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Regression adjustment: Main assumptions for causal
inference

We saw that we needed two assumptions to use regression adjustment for
causal inference

1 Ignorability or unconfoundness or CIA: (Y1i ,Y0i ) ⊥ Di |Xi

2 Overlap (aka common support): For all Xi ∈ ϕ, where ϕ is the support
(domain) of the covariates Xi , 0 < P(D = 1|Xi ) < 1

Rosenbaum and Rubin (1983) called the two assumptions together strong
ignorability

The other, of course, is SUTVA, which is always needed

We also saw that a weaker version of 1) is Ignorability of Means:
E [Y0i |Di ,Xi ] = E [Y0i |Xi ] (same for Y1i )

Randomization (conditional randomization) guarantees both are satisfied and
we must argue SUTVA (a type of exclusion restriction)
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Parametric, nonparametric, semiparametric

With regression adjustment we can obtain, using observed data, E [Yi |Di ,Xi ]

Remember too that in the class on causal inference I said that we don’t need
to assume anywhere that E [Yi |Di ,Xi ] must be estimated with linear/OLS
models or any parametric model. The estimation could be non-parametric or
semiparametric – causal effects are identified either way

Example of parametric model: Yi = β0 + β1Di + β2Z + ε. In this model, we
the obtain E [Yi |Di ,Zi ] as a function of parameters β1, β2, β3

A nonparametric model could be Yi = g(Di ,Zi ) + ui , where g(.) is an
unknown function (of an infinite set of functions). We don’t estimate
parameters, but we get a series of Ŷi from which we can calculate E [Yi |Di ,Zi ]

Semiparametric is a combination of both, but there is confusion on what is
called nonparametric vs semiparametric in the literature

Nonparametric methods are not a panacea either. You trade one set of
assumptions for another: bandwidth choice, weighting schemes,
dimensionality issues
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Data

We will use a dataset to explore the impact of an intervention on mental
health status score from the SF-36

The dataset started as a real dataset but over time I made some changes to
illustrate some points so by now it’s simulated data. See do file

webuse set "https://perraillon.com/s/"

webuse "help_1_stata12.dta", clear

<..code omitted...>

Contains data from https://perraillon.com/s/help_1_stata12.dta

obs: 452

vars: 6 15 Apr 2012 11:34

---------------------------------------------------------------------------------------------

storage display value

variable name type format label variable label

---------------------------------------------------------------------------------------------

ndrinks int %8.0g Number of drinks (standard units) consumed per

day (last 30 days)

age byte %8.0g Age (years)

intervention byte %8.0g 1 if received intervention

pcs float %9.0g SF-36 Mental Composite Score

drugrisk byte %8.0g Risk assesment battery (RAB) drug risk score

female float %9.0g 1 if Female

---------------------------------------------------------------------------------------------

Sorted by:

Note: Dataset has changed since last saved.
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Regression adjustment

We are going to pretend that ignorability holds. Let’s run our trusty, old
fashioned linear/OLS model. What is the coefficient for intervention (5.38)
telling us? (Higher PSC score is better outcome)

reg pcs intervention age female ndrinks drugrisk

Source | SS df MS Number of obs = 452

-------------+---------------------------------- F(5, 446) = 57.54

Model | 34647.4528 5 6929.49057 Prob > F = 0.0000

Residual | 53713.7962 446 120.434521 R-squared = 0.3921

-------------+---------------------------------- Adj R-squared = 0.3853

Total | 88361.249 451 195.922947 Root MSE = 10.974

------------------------------------------------------------------------------

pcs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

intervention | 5.383645 1.132658 4.75 0.000 3.157635 7.609655

age | -.1944413 .0687731 -2.83 0.005 -.3296009 -.0592817

female | -5.617188 1.223214 -4.59 0.000 -8.021167 -3.213209

ndrinks | -.3554573 .0302739 -11.74 0.000 -.4149546 -.29596

drugrisk | -.334938 .1201294 -2.79 0.006 -.5710279 -.0988481

_cons | 55.44966 2.617823 21.18 0.000 50.30486 60.59446

------------------------------------------------------------------------------
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We can try other specifications

We could interact intervention with number of drinks, for example. Effect of
intervention non-constant (non-linear)

