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Linear/OLS model assumptions

We saw informally that the linear/OLS model is a conditional expectation
function, so we can interpreted our estimated linear model as

E [yi |xi ] = β̂0 + β̂1x1i + · · ·+ β̂jxji

This fact is not that intuitive if you learned to derive the linear model using
ordinary least squares (OLS)

In the class about maximum likelihood estimation, it will become crystal clear
that we are modeling the mean of an outcome conditional on covariates
assuming that the outcome distributes normal conditional on covariates
(but the covariates are “fixed,” although that can be misleading especially
with observational data)

The conditional on covariates part is key, that’s why I told you that
sometimes it’s more helpful to say that the assumption εi ∼ N(0, σ2) is the
same as yi ∼ (X ′i β, σ

2)
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Data

We will use data from Cattaneo (2010) on birthweight as a function of
mother and father covariates (see today’s do file)

use https://www.stata-press.com/data/r16/cattaneo2, clear

(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

desc bweight lbweight mbsmoke msmoke mage medu mrace fbaby

storage display value

variable name type format label variable label

---------------------------------------------------------------------------------------------------

bweight int %9.0g infant birthweight (grams)

lbweight byte %9.0g 1 if low birthweight baby

mbsmoke byte %9.0g mbsmoke 1 if mother smoked

msmoke byte %27.0g smoke2 cigarettes smoked during pregnancy

mage byte %9.0g mother’s age

medu byte %9.0g mother’s education attainment

mrace byte %9.0g 1 if mother is white

fbaby byte %9.0g YesNo 1 if first baby

tabstat bweight, by(mbsmoke) stats(N mean sd min max)

Summary for variables: bweight

by categories of: mbsmoke (1 if mother smoked)

mbsmoke | N mean sd min max

----------+--------------------------------------------------

nonsmoker | 3778 3412.912 570.6871 340 5500

smoker | 864 3137.66 560.8931 397 5018

----------+--------------------------------------------------

Total | 4642 3361.68 578.8196 340 5500

-------------------------------------------------------------
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Check distribution

Birthweight distributes normal as many things in nature do. It’s not random
that statistics was developed around normality

set scheme s1mono, permanently

hist bweight, kdensity saving(w_all.gph, replace) title("All")

hist bweight if mbsmoke == 1, kdensity saving(w_smok.gph, replace) title("Smoker")

hist bweight if mbsmoke == 0, kdensity saving(w_nonsmok.gph, replace) title("Non-smoker")

graph combine w_all.gph w_smok.gph w_nonsmok.gph, col(1) xcommon ysize(10)

graph export wg_graph.png, replace
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Check distribution - better

This way is better to see the data; note that I had to play with the ysize and
xsize options

Note too how helpful the smoother kdensity is to avoid the issue that the bin
size affects the shape of the histogram

graph combine w_all.gph w_smok.gph w_nonsmok.gph, row(1) ysize(4) xsize(12)

graph export wg_graph1.png, replace
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Let’s fake some data
I want to show you another way of understanding the assumption about the
distribution of Y in linear/OLS models

We will exaggerate (unrealistically) the difference in birthweight between
mothers who smoke and mothers who do not

* Clonevar is handy

clonevar bweight_fake = bweight

replace bweight_fake = bweight + 1000 if mbsmoke == 0

replace bweight_fake = bweight - 500 if mbsmoke == 1

hist bweight_fake, kdensity percent saving(hist_bwfake, replace)

graph export bw_fake.png, replace
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Can we use a linear/OLS model with a distribution
like that?

If you showed that distribution to a group of educated people, most likely the
majority would agree that a linear/OLS model is not “appropriate” because
clearly the outcome is not normally distributed

But the assumption is not about the distribution of Y . The assumption is
about the conditional distribution of Y : Y ∼ (β′X , σ2)

In other words, if some of the covariates “explain” the non-normal
distribution of the outcome, we are fine with our linear/OLS model

That’s why you were taught to check the distribution of the residuals,
not the the distribution of the outcome

(Digression: If you didn’t have data on who smoked, you could estimate a
finite mixture model. See here: https://perraillon.com/zicen Stata
now incorporate Partha Deb’s fmm command)
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Checking model fit

Remember from your intro classes that we want to standardize the residuals
before checking the distribution (although, in practice, the non-standardized
residuals are usually fine)

qnorm compares the variable with a normal distribution (Q-Q plot)

More precisely, qnorm compares observed quantiles of the variable to a
theoretical normal with mean and standard deviation like those of the
observed variable

It’s a graphical way of exploring deviations from a theoretical distribution

qui reg bweight_fake mbsmoke

predict res_std, rstandard

hist res_std, kdensity saving(rno.gph, replace)

qnorm res_std, saving(qno.gph, replace)

graph combine rno.gph qno.gph, row(1)

graph export nor.png, replace
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Checking model fit

The graph below shows a fairly decent fitting model, but not great

R2 is high: 0.5961. This of course because we faked the data so we made it
so: smoking is a very strong predictor of birthweight

Could we improve the model? Yes, there other variables that could explain
the longer tail of the residuals. It could misspecification of functional form or
other data problem
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Digression: Meaning of R2

