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Outline

Introduction to difference-in-differences

The role of time and policy changes or interventions

Two periods: John Snow and cholera

Differencing to cancel out constant additive effects

Multiple periods

Parametric estimation

Examples and formal assumptions
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Big picture

So far we have covered methods in which we need to assume ignorability
(selection on observables, no unmeasured confounders, exchangeability)

To use regression adjustment, we also needed to assume overlap. The
propensity score helped us diagnose the problem and also find some solutions:
matching, IPW, stratification

We will see that matching precedes the propensity score, but matching
estimators have received renewed attention and are being more used. They
solve the overlap problem by restricting estimation to the region where there
is common support, which makes treatment effects a form of LATE

In today’s lecture and next week we will move away from ignorability:
situation in which we can’t argue anymore that we have ignorability or are
even close to it

In these situations, we need to get creative to find causal effects. These
designs are often called quasi-experimental designs or natural
experiments: difference-in-difference (DiD), regression discontinuity (RD),
and instrumental variables (IV)
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Big picture II

Just to avoid confusion: these designs can be combined, and there are many
connections among them

DiD and propensity score (IPW) are a common combo

You can do some DiD restricting samples to regions where there is
comparability, invoking insights from RDD

One type of RDD (“fuzzy RDD”) follows the same logic and estimation of IV

4



John Snow in the times of cholera (circa 1850)

Sometimes it helps to back in time to the earliest application of a method in
its simplest form, so we’ll talk about John Snow (not the GoT one)

Snow was interested in understanding if cholera was transmitted by water
rather than air

One district in London had changed water source. After the change, cholera
deaths decreased, which would suggest that water was the source of infection

Let’s call the houses that changed water source the “treated” group

One form of evidence would be to do a before and after comparison:
E [Yi |Di = 1,Ti = 1]− E [Yi |Di = 1,Ti = 0], where T is 1 if after the change
of supplier, Y is an indicator for death and D is our treatment indicator

The key question, of course, is whether
E [Yi |Di = 1,Ti = 0] = E [Y0i |Di = 1,Ti = 1]

Is the observed outcome before the change (T = 0) a good prediction of the
counterfactual after the change (T = 1)? Dubious

5



John Snow in 1850s and cholera

Remember, if the same people are measured before and after, they are
different units in our causal inference framework

Intuitively, before and after comparisons are valid if nothing else changed at
the same time as the treatment; that is, now we need to assume that no
other factor X is correlated with T (contemporaneous factors, trends)

In Snow’s case a simple before and after comparison did not solve the
problem because the suspicion was that air was a source of contamination.
What if air changed at the same time as the water supply was changed? How
could he “hold air constant”?

He came up with a clever solution: use control areas and hold air constant by
using as controls places where water supply did not change with the catch
that these control houses shared the same air

Snow actually used a salt test to verify water source. See details here
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150208/
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Comparisons

Let’s simplify the notation using only realized outcomes for now: A pre and
post comparison of outcome Y for the treated is: E [Ytpost ]− E [Ytpre ]

We want to compare that difference with the difference in the control:
E [Ycpost ]− E [Ycpre ]

So the estimate of interest is:

∆DiD = E [Ytpost ]− E [Ytpre ]− {[Ycpost ]− E [Ycpre ]}
If that difference of differences is zero, that would suggest that water is not
causing infections

If that difference is not zero, then there is some evidence that air is not the
source of transmission – it doesn’t prove that water causes cholera – there
could still be other factor, such as physical contact, that could explain
transmission

The estimator is a difference-in-differences, hence the name. We need four
expected values (four “cells”)
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Differencing within each group over time

The Snow example provides some intuition on why this approach works but
we need to elaborate to make it clearer

Comparing before and after the houses (within the treated group) that
changed water supplier helps us with things that that did not change over
time

For example cleanliness in each house or genetic factors or the role of sex and
race

All those fixed or constant factors could not explain the before and after
change in the outcome since these factors did not change before and after

Same within the control group
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Differencing between groups

The same logic applies to comparisons between groups

A comparison between groups is valid if one group is a good conterfactual of
the other

But we can relax that assumption and argue that we do not need to assume
that houses that changed water supplier are the same as those who did not

We could assume instead that they are in fact different, but the factors that
affect cholera mortality between the groups did not change when we do the
before and after comparison

For Snow, the key factor was air. We can think of other important factors in
these COVID times: one group was more prone to parties than the other

As long as we can argue that “party proneness” was the same before and
after, we are fine
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Two imperfect solutions make a good one

