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Big picture

We are going to review the basic framework for understanding causal
inference

This is a fairly new area of research, although some of the statistical methods
have been used for over a century

The “new” part is the development of a mathematical notation and
framework to understand and define causal effects

This new framework has many advantages over the traditional way of
understanding causality. For me, the biggest advantage is that we can talk
about causal effects without having to use a specific statistical model (design
versus estimation)

In econometrics, the usual way of understanding causal inference is linked to
the linear model (OLS, “general” linear model) – the zero conditional mean
assumption in Wooldridge: whether the additive error term in the linear
model, εi , is correlated with the variable of interest (treatment). The problem
is that when you move to circumstances in which a linear model is not the
best tool (say, outcome is 1/0 or a count), things are confusing because there
is no additive error term in these models
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Big Picture II - Readings

As we will see, there are reasons to even prefer a nonparametric model
rather than a linear/OLS model to estimate a conditional expectation
function E [yi |xi ]
The main ideas of this new framework have been refined recently (last 15
years?), but there is still no common notation or language

For the economists in the room: please read Imbens and Wooldridge
(2009) “Recent developments in the econometrics of program evaluation” for
a road map. Wooldridge (2010) book Chapter 21 has an interesting take.
That chapter is the framework of Stata’s new(ish) commands teffects and
eteffects

Angrist and Pischke (2009) also provide a bridge from the statistical literature on
causal effects to econometrics, so we will use their notation, although they focus
too much on the linear/OLS model. Imbens and Rubin (2015) is a better
introduction to these topics (on Canvas)

Note that the economics examples are mostly from labor economics. Labor
economics is the field where econ PhD students end up if they want to focus on
empirical methods
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Big picture III

You have all heard that correlation (association) does not imply
causation

Causal inference is about understanding under which circumstances
correlation (association) does imply causation

It’s obviously a fundamental question since we want to understand causal
effects when doing research and when using statistical models

It’s fundamental in health services research and health economics

But remember that we also use statistical models as descriptive tools and
for prediction. Make sure you understand the difference
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Basics concepts

Causality is linked to a manipulation (treatment, intervention, action,
strategy) that is applied to a unit

A unit could be a person, firm, hospital, country, county, classroom, etc

Think of it as the “thing” that received the action or was manipulated

The unit could have been exposed to an alternative action

For simplicity, only two possibilities: receiving or not receiving the action or
treatment (active versus control treatment in Imbens and Rubin, 2015)

This is the usual simplification to understand key concepts, but there could
be multiple treatment levels that could even be continuous like medication
doses or monetary incentives

A unit either receiving or not receiving a treatment is linked to a potential
outcome
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Potential outcomes for units

The “potential” part refers to the idea that only one outcome is realized
after the intervention; the other is, well, potential

(Dictionary definition: Potential: having or showing the capacity to become
or develop into something in the future)

Before the intervention, there are two potential outcomes. Only one is
realized after the action is conducted

Example: a person may or may not receive a job training program if
unemployed. The outcome could be income one year after the program –
income if the person participated in the program and the income if the
person didn’t participate in the program. The outcome could be binary:
getting a job or not

Jargon alert: economists like to use a priori, a posteriori, ex ante, ex post
instead or before and after
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Notation

The observed or realized outcome for a unit i is Yi

We will denote the treatment received by a unit i as Di , which could be 0 or
1, so Di ∈ {0, 1}
The other common notation is for treatment to be W ; Stata manual uses t
for treatment

We have then two potential outcomes: Y1i if the unit received treatment
(Di = 1) and Y0i if not (Di = 0)

Other common notation for potential outcomes [control]: Y 0
i or Yi (0); Stata

uses y0. Don’t get confused with notation

It’s also helpful to keep the index i . We will extend this notation when the
structure of the data changes. Yi is different than, say, Yits . The latter could
be the outcome for person i at time t in state s
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Definition of causal effects

The causal effect effect of receiving treatment for a unit i is a comparison
of potential outcomes

We could compare Y1i −Y0i , the difference between outcomes when units are
treated versus not

Or we could measure the effect as a relative measure: Y1i

Y0i
. Or any other way,

but the idea is that the causal effect of the treatment a unit received Di is a
comparison of potential outcomes

Note that the definition of causal effects does not depend on the actual
treatment or action taken

9



Causal effects

This idea seems a bit confusing at first but it’s a deep concept. You just need
to get used to it