You learned that R2 is the percent of the total variance explained by the
model

But it’s also a measure of how well a model predicts the observed data: the
R2 is also the square of the correlation between observed Y and predicted Ŷ

reg bweight_fake mbsmoke

Source | SS df MS Number of obs = 4,642

-------------+---------------------------------- F(1, 4640) = 6847.81

Model | 2.2161e+09 1 2.2161e+09 Prob > F = 0.0000

Residual | 1.5016e+09 4,640 323622.478 R-squared = 0.5961

-------------+---------------------------------- Adj R-squared = 0.5960

Total | 3.7177e+09 4,641 801058.875 Root MSE = 568.88

------------------------------------------------------------------------------

bweight_fake | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mbsmoke | -1775.252 21.4528 -82.75 0.000 -1817.31 -1733.194

_cons | 4412.912 9.255254 476.80 0.000 4394.767 4431.056

------------------------------------------------------------------------------

capture drop yhat

predict yhat

corr yhat bweight_fake

(obs=4,642)

| yhat bweigh~e

-------------+------------------

yhat | 1.0000

bweight_fake | 0.7721 1.0000

. di 0.7721 ^2

.59613841

11



Important: Unbiasness versus inference

In the class about Stata and today we saw that the linear/OLS model is a
conditional expectation function (CEF).

Please go over Angrist and Pischke Chapter 3. In reading that chapter note
that the justifications for CEF do not need the normality assumption

We don’t need the normality assumption to show that the linear/OLS model
is a conditional expectation function and is the best one

We DO NEED the normality of ε or the the conditional normality of Y for
inference

In practical terms this means that even if the normality assumption does
not hold (as in the case of cost data), we can still get unbiased estimates the
conditional expectation E [Yi |Xi ] using the linear model – of course we still
make functional form assumptions and the overlap assumption

But if we are going to use the model for inference –hypothesis tests,
confidence intervals – we do need to worry about the normality
assumption
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Asymptotics

Asymptotic theory (large sample theory) is a framework for evaluating the
properties of estimators and statistical tests

Usually we assume that sample size grows indefinitely because the population
is infinitely large. Some properties of estimators are evaluated as the limit
when n→∞. Properties that work asymptotically may not work in finite
samples. We worry too about how fast estimators converge to their true
values. Another important idea is that we want to know how the estimator
distributes if we could repeat the experiment or data generating process
many times

This is where the math in statistics gets difficult. Angrist and Pischke
Chapter 3 provide some intuition; Chapter 5 of Wooldridge has more details
and needed assumptions

The main result is this: the estimated coefficients β̂′ = (β̂1, β̂2, . . . , β̂j)
distribute multivariate normal with an estimated variance-covariance
matrix. Each β̂j has a marginal normal distribution

Since theory gives us the distribution of β̂ and its standard deviation (the
standard error), SE (β̂j), we can can do hypothesis testing
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Stata saves the variance-covariance matrix

The square root of the variance-covariance matrix diagonal elements are the
reported standard errors

The off-diagonal of the variance-covariance has the covariance of the
coefficients (not the data!)

qui reg bweight mbsmoke mage medu

* ereturn list

matrix list e(b)

e(b)[1,4]

mbsmoke mage medu _cons

y1 -249.5144 6.8227371 11.249044 3084.5422

matrix list e(V)

symmetric e(V)[4,4]

mbsmoke mage medu _cons

mbsmoke 475.56678

mage 1.2833327 2.6301349

medu 13.472218 -2.3549168 13.434309

_cons -293.48648 -40.066446 -110.56724 2588.7052

di sqrt(e(V)[2,2])

1.6217691
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Big picture

From now to eternity, think of the estimated coefficients β̂ in any regression
model as random variables that also have an estimated standard deviation
(standard error)

In applied work, we often use the asymptotic properties to understand their
distributions

Once we know the distribution, we can make probabilistic statements about
their likely value in the population. That’s inference

Variance estimation (precision of estimates) is yet another important area of
statistics. When theory doesn’t help, we have the bootstrap (yet another
invention that requires computing power) or the delta method (that requires
normality and Taylor series)
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Hypothesis testing reminder

We start with a null hypothesis or a statement about the population
parameter than you want to test for

We assume that the null hypothesis is true until the data provides
evidence that it is not; similar to the way the criminal justice system treats a
defendant (innocent until proven guilty by evidence)

We denote the null hypothesis as H0. For example, we are interested in
testing if the population parameter is equal to zero, so we write: H0 : β1 = 0
(note that we don’t write H0 : β̂1 = 0)

We will use β̂1 and the precision of the estimate of β̂1, SE (β̂1) =
√
var(β̂1),

as evidence

We also need an alternative hypothesis, which is usually H1 : β1 6= 0
(two-tailed test) or H1 : β1 > 0 or H1 : β1 < 0 (one-tailed test)
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Hypothesis testing

We will either accept or reject the null hypothesis given the evidence, which
doesn’t necessarily make the alternative hypothesis true

We can make two mistakes. We can reject the null when in fact it’s true,
which is analogous to the mistake of rejecting the innocence of a person on
trial when in fact the person is innocent. We call this mistake Type I error

The significance level of the test, α, is the probability of Type I error:
α = P(rejectH0|H0true)

We want to make this error as small as possible and by convention it’s
often set at α = 5%, although α = 10% is acceptable in some disciplines
(like economics)
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Hypothesis testing