Note that differences-in-differences is one interesting case in which two
imperfect solutions combined make something useful

A before and after analysis of outcomes is not ideal since it could be hard to
argue that nothing else changed

A comparison between groups that are not comparable is not ideal because
other factors could account for differences between the groups

But when we combine them, a difference-in-differences estimator may give
you something right provided the other factors are additive and constant

It’s not a mild assumption, but it can be relaxed by controlling for other
covariates (more in a bit)
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Key elements

In the examples that follow the key elements are:

1 Time. In DiD we always have a time: a before and after period. So far we
have talked about only two periods, but we could have multiple periods before
and after (more information)

2 Comparison groups: In DiD, one group receives the intervention or is
subjected to the policy change only in the post-period. These groups do not
need to be comparable

3 Fixed factors: We assume that important factors that explain the outcome Y
are fixed during the pre and post periods. If observed, we can control for those
factors that could affect trends

Trends are key in DiD
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More periods

This would be in ideal DiD scenario with constant (parallel) trends before the
intervention at the time marked by the vertical line (I simulated data)
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More periods
The counterfactual for the treated is the dashed line: trends would have
remained constant over time with no treatment, which is the underlying key
assumption
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Actual example
Medicaid expansion and hospital closures (Lindrooth et al., 2018)

Available at: https:

//www.healthaffairs.org/doi/full/10.1377/hlthaff.2017.0976
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More formal

We can formalize the previous discussion by assuming that the outcome
follows this structure:

Yit = ci + dt + δDit + ηit

This is a causal structural assumption. c are d are variables, not coefficients.
ηit is an unexplained random cause of variation, where i indexes the unit of
observation and t indexes time

The outcome depends on constant (fixed, time-invariant) factors at the
unit of observation level (ci ) and factors that depend on time (dt) but not on
unit of observation i

Think of c and d as confounding variables with a coefficient of 1. They are
unobserved effects. We could put a coefficient next to them, but we won’t
estimate them. We could add more of both, say:

∑w
j=1 cij and

∑m
k=1 dkt so

think of c and d representing more than one factor

δ is the difference between groups and is constant, so we assume
homogeneous treatment effects
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Potential outcomes

Since Yit = ci + dt + δitDit + ηit represents a causal relationship, they also
define potential outcomes:

Y1it = ci + dt + δ + ηit

Y0it = ci + dt + ηit

So Y1it − Y0it = δit . Note that δ has an index because we could define the
difference between potential outcomes at different times

With two periods, t ∈ {0, 1}. t = 0 is before the intervention

(Notation here gets messy with potential outcomes. This notation for
potential outcomes would be better: Y (1)it if treated, Y (0)it if not treated)
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Differencing

We could do this with potential outcomes or realized outcomes. I’ll do it with
realized outcomes

(1) Treated group after and before: E [Yi1|Di = 1]− E [Yi0|Di = 1] =
ci + d1 + δ1 − (ci + d0 + δ0) = d1 − d0 + (δ1 − δ0) = d1 − d0 + δ

The above shows the problem of a simple before and after comparison: it
doesn’t get rid of contemporaneous factors that depend on time (trends) and
would affect an estimate of treatment effects on the treated, measured by the
variable d : d1 − d0

That could be a measure of air in both periods that changed between t = 0
and t = 1

(2) Control group after and before:
E [Yi1|Di = 0]− E [Yi0|Di = 0] = ci + d1 − (ci + d0) = d1 − d0

The difference of the differences (1)-(2) = d1 − d0 + δ − (d1 − d0) = δ

The within group differencing got rid of factor c , the between group
differencing got rid of d . It would be the same if we had aded more factors
c’s nd d’s
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Notes

We assumed E [ηit |Dit =] = E [ηit ], that is mean independence

That assumption could be relaxed by saying that the unobserved error
component is mean independent respect to the change before and after
(E [∆ηi |Dit ] = E [∆ηi ]), which is what you would get using “fixed effects” in
longitudinal data

Separating the justification of the difference-in-difference estimator from
estimation is more helpful. We could estimate the four expected values
separately, following the logic of estimating treatment effects in previous
lectures (we will see a version that combines propensity score with kernel
weighting; Heckman, Ichimura, Todd, 1998)

The constant trend is important, and one that we can’t evaluate if we don’t
have more observations before the intervention took place

The two-groups, two-periods example is helpful for the intuition but not
for evaluating the assumption of constant trends
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What about other factors (covariates)?