A person i could receive an antidepressant or not. The outcome Yi could be
being depression free at two months (a binary outcome)

The causal effect of receiving the antidepressant is defined as the comparison
of the outcome for the person with the antidepressant and without the
antidepressant, potential outcomes that do not depend on what treatment
the person gets

We could define the outcome as the probability of being depression free at
two months, so the causal effect could be P(Y1i )− P(Y0i )

Again, we could use other ways of measuring effects. For example, the
odds-ratio (which is hard to interpret anyway)

P(Y1i )
1−P(Y1i )

P(Y0i )
1−P(Y0i )

10



Causal effects

This way of thinking about causal effects matches everyday thinking

The causal effect of the next election is the comparison of an outcome, say,
the status of the pandemic next year if the country reelects the current
president or not

The causal effect of studying hard for this class is a comparison of two
potential outcomes: your grade if you study hard and your grade if you don’t.
Only one will be observed because you will study hard or not

In the movie a It’s a Wonderful Life, Clarence the angel shows George Bailey
what would have happened had he not been born. In essence showing Bailey
the causal effect of him being alive

These ideas could be extended to multi-value treatments. Rather than
study hard or not, we could have multiple levels of effort that could be
measured continuously
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The fundamental problem of causal inference

We now have a definition of causal effects but we also have a BIG
PROBLEM

The challenge in causal inference is that we do not observe both potential
outcomes; we only observe one. (In the stats literature this is called the
“fundamental problem of causal inference.” In the economics literature, it’s
called the fundamental problem of program evaluation)

Note that in this framework, the same unit receiving a treatment at a
different time is a different unit

The non-observable or not-realized outocome is called the counterfactual
(Dictionary: relating to or expressing what has not happened or is not the
case)

Said another way, in real life, the problem is that there is no Clarence the
angel to tell us the counterfactual

This way of understanding causal effects (potential outcomes,
counterfactuals) is now called the Rubin causal model (see Imbens and
Wooldridge, 2009 for some history, also Imbens and Rubin, 2015, Chapter 2)
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Counterfactuals

Going back to our notation, we can write the observed outcome Yi in terms
of the potential outcome as

Yi = Y0i + (Y1i − Y0i )Di

If Di = 1 then the observed outcome is Yi = Y1i . If Di = 0 then the observed
outcome is Yi = Y0i

A unit either receives the treatment or not, never both

So if a unit receives the treatment the observed outcome is Y1i and
counterfactual outcome is Y0i

Important (!!): We can think of causal inference as a PREDICTION
problem. How could we predict the counterfactual given that we never
observe it?

13



Digression for home study

You have to read the assigned readings for this week. This is an area
that requires a lot of home study

In the words of my Jesuit priest high school director: To be a good student
you need two things: a big behind and a head. The big behind is more
important so you can sit down and study for hours. Intelligence is overrated

When you do so, the key to not get lost in the derivations that follow is to
understand the equation that allows you to go from observed to
counterfactuals

For the treated group, Y0i is a counterfactual while Y1i is observed. So for
the treated group Y1i = Yi

For the control group,Y1i is a counterfactual while Y0i is observed. So for
the control group Y0i = Yi

Remember, Yi is the observed outcome, and units are either treated or
controls, never both
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Multiple units to solve the causal inference problem

We solve the causal inference problem or the prediction problem with
multiple units

We use the information from other units to make predictions. We do this in
everyday reasoning:

1 Each of us at different times is a different unit. That’s how we figure out what
works for us

2 Different people getting different treatments are a source of comparisons

We often compare different people doing different things (i.e. getting
different “treatments”): Crossfit or yoga for building muscle? What does
Tom Brady and Halle Berry do that they don’t seem to age at all? If I do X,
what would happen?

But... there is still something missing

Intuitively, to correctly predict the counterfactual, we want to compare
similar units
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Comparison and bias

Suppose that we have multiple units. Some of them received a binary
treatment. We observe a continuous outcome Yi

We could compare the average observed outcomes or conditional
expectation: E [Yi |D1 = 1]− E [Yi |D1 = 0]

Small digression: We often compare averages (first moments), but we could
compare other things like the median, the variance (second moment), or the
distribution or any other moment. Or probabilities

The above expression can be rewritten as

E [Y1i |Di = 1]− E [Y0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0]

There is a lot to unpack there. Notice that E [Yi |D1 = 1] = E [Y1i |D1 = 1].
In words, the mean of the observed outcome for the treated is the same as
the mean potential outcome for the treated when treated (duh?)