The other error is failing to reject the null when in fact is false; this is called
the Type II error

We also want to minimize this error

As an alternative, we would like to maximize the power of the test, which is
1− P(TypeII )

In other words, we want to make sure that we have enough evidence to
reject the null

Sample size plays a key role. The larger the sample size the more “power” we
have, so we are confident that we will be able to reject the null

The 5% has historical roots that go all the way back to Ronald Fischer. 5%
is equivalent to 1 in 20
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Hypothesis testing

We also need to choose a test statistic and a critical value

A test statistic, denoted by T , is a function of the random sample; a
particular number for the test statistic is denoted by t

A more intuitive explanation for the test statistic is that it’s a standardized
value calculated from the sample data that is used as evidence to accept
or reject a null hypothesis

We are essentially interested in figuring out a probability: What is the
probability that we will find a test statistic t given that the null hypothesis
is true?

To answer this question given a level of α we need to know the
distribution of t under the null

Note the key ingredient of hypothesis testing: we need to understand the
probability distribution of the PARAMETER, not the data, although
that’s needed too to understand how the parameter distributes. Make sure
you always think of parameters as random variables
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Hypothesis testing

That’s how you learned to do a test in stats 101: calculate a t statistic and
compare it to a critical value from a table at the end of the book. If the t
statistic falls outside a rejection region, you reject the null

With the use of statistical software came the convenience of using p-values
instead (and you don’t need tables at the end of the book either)

P-value: What is the largest significance level at which we could carry out
the test and still fail to reject the null hypothesis?

Now we just look at the p-value for a statistic: if p-value ≥ 0.05, then we do
not reject the null at α = 0.05

So, how do you choose a test statistics? Where do they come from?
From theory
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Wald tests

Wald tests come up in parametric models in which parameters are estimated
to model a relationship

Using the estimated parameters from the sample, we can perform statistical
tests of the true population value of a parameter θ

They have the form:

t = θ̂−θ0√
var(θ̂)

,

where θ0 is the value of θ we want to test for

Often, we want to test θ0 = 0 so the Wald test is

t = θ̂√
var(θ̂)

= θ̂

se(θ̂)

21



Intuition

Look at the formula for the Wald test. When is the null more likely to be

rejected? t = θ̂−θ0

se(θ̂)

The largest the t the more likely that the test is rejected given a significance
level. So:

1 If θ̂ − θ0 is large, or alternatively, if the value of the null hypothesis is far from
the estimated value from the sample

2 If se(θ̂) is small; if se(θ̂) is large we will reject because we don’t have enough
solid evidence (the estimate of the true parameter is uncertain or imprecise)

se(θ̂) is a function of the sample size n. With large datasets, se(θ̂) will be
small so we will tend to reject the null even for small θ̂ − θ0

This is a current area of research (navel gazing?) in statistics and “big data.”
Should we use conventional statistical inference?Most differences are
statistically significant when you have millions of observations
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Wald tests

Note that now we need to figure out how t distributes under the null
hypothesis so we quantify the probability of observing the null hypothesis

The test statistics distributes t-student in the linear/OLS model (in the
logistic model it will distribute standard normal)

How we know that? Theory. The numerator of the Wald test distributes
normal, the denominator Chi-square. The ratio distributes t-student

Technical note: The Wald test and CIs are based on the coefficients βj
distributing normal. Yet, this is an approximation that depends on sample
size and other assumptions

Confusion alert: “t” is for test statistic in this context, which in the
linear/OLS model happens to distribute t-student

23



Digression: Basic results form mathematical statistics

Other probability distributions will show up when we do hypothesistests:
t-student, Chi-square, and the F-distribution

The Chi-square (χ2) is the square of a standard normal so only takes
positive values, like a variance

F-distribution: The F distribution originates from a ratio of two Chi-square
distributions – like a ratio of variances. Hence it is sometimes “variance ratio
distribution” or Fisher-Snedecor distribution (hence the F)

t-student: The t-student looks like a normal distribution with “fatter” tails
and originates from a ratio of a normal to a Chi-square distribution - like the
Walt test in the linear/OLS model

The square of the Student’s t distribution with d degrees of freedom is
equivalent to the F distribution with 1 numerator degree of freedom and d
denominator degrees of freedom
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Digression II

The Wald test can also be written as t = (θ̂−θ0)2

se(θ̂)

The intuition is the same. The difference is that the the test statistics
distribution is different (F distribution). Without the square in the
numerator, the test statistics distributes t-student

Not the only type of hypothesis test. We will see another way of performing
an asymptotically equivalent test using the Likelihood Ratio Test (LRT)
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Examples

Stata displays Wald tests (and CIs) for all estimation commands, but
remember the null hypothesis of the reported Wald tests

------------------------------------------------------------------------------

bweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mbsmoke | -249.5144 21.80749 -11.44 0.000 -292.2675 -206.7613

mage | 6.822737 1.621769 4.21 0.000 3.643298 10.00218

medu | 11.24904 3.665284 3.07 0.002 4.063344 18.43474

_cons | 3084.542 50.87932 60.62 0.000 2984.795 3184.29

------------------------------------------------------------------------------

The P > |t| column is a two-tailed Wald test for β = 0 item Never forget
that in that test the null is H0 : β = 0
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t-student

