odds scale, it is a difference-in-difference

Interactions in the odds scale

$$\bullet \log\left(\frac{p_{me}}{1-p_{me}}\right) - \log\left(\frac{p_{fe}}{1-p_{fe}}\right) - \left[\log\left(\frac{p_{mu}}{1-p_{mu}}\right) - \log\left(\frac{p_{fu}}{1-p_{fu}}\right)\right] = \beta_3$$

• We can apply the rules of logs and take $e^{()}$ on both sides:

$$rac{P_{me}}{1-P_{me}} / rac{P_{mu}}{1-P_{mu}} = e^{\beta_3}$$

- In the odds scale, an interaction is not a difference-in-difference but rather a ratio of odds ratios
- The interpretation is... well, good luck with that...
- The interpretation is not that hard, actually. If greater than one, the odds of outcome for educated are higher than for the uneducated (see the numerator-it's the odds ratio for males females for those "educated" or hsp=1. The denominator is same but for those with hsp=0)
- Interpreting the magnitude in the probability scale is a lost cause. A lot easier with margins or stratifying the models

- We are going to estimate the model: logit(lw_i) = β₀ + β₁cigs_i + β₂inc_i + β₃cigs * inc_i
- inc is a dummy and equal 1 if income is higher than 40k

gen inc = 0							
replace inc = 1 if	faminc >	40 & famin	c~= .				
logit lw c.cigs##i	inc, nol	og					
Logistic regression	1 .	0		Number o	f obs	=	1,388
0 0				LR chi2(3)	-	22.90
				Prob > c	hi2	-	0.0000
Log likelihood = -8	573.18336			Pseudo R	2	-	0.0196
lw	Coef.	Std. Err.	z	P> z	[95% 0	onf.	Interval]
+							
0 .		.0104689					
1.inc :	1003108	.1923845	-0.52	0.602	47737	74	.2767558
I							
inc#c.cigs							
1 (0534926	.0583898	-0.92	0.360	16793	44	.0609492
1							
_cons	-1.843	.0954774	-19.30	0.000	-2.0301	32	-1.655868

 Interaction term not significant, so the model with the interaction doesn't improve fit

 We can also use the margins command to check effects in the probability scale

margins, dvdx(*) Average marginal effects Number of obs 1.388 = Model VCE OTM Expression : Pr(lw), predict() dv/dx w.r.t. : cigs 1.inc Delta-method dv/dx Std. Err. z P>|z| [95% Conf. Interval] .0046941 2.54 0.011 .0010717 0083165 cigs | .0018482 1 inc | - 0288422 0225222 -1 28 0 200 - 0729849 0153006 _____

Note: dy/dx for factor levels is the discrete change from the base level.

Wait, two effects? The model has three coefficients. Where is the interaction?

- This may seem confusing but it's not when you remember how Stata calculates marginal effects. For cigs, a continuous variable, it's using the two-sided derivative increasing cigs by a little bit and calculating predictions. It's increasing cigs in both the main effect and the interaction
- Then it takes an average so the marginal effect of cigs is the numerical derivative for both inc=1 and inc=0 combined
- For the marginal effect of inc, it's doing the same going from 0 to 1, averaging over the values of cigs, but changing inc from 0 to 1 in both the main effect and interaction
- With factor syntax, Stata knows that one variable is a multiplication of the other
- To get the effect of one variable at some values of the other, we have to be more specific with the syntax

∂P

• Get the effects at different levels. Below, we compute: $\frac{\partial P}{\partial cigs}\Big|_{inc=0}$ and

$\partial cigs$	inc=1					
. margins, dyd	x(cigs) at(i	nc=(0 1)) vsc	uish			
Average margin Model VCE :				Number o	f obs =	1,388
Expression :	Pr(lw), pred	dict()				
dy/dx w.r.t. :	cigs					
1at :	inc	-	0			
2at :	inc	-	1			
		Delta-method				
		Std. Err.	z	P> z	[95% Con:	f. Interval]
cigs						
_at						
1	.0062867	.0012881	4.88	0.000	.0037621	.0088113
2	0004394	.0062301	-0.07	0.944	0126501	.0117713

Read the output carefully. at = 1 is for inc = 0. They go in different directions, with the one with higher incomes having a large Cls (why?)

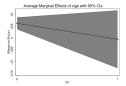
Is the interaction statistically significant in the probability scale?

- Because the significance of the interaction in the log-odds scale could be different than in the probability scale, we want to check the delta method SEs from the margins command
- For modeling though, the significance in the log-odds scale is telling us about fit. It's the same as using likelihood ratio tests (next class)
- But we should check if the effects are different in the probability scale (magnitude, significant, direction)
- Above, the confidence intervals overlap, so we wouldn't reject the null that the difference is zero using margins
- Marginsplot helps here, but we can also use the contrast() option in margins.
 It performs tests using the delta-method SEs

Is the interaction statistically significant in the probability scale?