. reg pcs i.intervention##c.ndrinks age i.female drugrisk

Source | SS df MS Number of obs = 452

-------------+---------------------------------- F(6, 445) = 50.54

Model | 35811.3652 6 5968.56086 Prob > F = 0.0000

Residual | 52549.8838 445 118.089627 R-squared = 0.4053

-------------+---------------------------------- Adj R-squared = 0.3973

Total | 88361.249 451 195.922947 Root MSE = 10.867

----------------------------------------------------------------------------------------

pcs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------------------+----------------------------------------------------------------

1.intervention | 2.705919 1.40905 1.92 0.055 -.0632991 5.475137

ndrinks | -.3954348 .0325702 -12.14 0.000 -.4594454 -.3314243

|

intervention#c.ndrinks |

1 | .2499904 .0796286 3.14 0.002 .0934956 .4064852

|

age | -.2043996 .0681742 -3.00 0.003 -.3383829 -.0704163

1.female | -5.018761 1.226154 -4.09 0.000 -7.428534 -2.608989

drugrisk | -.3162415 .1191031 -2.66 0.008 -.550316 -.082167

_cons | 56.57957 2.617078 21.62 0.000 51.4362 61.72294

----------------------------------------------------------------------------------------

margins, dydx(intervention)

<... output omitted ..>

+----------------------------------------------------------------

1.intervention | 6.456881 1.172519 5.51 0.000 4.152519 8.761243

--------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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We can try other specifications

Number of drinks could be quadratic. Again, the effect of intervention is
non-constant (non-linear)

reg pcs i.intervention##(c.ndrinks##c.ndrinks) i.female drugrisk

-----------------------------------------------------------------------------------------

pcs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

------------------------+----------------------------------------------------------------

1.intervention | -.5992266 1.687401 -0.36 0.723 -3.915512 2.717059

ndrinks | -.7272449 .0731894 -9.94 0.000 -.8710857 -.5834042

|

c.ndrinks#c.ndrinks | .0034224 .000711 4.81 0.000 .0020251 .0048197

|

intervention#c.ndrinks |

1 | .4953355 .2128372 2.33 0.020 .077042 .9136289

|

intervention#c.ndrinks#|

c.ndrinks |

1 | -.0015199 .0058563 -0.26 0.795 -.0130294 .0099895

|

1.female | -5.02411 1.213554 -4.14 0.000 -7.409133 -2.639086

drugrisk | -.3451062 .1178018 -2.93 0.004 -.5766246 -.1135877

_cons | 53.15791 1.340412 39.66 0.000 50.52357 55.79225

-----------------------------------------------------------------------------------------

margins, dydx(intervention)

<... output omitted ..>

--------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

1.intervention | 5.943705 1.668067 3.56 0.000 2.665418 9.221992

--------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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Regression adjustment following definition of causal effects

Stata implemented a treatment effects group of commands

The command teffects ra performs another way of doing regression
adjustment

The conceptual idea follows Wooldridge (2010), Chapter 21, overview of
causal effects, but in essence follows basic principles that suggest
nonparametric (or semiparametric) identification: Remember, under
ignorability comparing E [Yi |Xi ,Di = 1] to E [Yi |Xi ,Di = 0] provides an
estimate of causal effects

We just did that using a linear/OLS model, but we could do it using a series
of steps, which has didactical advantages and we can get ATE and ATET

teffects ra estimates the steps, but estimates all steps simultaneously
using generalized methods of moments estimation (GMM) (See Stata’s
PDF help on command gmm for a nice intro)
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Regression adjustment teffects ra style, ATE

Step 1: Estimate E [Yi |Xi ,Di = 1] with a linear/OLS model using only
treated observations

Step 2: Using estimates from 1), predict Ŷtreated in the entire sample

Step 3: Estimate E [Yi |Xi ,Di = 0] with a linear/OLS model using only
control observations

Step 4: Using estimates from 3), predict Ŷcontrol in the entire sample

Step 5: The difference (contrast) between E [Ŷtreated ]−E [Ŷcontrol ] is the ATE

Note the logic. We use the experience of the treated to estimate how
covariates X affect the outcome Y . We use the estimated model to make
predictions about the counterfactual for the control E [Y0i |D = 1] (and the
treated). Same logic for control group. See, causal inference is a
PREDICTION problem