The t-student distribution depends on sample size (degrees of freedom), but
with larger samples it converges to a standard normal

If you recall stats 101, the two-tailed rejection at α = 0.05 is 1.96 with a
standard normal

With the t-student and 120 df it is 1.98. With 10 it’s 2.23

Of course, we do not need tables now. We use p-values but we can also use
Stata (remember the normal and the t-student are symmetric)

di invttail(10,0.025)

2.2281389

di invttail(120,0.025)

1.9799304

di invttail(300,0.025)

1.967903
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Tests in Stata

Stata has a post-estimation command called “test” that is extremely flexible;
you can do all sort of tests with the coefficients of a model (type “help
test”). We will use the smoking categories in the dataset

. desc msmoke

storage display value

variable name type format label variable label

---------------------------------------------------------------------------------------------------

msmoke byte %27.0g smoke2 cigarettes smoked during pregnancy

. label list smoke2

smoke2:

0 0 daily

1 1-5 daily

2 6-10 daily

3 11+ daily

. tab msmoke

cigarettes |

smoked |

during |

pregnancy | Freq. Percent Cum.

------------+-----------------------------------

0 daily | 3,778 81.39 81.39

1-5 daily | 200 4.31 85.70

6-10 daily | 337 7.26 92.96

11+ daily | 327 7.04 100.00

------------+-----------------------------------

Total | 4,642 100.00

28



Tests in Stata

reg bweight i.msmoke mage medu

<output omitted>

------------------------------------------------------------------------------

bweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

msmoke |

1-5 daily | -191.7307 41.28743 -4.64 0.000 -272.6737 -110.7877

6-10 daily | -250.9248 32.50921 -7.72 0.000 -314.6583 -187.1913

11+ daily | -283.7121 32.97667 -8.60 0.000 -348.3621 -219.0622

|

mage | 6.939716 1.622869 4.28 0.000 3.75812 10.12131

medu | 11.00934 3.667179 3.00 0.003 3.819922 18.19875

_cons | 3084.505 50.87333 60.63 0.000 2984.769 3184.241

------------------------------------------------------------------------------

test medu

( 1) medu = 0

F( 1, 4636) = 9.01

Prob > F = 0.0027

*test medu =0

test medu = 1

( 1) medu = 1

F( 1, 4636) = 7.45

Prob > F = 0.0064

* Joint: test if effect of 6-10 cigs is same as 11+ daily

test 2.msmoke= 3.msmoke

( 1) 2.msmoke - 3.msmoke = 0

F( 1, 4636) = 0.56

Prob > F = 0.4558

* Can’t do: test medu > 12
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Tests in Stata

As you can tell, Stata is not showing a t-student tests but rather F tests.
That’s because Stata is performing a Wald test squaring the numerator

The Wald test in outpout is an F test with 1 numerator degree of freedom
and 4636 denominator degrees of freedom (n − j), where j is the number of
parameters

The test command is more flexible. It can be used to test linear
combination of parameters

In the previous slide we used it to test if the effect of smoking 6-10 and 11+
is the same. Said another way, we are testing if expected value of birthweight
is the same for mothers who smoke 6-10 and 11+

What is the Wald test for the coefficient of 6-10 daily testing in the
regression ouput?
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Please review your stats notes

Suppose we estimate the following model:

bweight = β0 + β1smoked + β3mage + β4smoked ∗mage + β5medu + ε

How do you interpret β0? β1? β4?

How do you test that the affect of age on birthweight is significant? What is
the null hypothesis?

How do you test that the effect of smoking is significant? What is the null
hypothesis?
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Centering

We will use centering with parametric regression discontinuity models, but
it’s very handy to use center with interactions when one or more variable is
continuous

Instead of using mother’s age in the raw scale, we can center mother age at
some value. For example, we can center mother’s age at the mean, which in
this dataset is 25.6

But we may want to choose another number. Pregnancies for mothers age 35
or older are considered high risk, so let’s use 35

We define a new variable: magec = mage − 35. The model is now:

bweight = γ0 + γ1smoked + γ3magec + γ4smoked ∗magec + η
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Centering

Same as

bweight = γ0 + γ1smoked + γ3(mage − 35) + γ4smoked ∗ (mage − 35) + η

Here is the best part. γ1 is now the effect of smoking on birthweight for a 35
y/0 mother

Notice the key part: we have the effect of smoking at a specific age, rather
than at mage = 0, which is of no interest

γ3 is still the effect of mother’s age on birthweight for a mother who did not
smoke. Same interpretation centering or not (showing why is one of your
homework questions)

γ0 is the average birthweigth for a 35 y/o mother who did not smoke
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Check
Note which coefficients change and which do not

gen mage_c = mage - 35

qui reg bweight i.msmoke##c.mage

est sto m1

qui reg bweight i.msmoke##c.mage_c

est sto m2

est table m1 m2

----------------------------------------

Variable | m1 m2

-------------+--------------------------

msmoke |

1-5 daily | 195.35849 -357.50063

6-10 daily | 128.41648 -410.86158

11+ daily | 57.909727 -422.91716

|

mage | 11.362577

|

msmoke#|

c.mage |

1-5 daily | -15.795975

6-10 daily | -15.407944

11+ daily | -13.737911

|

mage_c | 11.362577

|

msmoke#|

c.mage_c |

1-5 daily | -15.795975

6-10 daily | -15.407944

11+ daily | -13.737911

|

_cons | 3108.2754 3505.9656

----------------------------------------
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Tests: Linear combinations

qui reg bweight i.mbsmoke##c.mage medu

* to remember how to name the coefficient use the code below

matrix list e(b)

e(b)[1,7]

