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Outline

Alternative title for today’s class: it’s all about (counterfactual) predictions
to interpret model coefficients in the scale of interest

Marginal vs incremental effects

Analytical vs numerical derivatives, one- and two-sided

Delta-method standard errors

Replicating margins command output

Interactions in logistic models

Testing interactions in logistic models in the probability scale with margins
command SEs (delta method)

GLM models, two-part models
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Why do we need marginal effects?

In a simple linear model like y = β0 + β1age + β2male + ε we can easily
interpret the coefficients

It became more difficult when we had non-linear terms, for example:
y = β0 + β1age + β2age

2 + β3male + ε

We saw that using the analytical derivative made interpretation a lot easier:
∂E [y |age,male]

∂age = β1 + 2β2age

No single effect of age, the effect depends on age; that is, one effect at age
20, another at 50, etc. Or you could say that the difference (not effect) in
E [Y |X] at different ages depends on the value of age (when you change age
by a small amount)

You can find the effect or the difference by plugging in numbers for age in

the above expression: ∂E [y |age,male]
∂age

∣∣∣
age=a

= β1 + 2β2(a)
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Why do we need marginal effects?

With interactions, it was more complicated:
y = β0 + β1age + β2male + β3male ∗ age
But similar in the sense that the effect of age now depends on sex; or the
other way around, the effect of sex depends on age

With simple models, taking the derivative still helps with interpretation

With a dummy variable, we calculated incremental effects (differences or
contrasts from 1 vs 0, holding other covariates constant):
∆E [y |age,male]

∆male = β2 + β3age

Centering also helps with parameter interpretation:
y = β0 + β1(age −m) + β2male + β3male ∗ (age −m)

If m is average age, then β2 is E [Y |X ] for males versus females of average
age. What is β1?
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Why do we need marginal effects?

In the logistic model, things got complicated very quickly:
log( p

1−p ) = β0 + β1age + β2male

We could present odds ratios: eβ1 and eβ2 but we know that odds ratios can
be misleading since they tend to be interpreted as relative
probabilities, which in general they are not

A simple example with no covariates: The probability of death in a control
group is 0.40. The probability of death in the treatment group is 0.20

The odds ratio is:
0.2

1−0.2
0.4

1−0.4

= 0.375. The treatment reduces the odds of death

by a factor of 0.375. Or in reverse, the odds of death are 2.67 higher in the
control group ( 1

0.375 )

But that’s not the relative risk, even though most people would forget that
they are odds ratios and interpret the odds ratio as a relative risk. The
relative risk is 0.2

0.4 = 0.5. The probability of death is reduced by half in the
treatment group
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Why do we need marginal effects?

Note something else that is important. With odds ratios and relative risks,
we don’t have a sense of the magnitude

Same example but now the probability of death in the control group is 0.0004
and 0.0002 in the treatment group. The odds ratio is still 0.375 and the
relative risk is still 0.5

The magnitudes are of course quite different. A difference of
(0.0004-0.0002) 0.0002 or 0.02 percent points, which is not a big difference
in the scale we care about

As we will see, marginal effects in non-linear models are a way of presenting
model results in the scale of interest, not in the estimation scale. In the case
of logit and probit models, we would like to know differences in
probabilities, which is more informative than odds ratios and relative risks

The same issue arises in other models like Poisson, negative binomial, probit
and so on
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It’s about numerical derivatives

The main idea of marginal effects is to use the estimated model to make
predictions changing the value of a covariate to evaluate its effect on the
outcome

Incremental changes are easier to understand: a variable changes from 0 to
1. With continous variables, we need derivatives

Our goal will be to take numerical derivatives of functions for which
analytical derivatives are complicated

As we saw, in the model Yi = β0 + β1Xi + β2X
2
i + εi we can take the

derivative with respect to X : dE [Yi |Xi ]
dX = β1 + 2β2Xi

In the logistic model, our estimation scale is the log-odds but we would like
to interpret our model in the probability scale

We saw that in the probability scale our model is
p(Y = 1|X;β) = 1

1+e−(β0+β1X1+···+βpXp)

Please note: In these notes, P(X ) really means P(Y = 1|X ) or P(Y |X )
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It’s about numerical derivatives

We know that for a function y = eX the derivative with respect to X is
dy
dX = eX so the above expression is not going to simplify

In fact, the effect of X1 depends on the value of X1 and the values of all
other covariates:
∂p(Y |X;β)

∂X1
= β1

eβ0+β1X1+···+βpXp

(1+e−(β0+β1X1+···+βpXp ))2

We would need to choose values for all the covariates in the model to
calculate the effect of X1

Please make sure that you absorb this because it’s the most important
complication of model interpretation when we move away from the world
linear additive effects (which in applied research is often): the effect of one
variable depends on the value of all the other covariates in the model

Rather than calculating analytical derivatives, we we will approximate the
analytical derivative numerically using the definition of the derivative to
compute the average effect of X1 on p
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Derivatives

The analytical derivative is a limit:

f ′(x) ≡ limh→0
f (x+h)−f (x)

h

All the formulas for the derivative can be derived using the definition and
taking the limit. For example, an easy one for f (x) = X 2

f ′(x) = limh→0
(x+h)2−x2

h = x2+2xh+h2−x2

x = 2xh+h2

h = 2x + h = 2x

Numerically, that is, without finding the analytical formula, we could use the
definition plugging in a number for h that is small enough. In that case:

f ′(x) = limh→0
f (x+h)−f (x)

h ≈ f (x+h)−f (x)
h

Computationally, it’s not trivial to come up with a number h that is small but
“large enough” so that computations are numerically accurate

For more on choosing h see Gould, Pitblado, and Poi (2010), Chapter 1 and
Greene (2017) Appendix E
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Two-sided derivatives

The above approximation to the analytical derivative f ′(x) ≈ f (x+h)−f (x)
h is

not the only way to define a derivative

A two-sided derivative calculates a positive and negative small change h:

f ′2 (x) ≈ f (x+h)−f (x−h)
2h

The same issues about how to choose a small h remain

We will calculate marginal effects “by hand” and then we will use the
margins command

We will use both definitions of the derivative but Stata uses the
two-sided version

Our calculations will be very close but Stata uses an additional iterative
procedure that changes the value of h to achieve numerical accuracy
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Digression: Is it a unit change?