In the same way, E [Yi |D1 = 0] = E [Y0i |D1 = 0]. We are just rewriting
observed expectations in terms of potential outcome expectations
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Comparison and bias

We then squeezed in a term that equals zero: E [Y0i |Di = 1]− E [Y0i |Di = 1]

Rewriting the mean observed difference E [Yi |D1 = 1]− E [Yi |D1 = 0] into
two components provides some intuition

E [Y1i |Di = 1]− E [Y0i |Di = 1] is the definition of the average treatment
effect on the treated; a comparison of the observed outcome for the treated
minus what would have happened if the treated had not been treated

The second part is what Angrist and Pischke call the selection bias:
E [Y0i |Di = 1]− E [Y0i |Di = 0]. Can be written as
E [Y0i |Di = 1]− E [Yi |Di = 0] (that’s different than in the textbook)

The selection bias is the difference in the average Y0i between those who
received the treatment and those who did not
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Association is causation

To interpret the comparison between observed outcomes
E [Yi |Di = 1]− E [Yi |Di = 0] as causal effects, we want the selection bias to
be zero, so E [Y0i |Di = 1] = E [Yi |Di = 0]

Said in words, if the outcome for the treated when they are not treated
[counterfactual] is the same as the [observed] outcome for the control units
when they are not treated, then a simple comparison of average outcomes
can provide an estimate of average treatment effects

When is this going to be true? When the control group outcome provides an
unbiased prediction as to what would have happened to the treated group if
not treated and vice versa

Note the vice versa part. We could have rewritten in a different way to
make the selection bias the average difference in tersm of the treated group

Bottom line is this: For causal effects, treatment assignment Di must be
independent of potential outcomes
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Independence

This is a good time for a quick refresher on independence. Two random
variables are independent if and only if: fX ,Y (x , y) = fX (x)fY (y). For discrete
random variables: P(X = x ,Y = y) = P(X = x)P(Y = y)

In terms of events: P(A ∩ B) = P(A)P(B). These definitions are not that
intuitive but: What is the conditional probability if two events are
independent?

P(A|B) = P(A∩B)
P(B) = P(A)P(B)

P(B) = P(A)

So the probability of of A given than B occurs is just P(A). In words, B
happening does not affect P(A) (and vice versa)

Better: knowing one doesn’t tell you anything about the other event chances
of happening
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Conditional independence

Conditional independence is an important concept and closely related to
regression models and the conditional independence assumption

Events A and B are conditionally independent if
P(A ∩ B|Z ) = P(A|Z )P(B|Z )

More useful: If A and B are conditional independent given Z, then
P(A|B,Z ) = P(A|Z )

In words, knowing B doesn’t tells us anything about P(A) once we know Z
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Conditional independence...

Usual example: probability of that two people are late when commuting back
home from work. Once we know where they live, wen can tell if the
probability of being late is independent or not

Another example: Suppose you randomly assign patients to an experimental
treatment T based on severity of illness S . People with more severe illness
are given more chances of receiving the treatment. Furthermore, age A is
positively related to severity of illness

Therefore, T and A are NOT independent but T and A are conditionally
independent given I :

P(T |A, I ) = P(T |I )
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Ways to solve the fundamental problem of causal inference
(a)

a) Randomization: Randomly dividing units into treatment and control
groups before the action or intervention takes place makes groups of units
comparable

Don’t underestimate how deep (and mysterious) randomization truly is

After an action is applied to one group, the other group provides the
counterfactual or the best prediction

Another way of saying this is that the potential outcomes do not depend on
the particular group assignment, they are independent

In the new epi causal inference literature they call this exchangeability: the
groups are so similar that they could be exchanged; it does not matter
which group receives the intervention
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Randomization and independence

Going back to our notation to go from observed to counterfactual outcomes.
The difference in average expected outcomes is

E [Yi |D1 = 1]− E [Yi |D1 = 0] = E [Y1i |D1 = 1]− E [Y0i |D1 = 0]

But randomization ensures that E [Y0i |D1 = 1] = E [Y0i |D1 = 0] so we have:

E [Yi |D1 = 1]− E [Yi |D1 = 0] = E [Y1i |D1 = 1]− E [Y0i |D1 = 1]