0b. 1. 0b.mbsmoke# 1.mbsmoke#

mbsmoke mbsmoke mage co.mage c.mage medu

y1 0 119.49673 9.4224137 0 -14.540117 10.328387

_cons

y1 3026.7476

test mage 1.mbsmoke#c.mage

( 1) mage = 0

( 2) 1.mbsmoke#c.mage = 0

F( 2, 4637) = 15.51

Prob > F = 0.0000

* syntax can be confusing

test mage = 1.mbsmoke#c.mage =0

( 1) mage - 1.mbsmoke#c.mage = 0

( 2) mage = 0

F( 2, 4637) = 15.51

Prob > F = 0.0000
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Tests: Linear combinations - comparing two models

The previous test is equivalent to comparing nested models using an F test.
The intuition for comparing nested models is fairly simple: we will compare
their SSEs. SSE is the sum of squares of the residuals, which gives a
measure of the variance not explained by our model

The full model (FM) has age interacted. The reduced model (RM) does not
have age

Define SSE(RM) as the sum of square of the residuals of the reduced model
and SSE(FM) as the sum of square of the residuals of the full model

We will use the ratio F = [SSE(RM)−SSE(FM)]/(p+1−k)
SSE(FM)/(n−p−1)

The null is that that the reduced model is adequate. We reject the null if
F ≥ F (p + 1− k , n − p − 1;α)

F (p + 1− k, n − p − 1;α) is the critical value

Note that p+1-k is just the number of additional parameters in the full model
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F test for nested models

qui reg bweight i.mbsmoke##c.mage medu

scalar sse_f = e(rss)

qui reg bweight i.mbsmoke medu

scalar sse_r = e(rss)

di ((sse_r - sse_f)/2)/(sse_f/(4642-4-1))

15.512601

More details on these lecture notes:
https://perraillon.com/s/week-5-MLR-II.pdf

Review Chapter 12 of Cameron and Trivedi
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Likelihood ratio test (LRT)

When we cover maximum likelihood estimation we will see yet another test to
compare nested models: the likelihood ratio test

There is a direct connection between SSE and the (log) likelihood function:

ll = −0.5N(ln(2π) + ln(
SSE

N
) + 1)

The F test above and the LRT are asymptotically equivalent. But one
drawback of the LRT for linear models is that it doesn’t correct for
heteroskedasticity. So if you must use robust SEs, then better to stick to F
tests (test command). More on heteroskedasticity below

qui reg bweight i.mbsmoke##c.mage medu

est sto mf

qui reg bweight i.mbsmoke medu

est sto mr

lrtest mf mr

Likelihood-ratio test LR chi2(2) = 30.96

(Assumption: mr nested in mf) Prob > chi2 = 0.0000
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Partitioning variance

A key result of the linear/OLS model is that we can partition the variance

The observed outcome Y has a variance. We often use the numerator of
the variance, the total sum of squares: SST =

∑n
i=1(yi − ȳ)2

The total observed variance can be divided into two components: the sum
squared due to the Regression model (SSR) and the sum squared of the
residual (Error): SST = SSR + SSE

In more intuitive words, the observed total variance is made of two parts.
One part could be explained by a regression model (that is, by covariates)
while the other part is unexplained by the model (the error)

When we estimate a linear model we are trying to explain as much as
possible the observed variability of Y . See details here:
https://perraillon.com/s/week-4-SLR-III.pdf

An example: traffic in Chicago
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ANOVA

You probably spent a lot of time in your stats classes doing ANOVA,
ANCOVA tests

If you come from an econ background, you may not even know what is
ANOVA. ANOVA, Analysis of Variance, is used to compare means (yep, very
intuitive)

Let’s say we estimate this model:
Yi = β0 + β1cigs1i + β2cigs2i + β3cigs3i + εi , where cigs1 is the dummy
variable for smoking 1-5 daily, cigs2 is 6-10, etc

Remember, the linear/OLS model is a conditional expectation function, so
E [Y |cigs = 1] = β̂0 + β̂1 is the mean birthweight if a mother smoked 1-5 cigs
daily, while β̂1 is the difference in birthweight means between mothers who
smoked 1-5 cigs and those who did not smoke (β̂0)

If we test the null hypothesis H0 : β1 = β2 = β3, we are essentially testing if
the mean is the same for all smoking categories

So ANOVA is just a linear regression model (see more nuance here:
https://perraillon.com/s/week-8-qualitative.pdf)
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ANOVA as a linear model

reg bweight i.msmoke

Source | SS df MS Number of obs = 4,642

-------------+---------------------------------- F(3, 4638) = 55.90

Model | 54262201.1 3 18087400.4 Prob > F = 0.0000

Residual | 1.5006e+09 4,638 323549.382 R-squared = 0.0349

-------------+---------------------------------- Adj R-squared = 0.0343

Total | 1.5549e+09 4,641 335032.156 Root MSE = 568.81

< output omitted >

. test (1.msmoke=0) (2.msmoke=0) (3.msmoke=0)