10



Estimating the five steps

* Steps 1 and 2

qui reg pcs age female ndrinks drugrisk if intervention == 1

predict double yhat_t

* Steps 3 and 4

qui reg pcs age female ndrinks drugrisk if intervention == 0

predict double yhat_c

sum yhat_t

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

yhat_t | 452 48.14365 3.929616 27.77863 55.38451

local pom_t = r(mean)

sum yhat_c

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

yhat_c | 452 41.55624 8.21028 -11.22789 51.53394

local pom_c = r(mean)

di ‘pom_t’ - ‘pom_c’

6.5874079

We find that the treatment effect is 6.58. This approach can be called
semiparametric
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Using teffects ra

* Using teffects

teffects ra (pcs age female ndrinks drugrisk) (intervention), ate

Iteration 0: EE criterion = 1.247e-28

Iteration 1: EE criterion = 1.696e-29

Treatment-effects estimation Number of obs = 452

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

------------------------------------------------------------------------------

| Robust

pcs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ATE |

intervention |

(1 vs 0) | 6.587408 1.24669 5.28 0.000 4.14394 9.030876

-------------+----------------------------------------------------------------

POmean |

intervention |

0 | 41.55624 .9719151 42.76 0.000 39.65133 43.46116

------------------------------------------------------------------------------

*teffects ra (pcs age female ndrinks drugrisk) (intervention), ate aeq

The ate option is the default. You can get more info with aeq option. PO
means “population outcome”
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teffect ra for ATE is really a fully interacted parametric
model

We are interacting intervention with all the other covariates

. qui reg pcs i.intervention##(c.age i.female c.ndrinks c.drugrisk)

. margins, dydx(intervention)

Average marginal effects Number of obs = 452

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : 1.intervention

--------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

---------------+----------------------------------------------------------------

1.intervention | 6.587408 1.176083 5.60 0.000 4.275999 8.898817

--------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.
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Average Treatment Effect on the Treated (ATET)

Here is where things get interesting. Following this logic, we can estimate
ATET

Step 1: Estimate E [Yi |Xi ,Di = 1] with a linear/OLS model using only
treated observations

Step 2: Using estimates from 1), predict Ŷtreated only using the treated
sample

Step 3: Estimate E [Yi |Xi ,Di = 0] with a linear/OLS model using only
control observations

Step 4: Using estimates from 3), predict Ŷtreatedc using only the treated
sample. Essentially, this is the counterfactual for the treated

The difference (contrast) between E [Ŷtreated ] and E [Ŷtreatedc ] is ATET

Steps 1 and 2 are actually not necessary. We know that the average of the
predictions will be the same as the average of observed Y since

∑n
i=1 ε̂i = 0,

so E [Ŷtreated ] = E [Y ]
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ATET “by hand”

Pay attention to the “if” operator in all steps

/// --- ATET

* Steps 1 and 2

qui reg pcs age female ndrinks drugrisk if intervention == 1

predict yhat_t1 if intervention == 1

* Steps 3 and 4

qui reg pcs age female ndrinks drugrisk if intervention == 0

predict yhat_t11 if intervention == 1

sum yhat_t1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

yhat_t1 | 243 49.00447 3.212145 39.70965 55.36874

local pom_t1 = r(mean)

* same as

sum pcs if intervention ==1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

pcs | 243 49.00447 10.85098 14.07429 74.80633

sum yhat_t11

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

yhat_t11 | 243 44.25364 4.726526 28.4412 51.53394

local pom_t11 = r(mean)

di ‘pom_t1’ - ‘pom_t11’

4.7508282
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ATET using teffects ra