Same as E [Yi |D1 = 1]− E [Yi |D1 = 0] = E [Yi |D1 = 1]− E [Y0i |D1 = 1]

In words, with randomization, comparing observed outcomes between treated
and control groups is the same as comparing the observed outcome for the
treated group with the counterfactual (not observed) outcome for the control
group

If you frame causal inference as a prediction problem, randomization
solves the problem because what happens to the control provides a good
prediction of what would happened to the treated group if they had not
received treatment
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Average treatment effects versus individual effects

Note that we solved the causal inference problem with multiple units and
obtained average treatment effects

We cannot estimate individual effects

In a clinical trial of medication, individuals are randomized into treatment
and control. The effects are average treatment effects

It doesn’t mean that every single individual would have the same effect.
Effects could be heterogeneous (not the same)

We only know that on average there was (or not) a treatment effect. The
treatment effect could be the same for all (homogeneous) but we don’t know
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Treatment effects: ATE, ATET, LATE

The equation

E [Yi |Di = 1]− E [Yi |Di = 1] =

E [Y1i |Di = 1]− E [Y0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0]

can be described in words as:

Observed average treatment effect = Average treatment effect on the treated
+ selection bias

So there is more than one treatment effect. Most common: the average
treatment effect (ATE) and the average treatment effect on the treated
(ATET)

Under randomization, ATE = ATET because the selection bias is zero

We will come back to this and the notion of another type of treatment effect:
the Local Average Treatment Effects or LATE when we discuss empirical
methods
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Regression to compare observed expected values

In our review of regression analysis we saw that the linear/OLS model is a
conditional expectation function, so we can use a regression model.
Suppose we estimate the population model

Yi = β0 + β1Di + εi

The expected value of the outcome conditional on treatment is:
E [Yi |Di = 1] = β0 + β1 + E [εi |Di = 1]

For the control: E [Yi |Di = 0] = β0 + E [εi |Di = 0]

The difference (contrast) between treatment and control is:

β1 + E [εi |Di = 1]− E [εi |Di = 0]

So β1 is a measure of treatment effect provided

E [εi |Di = 1] = E [εi |Di = 0]

(Next class we’ll see that testing H0 : β1 = 0 is the same as a t-test of
independent samples)
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Regression

When is E [εi |Di = 1]− E [εi |Di = 0] equal to zero?

When treatment assignment D is mean independent of the error term; both
are just E [εi ]

Definition: Y is mean independent of X iff E (Y |X = x) = E (Y ) for all x
such that the probability that X = x is not zero. In words, if the conditional
expectation is the same as the unconditional expectation

Mean independence is a milder assumption than the usual assumption. An
alternative and stronger assumption is to say that
E [εi |Di = 1] = E [εi |Di = 0] if ε is independent from D

Independence implies that D and ε are uncorrelated in any functional form.
On the other hand, mean independence doesn’t imply zero correlation. But
independence does imply mean independence

Confusion alert: I can’t emphasize enough how easily you can get confused
with this line of reasoning. The key is that we are talking here about a
population model. Something we do not observe. To ascertain if D ⊥ ε, we
must argue based on subject knowledge. In this sense, this assumption is a
exclusion restriction. In any sample, the residual ε̂ ⊥ D
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Regression

Randomization ensures ε ⊥ D

You probably have seen this before: We can use a regression when the
regression model includes all confounders

If we leave a confounder out, it’s part of the error term ε, and by definition of
confounder, it’s correlated with both D and Y

Notice that I said confounders: they matter only if the variable(s) left out are
correlated with BOTH, D and Y

Make sure you understand the definition of confounder
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Reminder: confounder

From Wikipedia (with some edits):

“In statistics, a confounding variable (also confounding factor, a confound, a
lurking variable or a confounder) is a variable in a statistical model that
correlates (directly or inversely) with both the dependent variable and an
independent variable”

Another way: a confounder predicts both a covariate and outcome

More often than not we talk about a confounder in relationship to a
treatment

Antidepressants and the risk of suicide: severity of depression is a confounder.
It’s correlated to both the probability of taking antidepressants (the
treatment) and the probability of suicide (the outcome)
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Ways to solve the fundamental problem of causal inference
(b)

b) Statistical adjustment: The previous discussion provides the intuition for
the other way in which we can obtain causal effects: statistical adjustment
with (some form of) regression