( 1) 1.msmoke = 0

( 2) 2.msmoke = 0

( 3) 3.msmoke = 0

F( 3, 4638) = 55.90

Prob > F = 0.0000

*anova bweight i.msmoke

*contrast a.msmoke

Note the same test on top of the regression output. That’s the “omnibus”
test of significant

Making connections: Analysis of Variance compare ratio of variances, so no
surprise it’s an F-test
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ANOVA

You probably spent a lot of time in your stats classes doing ANOVA,
ANCOVA tests

If you come from an econ background, you may not even know what is
ANOVA. ANOVA, Analysis of Variance, is used to compare means

Let’s say we estimate this model:
Yi = β0 + β1cigs1i + β2cigs2i + β3cigs3i + εi , where cigs1 is the dummy
variable for smoking 1-5 daily, cigs2 is 6-10, etc

Remember, the linear/OLS model is a conditional expectation function, so
E [Y |cigs = 1] = β̂0 + β̂1 is the mean birthweight if a mother smoked 1-5 cigs
daily, while β̂1 is the difference in birthweight means between mothers who
smoked 1-5 cigs and those who did not smoke (β̂0)

If we test the null hypothesis H0 : β1 = β2 = β3, were are essentially testing
that the mean birthweight is the same regardless of the category of smoking
during pregnancy

So ANOVA is just a linear regression model (see more nuance here:
https://perraillon.com/s/week-8-qualitative.pdf)
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t-tests

In stats 101 you also learned to do t-test for independent samples to compare
means. That, of course, has to be equivalent to a regression model

reg bweight i.mbsmoke

<... output omitted ... >

smoker | -275.2519 21.4528 -12.83 0.000 -317.3096 -233.1942

ttest bweight, by(mbsmoke)

Two-sample t test with equal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

nonsmoke | 3,778 3412.912 9.284683 570.6871 3394.708 3431.115

smoker | 864 3137.66 19.08197 560.8931 3100.207 3175.112

---------+--------------------------------------------------------------------

combined | 4,642 3361.68 8.495534 578.8196 3345.025 3378.335

---------+--------------------------------------------------------------------

diff | 275.2519 21.4528 233.1942 317.3096

------------------------------------------------------------------------------

diff = mean(nonsmoke) - mean(smoker) t = 12.8306

Ho: diff = 0 degrees of freedom = 4640

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

43



Confidence Intervals

The proper interpretation of a confidence interval in the frequentist approach
is that if we repeated the experiment many times, about x% percent of the
time the value of β would be within the confidence interval

By convention, we build 95% confidence intervals, which implies α = 0.05

Intuitively, we need to know the distribution of β̂ and its precision, the
standard error, same as with hypothesis testing

From theory, the confidence interval for β̂j is: β̂j ± t(n−2,α/2)se(β̂j). t(n−2,α/2)

is about 1.98

If the Wald test for H0 : βj = 0 is a probabilistic statement about how likely
it is the the standardized beta is zero, then it’s obvious that the confidence
interval is in essence a range of values βj could take in the population given
the sample
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Hypothesis test and confidence intervals

------------------------------------------------------------------------------

bweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mbsmoke |

smoker | -249.5144 21.80749 -11.44 0.000 -292.2675 -206.7613

mage | 6.822737 1.621769 4.21 0.000 3.643298 10.00218

medu | 11.24904 3.665284 3.07 0.002 4.063344 18.43474

_cons | 3084.542 50.87932 60.62 0.000 2984.795 3184.29

------------------------------------------------------------------------------

test 1.mbsmoke = -292.2675

( 1) 1.mbsmoke = -292.2675

F( 1, 4638) = 3.84

Prob > F = 0.0500

test 1.mbsmoke = -206.7613

( 1) 1.mbsmoke = -206.7613

F( 1, 4638) = 3.84

Prob > F = 0.0500

test 1.mbsmoke = -250

( 1) 1.mbsmoke = -250

F( 1, 4638) = 0.00

Prob > F = 0.9822

test 1.mbsmoke = -300

( 1) 1.mbsmoke = -300

F( 1, 4638) = 5.36

Prob > F = 0.0207

Remember this: If the number θ0 in null H0 : βj = θ0 is within 95%CI , we
won’t reject a null for that value; if the number is outside CI, we will reject
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Cool things you can do with simulations

If we know from theory the distribution of the estimated coefficients and their
standard errors, we could also use simulations to make probabilistic
statements

Digression: This approach could be viewed are reverse Bayesian statistics. In
Bayesian analysis, estimation is done with simulations. You don’t get just one
β̂, you get thousands. The mean (or mode) of the thousands betas is the
point estimate. You use the thousands to do confidence intervals and other
statistics juts by counting. If we assume uninformative (“flat” priors, we
arrive to similar point estimates as OLS or MLE). See Bayes.do file if curious

The code in the next slide uses this idea. We just simulate the possible values
of β̂smoked to recreate confidence intervals

But we can do more. Now we could estimate the probability that, say,
β̂smoked ≥ −300
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Simulation

preserve

clear

set seed 1234567066

set obs 10000

* The rt function generates t-student distribution with mean zero and sd 1

gen zt = rt(4642-4)