In a model like y = β0 + β1x + ε we have have said that β1 is the change in
E [y |X] for a one unit change in x . And that’s fine when the change is
constant (linear)

In the model y = β0 + β1x + β2x
2 + ε, the marginal effect/change is no

longer for a 1 unit change even though most people would interpret it
that way when using marginal effects. Do it by hand:

Start with x = x0. Then change by one unit to x0 + 1 and compare the two
predictions for y

y1 − y0 = β + β1(x0 + 1) + β2(x0 + 1)2 − β0 − β1x
0 − β2(x0)2

You will find: y1 − y0 = β1 + 2β2x
0 + β2, which is not the same as

dy/dx = β1 + 2β2x evaluated at x = x0. There is the extra β2 term lingering
there
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Digression: Is it a unit change?

Easier to get some intuition if we use the definition of the derivative:

limh→0
β0+β1(x+h)+β2(x+h)2−β0−β1x−β2x

h = β1 + 2β2x + β2h

β2 is the coefficient for x2, the curvature. The smaller β2 the smaller the
curvature and closer to a straight line

So they are closer when the curve looks more like a line

Conclusion: marginal effects for continuous variables are very small
changes in x , not unit changes. It’s a derivative, which is a limit then h→ 0

Both are unit (or multiples of units) changes if straight lines
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Simple example of marginal effects

We are going to first use marginal effects where we don’t quite need them
to illustrate some ideas, in particular how to estimate standard errors.
Suppose we estimate this linear/OLS model:

bwi = β0 + β1smokei + β2mage + β3smokei ∗magei + εi

What is the effect of mother’s age on birthweight? What is the effect of
smoking? We have done this many times:
∂E [bw |X]
∂mage = β̂2 + β̂3smoke

∆E [bw |X]
∆smoke = β̂1 + β̂3mage

A marginal effect and an incremental effect, respectively

Note that each of them is a function of the estimated parameters
β̂′ = (β̂0, β̂1, β̂2, β̂2) and the data

In this case, we can just use the coefficients and the formulas above to find
marginal and incremental effects

Cross-partial derivative: Note that with two continuous variables the

interaction coefficient β3 is a cross-partial derivative: ∂E [Y |X]
∂x1∂x2

= β3
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What about standard errors?

We could also calculate the variance of the marginal effects (the square is the
standard errors)

The variance is also a function of the parameters, of course. For the first
one above:

var(∂E [bw |X]
∂mage ) = var(β̂2) + smoke2var(β̂3) + 2 ∗ smoke ∗ cov(β̂2, β̂3)

I just used basic rules of variances: var(aX ) = a2var(x) and
var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y )

So the variance for non-smokers is just var(β̂2) while the variance for those
who smoked is var(β̂2) + var(β̂3) + 2 ∗ cov(β̂2, β̂3)

We can estimate our model and use the variance-covariance matrix for
calculations
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Standard error of marginal effects

I created interactions by hand because it makes the variance-covariance
shorter and easier to display than using the factor variable syntax

use https://www.stata-press.com/data/r16/cattaneo2, clear

gen sm_age = mbsmoke * mage

qui reg bweight mbsmoke mage sm_age

matrix list e(V)

symmetric e(V)[4,4]

mbsmoke mage sm_age _cons

mbsmoke 10733.267

mage 71.343306 2.6610229

sm_age -403.72658 -2.6610229 15.868305

_cons -1997.5365 -71.343306 71.343306 1997.5365

* var(beta2)

di e(V)[2,2]

2.6610229

* var (beta3)

di e(V)[3,3]

15.868305

* covariance b2,b3

di e(V)[3,2]

-2.6610229

* whem smoke is 0 variance of marginal effect is

di sqrt(e(V)[2,2])

1.6312642

* when smoke is 1

. di sqrt(e(V)[2,2] + e(V)[3,3] + 2*e(V)[3,2])

3.6341825
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Standard error of marginal effects with margins command

We can match the SEs using the margins command (note that here we need
to use the factor variable syntax or you won’t get the correct marginal effects)

But note that Stata tells you that SEs are Delta Method standard errors,
no the analytical SEs as above, although in this easy case they are exactly
the same

qui reg bweight i.mbsmoke##c.mage

margins, dydx(mage) at(mbsmoke=(0 1)) vsquish

Average marginal effects Number of obs = 4,642

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : mage

1._at : mbsmoke = 0

2._at : mbsmoke = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mage |

_at |

1 | 11.36258 1.631264 6.97 0.000 8.164523 14.56063

2 | -3.950895 3.634182 -1.09 0.277 -11.07562 3.173831

------------------------------------------------------------------------------
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Big picture

To recap using margins in a simple model like a linear/OLS model with
interactions

We can do two things analytically:

1 We can calculate marginal effects
2 We can calculate standard errors

But in other models both marginal effects and standard errors are more
complicated functions of parameters. Look again at the effect of one variable
in the probability scale for a logistic model:
∂p(Y |X;β)

∂X1
= β1

eβ0+β1X1+···+βpXp

(1+e−(β0+β1X1+···+βpXp ))2

Therefore, we will use:

1 Numerical derivatives to approximate analytical derivatives
2 The delta method to approximate standard error using the reported

asymptopic errors (variance-covariance matrix)

That’s why Stata uses the delta method (default). In the example above, the
analytical method and delta method approximation are the same

In essence, we go from analytical to numerical methods when working
with more complicated marginal or incremental effects
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Aside: Delta method versus unconditional
variance-covariance estimation

I’ll focus on the delta method today but it’s not the only option

The vce(unconditional) option estimates margins variances using the
linearization method which accounts for heteroskedasticiy and clustering

So this is the option to use with survey data or could use it with models
estimated with the robust option

But remember that this is an option for margins, not for the estimated
model. In most cases for modeling we pay attention to the model SEs, not
margins SEs (with some exceptions we will see later in this class)
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Delta method

As we saw above, the issue is calculating standard errors of function of
coefficients

The delta method allows us to approximate the mean and variance of a
function of random variables using a first-order Taylor approximation (you
know that estimated parameters are random variables, right?)

In this case, we are just interested in the variance and not the mean

Let’s say G (β) is a function of the parameters β, the delta method tell us
that

var(G (β)) ≈ OG (β)cov(β)OG (β)′

OG (β) is the gradient or the vector of partial derivatives of G (β) (the
Jacobian), which in this case is the partial derivative of the predictions with
respect to coefficients and evaluated at β̂. var(G (β)) in conditional on the
data X
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Delta method

It looks a bit more complicated than what it is

Think of it this way: marginal effects are a function of parameters. The delta
methods gives us an approximation to the variance of that function – we
called it G (β)

One needed component in that calculation is the variance-covariance matrix
cov(β), which we obtain after estimating any model

The second component is the Jacobian. The Jacobian is a matrix of partial
derivatives of the margins or marginal effects with respect to each estimated

parameter. For ∂E [bw |X]
∂mbsmoke above using margins (not marginal effects), the

Jacobian would be a 2× 6 matrix in Stata because using the factor syntax
the reference levels are included

The Jacobian elements will be functions of coefficients
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Replicate delta method SEs

We will use Stata’s stored Jacobian after margins

qui reg bweight i.mbsmoke##c.mage

margins mbsmoke, nofvlabel

Predictive margins Number of obs = 4,642

Model VCE : OLS

Expression : Linear prediction, predict()

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mbsmoke |

0 | 3409.435 9.221561 369.72 0.000 3391.356 3427.514

1 | 3132.374 19.85928 157.73 0.000 3093.44 3171.308

------------------------------------------------------------------------------

* Stored Jacobian from margins

matrix list r(Jacobian)

r(Jacobian)[2,6]

0b. 1. 0b.mbsmoke# 1.mbsmoke#

mbsmoke mbsmoke mage co.mage c.mage _cons

0.mbsmoke 0 0 26.504524 0 0 1

1.mbsmoke 0 1 26.504524 0 26.504524 1

* Save it

matrix J = r(Jacobian)
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Replicate delta method SEs
The relevant calculation is matrix Vrep = J*e(V)*J’, which matches margin’s
r(V) (not the same as e(V) from the reg model)

* Stored variance-covariance matrix from reg model

matrix list e(V)

symmetric e(V)[6,6]

0b. 1. 0b.mbsmoke# 1.mbsmoke#

mbsmoke mbsmoke mage co.mage c.mage _cons

0b.mbsmoke 0

1.mbsmoke 0 10733.267

mage 0 71.343306 2.6610229

0b.mbsmoke#

co.mage 0 0 0 0

1.mbsmoke#

c.mage 0 -403.72658 -2.6610229 0 15.868305

_cons 0 -1997.5365 -71.343306 0 71.343306 1997.5365

* Replicate delta method variance (of margins)

matrix Vrep = J*e(V)*J’

matrix list Vrep

symmetric Vrep[2,2]

0. 1.

mbsmoke mbsmoke

0.mbsmoke 85.037195

1.mbsmoke -1.631e-13 394.39086

* match margin output SE for nonsmoker

di sqrt(Vrep[1,1])

9.2215614

* matches stored variance

matrix list r(V)

symmetric r(V)[2,2]

0. 1.

mbsmoke mbsmoke

0.mbsmoke 85.037195

1.mbsmoke -1.631e-13 394.39086
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Data

We will use birth weight data from Wooldridge (bcuse bwght)

I created an indicator for low birth weight. Very low birth weight is about 50
ounces (1,500 grams) but here I used 100 ounces

About 15% of children (mean of lw)

bwght birth weight, ounces

faminc 1988 family income, $1000s

motheduc mother’s yrs of educ

cigs cigs smked per day while preg

gen lw = 0

replace lw = 1 if bwght < 100 & bwght ~= .

sum lw faminc motheduc cigs

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

lw | 1,388 .1491354 .3563503 0 1

faminc | 1,388 29.02666 18.73928 .5 65

motheduc | 1,387 12.93583 2.376728 2 18

cigs | 1,388 2.087176 5.972688 0 50
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Logit/logistic model

We will model low birth weight as a function of cigarettes, mother’s
education, and family income

log( lwi

1−lwi
) = β0 + β1cigsi + β2faminci + β3motheduci

logit lw cigs faminc motheduc, nolog

Logistic regression Number of obs = 1,387

LR chi2(3) = 24.63

Prob > chi2 = 0.0000

Log likelihood = -572.15891 Pseudo R2 = 0.0211

------------------------------------------------------------------------------

lw | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0449006 .0104436 4.30 0.000 .0244316 .0653696

faminc | -.0080855 .004801 -1.68 0.092 -.0174953 .0013243

motheduc | .0031552 .037153 0.08 0.932 -.0696634 .0759738

_cons | -1.678173 .4497551 -3.73 0.000 -2.559676 -.7966687

------------------------------------------------------------------------------
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Odds ratios