Check the overlap of delta SEs. Check the magnitudes. Or use the contrast option (handy but not well-known). See Karaka-Mandic, Norton, Dowd (2012) for details. The do file for today's class has code to replicate their example (plus a test using contrast option)

<pre>margins, dydx marginsplot graph export : margins, dydx</pre>	inter.png, rep	olace				
Contrasts of a	average margir	al effects		Number of obs	=	1,388
Model VCE						
Expression		lict()				
dy/dx w.r.t.						
1at	: inc	-	0			
2at	: inc	-	1			
	df	chi2	P>chi2	1		
	+					
cigs						
_at	1	1.12	0.2904			



So what to do if interaction is not significant with marginal effects?

- There are some deep issues related to statistical model and testing. We should use Wald tests and LR tests to build models, including interactions, but we should present results in the scale of interest and discuss implications of the model. Following Green (2010) (emphasis mine):
 - Build the model based on appropriate statistical procedures and principles. Statistical testing about the model specification is done at this step. Hypothesis tests are about model coefficients and about the structural aspects of the model specification. Partial effects [i.e. marginal effects] are neither coefficients nor elements of the specification of the model. They are implications of the specified and estimated model.
 - 2 Once the model is in place, inform the reader with analysis of model implications such as values, predictions, partial effects and interactions. We find that graphical presentations are a very informative adjunct to numerical statistical results for this purpose. Hypothesis testing need not be done at this point [that is, using delta errors]. Even where the partial effects are the ultimate target of estimation [as in difference-in-difference models], it seems it would be rare for a model builder to build a structural model by hypothesizing (statistically) about partial effects and/or predictions that would be made by that model.

Other models

- The logic of marginal and incremental effects extends to any other parametric model
- Calculate the numerical derivative for a small change h or an incremental 0 to 1 change
- The algorithm is identical, marginal effects by default will show results in the default scale of the predict command
- The scale can be changed with the predict() option in the margins command
- In GLM models with a log link, the marginal effect would be $\frac{\partial E[Y|\mathbf{X}]}{\partial x} = \beta_x e^{\mathbf{X}'\beta}$
- We could have used GLM models for all the logistic examples above

GLM logit

Replicate example with GLM

qui glm lw c.cigs##i.inc, family(binomial) link(logit)
margins, dydx(*)

<... output omitted ...>

	I.		Delta-	method	l			
	L	dy/dx	Std.	Err.	z	P> z	[95% Conf.	Interval]
	+-							
cigs	L.	.0046941	.001	8482	2.54	0.011	.0010717	.0083165
1.inc	I.	0288422	.022	5222	-1.28	0.200	0729849	.0153006
Note: dy/dx f	or	factor lev	vels is	the d	liscrete	change fr	om the base 1	evel.
margins, dydz < output o			=(0 1)) vsqu	iish			

		I.		Delta-method				
			dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
		-+-						
cigs								
	_at							
	1	1	.0062867	.0012881	4.88	0.000	.0037621	.0088113
	2	1	0004394	.0062301	-0.07	0.944	0126501	.0117713

More custom: Two-part models

- Two-part models are often used to estimate cost data with a large proportion of costs that are zero
- The idea is to estimate the model in two parts:

1) Estimate the probability that the cost is greater than zero conditional on covariates: $P(y_i > 0|X_i)$ (using logit, probit, complementary log-log models)

2) For those observations with non-zero costs, estimate the expected costs conditional on covariates: $E(y_i|y_i > 0, X_i)$ (using Poisson, linear models, Gamma, log(y), Box-Cox, etc)

■ Predictions are obtained combining both parts (multiplication): $P(y_i > 0|X_i) \times E(y_i|y_i > 0, X_i)$

Two-part models marginal effects

If you know how to get predictions, you now how to calculate marginal effects

First, using the user-written command twopm and the margins command

```
* Get data from example in twopm command
webuse womenwk
replace wage = 0 if wage==.
```

```
* First part logit, second part GLM with Gamma family
qui twopm wage i.married children, firstpart(logit) secondpart(glm, family(gamma) link(log))
margins, dydx(married)
Average marginal effects Number of obs = 2,000
Expression : twopm combined expected values, predict()
dy/dx w.r.t. : 1.married
__________
Delta-method
```

I.	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
+-						
1.married	6.615493	.5323105	12.43	0.000	5.572183	7.658802

Note: dy/dx for factor levels is the discrete change from the base level.