The GMM estimation does need to estimate model 1

teffects ra (pcs age female ndrinks drugrisk) (intervention), atet aeq

Treatment-effects estimation Number of obs = 452

Estimator : regression adjustment

Outcome model : linear

Treatment model: none

------------------------------------------------------------------------------

| Robust

pcs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ATET |

intervention |

(1 vs 0) | 4.750828 1.200882 3.96 0.000 2.397142 7.104515

-------------+----------------------------------------------------------------

POmean |

intervention |

0 | 44.25364 1.028533 43.03 0.000 42.23775 46.26953

-------------+----------------------------------------------------------------

OME0 |

age | -.1194283 .0930727 -1.28 0.199 -.3018474 .0629908

female | -6.031054 1.930069 -3.12 0.002 -9.813919 -2.24819

ndrinks | -.4037942 .0422099 -9.57 0.000 -.4865241 -.3210644

drugrisk | -.4541629 .1403639 -3.24 0.001 -.729271 -.1790547

_cons | 54.16137 3.475175 15.59 0.000 47.35015 60.97258

-------------+----------------------------------------------------------------

OME1 |

age | -.3030211 .0905716 -3.35 0.001 -.4805381 -.125504

female | -4.131283 1.431898 -2.89 0.004 -6.93775 -1.324815

ndrinks | -.1180554 .0702388 -1.68 0.093 -.255721 .0196102

drugrisk | -.1745113 .1817243 -0.96 0.337 -.5306844 .1816617

_cons | 62.03521 3.253079 19.07 0.000 55.65929 68.41113

------------------------------------------------------------------------------
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ATET with regression

It will become clearer when we cover marginal effects

qui reg pcs i.intervention##(c.age i.female c.ndrinks c.drugrisk)

margins r.intervention, subpop(intervention)

Contrasts of predictive margins Number of obs = 452

Model VCE : OLS Subpop. no. obs = 243

Expression : Linear prediction, predict()

------------------------------------------------

| df F P>F

-------------+----------------------------------

intervention | 1 17.08 0.0000

|

Denominator | 442

------------------------------------------------

--------------------------------------------------------------

| Delta-method

| Contrast Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------

intervention |

(1 vs 0) | 4.750828 1.149684 2.491301 7.010356

--------------------------------------------------------------
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OLS and identification of ATE and ATET

There is a subtle point in the previous discussion

The treatment effects using the linear/OLS model only identifies ATE if there
is no treatment heterogeneity

If there is no treatment heterogeneity, then the usual way of doing regression
adjustment would recover ATE

We had to interact treatment with all the covariates to obtain ATE
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Big picture

We went straight from the definition of causal effects to ways to estimate
ATE and ATE using different but related approaches

ATET is 4.75 while ATE is 6.58, both statistically significant (trust teffects
for SEs)

That tells you something: the covariates may not be balanced between
treatment and control and/or the effects of covariates on outcome could be
different between treatment and control (heterogenous effects) – or
something else could be going on

As we will soon see, this makes substantive sense – the intervention group is
different

Remember that under randomization ATE = ATET. The treated and the
control are similar (i.e. same distribution) in all observed characteristics X
and all unobserved characteristics

Remember too that we are assuming ignorability or conditional
randomization

But what about overlap?
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Notice something odd?

Below is the usual regression adjustment model you would use under
ignorability

There is nothing odd in the regression output, but in fact we have a problem
in the regression below: overlap doesn’t hold

reg pcs intervention age female ndrinks drugrisk

Source | SS df MS Number of obs = 452

-------------+---------------------------------- F(5, 446) = 57.54

Model | 34647.4528 5 6929.49057 Prob > F = 0.0000

Residual | 53713.7962 446 120.434521 R-squared = 0.3921

-------------+---------------------------------- Adj R-squared = 0.3853

Total | 88361.249 451 195.922947 Root MSE = 10.974

------------------------------------------------------------------------------

pcs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

intervention | 5.383645 1.132658 4.75 0.000 3.157635 7.609655

age | -.1944413 .0687731 -2.83 0.005 -.3296009 -.0592817

female | -5.617188 1.223214 -4.59 0.000 -8.021167 -3.213209

ndrinks | -.3554573 .0302739 -11.74 0.000 -.4149546 -.29596

drugrisk | -.334938 .1201294 -2.79 0.006 -.5710279 -.0988481

_cons | 55.44966 2.617823 21.18 0.000 50.30486 60.59446

------------------------------------------------------------------------------
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Checking overlap (informally)