Consider conditional randomization. In conditional randomization
randomization depends on the value of one or more variables

For example, we want to confirm the efficacy of a new treatment that a pilot
study showed to be effective. For ethical reasons, we want the patients that
are in worse condition to have more chances of getting the treatment. We
classify patients by severity level (for simplicity, 0 or 1 variable but it could be
continuous). If severity (Z ) equals 1, the patient has 80% chances of getting
the treatment. If the patient is not that sick (Z = 0), then she only has 20%
chances of getting the procedure. Assume that Z is associated with Y
(correlated in any from)
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Conditional randomization

Note the consequence of this type of conditional randomization. On average,
the treated group has sicker patients than the control group

In other words, the selection bias is not zero: E [Y0i |Di = 1] 6= E [Yi |Di = 0]

In the population model Yi = β0 + β1Di + εi , severity Z is part of ε and
therefore there is no independence or mean independence
(E [D|Z = 1] 6= E [D|Z = 0])

The expected value of the outcome for the control groups is NOT the same
as the expected value of the counterfactual for the treated group. Another
way: the control group cannot provide a counterfactual for what would have
happened to the treated group (and vice versa)

But there is an easy fix. We can control for severity in our regression model:
Yi = γ0 + γ1Di + γ3Zi + ηi

In this sense, statistical adjustment is the oldest causal inference
method we have. Now η is conditional independence from D: ηi ⊥ Di |Zi
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The ignorable treatment assignment assumption

We can now state the fundamental assumption to justify some type of
regression adjustment (not necessarily linear/OLS)

This assumption says that conditional on observable covariates Xn, the
assignment of units to experimental groups is independent of potential
outcomes:

(Y0i ,Y1i ) ⊥ Di |Xni , where Y0i ,Y1i are the potential outcomes for unit i , D is
treatment assignment and Xn are a set of n observable covariates (⊥ is
“perpendicular”, “orthogonal”)

In the conditional randomization example, we satisfied this assumption by
conditioning on Z

The ignorability of treatment assignment says that if you can’t control for
confounders, your statistical model is showing a correlation and not
causation

Jargon, jargon, jargon: This assumption comes in many names, the most
common perhaps is no unmeasured confounders. Other names: selection
on observables, exogeneity, conditional independence assumption (CIA),
ignorability
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Refining assumptions

We saw that to interpret the comparison between observed outcomes
E [Yi |Di = 1]− E [Yi |Di = 0] as causal effects, we want the selection bias to
be zero, so:

E [Y0i |Di = 1] = E [Yi |Di = 0]

If we know and observe covariates that affect selection intro treatment, we
can extend this condition to be:

E [Y0i |Xi ,Di = 1] = E [Yi |Xi ,Di = 0]

Notice that there is some nuance here. Going back to the example of
randomization based on severity. Suppose that there was another factor used
to randomize patients: gown color. If gown color is not related to the
outcome Y , does it have to be part of the covariates in a model in order to
obtain causal effects? NO. We want to control for confounders

Although not obvious, we can in fact estimate a global average treatment
effect or an average treatment for a subpopulation defined by covariates X
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Digression: Language matters a lot

How we name things matters a lot and may create confusion: taxing lucky
people who inherit a lot of money sounds different than “death tax,” even if
the end result is the same. A lie somehow is not the same as a “false
statement” (dysphemism and euphemism, respectively)

The CIA or ignorability assumption is also called selection on observables,
perhaps the most common name and one I use a lot. It’s helpful to convey
the main result to justify regression adjustment: if the factors that determine
treatment assignment are observable, we can control for them to obtain
causal effects

But assumption (Y0i ,Y1i ) ⊥ Di |Xni leaves room for D to be correlated (in
any form) with unobservable variables that determine treatment assignment.
The key is that these unobserved variables must NOT be associated with
Y0i ,Y1i (the gowns example above)

So unconfoundness or “no unmeasured confounder” would be a better
word

Big Wooldrige (2010) Chapter 21 has an interesting discussion about this
(and presents the milder assuption of “Ignorability in Mean”)

34



Heterogeneous treatment effects

Estimating treatment effects using the model above adds a structure:

Yi = β0 + β1Di + β3Zi + εi

The treatment effect we obtain will average across severity levels Z

We could estimate two models: one for Z = 1 and one for Z = 0 (stratified
models). We would get two estimates of treatment effects, say β̂1 if Z = 1
and γ̂1 if Z = 0. They may be different if there is effect heterogeneity, but we
could combine them weighting them to obtain ATE. Using he sample of each
stratum would be an intuitive choice (this insight goes back to Rubin, 1977)