* Make it have a mean of bsmoke and sd of bsmoke_se

gen beta_sm_sd = bsmoke_se*zt + bsmoke

* Get the 2,5 and 97.5 percentile

_pctile beta_sm_sd, p(2.5)

local ci_lb=r(r1)

_pctile beta_sm_sd, p(97.5)

local ci_ub=r(r1)

di "[" ‘ci_lb’ ", " ‘ci_ub’ "]"

* Another way to get the percentile

*centile beta_sm_sd, centile(2.5(5)97.5)

* How many times are the simulated coefficients within the confidence interval?

qui count if beta_sm_sd >= -292.2675 & beta_sm_sd <= -206.7613

di r(N)/10000

* More nifty. What is the probability that the difference in birthweight between

* smokers and non-smokers is greater than -300 grams?

qui count if beta_sm_sd >= -310

di r(N)/10000

restore

It may look complicated but the code is easier to follow. You need to
remember the definition of centile
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Linear Probability Models

We know that the linear/OLS is an unbiased conditional expectation function
regardless of the (conditional) distribution of the outcome

So why not just use linear/OLS models for every type of outcome? Well,
because we know that the distribution of ε or the (conditional) normality of
Y are need for inference

Nonetheless, using the linear/OLS model as a first pass is incredibly helpful
regardless of how the outcome distributes

In other words: the linear/OLS is the wrong but helpful model. You just need
to be careful about the inference part (and other nuances)

One main advantage of using the linaer/OLS model is that the coefficient
can be interpret in the scale of of interest

48



Example: What is the probability of a low birthweight
baby?

The outcome is a dummy variable 1/0 indicating low birthweight. The only
predictor for now will be mother’s age. Remember that the mean of a 1/0
variable is just the proportion of 1s

sum lbweight mage

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

lbweight | 4,642 .0603188 .2381022 0 1

mage | 4,642 26.50452 5.619026 13 45

reg lbweight mage, robust

...

------------------------------------------------------------------------------

| Robust

lbweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mage | -.0018922 .0006662 -2.84 0.005 -.0031982 -.0005862

_cons | .1104703 .0185064 5.97 0.000 .074189 .1467517

------------------------------------------------------------------------------

The probability of low birthweight decreases as mothers get older: a 0.18
percent points decrease by each year or about 2 percent points in 10 years
(note: this dataset is in part simulated; usually a U-shaped relationship)
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Linear Probability Models

Several considerations to keep in mind

1 LPMs assume additive, linear effects (we could have added a quadratic term
for mother’s age)

2 Predictions can be negative
3 If the mean of the outcome Y is close to 0 or close to 1, the LPM could be

misleading because in those areas effects are non-linear
4 The standard errors are wrong – in my experience, though, they are often close

enough
5 If interactions between variables are considerably, effects could be different

than when running the correct model: logit or probit

Despite this drawbacks, LPMs are very handy. But eventually you need to
estimate the correct model
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The correct model

Fairly similar results with logistic models

logit lbweight mage, nolog

Logistic regression Number of obs = 4,642

LR chi2(1) = 9.35

Prob > chi2 = 0.0022

Log likelihood = -1052.9756 Pseudo R2 = 0.0044

------------------------------------------------------------------------------

lbweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mage | -.033934 .0111749 -3.04 0.002 -.0558363 -.0120317

_cons | -1.862322 .2924069 -6.37 0.000 -2.435429 -1.289214

------------------------------------------------------------------------------

margins, dydx(mage)

Average marginal effects Number of obs = 4,642

Model VCE : OIM

Expression : Pr(lbweight), predict()

dy/dx w.r.t. : mage

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mage | -.0019195 .0006381 -3.01 0.003 -.0031701 -.0006689

------------------------------------------------------------------------------
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Intuition

Compare predictions to understand why in this case effects are so similar.
Note that we could have added a quadratic term for mage in the linear model
to incorporate nonlinearity but fit could be worse, actually (check)

qui logit lbweight mage, nolog

predict yhat_ols

line yhat_ols mage, color(red) saving(pred_ols.gph, replace)

logit lbweight mage, nolog

predict yhat_logit

line yhat_logit mage, sort color(blue) saving(pred_logit.gph, replace)

graph combine pred_ols.gph pred_logit.gph, row(1)
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Cool way of graphing a dummy outcome

We can use lowess or other nonparametric methods to see the shape of a 1/0
variable with respect to another variable

lowess lbweight mage, gen(y_smooth)

* make it pretty

scatter lbweight mage, jitter(2) msize(vsmall) legend(off) ///

|| line y_smooth mage, sort color(red)

graph export low.png, replace
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Cool way of graphing a dummy outcome
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Another way: nonparametric regression

Stata has new(ish) and more powerful command to perform nonparametric
(kernel or series) regression: npregress. I’ll focus on kernel regression

Same idea as lowess, details are more complicated. You still need a
bandwidth, although it’s optimally determined, and a weighting formula that
is called the kernel

The npregress commands can have more than one covariate and you can do
inference as well (SEs calculated using bootstrap). See do file