Number of drinks is a confounder and notice that in the control group there
are more people who drank much more

sum age female ndrinks drugrisk if intervention ==1

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

age | 243 35.09465 7.131244 21 58

female | 243 .2757202 .4477988 0 1

ndrinks | 243 8.09465 9.749512 0 51

drugrisk | 243 1.728395 3.975168 0 21

sum age female ndrinks drugrisk if intervention ==0

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

age | 209 36.36842 8.260958 19 60

female | 209 .1913876 .3943379 0 1

ndrinks | 209 23.03828 23.47315 0 142

drugrisk | 209 2.07177 4.725098 0 21

corr ndrinks pcs

(obs=452)

| ndrinks pcs

-------------+------------------

ndrinks | 1.0000

pcs | -0.5584 1.0000

scatter pcs ndrinks if intervention ==1, color(red) msize(small) || ///

scatter pcs ndrinks if intervention ==0, color(blue) msize(small) ///

legend(off)

graph export pcs_drinks.png, replace
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Picture worth a thousand words, etc
Blue are controls. There is not a single treated unit with more than 51 drinks,
which means that the probability of receiving treatment is zero for those
who drink more than 51 drinks. There are fewer controls who a few drinks
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Overlap

The definition of overlap is broad and could go in either direction. See similar
problem using sample data from Stata (see do file for code)

23



But what is the problem?

The problem is that implicitly we are extrapolating information

We are using the information from those in the control group who drank
more than 51 drinks to make predictions about the treated group, but
nobody in the treated group drank more than 51 drinks. You can frame the
problem the other way, too

So E [Yi |Xi ,Di = 0] 6= E [Y0i |Xi ,Di = 1], which is equivalent to
E [Y0i |Xi ,Di = 0] 6= E [Y0i |Xi ,Di = 1]

It’s a subtle problem that is easy to overlook if you don’t carefully explore the
data

Whether the problem matters or not depends on how covariates affect
treatment and outcomes

It also depends on functional form: if we model correctly the relationship
between drinks and pcs, then our predictions will be better. But we never
know the true model
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Implicit, explicit extrapolation

I wrote above that when we use regression, the extrapolation is implicit

Compare the usual regression adjustment with the new approach we covered
at the beginning of the class (teffects ra)

With that approach, the extrapolation is explicit. For example, in Step 1 for
ATE, the estimates from a model using only the treated observations are
used to make predictions in both treated and controls

In other words, it’s explicit that we use the information of the treated group
–who never drank more than 51 drinks – to predict what would have
happened to those in the control group when they drink a lot more

Again, how big is the problem depends on the relationship between the
number of drinks consumed and the outcome. Intuitively, modeling that
relationship (functional form) correctly is important

25



What could we do?

Here is some intuition for the methods that we will cover. It’s easier to
intuitively think about solutions when the problem is with one variable,
number of drinks here

1 We could restrict estimation to the region where there is overlap – the region
where we have information to make extrapolations (drinks ≤ 51)

2 We could use the entire sample, but we could give more importance (weight)
to the observations where overlap is good

3 We could stratify the analysis instead comparing different regions. Say, 0 to 15
drinks, 16 to 20, 30+. This partially solves the problem. The comparison of
30+ now has pretty bad overlap

The solutions above correspond to 1) matching, 2) inverse propensity
score weighting (IPW), and 3) stratification based on propensity score,
respectively

But the solutions deal with the more realistic case when the lack of overlap
is due to multiple variables
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Diagnosing the problem: the Propensity Score

We defined overlap as the condition 0 < P(D = 1|Xi ) < 1 for all Xi ∈ ϕ,
where ϕ is the support (domain) of the covariates

As I mentioned in a previous class, P(D = 1|Xi ) is the definition of the
propensity score:

p(Xi ) ≡ P(D = 1|Xi )

The propensity score, p(Xi ), for unit i is the conditional probability of
receiving treatment given observed covariates X (the propensity to receive
treatment)

Obviously, the probability of not receiving treatment is 1− p(Xi )

The importance of the propensity scores is presented in Rosenbaum and
Rubin (1983), so we’ll go to the source
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Rosenbaum and Rubin (1983)
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Why is the propensity score important?