With heterogeneous treatment effects, the parametric model would be an
interacted model:

Yi = γ0 + γ1Di + γ3Zi + γ4Di × Zi + ηi

One message: we can extend the definition of causal effects to a
subpopulation defined by covariates, in this case Z , severity level. Another
message: average treatment effects mask heterogeneous treatment effects
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Check
The idea that the interacted model is weighting the estimates from the
stratified analysis is important to consider

With the fully interacted model, we will average over the heterogenity using
the margins command (come back to this after the class on marginal effects)

A better way of weighting would be using variances
bcuse bwght, clear

gen smoked = 0

replace smoked = 1 if cigs ==0

qui reg bwght i.smoked##i.white

margins, dydx(smoked)

Average marginal effects Number of obs = 1,388

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : 1.smoked

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.smoked | 8.889065 1.488571 5.97 0.000 5.968966 11.80917

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

quietly {

reg bwght i.smoked if white ==1

scalar beta1 = _b[1.smoked]

scalar N1 = e(N)

reg bwght i.smoked if white ==0

scalar beta2 = _b[1.smoked]

scalar N2 = e(N)

}

di (N1*beta1 + N2*beta2)/(N1+N2)

8.8890654
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Caution
Angrist and Pischke used the linear/OLS model to discuss these issues but
statistical adjustment could be done with other models and the average
treatment effect is not the only measure of outcome

The linear/OLS makes functional form assumptions that could be relaxed.
Instead of estimating E [Yi |Xi ,Di ] with a linear/OLS model we could do so
nonparametrically (local polynomial, lowess, kernel regression)

Nonparametric methods are the basis of more “modern” approaches so we
will cover them

Also, the outcome could be a 0/1 variable; therefore, the outcome is a
probability. We do not need the expectation to make sense of causal
inference, but we are often interested in averages. Remember, causal effects
are comparisons of potential outcomes

The key issue is: can the outcome of the control group be a good
counterfactual for the treated group (and vice versa)?

The answer hinges on understanding the assignment mechanism. We know
that with randomization the answer is yes. Without randomization, we need
to make sure that we control for all factors that determine treatment and
also affect outcomes (confounders)
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Regression adjustment requires another assumption:
overlap

We actually need another assumption –often overlooked– to obtain causal
effects using regression adjustment

Intuition: Can we use the control group to make predictions about what
would have happened to the treated had they not been treated if, say, the
control group is made of people younger than 50 but most of the treated
group is older than 75? Maybe, but we are relying on extrapolation

For now, we can state the assumption. Overlap: For all X ∈ ϕ, where ϕ is
the support (domain) of the covariates X , 0 < P(D = 1|X ) < 1

In words, for all the covariate values, there is a chance of seeing units in both
treatment and control groups. Notice that randomization ensures overlap is
satisfied

We will see this issue when we cover propensity scores as propensity scores
help diagnose this problem. Propensity scores and matching estimators offer
a solution too

Actually, P(Di = 1|Xi ) is the definition of the propensity score
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Ways to solve the fundamental problem of causal inference
(c)

c) other ways to solve the problem of causal inference

Randomization is not always possible, feasible, ethical, or easy to do

When we observe all confounders – that is, ignorability, selection on
observables, and son on hold– we can use regression methods and/or
propensity scores/matching

But we will also cover other methods to find causal effects:
difference-in-difference, instrumental variables, regression discontinuity

All of them have some version of LATE in the sense that we are able to find
a type of treatment effect that may or may not be ATE or ATET

All of them have assumptions that can be verified with data and exclusion
restrictions that cannot be verified with data
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Assignment mechanism

If the key is to control for variables associated with both treatment D and
outcome Y , it follows that the key to understand if we can interpret models
as providing causal effects is to understand how units ended up receiving
treatment (or not)

Assignment mechanism: What determines which units receive (or not) the
treatment?