We can show odds ratios: An additional cigarette increases the odds of low
birth weight by 4.6%

Of course, we now know that it does NOT mean that an additional cigarette
increases the relative probability of low birth weight by 4.6% or that it’s even
a difference in probability, which is what we want

Recall that the ratio of two numbers gives you percent changes. Percent

change is (a2−a1)
a1 = c or c × 100. Rewrite as: a2

a1 = c + 1. So from the ratio
of two numbers, subtract 1 and multiply by 100 to get percent change

logit, or

Logistic regression Number of obs = 1,387

LR chi2(3) = 24.63

Prob > chi2 = 0.0000

Log likelihood = -572.15891 Pseudo R2 = 0.0211

------------------------------------------------------------------------------

lw | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | 1.045924 .0109232 4.30 0.000 1.024733 1.067554

faminc | .9919471 .0047623 -1.68 0.092 .9826569 1.001325

motheduc | 1.00316 .0372704 0.08 0.932 .9327077 1.078934

_cons | .1867149 .083976 -3.73 0.000 .0773298 .4508283

------------------------------------------------------------------------------
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Model

We can also run our trusty linear/OLS model with the caveat that SEs are
likely not right (but probably close) and that since low birth probability is
(relatively) low we should be more careful

Now, in the probability scale, an extra cigarette increases the probability of
low birth weight by 0.7 percent points. With 10 cigarettes, 7 percent points
(linear effects)

reg lw cigs faminc motheduc, robust

Linear regression Number of obs = 1,387

F(3, 1383) = 6.51

Prob > F = 0.0002

R-squared = 0.0212

Root MSE = .35304

------------------------------------------------------------------------------

| Robust

lw | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .007757 .0020677 3.75 0.000 .0037009 .0118131

faminc | -.0009345 .0005785 -1.62 0.106 -.0020693 .0002004

motheduc | .0005403 .0042972 0.13 0.900 -.0078895 .00897

_cons | .1531912 .0532648 2.88 0.004 .0487027 .2576797

------------------------------------------------------------------------------
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A plot is always helpful
A plot will help you understand the shape of the relationship of interest but
remember that other variables may change the shape. The linearity suggest
LPM or logit/probit are going to be similar
Could use lowess, but Kernel-weighted local polynomial smoothing (lpoly) is
another nonparametric option

lpoly lw cigs, bw(5) deg(1)

graph export l.png, replace

27



Average Marginal Effect (AME) algorithm

This is the algorithm to compute the numerical one-sided derivative ∂p(X;β)
∂x

in the probability scale

1 Estimate the model
2 For each observation i , calculate predictions in the probability scale using

values of all the covariates as observed, let’s call them Ŷi0

3 Increase x variable by a “small” amount h (x = x + h) and calculate
predictions again, denoted Ŷi1. h depends on the units of x :
h = (|x̄ |+ 0.001)× 0.001, where x̄ is the mean of x

4 Calculate the difference in the two predictions as a fraction of h for each
observation i : (Ŷi1 − Ŷi0)/h

5 The average numerical derivative is E [ Ŷi1−Ŷi0
h

] ≈ ∂p(Y |X;β)
∂x

Note that this algorithm follows the definition of the one-sided derivative.
Also, note the connection with predicting counterfactuals in treatment
effects

Stata calculates two-sided derivatives. Steps 2 and 3 are different. One
prediction is for x = x − h and the other is for x = x + h, with ∆x = 2h in
the denominator
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Average Marginal Effect (AME)

Let’s calculate AME for the cigarette variable using the typical formula for
the analytical derivative

* Compute the initial "small change" h

qui sum cigs

scalar h = (abs(r(mean))+.0001)*.0001

di h

*.00020873

preserve

qui logit lw cigs faminc motheduc, nolog

* as is

predict double lw_0 if e(sample)

* Change cigs by a bit

replace cigs = cigs + scalar(h)

predict lw_1 if e(sample)

* For each obs

gen double dydx = (lw_1-lw_0)/scalar(h)

* Average

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .0055768 .0012444 .0040507 .0113006

An additional cigarette increases the probability of low birth weight by 0.56
percent points
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Average Marginal Effect (AME)

Replicate using margins command

qui logit lw cigs faminc motheduc, nolog

margins, dydx(cigs)

Average marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0055782 .0012814 4.35 0.000 .0030666 .0080898

------------------------------------------------------------------------------

Very close but Stata uses the two-sided derivative. The formula
h = (|x̄ |+ .0001)× .0001 is how Stata calculates the initial small change. In
this case, .00020873
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Average Marginal Effect (AME) the (almost) Stata way

* Two-sided derivative

preserve

qui logit lw cigs faminc motheduc

* Define small change for cigs

qui sum cigs

scalar h = (abs(r(mean))+0.0001)*0.0001

* Duplicte variable

clonevar cigs_c = cigs

* Small negative change

replace cigs = cigs_c - scalar(h)

predict double lw_0 if e(sample)

* Small positive change

replace cigs = cigs_c + scalar(h)

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)/(2*scalar(h))

sum dydx

restore

sum dydx

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .0055771 .001245 .0040404 .0112832

Remember, Stata has an iterative procedure to ensure numerical accuracy.
This is one reason the margins command for some complex models can be
slow. Note SEs are not too off, although they are not delta method SEs
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AME for indicator variables (incremental effects)

Understanding marginal effects it’s easier with dummy variables; that’s why I
have focused on continuous variables

With dummy variables we don’t have to do a “small” change. We change
from 0 to 1, but the logic is the same, except that we don’t need a two-sided
change

Notice the connection with treatment effects prediction of counterfactuals?

gen smoked = 0

replace smoked = 1 if cigs > 0 & cigs ~=.