Two-part models marginal effects "by hand"

```
gen
       nozeroc = 0
replace nozeroc = 1 if wage >0
preserve
  clonevar marr = married
  * not married
  qui logit nozeroc i.married children
  replace married = 0
  predict double fp0
  replace married = marr
  qui glm wage i.married children if wage > 0, f(gamma) 1(log)
  replace married = 0
  predict double c0
  gen chat0 = fp0*c0
  * married
  replace married = marr
  qui logit nozeroc i.married children
  replace married = 1
  predict double fp1
  replace married = marr
  qui glm wage i.married children if wage > 0, f(gamma) 1(log)
  replace married = 1
  predict double c1
  gen chat1 = fp1*c1
  gen dif = chat1 - chat0
  sum dif
restore
   Variable |
                    Obs
                              Mean
                                     Std Dev
                                                    Min
                                                              Max
-----
        dif |
                  2,000
                          6.615493
                                     1.660084 2.485561
                                                         8.001396
```

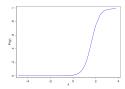
Subpopulations

- The subpop option is the equivalent of "if" in margins; helpful with survey data but also helpful when we want the margins for some part of the data
- Remember ATET when we discussed treatment effects? We can get ATET after a fully-interacted regression model
- Make sure you understand this. Go back to the class on regression adjustment and propensity scores

1		Unconditional	-			
	Contrast	Std. Err.				
smoked						
	-8.648601					
<>	0	c faminc)(smo Robust				
<>		Robust				
<>	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval
<>	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval
<> bwght ATET smoked (1 vs 0)	Coef.	Robust Std. Err. 1.619049	z -5.34	P> z 0.000	[95% Conf 	. Interval
<> bwght ATET smoked (1 vs 0)	Coef.	Robust Std. Err. 1.619049	z -5.34	P> z 0.000	[95% Conf 	. Interval

- A simulation to understand some features and issues with non-linearity and linear probability models versus logit and probit
- We will simulate 0/1 data in which a linear probability would be a bit problematic, with the outcome y having low probability (0.56)
- The graph are predictions using the logit model

```
clear
set seed 1234567
set obs 1000
gen x = rnormal(-2/3, 4/3)
gen y = rbinomial(1, invlogit(-4.5 + 3*x))
sum y
    Variable |
                      Obs
                                  Mean
                                          Std. Dev.
                                                          Min
                                                                      Max
                      999
                                          .2301452
                                                            0
           γI
                              .0560561
                                                                        1
qui logit y x
predict y_logit
graph export logitg.png, replace
```

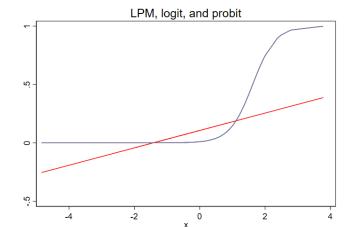


Compare models. Similar average marginal effects but not so close

* L.P.M qui reg y x est sto 1pm predict y_lpm * Logit qui logit y x predict y_logit margins, dydx(x) post est sto logit_dydx * Probit qui logit y x predict y_probit margins, dydx(x) post est sto probit_dydx . est table lpm logit_dydx probit_dydx, star Variable | lpm logit_dydx probit_dydx x | .07450962*** .08365352*** 08365352*** cons | .10604429*** -----legend: * p<0.05; ** p<0.01; *** p<0.001

- Graphs shows the reason. Linear approximation not great. Predictions negative
- Logit and probit predictions identical

```
line y_lpm x, sort color(red) || line y_logit x, color(blue) sort ///
|| line y_probit x, sort legend(off) title("LPM, logit, and probit")
graph export lpm_plus.png, replace
```



63

- Marginal effects at different values of x tell us the story
- In the linear model the slope is the same; it's, well, linear (constant)
- In the logit model, very different at most values, except close to x = 0.45 (see the graph closely). Check with margins

```
margins, dydx(x) at(x=(-4, 0.45, 4)) vsquish
<...>
                          Delta-method
                   dv/dx Std. Err.
                                          t
                                               P>|t|
                                                         [95% Conf. Interval]
х
         _at |
         1 1
                .0745096
                           .0050552
                                                                      0844296
                                        14 74
                                               0.000
                                                          .0645896
         2
                .0745096
                           .0050552
                                        14 74
                                               0.000
                                                          .0645896
                                                                      0844296
         3
                 0745096
                            0050552
                                        14.74
                                               0 000
                                                          0645896
                                                                      0844296
qui logit v x
margins, dvdx(x) at(x=(-4, 0.35, 4)) vsquish
<...>
                          Delta-method
                           Std. Err.
                                               P>|z|
                                                          [95% Conf. Interval]
                    dv/dx
                                          z
х
         at
         1
                3.15e-07
                           5.02e-07
                                        0.63
                                               0 531
                                                         -6 70e-07
                                                                      1 30e-06
         2
                 .0724872
                          .0165856
                                        4.37
                                               0.000
                                                                      .1049943
                                                         .0399801
                                        1.22
         3
                 .003214
                          .0026415
                                               0.224
                                                         -.0019633
                                                                      .0083914
```

Topics not covered but helpful to know

- The margins command can do much more
 - 1 You can get elasticities and semielasticities: eyex(), dyex(), eydx()
 - **2** You can use it to make predictions: margins, at(...)
 - 3 You can use an external dataset to do adjustment though standardization (as in epi)
 - 4 You can use the contrast potestimation to test differences after margins to do tests (we covered the contrast option)