Imbens and Rubin (2015) define several classes of assignment mechanisms:

1 Classical randomized experiments: Interventions under the control of the
investigators. With good randomization, causality is not problematic (includes
conditional randomization). There could be non-compliance or other issues,
though

2 Regular assignment mechanisms: Interventions not under the control or not
known to the researcher – think observational studies. Several subtypes based
on how much we know about assignment

Most of health services research question are related to the second type
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Assignment mechanism II

If the units were not randomized, how some units ended up receiving
treatment? What factors influenced that decision? Can we observe these
factors? This is perhaps the most important consideration of a study
design

Example: taking antidepressants and the risk of suicide. You have
observational data; patients were not randomized to take antidepressants

Why some took antidepressants? Severity of illness, access to care, family
history, preferences

If you can’t control for these factors, you do not have conditional
independence between antidepressant use (treatment) and suicide (outcome)

In other words, your study is showing a correlation, not a causation

Others: Medicaid expansion and hospital closures. Flu vaccines and
hospitalizations

You need good subject knowledge to analyze data!!
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Stable Unit Treatment Value Assumption (SUTVA)

I mentioned that we need more assumptions even with randomization.
SUTVA is one. SUTVA holds when:

1 The potential outcomes for any unit do not vary with the treatment assigned
to other units (no interference)

2 For each unit, there are no different versions of each treatment level (no
hidden variation of treatments)

Another way of explaining SUTVA: SUTVA requires that the outcome of a
particular unit depends only on the treatment to which the unit was assigned,
not the treatments of other units (spillovers)

This is an example of exclusion restrictions: assumptions that rely on theory
or substantive knowledge to rule out (or in) the existence of a causal effect

Assumptions about how the world works that allow us to “exclude”
alternatives or define mechanisms that you can’t test with data

In instrumental variables, for example, we need to rule out the possibility that
the instrument is related to the outcome (conditional on other factors)

42



On forests and trees

This week’s lectures in one slide:

1 We defined causal effects as comparisons of potential outcomes
2 We encountered a big problem: we only get to see one potential outcome for

each treatment level
3 We framed the problem as a prediction problem: we need a way to predict the

counterfactual
4 We used multiple units to find those predictions
5 We saw that we solve the causal inference problem with a) randomization , b)

statistical adjustment, c) other methods
6 We still can’t make causal statements for single units. We can find average

treatment effects
7 We saw that we can define several types of average treatment effects: ATE,

ATET, LATE
8 We saw that b) statistical adjustment requires 1) unconfoundness and 2)

overlap
9 We saw that for a), b), and c) we also need SUTVA
10 We learned that we need to understand the assignment mechanism well to be

able to argue that association implies causation

The rest are details and proofs
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How economists talk (or not?) to each other

The model is endogenous: They mean that the ignorability assumption is
not satisfied. There are unobservable variables not controlled for. The model
has unmeasured confounders

The model is not identified: It means that whatever model you are
estimating does not represent the true model. You cannot learn the “true”
causal value of the parameters from your model

Identification strategy: the method used for finding causal effects, as in
“My identification strategy is to use XYZ as an instrument for...”

Selection on observables: The economist version of no unmeasured
confounders, ignorability or conditional independence assumption (CIA).
Meaning, people (it’s usually people) selected into treatment based on factors
that you can measure (and control for). So your treatment is endogenous
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A framework for understanding the importance of potential
outcome

It’s helpful to follow Heckman and Vytlacil (2007a) discussion on causal
effects as three separate steps (paraphrasing to match our language)

1 Define causal effects using potential outcomes
2 Identify causal effects from a hypothetical population data
3 Estimate parameters from observed samples

An effect is identifiable if the counterfactual estimates are the same as the
observable data

We saw that with randomization causal effects are identified because we can
show that E [Y0i |Di = 1] = E [Y0i |Di = 0] or written in a different way:
E [Y0i |Di = 1] = E [Yi |Di = 0]

Clones: In every homework somebody mentions clones. Clones would be like
identical twins born many years apart (I think). But twins are extremely
helpful for causal inference for issues that we suspect are completely
determine by biology. In a sense, randomization is creating clone groups

45



Summary

The counterfactual framework offers a way of thinking about causal inference

It has resulted in a lot of progress and new causal inference field in statistics;
it has clarified the causal inference approach in econometrics even though
some methods have been used for decades

Get used to the language since we are going to use it for the rest of the class

Remember, we are trying to learn if our models are descriptive/correlational
or if they can have a causal interpretation

But remember too that we often run models as descriptive or predictive
tools. It’s not that a model is automatically wrong if it doesn’t have a causal
interpretation. It depends on what you do with the model and how you
interpret it
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