* Incremental change

preserve

qui logit lw smoked faminc motheduc

* Nobody smokes

replace smoked = 0

predict double lw_0 if e(sample)

* Everybody smokes

replace smoked = 1

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)

sum dydx

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dydx | 1,387 .118284 .0105063 .0935378 .1363816
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AME for indicator variables

We can of course also use the margins command with caution

* Wrong

qui logit lw smoked faminc motheduc, nolog

margins, dydx(smoked)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoked | .0988076 .0230959 4.28 0.000 .0535405 .1440748

------------------------------------------------------------------------------

* Right

qui logit lw i.smoked faminc motheduc, nolog

margins, dydx(smoked)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.smoked | .118284 .0322576 3.67 0.000 .0550602 .1815078

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Even though same margins statement, different results. The first one is not
what we wanted. We did not use the factor syntax in the first model so
Stata didn’t go from 0 to 1; instead it used a “small” change

Smoking increases the probability of low birth weight by almost 12% points
(yikes)
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Predicted margins (adjusted means)

With indicator variables, we can also get what Stata calls predictive margins
(not marginal effects). Marginal effects are their difference. You may know
them as adjusted means

With the post option Stata “posts” results as postestimation results so we
can use them in tables or for calculations
qui logit lw i.smoked faminc motheduc, nolog

margins smoked, post

Predictive margins Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoked |

0 | .1305183 .0099014 13.18 0.000 .1111118 .1499248

1 | .2488023 .0304311 8.18 0.000 .1891584 .3084461

------------------------------------------------------------------------------

*ereturn list

matrix list e(b)

e(b)[1,2]

0. 1.

smoked smoked

y1 .13051827 .24880226

* marginal effects

di e(b)[1,2] - e(b)[1,1]

.11828399
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Marginal effects, relative risks, odds ratios - adjusted

Since we have the adjusted probabilities, we can use them to express results
as marginal effects (difference/contrasts) (Pt − Pc), relative risks ( Pt

Pc
), or

odds ratios (
Pt

1−Pt
Pc

1−Pc

)

. * marginal effects

. di e(b)[1,2] - e(b)[1,1]

.11828399

. * relative risks

. di e(b)[1,2] / e(b)[1,1]

1.9062639

. * odds ratios

. di (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))

2.2064252

See how relative risks and odds ratios are not the same?

Please make sure you understand the calculations above. For the nth time:
odds ratios are NOT relative probabilities. Repeat after me... (you can
do the same with probit, of course)
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Marginal effects, relative risks, odds ratios - unadjusted
This would be the “unadjusted” version
logit lw i.smoked, nolog or

<... output omitted ...>

-----------------------------------------------------------------------------

lw | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.smoked | 2.36004 .4228805 4.79 0.000 1.661109 3.353056

_cons | .1484375 .0129025 -21.95 0.000 .1251858 .1760079

------------------------------------------------------------------------------

Note: _cons estimates baseline odds.

margins smoked, post

Adjusted predictions Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoked |

0 | .1292517 .0097827 13.21 0.000 .1100779 .1484255

1 | .259434 .0301042 8.62 0.000 .2004308 .3184371

------------------------------------------------------------------------------

* marginal effects

di e(b)[1,2] - e(b)[1,1]

.13018226

* unadjusted relative risks

di e(b)[1,2] / e(b)[1,1]

2.0071996

* unadjusted odds ratios

di (e(b)[1,2]/(1-e(b)[1,2]) )/ (e(b)[1,1]/(1-e(b)[1,1]))

2.3600402

Make sure you digest this. It will be in the midterm. Note that Stata’s title is
the default, but not correct in this case (Adjusted predictions)
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Odds ratios are not relative risks

Again, odds ratios are not relative risks

When are they going to be the same?

OR =
Pt

1−Pt
Pc

1−Pc

= Pt

Pc ×
1−Pc

1−Pt

One case is if Pt ≈ Pc , although that’s not an interesting case

The more interesting case is 1−Pc

1−Pt ≈ 1, which would happen if both Pc and
Pt are low probability events

Probit model: One advantage of probit models is that unlike logit models,
the only meaningful way to understand model results is to use marginal
effects, so that would prevent you from presenting odds ratios
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Marginal Effect at the Mean (MEM) and Marginal effects
at representative values (MER)

We have left the values of the covariates as they were observed rather than
holding them fixed at a certain value

We can also calculate marginal effects at different value of the covariates, for
example at the mean of each covariate or at some other value (MEM and
MER, in Stata lingo)

There is some discussion about which way is better. For example, does it
make sense to hold male at 0.6 male? In a sense, yes. We are giving makes
the value of the proportion in the sample, 0.6. In another sense, it seems odd

Don’t waste too much time thinking about this. When we calculate
marginal effects (not margins), it doesn’t really matter at which value we
hold the other covariates constant because we are taking differences in effects

In general, the difference will be so small that it is better to spend mental
resources somewhere else
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Marginal effects at means (MEM)
Same algorithm except that now we set value for covariates before making
predictions to hold them constant – of course, adjusted means will be
different
qui sum faminc

scalar fincbar = r(mean)

qui sum motheduc

scalar medbar = r(mean)

preserve

qui sum cigs

scalar h = (abs(r(mean))+0.0001)*0.0001

qui logit lw cigs faminc motheduc, nolog

clonevar cigs_c = cigs

* Replace with means

replace faminc = scalar(fincbar)

replace motheduc = scalar(medbar)

* Small negative change

replace cigs = cigs_c - scalar(h)

predict double lw_0 if e(sample)