If we follow the logic of differencing, then we do not need to account for any
other observed or unobserved constant (fixed, time-invariant) factors

But we could take into account factors that vary at the unit of observation
and by time (time-varying covariates)

This means that we can extend our notation to condition for a vector of
covariates Xit , although we will imposed some assumptions when we use
regression analysis (exogeneity)

So now we have: Yit = ci + dt + δDit + X′itβ + ηit
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Assumptions

We can now state the assumptions following Lechner (2010)

1 SUTVA. We always need SUTVA but in DiD it tends to be more relevant. No
interference (spillovers) and variation in treatment. Think about this in the
context of cholera and Medicaid expansions

2 Exogeneity: The covariates X are not influenced by the treatment, so we can
condition on them

3 Common trends or constant bias. If the treated had not been treated, both
treatment and control groups would have the same trends over time (after
controlling for other factors). Constant bias is the same assumption. Treated
and control groups are different, but that difference remains constant over time

The last assumption could be divided into an assumption about observed
parallel trends before the intervention and the idea that “shocks” have a
common effect in both groups

With two or mode pre-periods, we can test the parallel trend assumption
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Testing parallel trends

We will see two ways of testing parallel trends. We need at least two
pre-period time points:

1 Using the pre-period data only: test if changes in trends are the same in both
groups

2 Placebo tests: using lags and leads, past treatment predicts future outcome,
but future treatment should not predict present changes in the outcome

The first approach is much more intuitive. With two pre-periods only, say,
t − 1 and t = 0 the test is whether the change E [Yt=0 − Yt=−1] is the same
in the treatment and control groups. The relevant test is an interaction, so it
follows the parametric structure of DiD models

The second one is less intuitive and it estimates more parameters. We need
to use lag and lead variables for the treatment indicator (Stata of course
make this easy)

One aspect of the parallel trend assumption is annoying: if it holds in Y then
it doesn’t hold in retransformations like log(y) (a monotonic transformation)
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Yikes?

The perfect example of parallel trends doesn’t hold in the log scale. I simply
took the log of Y in the simulated data
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Yikes? II

Look at the counterfactual
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Parametric regression
We can estimate models like:

Yit = β0 + β1Di + β2Pt + β3(Di × Pt) + εit

Yit = β0 + β1Di + β2Pt + β3(Di × Pt) + X′itβ + εit

The unit of analysis i could be a person or state. P is an indicator that
equals 1 after the change. Note the index it carefully. Treatment D doesn’t
depend on time (a person i is treated or control in both periods), while P
depends on time but it’s the same by person

The first model is a saturated model; we will get four predicted means

We are going to come back to the structure of the data, which is reflected in
the index, because it’s important for inference and can be confusing
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Model interpretation

Why is that model a difference-in-difference? (Using the version without
covariates; with covariates we need to hold them constant)

E [Y ] Treated in post period: β0 + β1 + β2 + β3

E [Y ] Treated in pre period: β0 + β1

(1) Difference treated post - pre: β2 + β3

E [Y ] Control in post period: β0 + β2

E [Y ] Control in pre period: β0

(2) Difference control post - pre: β2

Difference of differences (1)-(2): ∆DiD = β3

Caution: Interacted models are not difference-in-differences research
designs, but interactions with dummy variables are difference-in-differences
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This is not a DiD research design

Suppose you are interested in evaluating the effects of a new preventive care
benefit offered at no cost to patients (e.g. Medicare’s annual wellness visit,
AWV) on race disparities

The outcome is a measure of preventive care. The AWV became available in
2011. For simplicity, let’s say that you want to compare Whites vs other
races. You could estimate the following model:

PCit = β0 + β1Whitei + β2Post2011t + β3Post2011t ∗Whitei + ηit

β3 is a difference of differences. If not zero, then disparities after the AWV
are different that disparities before

But this is a before and after analysis. There is no comparison group; all
races were exposed to the treatment –the AWV. The outcome is a
comparison. It just happens that the parametric model structure is the same
as a simple DiD design

See a related model structure in Lind et al. (2018):
https://onlinelibrary.wiley.com/doi/full/10.1111/jgs.15494
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More details

Note that with DiD designs we are exploiting longitudinal (aka panel in
econometrics) data: could be cross-sectional data (difference units at
difference times) or the same unit measured at different times

Each type of longitudinal data has implication for inference

We need to revise our assumption of i.i.d (no longer independent) errors
εi ∼ N(0, σ2)

We will address this issue later but the “fixed” factors that we control for
help us solve this problem (in some cases)

We will review “fixed” effects regression and the connection between
demeaning and first-differencing
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