Rosenbaum and Rubin presented the propensity score as a balancing score,
meaning this (I changed the notation to match ours):

Theorem 1. Treatment assignment and the observed covariates are
conditionally independent given the propensity score, that is: X ⊥ D|p(X )

“Theorem 1 implies that if a subclass of units or a matched
treatment-control pair is homogeneous in p(X ), then the treated and control
units in that subclass or matched pair will have the same distribution of X .”

Said another way, comparing the propensity score of treatment and control
units is the same as comparing the distribution of covariates used to estimate
the propensity score. That’s something. So we can check overlap on all
covariates by checking the distribution of the propensity score

Note too that Theorem 1 implies mean independence given the propensity
score in the sense that the propensity score will achieve balance
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Big picture

The way Theorem 1 is stated created a lot of confusion. Some interpreted it
as saying that we only need to control for the propensity score rather than
the covariates (the abstract doesn’t help: “...adjustment for the scalar
propensity score is sufficient to remove bias due to all observed covariates”),
but that has multiple drawbacks

However, they only proposed using the propensity score for matching and
stratification, not as a covariate in a regression model. Using it as an inverse
weight came later

Alert (!): Notice something subtle but very important: if overlap is satisfied,
as in randomization, then using the propensity score (matching, stratification,
IPW) should give very similar estimates as regression adjustment. The vector
of covariates X are also balancing. The propensity score won’t achieve any
more balance if X ⊥ D already holds. That’s Theorem 3

More recent research suggests some advantages of extensions of IPW, like
doubly robust methods (robust to misspecification of functional form). You
get two chances to get it right (more on this on the second part of the class)
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Preview: Using the propensity score

We are going to go over the propensity score in more detail, including better
ways of specifying the propensity score, but here is a preview

* Estimate the propensity score

qui logit intervention ndrinks age female drugrisk, nolog

predict double pscore if e(sample)

* Calculate statistics to check overlap

tabstat pscore, by(intervention) stats(N mean median min max)

Summary for variables: pscore

by categories of: intervention (1 if received intervention)

intervention | N mean p50 min max

-------------+--------------------------------------------------

0 | 209 .4343591 .4511057 .000152 .8146361

1 | 243 .6264154 .6891437 .0836827 .8161083

-------------+--------------------------------------------------

Total | 452 .5376106 .6060343 .000152 .8161083

----------------------------------------------------------------

* Create IP weight

gen ipw = 1/pscore if intervention == 1

replace ipw = 1/(1-pscore) if intervention ==0
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Check the lack of overlap

Note the min and max above. The region where they overlap is the common
support area

What are the characteristics of those with PS less than 0.083 in the control
group?

sum age female ndrinks drugrisk if intervention ==0 & pscore < 0.083

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

age | 22 41.59091 6.973822 31 56

female | 22 .2727273 .4558423 0 1

ndrinks | 22 74 26.35653 51 142

drugrisk | 22 1.909091 5.126115 0 18

Magic! They are the ones with ndrinks ≥ 51. Cool, isn’t it? We knew that,
but the overlap could be due to multiple variables at the same time

The propensity score is also a summary score because in one number
(scalar) that provides information on the distribution of all covariates X
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Check the distribution of the propensity score
kdensity pscore if intervention ==1, color(red) bw(0.02) ///

addplot(kdensity pscore if intervention ==0, bw(0.02)) legend(off)

graph export ps_kernel.png, replace
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Use the propensity score as a weight

We are going to use the inverse of the propensity score as a weight.
Analogous to survey design in which units are weighted based on the
(inverse) probability of being surveyed

The weight gives more importance to some observations. We can check
sample characteristics using the weights

bysort intervention: sum age female ndrinks drugrisk [aweight=ipw]

---------------------------------------------------------------------------------------------

-> intervention = 0

Variable | Obs Weight Mean Std. Dev. Min Max

-------------+-----------------------------------------------------------------

age | 209 450.540093 35.67488 8.281236 19 60

female | 209 450.540093 .2286887 .4209967 0 1

ndrinks | 209 450.540093 15.10925 19.02263 0 142

drugrisk | 209 450.540093 1.810754 4.315663 0 21

---------------------------------------------------------------------------------------------