* Small positive change change

replace cigs = cigs_c + scalar(h)

predict double lw_1 if e(sample)

gen double dydx = (lw_1-lw_0)/(2*scalar(h))

sum dydx

restore

See these slides for more
https://clas.ucdenver.edu/marcelo-perraillon/sites/default/

files/attached-files/week_13_margins.pdf
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At means option – be careful

As I said before, be careful with the margins command. A small change in
syntax makes a big difference. Read output!
margins, dydx(cigs) at((mean) faminc motheduc)

Average marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

at : faminc = 29.04218 (mean)

motheduc = 12.93583 (mean)

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .005563 .0012843 4.33 0.000 .0030458 .0080801

------------------------------------------------------------------------------

* Not same as

margins, dydx(cigs) atmeans

Conditional marginal effects Number of obs = 1,387

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

at : cigs = 2.088681 (mean)

faminc = 29.04218 (mean)

motheduc = 12.93583 (mean)

<... output omitted ...>
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Marginsplot for adjusted means
Useful to visualize models holding covariates at some value. Handy in DiD
models for adjusted trends. Note this is a linear/OLS model

margins motheduc, at((mean) faminc parity)

Adjusted predictions Number of obs = 1,387

Model VCE : OLS

Expression : Linear prediction, predict()

at : faminc = 29.04218 (mean)

parity = 1.633021 (mean)

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

motheduc |

2 | 112.4071 20.19802 5.57 0.000 72.78466 152.0296

3 | 104.8245 20.18644 5.19 0.000 65.22478 144.4242

<... output omitted ...>

margins motheduc, at((mean) faminc parity)

marginsplot
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Marginsplot for adjusted means - lots of options
Check options for marginsplot. With post options you can get the output to
make your own plots too

marginsplot, recast(line) recastci(rarea)

graph export marplot2.png, replace

* saved margins in e(b)

*matrix list e(b)
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Marginsplot for adjusted means - lots of options
marginsplot is flexible

sum bwght

qui reg bwght i.motheduc faminc parity

margins motheduc, at((mean) faminc parity)

marginsplot, horizontal recast(scatter) xline(119, lcolor(red)) ///

xscale(range()) yscale(reverse)

graph export mhor.png, replace
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Interactions in logistic models

We estimated the model
log( lwi

1−lwi
) = β0 + β1cigsi + β2faminci + β3motheduci

We didn’t use interactions between cigarettes and income so we have
assumed the same effect regardless of income in the log-odds scale

If we add interactions, the margins command is a life saver because effects
are hard to interpret otherwise

In particular, the magnitude of effects is hard to make sense when a logistic
model has interactions and we use odds ratios for interpretations

But interactions in logistic (and probit) models have other issues: the
magnitude, sign, and statistical significance of interaction in the
log-odds scale may not be relevant to understand the interaction in
the probability scale

Exploring interactions with marginal effects is better (the old mfx would
provide SEs for an interacted variable, but margins with the factor syntax
recognizes interaction terms)
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Interactions

As usual, interactions are easier to understand with two indicator variables.
Let’s say more than high school (hsp) and male as in previous examples:
log( p

1−p ) = β0 + β1hsp + β2male + β3hsp ∗male

In the log-odds scale, we interpret them exactly in the same way as in the
linear model and we can use derivatives and the other tricks we learned
(What’s β1? β2?)

For males: log( pm
1−pm ) = β0 + β1hsp + β2 + β3hsp

For females: log( pf
1−pf ) = β0 + β1hsp

Difference males - females: log( pm
1−pm )− log( pf

1−pf ) = β2 + β3hsp

So the effect depends on the level of education

Note that we can write it in terms of odds:
Pm

1−Pm
Pf

1−Pf

= eβ2+β3hsp
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Interactions

Difference males - females: log( pm
1−pm )− log( pf

1−pf ) = β2 + β3hsp

Difference male - female for educated: log( pme

1−pme
)− log( pfe

1−pfe ) = β2 + β3

Difference male - female for uneducated: log( pmu

1−pmu
)− log( pfu

1−pfu ) = β2

Difference in difference:
log( pme

1−pme
)− log( pfe

1−pfe )− [log( pmu

1−pmu
)− log( pfu

1−pfu )] = β3

So same as with linear model. In the log-odds scale, it is a
difference-in-difference
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Interactions in the odds scale

log( pme

1−pme
)− log( pfe

1−pfe )− [log( pmu

1−pmu
)− log( pfu

1−pfu )] = β3

We can apply the rules of logs and take e() on both sides:
Pme

1−Pme
Pfe

1−Pfe

/
Pmu

1−Pmu
Pfu

1−Pfu

= eβ3

In the odds scale, an interaction is not a difference-in-difference but rather a
ratio of odds ratios

The interpretation is... well, good luck with that...

The interpretation is not that hard, actually. If greater than one, the odds of
outcome for educated are higher than for the uneducated (see the
numerator–it’s the odds ratio for males females for those “educated” or
hsp=1. The denominator is same but for those with hsp=0)

Interpreting the magnitude in the probability scale is a lost cause. A
lot easier with margins or stratifying the models
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Interactions and marginal effects

We are going to estimate the model:
logit(lwi ) = β0 + β1cigsi + β2inci + β3cigs ∗ inci
inc is a dummy and equal 1 if income is higher than 40k

gen inc = 0

replace inc = 1 if faminc > 40 & faminc~= .

logit lw c.cigs##i.inc, nolog

Logistic regression Number of obs = 1,388

LR chi2(3) = 22.90

Prob > chi2 = 0.0000

Log likelihood = -573.18336 Pseudo R2 = 0.0196

------------------------------------------------------------------------------

lw | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0494583 .0104689 4.72 0.000 .0289397 .0699769