* One way with the npgrah option

npregress kernel lbweight mage

npgraph

* Or make your own graphs

npregress kernel lbweight mage, predict(y_kernel deriv)

sum y_kernel deriv

* note this matches the output

scatter lbweight mage, jitter(3) || line y_kernel mage, sort color(red)

* Or just by itself to see trend better

line y_kernel mage, sort color(red)

graph export ykernel.png, replace
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Nonparametric regression graph
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Hetoroskedasticity

We wrote the assumptions as εi ∼ N(0, σ2) or yi ∼ (β′Xi , σ
2)

Note that we don’t write σi . We assume that that all observations i have the
same variance. This is a fairly unrealistic assumption. More likely that not, it
doesn’t hold in any dataset you will use

For example, there is likely more variability on E [birthweight|mage] for older
mothers

What is the problem of hetoroskedasticity? Nothing to do with the bias of
the linear/OLS model. The problem is that the standard errors (and p-values,
etc) are not correct (to high or too low)

Thankfully, there is an easy solution: we have the sandwich estimator for the
variance, which solves the problem (that’s the robust option in regress)

Remember that I told you to always ask yourself “robust to what?” when you
the work robust: it’s robust to hetoroskedasticity in this context
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The good, great, fantastic, and (slightly) bad of the
sandwich

See this lecture for more:
https://perraillon.com/s/week-10-heteroskedasticity.pdf

Good: We do not need to know the source of unequal variance

Great: The sandwhich estimator is asymptotically unbiased

Fantastic: The sandwhich estimator is asymptotically unbiased even in the
presence of homoskedasticity

If we often suspect heteroskedasticity and the sandwich estimator is
asymptotically valid even in the presence of homoskedasticity, why not
always use the robust SEs?

Well... many researchers add the option robust to every single model for
“insurance”

The bad: The only drawback is that if the homoskedasticity assumption is
valid, in smaller samples the robust SEs may be biased. But we seldom
work with “small” samples anymore

58

https://perraillon.com/s/week-10-heteroskedasticity.pdf


Interactions and stratification

We are going to practice interpreting interactions because interactions can be
confusing

With interactions, we are essentially saying that the effect one variable on the
outcome depends on the value of another variable. So not a constant effect
or linear effect

In the model lbweighti = β0 + β1magei + β2smokedi + β3mage ∗ smokedi , we
are assuming that the effect of mother’s age on low birth weight depends on
whether the mother smoked or not. But we can say it the other way around:
the effect of smoking depends on mother’s age

Easier with derivatives: ∂E [lbweighti |magei ,smokedi ]
∂magei

= β1 + β3smokedi

If a mother smoked, the effect if age is β1 + β3. If not, then it’s just β1

We can’t take derivatives of indicator variables because derivatives are limits
and require small changes. But the formula works too in simple models:
∆E [lbweighti |magei ,smokedi ]

∆smokedi
= β2 + β3magei
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The interaction term is a difference-in-difference

Using the equations above, what is the effect of age for mothers who smoke?
It’s β1 + β3. So the difference in birthweight for a small change (or
difference) in age is given by that expression

What is the change or small difference in low birthweight for a change in age
for those who do not smoke? It’s just β1

What is the difference between those two differences? It’s β1 + β3 − β1 = β3

When we have interactions between two dummy variables, it’s easier to see
that the interaction is a difference-in-difference

Obviously, there is a connection with difference-in-difference research designs.
The effect of interest is an interaction or a difference-in-difference

Caution: A model with an interaction is not a difference-in-difference
research design
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Not the only way to get there

Another way. What is the predicted weight for a mother who smoked?:

E [lbweighti |magei , smokedi = 1] = β0 + β1magei + β2 + β3magei

What is the predicted value for a mother who did not smoke?

E [lbweighti |magei , smokedi = 0] = β0 + β1mage

What is the difference in expected birth weight for those who smoked vs
those who did not:
E [lbweighti |magei , smokedi = 1]− E [lbweighti |magei , smokedi = 0]?:

β0 + β1mage + β3magei + β2 − (β0 + β1mage) = β2 + β3mage

One way to see the previous steps is that we held mage constant while
changing smoking status
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Stratification

Note that with interactions we said that the effect of age is different
depending on whether a mother smoked or not

Model with interaction:
lbweight = β0 + β1magei + β2smoked + β3mage ∗ smoked

We could run two models instead:

Model 1 for smoked = 1: lbweight = α0 + α1mage

Model 2 for smoked = 0: lbweight = γ0 + γ1mage

I changed the notation to emphasize that the coefficients in the three models
are likely to be different

As we may suspect, β3 = α1 − γ1

With an interacted model, we get an statistical test with a null equivalent to
H0 : α1 = γ1 or H0 : α1 − γ1 = 0

This is important. We will practice many times
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Verify

Check that coefficients match

/// --- Interactions and stratification
* Run stratified models and save coefficients
qui reg lbweight mage if mbsmoke == 1, robust
local m1_alpha1 = _b[mage]
qui reg lbweight mage if mbsmoke == 0, robust
local m1_gamma1 = _b[mage]

* Difference
di ‘m1_alpha1’ - ‘m1_gamma1’
.006432

* Should match interaction term
qui reg lbweight c.mage##i.mbsmoke, robust
di _b[1.mbsmoke#c.mage]
.006432
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