-> intervention = 1

Variable | Obs Weight Mean Std. Dev. Min Max

-------------+-----------------------------------------------------------------

age | 243 441.817607 35.58435 7.058303 21 58

female | 243 441.817607 .2210832 .4158329 0 1

ndrinks | 243 441.817607 12.82159 13.24991 0 51

drugrisk | 243 441.817607 1.925442 4.516877 0 21

Magic!!!! Look how much better the balance is now. Before, average
number of drinks was 8.09 and 23.03 for intervention and control. Now 15.10
and 12.8. All the other variables are closer too
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Intuition: Use IP weights to change size of symbols

* Bubble plot

scatter pcs ndrinks [pweight=ipw] if intervention ==1, msymbol(circle_hollow) msize(small) ///

color(red) saving(bubl_treated.gph, replace) title("Treated")

scatter pcs ndrinks [pweight=ipw] if intervention ==0, msymbol(circle_hollow) msize(small) ///

color(blue) saving(bubl_cont.gph, replace) title("Control")

graph combine bubl_treated.gph bubl_cont.gph, col(1) xcommon ysize(10) xsize(8)

graph export buble.png, replace

* Keep IP weights larger than the median weight (ipw >1.55)

scatter pcs ndrinks [pweight=ipw] if intervention ==1 & ipw > 1.55, msymbol(circle_hollow) msize(small) ///

color(red) saving(bubl_treated1.gph, replace) title("Treated")

scatter pcs ndrinks [pweight=ipw] if intervention ==0 & ipw > 1.55, msymbol(circle_hollow) msize(small) ///

color(blue) saving(bubl_cont1.gph, replace) title("Control")

graph combine bubl_treated1.gph bubl_cont1.gph, col(1) xcommon ysize(10) xsize(8)

graph export buble1.png, replace
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Intuition: Use IP weights to change size of symbols
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Keep weights larger than median weights

The 50% largest weights do not include any observation with ndrinks > 51.
Cool things: why is the weight for the treated observation (ndrinks around
50) so large? Go back to the graph with all the observations

37



Intuition about weights (see do file)

* Digression: some intuition about weights

preserve

* make a smaller dataset so changes are easier to see

keep if _n <=20

gen w = 1

* The regression below

reg pcs age female ndrinks

* is the same as regression in which everybody is given the same weights

reg pcs age female ndrinks [pweight=w]

* Now suppose we want the 20th observation to count for 10

replace w = 10 if _n==20

* the model below

reg pcs age female ndrinks [pweight=w]

est sto weighted

* is the same as a model that creates 10 replicas of the 20th observation

* Stata has a command for that: expand

expand 10 if _n==20

reg pcs age female ndrinks

est sto expanded_noweight

* The expanded version SEs need to be corrected

est table weighted expanded_noweight, se stats(N)

restore
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All magic tricks are illusions

As the previous slides shows, the propensity score is a balancing score

The analogy that it is like magic is actually accurate. It’s also an illusion that
has led, and continues to lead, to bad empirical research

We have balance on observed variables, but not on unobservables. We still
need to assume ignorability

Showing that groups are balanced after using propensity scores helps make
the case that you are reducing the overalp problem by giving more
importance to some observations to achieve better balance

But you still may not be controlling for all confounders

We’ll check balance using standardized mean differences and variance
ratios
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Outcome model

We can now estimate the outcome model to obtain treatment effects
(remember, we are pretending that we have ignorability)

We use the inverse weight IPW, but we can also control for covariates in the
outcome (we will dig deeper on this)

reg pcs intervention age female ndrinks drugrisk [pweight= ipw], robust

(sum of wgt is 892.3577007055283)

<... output omitted ...>

------------------------------------------------------------------------------

| Robust

pcs | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

intervention | 5.198854 1.201281 4.33 0.000 2.837981 7.559728

age | -.2360235 .0767722 -3.07 0.002 -.3869037 -.0851433

female | -5.687987 1.373758 -4.14 0.000 -8.38783 -2.988144

ndrinks | -.3369474 .0346501 -9.72 0.000 -.4050452 -.2688495

drugrisk | -.4088917 .1090059 -3.75 0.000 -.6231207 -.1946627

_cons | 57.96827 2.828527 20.49 0.000 52.40937 63.52717

------------------------------------------------------------------------------

Is 5.19 ATE? Well, yes, but also a sort of LATE. We are giving more
importance to some observations