1.inc | -.1003108 .1923845 -0.52 0.602 -.4773774 .2767558

|

inc#c.cigs |

1 | -.0534926 .0583898 -0.92 0.360 -.1679344 .0609492

|

_cons | -1.843 .0954774 -19.30 0.000 -2.030132 -1.655868

------------------------------------------------------------------------------

Interaction term not significant, so the model with the interaction doesn’t
improve fit
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Interactions and marginal effects

We can also use the margins command to check effects in the probability
scale

margins, dydx(*)

Average marginal effects Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs 1.inc

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0046941 .0018482 2.54 0.011 .0010717 .0083165

1.inc | -.0288422 .0225222 -1.28 0.200 -.0729849 .0153006

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

Wait, two effects? The model has three coefficients. Where is the
interaction?
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Interactions and marginal effects

This may seem confusing but it’s not when you remember how Stata
calculates marginal effects. For cigs, a continuous variable, it’s using the
two-sided derivative increasing cigs by a little bit and calculating predictions.
It’s increasing cigs in both the main effect and the interaction

Then it takes an average so the marginal effect of cigs is the numerical
derivative for both inc=1 and inc=0 combined

For the marginal effect of inc, it’s doing the same going from 0 to 1,
averaging over the values of cigs, but changing inc from 0 to 1 in both the
main effect and interaction

With factor syntax, Stata knows that one variable is a multiplication of the
other

To get the effect of one variable at some values of the other, we have to be
more specific with the syntax
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Interactions and marginal effects

Get the effects at different levels. Below, we compute: ∂P
∂cigs

∣∣∣
inc=0

and

∂P
∂cigs

∣∣∣
inc=1

. margins, dydx(cigs) at(inc=(0 1)) vsquish

Average marginal effects Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

1._at : inc = 0

2._at : inc = 1

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |

_at |

1 | .0062867 .0012881 4.88 0.000 .0037621 .0088113

2 | -.0004394 .0062301 -0.07 0.944 -.0126501 .0117713

------------------------------------------------------------------------------

Read the output carefully. at = 1 is for inc = 0. They go in different
directions, with the one with higher incomes having a large CIs (why?)
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Is the interaction statistically significant in the probability
scale?

Because the significance of the interaction in the log-odds scale could be
different than in the probability scale, we want to check the delta method
SEs from the margins command

For modeling though, the significance in the log-odds scale is telling us about
fit. It’s the same as using likelihood ratio tests (next class)

But we should check if the effects are different in the probability scale
(magnitude, significant, direction)

Above, the confidence intervals overlap, so we wouldn’t reject the null that
the difference is zero using margins

Marginsplot helps here, but we can also use the contrast() option in margins.
It performs tests using the delta-method SEs
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Is the interaction statistically significant in the probability
scale?

Check the overlap of delta SEs. Check the magnitudes. Or use the contrast
option (handy but not well-known). See Karaka-Mandic, Norton, Dowd
(2012) for details. The do file for today’s class has code to replicate their
example (plus a test using contrast option)

margins, dydx(cigs) at(inc=(0 1)) vsquish

marginsplot

graph export inter.png, replace

margins, dydx(cigs) at(inc=(0 1)) contrast(at)

Contrasts of average marginal effects Number of obs = 1,388

Model VCE : OIM

Expression : Pr(lw), predict()

dy/dx w.r.t. : cigs

1._at : inc = 0

2._at : inc = 1

------------------------------------------------

| df chi2 P>chi2

-------------+----------------------------------

cigs |

_at | 1 1.12 0.2904

------------------------------------------------
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So what to do if interaction is not significant with marginal
effects?

There are some deep issues related to statistical model and testing. We
should use Wald tests and LR tests to build models, including interactions,
but we should present results in the scale of interest and discuss implications
of the model. Following Green (2010) (emphasis mine):

1 Build the model based on appropriate statistical procedures and principles.
Statistical testing about the model specification is done at this step.
Hypothesis tests are about model coefficients and about the structural aspects
of the model specification. Partial effects [i.e. marginal effects] are neither
coefficients nor elements of the specification of the model. They are
implications of the specified and estimated model.

2 Once the model is in place, inform the reader with analysis of model
implications such as values, predictions, partial effects and interactions. We
find that graphical presentations are a very informative adjunct to numerical
statistical results for this purpose. Hypothesis testing need not be done at
this point [that is, using delta errors]. Even where the partial effects are the
ultimate target of estimation [as in difference-in-difference models], it seems it
would be rare for a model builder to build a structural model by hypothesizing
(statistically) about partial effects and/or predictions that would be made by
that model.
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Other models

The logic of marginal and incremental effects extends to any other parametric
model

Calculate the numerical derivative for a small change h or an incremental 0
to 1 change

The algorithm is identical, marginal effects by default will show results in the
default scale of the predict command

The scale can be changed with the predict() option in the margins command

In GLM models with a log link, the marginal effect would be
∂E [Y |X]
∂x = βxe

X′β

We could have used GLM models for all the logistic examples above
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GLM logit

Replicate example with GLM

qui glm lw c.cigs##i.inc, family(binomial) link(logit)

margins, dydx(*)

<... output omitted ...>

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs | .0046941 .0018482 2.54 0.011 .0010717 .0083165

1.inc | -.0288422 .0225222 -1.28 0.200 -.0729849 .0153006

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

margins, dydx(cigs) at(inc=(0 1)) vsquish

<... output omitted ...>

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |

_at |

1 | .0062867 .0012881 4.88 0.000 .0037621 .0088113

2 | -.0004394 .0062301 -0.07 0.944 -.0126501 .0117713

------------------------------------------------------------------------------
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More custom: Two-part models

Two-part models are often used to estimate cost data with a large proportion
of costs that are zero

The idea is to estimate the model in two parts:

1) Estimate the probability that the cost is greater than zero conditional on
covariates: P(yi > 0|Xi ) (using logit, probit, complementary log-log models)

2) For those observations with non-zero costs, estimate the expected costs
conditional on covariates: E (yi |yi > 0,Xi ) (using Poisson, linear models,
Gamma, log(y), Box-Cox, etc)

Predictions are obtained combining both parts (multiplication):
P(yi > 0|Xi )× E (yi |yi > 0,Xi )
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Two-part models marginal effects

If you know how to get predictions, you now how to calculate marginal effects

First, using the user-written command twopm and the margins command

* Get data from example in twopm command

webuse womenwk

replace wage = 0 if wage==.

* First part logit, second part GLM with Gamma family

qui twopm wage i.married children, firstpart(logit) secondpart(glm, family(gamma) link(log))

margins, dydx(married)

Average marginal effects Number of obs = 2,000

Expression : twopm combined expected values, predict()

dy/dx w.r.t. : 1.married

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.married | 6.615493 .5323105 12.43 0.000 5.572183 7.658802

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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Two-part models marginal effects “by hand”

gen nozeroc = 0

replace nozeroc = 1 if wage >0

preserve

clonevar marr = married

* not married

qui logit nozeroc i.married children

replace married = 0

predict double fp0

replace married = marr

qui glm wage i.married children if wage > 0, f(gamma) l(log)

replace married = 0

predict double c0

gen chat0 = fp0*c0

* married

replace married = marr

qui logit nozeroc i.married children

replace married = 1

predict double fp1

replace married = marr

qui glm wage i.married children if wage > 0, f(gamma) l(log)

replace married = 1

predict double c1

gen chat1 = fp1*c1

gen dif = chat1 - chat0

sum dif

restore

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

dif | 2,000 6.615493 1.660084 2.485561 8.001396
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Subpopulations
The subpop option is the equivalent of “if” in margins; helpful with survey
data but also helpful when we want the margins for some part of the data

Remember ATET when we discussed treatment effects? We can get ATET
after a fully-interacted regression model

Make sure you understand this. Go back to the class on regression
adjustment and propensity scores

qui reg bwght i.smoked##(c.fatheduc c.faminc), robust

margins r.smoked, subpop(smoked) vce(unconditional)

<...>

--------------------------------------------------------------

| Unconditional

| Contrast Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------

smoked |

(1 vs 0) | -8.648601 1.623139 -11.83314 -5.464057

--------------------------------------------------------------

teffects ra (bwght fatheduc faminc)(smoked), atet

<...>

------------------------------------------------------------------------------

| Robust

bwght | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ATET |

smoked |

(1 vs 0) | -8.648601 1.619049 -5.34 0.000 -11.82188 -5.475324

-------------+----------------------------------------------------------------

POmean |

smoked |

0 | 120.1331 .7079497 169.69 0.000 118.7455 121.5206

------------------------------------------------------------------------------
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LPM, logit, and probit redux
A simulation to understand some features and issues with non-linearity and
linear probability models versus logit and probit

We will simulate 0/1 data in which a linear probability would be a bit
problematic, with the outcome y having low probability (0.56)

The graph are predictions using the logit model
clear

set seed 1234567

set obs 1000

gen x = rnormal(-2/3, 4/3)

gen y = rbinomial(1,invlogit(-4.5 + 3*x))

sum y

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

y | 999 .0560561 .2301452 0 1

qui logit y x

predict y_logit

graph export logitg.png, replace
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LPM, logit, and probit redux

Compare models. Similar average marginal effects but not so close

* LPM

qui reg y x

est sto lpm

predict y_lpm

* Logit

qui logit y x

predict y_logit

margins, dydx(x) post

est sto logit_dydx

* Probit

qui logit y x

predict y_probit

margins, dydx(x) post

est sto probit_dydx

. est table lpm logit_dydx probit_dydx, star

--------------------------------------------------------------

Variable | lpm logit_dydx probit_dydx

-------------+------------------------------------------------

x | .07450962*** .08365352*** .08365352***

_cons | .10604429***

--------------------------------------------------------------

legend: * p<0.05; ** p<0.01; *** p<0.001
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LPM, logit, and probit redux
Graphs shows the reason. Linear approximation not great. Predictions
negative
Logit and probit predictions identical

line y_lpm x, sort color(red) || line y_logit x, color(blue) sort ///

|| line y_probit x, sort legend(off) title("LPM, logit, and probit")

graph export lpm_plus.png, replace
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LPM, logit, and probit redux

Marginal effects at different values of x tell us the story

In the linear model the slope is the same; it’s, well, linear (constant)

In the logit model, very different at most values, except close to x = 0.45
(see the graph closely). Check with margins

margins, dydx(x) at(x=(-4, 0.45, 4)) vsquish

<...>

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x |

_at |

1 | .0745096 .0050552 14.74 0.000 .0645896 .0844296

2 | .0745096 .0050552 14.74 0.000 .0645896 .0844296

3 | .0745096 .0050552 14.74 0.000 .0645896 .0844296

------------------------------------------------------------------------------

qui logit y x

margins, dydx(x) at(x=(-4, 0.35, 4)) vsquish

<...>

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x |

_at |

1 | 3.15e-07 5.02e-07 0.63 0.531 -6.70e-07 1.30e-06

2 | .0724872 .0165856 4.37 0.000 .0399801 .1049943

3 | .003214 .0026415 1.22 0.224 -.0019633 .0083914

------------------------------------------------------------------------------
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Topics not covered but helpful to know

The margins command can do much more

1 You can get elasticities and semielasticities: eyex(), dyex(), eydx()
2 You can use it to make predictions: margins, at(...)
3 You can use an external dataset to do adjustment though standardization (as

in epi)
4 You can use the contrast potestimation to test differences after margins to do

tests (we covered the contrast option)
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