Not that different from regression adjustment (teffects ra): 6.58
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Preview

Just to preview results, we can do the same with command teffects ipwra

There are some key differences. teffects ipwra estimates the propensity score
and the outcome model simultaneously using GMM (SEs are correct) and the
outcome model follows the logic of teffects ra

With teffects you can check balance and do other fun things

. teffects ipwra (pcs age female ndrinks drugrisk) ///

> (intervention ndrinks age female drugrisk)

Iteration 0: EE criterion = 2.140e-21

Iteration 1: EE criterion = 9.134e-30

Treatment-effects estimation Number of obs = 452

Estimator : IPW regression adjustment

Outcome model : linear

Treatment model: logit

------------------------------------------------------------------------------

| Robust

pcs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

ATE |

intervention |

(1 vs 0) | 5.670275 1.212875 4.68 0.000 3.293084 8.047465

-------------+----------------------------------------------------------------

POmean |

intervention |

0 | 42.36709 .9414163 45.00 0.000 40.52195 44.21223

------------------------------------------------------------------------------
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Preview

Using postestimation commands for teffects

Rule of thumb is that standardized difference should be less than 0.25
(absolute value). Ideally, ratio of variances should be close to 1

Below, raw is the observed differences. We went from ndrinks being 0.83
(high) to 0.13 (acceptable). Variance ratio still problematic, but not as
important. Maybe we should just focus the comparison restricting to ndrinks
≤ 51 (i.e. some form of matching)

tebalance summarize

Covariate balance summary

Raw Weighted

-----------------------------------------

Number of obs = 452 452.0

Treated obs = 243 223.8

Control obs = 209 228.2

-----------------------------------------

-----------------------------------------------------------------

|Standardized differences Variance ratio

| Raw Weighted Raw Weighted

----------------+------------------------------------------------

ndrinks | -.8314587 -.1395673 .1725134 .4855282

age | -.1650646 -.0117661 .7451948 .7270095

female | .1998801 -.0181769 1.289522 .9763603

drugrisk | -.0786428 .0259628 .7077652 1.096254

-----------------------------------------------------------------
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Check the distribution of the propensity score - teffects
qui teffects ipwra (pcs age female ndrinks drugrisk) ///

(intervention ndrinks age female drugrisk)

teffects overlap, ptl(1)

graph export ps_kernel_te.png, replace
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Loose ends: matching teffects ipwra

We can match teffect ipwra manually. Remember that GMM estimates both
steps at the same time, so SEs are better. ATE is the difference of POMs

/// --- Matching IPWRA

reg pcs age female ndrinks drugrisk [pweight= ipw] if intervention ==1

predict double pom_t

reg pcs age female ndrinks drugrisk [pweight= ipw] if intervention ==0

predict double pom_c

mean pom_c pom_t

Mean estimation Number of obs = 452

--------------------------------------------------------------

| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------

pom_c | 42.36709 .4157372 41.55007 43.18411

pom_t | 48.03737 .2113928 47.62193 48.4528

--------------------------------------------------------------

teffects ipwra (pcs age female ndrinks drugrisk) ///

(intervention ndrinks age female drugrisk), pom

------------------------------------------------------------------------------

| Robust

pcs | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

POmeans |

intervention |

0 | 42.36709 .9414163 45.00 0.000 40.52195 44.21223

1 | 48.03737 .8567154 56.07 0.000 46.35823 49.7165

------------------------------------------------------------------------------
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Important considerations

We could improve the specification of the propensity score. At minimum, an
interactions between ndrinks and other variables. We don’t have large sample
sizes in this example. We could even try a nonparameetric or semiparametric
propensity score

Of course, there is the issue of picking and choosing. Choose the
specification that gives the larger treatment effect. In this, Stata failed:
tebalance summarize is only available after you estimate treatment effects.
At least we should use the quietly command before teffects

We want to choose the PS specification that achieves balance, not the one
that makes treatment effects go in the direction we want

There is a chi-square test developed to check for balance (see do file). In this
example, we don’t achieve balance

We could try matching or a stratified analysis that would essentially amount
to ignoring those with ndrinks > 51 – a type of LATE
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